KR100543489B1 - A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process - Google Patents

A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process Download PDF

Info

Publication number
KR100543489B1
KR100543489B1 KR1020020068887A KR20020068887A KR100543489B1 KR 100543489 B1 KR100543489 B1 KR 100543489B1 KR 1020020068887 A KR1020020068887 A KR 1020020068887A KR 20020068887 A KR20020068887 A KR 20020068887A KR 100543489 B1 KR100543489 B1 KR 100543489B1
Authority
KR
South Korea
Prior art keywords
spinning
nozzle
polymer solution
nanofibers
air
Prior art date
Application number
KR1020020068887A
Other languages
Korean (ko)
Other versions
KR20040040692A (en
Inventor
김용민
성영빈
장래상
안경열
Original Assignee
이 아이 듀폰 디 네모아 앤드 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이 아이 듀폰 디 네모아 앤드 캄파니 filed Critical 이 아이 듀폰 디 네모아 앤드 캄파니
Priority to KR1020020068887A priority Critical patent/KR100543489B1/en
Publication of KR20040040692A publication Critical patent/KR20040040692A/en
Application granted granted Critical
Publication of KR100543489B1 publication Critical patent/KR100543489B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Abstract

본 발명은 일렉트로-브로운 방사법에 의한 초극세 나노섬유 제조장치 및 제조방법에 관한 것으로, 소정 용매에 용해된 폴리머 용액을 방사노즐로 이송시키고, 상기 폴리머 용액을 고전압이 인가된 방사노즐을 통해 토출시키면서 상기 방사노즐의 하단으로 압축공기를 분사시켜, 하부의 접지된 석션 콜렉터상에 방사하는 것으로 이루어진 것을 특징으로 하여, 열가소성 수지 및 열경화성 수지 모두 사용가능하며, 용액 가열이 필수적이지 않고, 절연방법의 구현이 용이한 초극세 나노섬유의 제조장치 및 제조방법에 관한 것이다.The present invention relates to an ultra-fine nanofiber manufacturing apparatus and a manufacturing method by an electro-blowing spinning method, and transfers a polymer solution dissolved in a predetermined solvent to a spinning nozzle, while discharging the polymer solution through a spinning nozzle to which a high voltage is applied. Compressed air is injected into the lower end of the spinning nozzle to radiate on the lowered suction collector, and both thermoplastic resins and thermosetting resins can be used, and solution heating is not essential, and an insulation method can be implemented. The present invention relates to an apparatus and a method for producing the ultrafine nanofibers.

나노섬유, 웹, 부직포, 초극세, 방사Nanofiber, Web, Non-Woven, Microfine, Yarn

Description

일렉트로-브로운 방사법에 의한 초극세 나노섬유 제조장치 및 제조방법{A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process}A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process

도 1은 본 발명의 나노섬유 제조장치 구성도,1 is a block diagram of a nanofiber manufacturing apparatus of the present invention,

도 2a는 나이프에지상의 에어분사구를 갖는 방사구금 단면도,Figure 2a is a spinneret cross-sectional view having an air jet port on the knife edge,

도 2b는 원통형 에어분사구를 갖는 방사구금 단면도,2b is a cross-sectional view of the spinneret having a cylindrical air jet port,

도 3은 멜트브로운 방사법과 정전 방사법을 유기적으로 결합하여 나노섬유를 제조하는 공정개략도,3 is a process schematic diagram of manufacturing nanofibers by organically combining melt blown spinning and electrostatic spinning;

도 4는 플래시 방사법과 정전 방사법을 유기적으로 결합하여 나노섬유를 제조하는 공정개략도이다.4 is a process schematic diagram of organically combining flash spinning and electrostatic spinning to produce nanofibers.

*도면의 주요부분에 대한 부호설명* Code descriptions for the main parts of the drawings

100 : 저장조 102 : 방사구금 104 : 방사노즐100: reservoir 102: spinneret 104: spinning nozzle

106 : 에어분사구 108 : 공기가열기 110 : 콜렉터106: air injection port 108: air heater 110: collector

112 : 송풍기 114 : 에어포집관112: blower 114: air collecting pipe

본 발명은 일렉트로-브로운 방사법에 의한 초극세 나노섬유의 제조장치 및 제조방법에 관한 것으로, 특히 열가소성 수지 및 열경화성 수지 모두 사용가능하며, 용액 가열이 필수적이지 않고, 절연방법의 구현이 용이한 나노섬유의 제조장치 및 제조방법에 관한 것이다. 여기서 "일렉트로-브로운(electro-blown)"이란 용어는 본 출원인이 처음 사용한 것으로서, 방사할 때 고전압을 인가하면서 압축공기를 분사한다는 의미에서 일렉트로-브로운 방사법이라 명명하였다.The present invention relates to an apparatus and method for producing ultra-fine nanofibers by the electro-blowing method, in particular, both thermoplastic resins and thermosetting resins can be used, and solution heating is not essential, and nanofibers are easy to implement an insulation method. It relates to a manufacturing apparatus and a manufacturing method. Here, the term "electro-blown" was used by the present applicant for the first time, and was named as an electro-blown spinning method in the sense of blowing compressed air while applying a high voltage when spinning.

일반적으로 부직포는 그 다양한 용도로 인해 전세계적으로 수요가 점차 증대되고 있는 추세로 그 제조방법 역시 다양한 형태로 전개되고 있다.In general, nonwoven fabrics are increasingly being demanded worldwide due to their various uses, and their manufacturing methods are also being developed in various forms.

이중에서도 극세 섬유 보다 한단계 진보된 초극세 나노섬유로 이루어진 부직포(이하, '나노섬유 웹'이라 한다)의 제조기술의 개발을 위해 미국을 중심으로 많은 연구가 이루어지고 있다. 이들 기술은 아직 초기 단계로 상용화된 바가 없고 기존의 기술은 극세사(수㎛)를 제조하는 단계에 머물러있다. 기존의 극세 섬유기술로는 제조가 불가능한 수~수백 nm 직경의 나노섬유는 종래의 극세사와 비교할 수 없을 만큼 단위 부피당 표면적이 높으며 다양한 표면특성, 구조 및 복합성분의 나노섬유의 제조가 가능하므로 기존의 극세사의 응용제품이 갖는 한계 물성 극복 및 신기능성 제품의 창출이 가능하다.Among them, a lot of research is being conducted mainly in the United States for the development of manufacturing technology of non-woven fabrics (hereinafter referred to as 'nanofiber web') made of ultra-fine nanofibers, which is one step further than the ultrafine fibers. These technologies have not yet been commercialized at an early stage, and existing technologies remain at the stage of manufacturing microfibers (several micrometers). Nanofibers with diameters of several hundreds of nm, which cannot be manufactured with conventional microfiber technology, have a high surface area per unit volume and are capable of producing nanofibers with various surface properties, structures, and composite components. It is possible to overcome the limitations of microfiber application products and to create new functional products.

이와 같은 제조기술을 이용한 나노섬유는 환경산업용 초고정밀 여과재, 전기전자 산업용 소재, 의료용 생체재료, 고성능 복합재료로서의 용도전개가 가능하다고 알려져 있다.Nanofibers using such manufacturing techniques are known to be developed for use as ultra-high precision filter media for environmental industries, electrical and electronic materials, medical biomaterials, and high performance composite materials.

지금까지의 극세섬유를 제조하는 기술은 플래시 방사법, 정전 방사법, 멜트 브로운 방사법과 같은 세가지 방법으로 구분 지을 수 있는데, 본 출원인이 출원한 "초극세 단섬유의 제조방법"이란 명칭의 한국특허출원 제10-2001-31586호, 제10-2001-31586호에서 이들 기술에 대해 언급한 바 있다.Until now, the technology for producing microfibers can be divided into three methods such as flash spinning, electrostatic spinning, and melt blown spinning. The Korean patent application titled "Method for manufacturing ultra-fine short fibers" filed by the present applicant 10-2001-31586 and 10-2001-31586 mention these techniques.

한편, 본 출원인의 한국특허출원 제10-2001-31586호에서 멜트브로운 방사법과 정전 방사법을 유기적으로 결합하여 나노미터 스케일의 나노섬유를 높은 생산성 및 수율로 대량 제조할 수 있음을 밝힌 바 있다. 도 3은 이 기술의 설명을 위한 공정 개략도로서, 열가소성 폴리머를 호퍼(10)를 통해 압출기(12)에 공급한 후 용융하여 폴리머 용융액을 제조한 다음, 방사구금(14)으로 이송하여 방사노즐(16)을 통해 가열공기와 함께 전계 내로 방사시킨다. 상기 전계는 전압이 걸려있는 방사노즐(16)과 콜렉터(18) 사이에 형성된다. 흡입을 위한 송풍기(20)가 설치된 콜렉터(18) 상에 방사된 단섬유들을 웹상태로 포집한다. On the other hand, the Korean Patent Application No. 10-2001-31586 of the applicant has revealed that the organic nano-combined melt blown spinning and electrostatic spinning can be produced in large quantities with high productivity and yield nanometer scale nanofibers. 3 is a process schematic diagram for explaining the technique, in which a thermoplastic polymer is supplied to an extruder 12 through a hopper 10 and then melted to prepare a polymer melt, and then transferred to a spinneret 14 to spin spinning nozzle ( 16) is radiated into the electric field with heated air. The electric field is formed between the radiating nozzle 16 and the collector 18 under voltage. The short fibers spun on the collector 18 in which the blower 20 for suction is installed are collected in a web state.

그리고 본 출원의 한국특허출원 제10-2001-31587호에서는 플래시 방사법과 정전 방사법을 유기적으로 결합하여 나노미터 스케일의 나노섬유를 높은 생산성 및 수율로 대량 제조할 수 있음을 밝혔는데, 도 4는 이 기술의 설명을 위한 공정 개략도이다. 저장탱크(22)에 저장된 폴리머용액을 압력펌프(24)를 이용 방사구금(26)으로 이송시키고, 감압오리피스(28)를 거쳐 방사노즐(30)을 통해 전계 내로 방사시킨다. 이 전계는 전압이 걸려있는 방사노즐(30)과 콜렉터(32) 사이에 형성된다. 흡입 송풍기(34)가 설치된 콜렉터(32) 상에 방사된 단섬유들을 웹상태로 포집한다. In addition, Korean Patent Application No. 10-2001-31587 of the present application has revealed that organically combining flash spinning and electrostatic spinning can produce nanometer-scale nanofibers with high productivity and yield. Process schematic for description of the technique. The polymer solution stored in the storage tank 22 is transferred to the spinneret 26 using the pressure pump 24, and is radiated into the electric field through the spinneret 30 through the pressure reducing orifice 28. This electric field is formed between the radiating nozzle 30 and the collector 32 under voltage. The short fibers spun on the collector 32 provided with the suction blower 34 are collected in a web state.

이와 같은 두가지 기술로 나노섬유로 이루어진 나노섬유 웹을 제조할 수 있음을 알 수 있다.It can be seen that the nanofiber web made of nanofibers can be produced by these two techniques.

그러나, 위의 기술은 절연방법의 구현이 쉽지 않고, 채택할 수 있는 수지의 제한이 따르며, 가열이 필수적이라는 점 등의 한계를 안고 있다.However, the above technique is limited in that it is not easy to implement the insulation method, there are restrictions on the resin that can be adopted, and heating is essential.

상기한 제문제점을 해소하기 위해 안출된 본 발명은, 열가소성 수지 및 열경화성 수지 모두 사용가능하며, 용액 가열이 필수적이지 않고, 절연방법의 구현이 용이한 나노섬유 제조방법의 제공을 그 목적으로 한다.The present invention devised to solve the above problems, the thermoplastic resin and the thermosetting resin can be used both, the solution heating is not essential, it is an object of the present invention to provide a method for producing a nanofiber easy to implement the insulation method.

또한 본 발명은 상기 제조방법을 구현하기 위한 나노섬유 제조장치의 제공을 또다른 목적으로 한다.In another aspect, the present invention is to provide a nanofiber manufacturing apparatus for implementing the manufacturing method.

상기 목적을 달성하기 위한 본 발명의 나노섬유 제조방법은, 소정 용매에 용해된 폴리머 용액을 방사노즐로 이송시키고, 상기 폴리머 용액을 고전압이 인가된 방사노즐을 통해 토출시키면서 상기 방사노즐의 하단으로 압축공기를 분사시켜, 하부의 접지된 석션 콜렉터상에 방사하는 것으로 이루어진다.Nanofiber manufacturing method of the present invention for achieving the above object, by transporting the polymer solution dissolved in a predetermined solvent to the spinning nozzle, and compressing to the lower end of the spinning nozzle while discharging the polymer solution through the spinning nozzle applied high voltage By spraying air and radiating it onto the lower grounded suction collector.

상기 또다른 목적을 달성하기 위한 본 발명의 나노섬유 제조장치는 폴리머 용액을 제조하기 위한 저장조, 상기 저장조로부터 이송된 폴리머 용액이 토출되는 방사노즐, 상기 방사노즐의 하단으로 압축공기가 분사되는 에어분사구, 상기 방사노즐에 고전압을 인가하는 전압부여수단, 상기 방사노즐로부터 토출된 방사 섬유를 웹 상태로 포집하기 위한 접지된 콜렉터로 이루어진다.Nanofiber manufacturing apparatus of the present invention for achieving the above another object is a storage tank for producing a polymer solution, a spinning nozzle for discharging the polymer solution transferred from the reservoir, the air injection port is injected compressed air to the lower end of the spinning nozzle And a voltage applying means for applying a high voltage to the spinning nozzle, and a grounded collector for collecting the spinning fibers discharged from the spinning nozzle in a web state.

도 1은 이와 같은 제조장치 및 제조방법의 설명을 위한 나노섬유 제조장치 구성도이고, 도 2a, 2b는 노즐과 에어분사구의 설명을 위한 노즐 구성도이다. 이들 도면을 통해 본 발명의 나노섬유 제조방법을 상세하게 설명한다.1 is a configuration diagram of a nanofiber production apparatus for explaining such a manufacturing apparatus and a manufacturing method, Figure 2a, 2b is a nozzle configuration for explaining the nozzle and the air injection port. The nanofiber production method of the present invention will be described in detail through these drawings.

저장조(100)는 폴리머 용액 제조를 위한 것으로 폴리머와 용매의 배합을 통해 폴리머 용액을 제조한다. 본 발명에서 사용가능한 폴리머는 열가소성 수지에만 제한되지 않고 열경화성 수지 등의 대개의 합성수지 모두 사용가능하다. 사용가능한 폴리머로서, 폴리이미드, 나일론, 폴리아라미드, 폴리 벤지이미다졸, 폴리에테르이미드, 폴리아크릴로니트릴, 피이티(폴리에틸렌테레프탈레이트), 폴리프로필렌, 폴리아닐린, 폴리에틸렌옥사이드, 피이엔(폴리에틸렌나프탈레이트), 피비티(폴리부틸렌테레프탈레이트), 에스비알(스티렌부타디엔러버), 폴리스티렌, 피브이씨(폴리비닐클로라이드), 폴리비닐알콜, 피브이디에프(폴리비닐리덴플로라이드), 폴리비닐부틸렌, 피엘엘에이(폴리 엘-락틱 엑시드), 피지에이(프로필렌 글리콜 알지네이트) 등과 이들의 공중합물 또는 유도체화합물이다. 이들 폴리머에 따라 용매를 선택하여 폴리머 용액을 제조한다. 상기 저장조(100)의 폴리머 용액의 이송을 위해 도 1의 장치에서는 저장조(100)에 압축공기나 질소가스를 불어넣어 가압하는 구조를 선택하였으나, 펌프 등과 같이 공지된 이송방법을 이용할 수 있으며, 이송방법에 특별한 제한이 있는 것은 아니다. 상기 폴리머 용액에는 해당 폴리머와 상용성이 있는 수지, 가소제, 자외선안정제, 가교제, 경화제, 반응개시제 등의 첨가제를 혼합시킬 수 있다. 대부분의 폴리머의 용해에 특별한 가온이 필요없으나, 용해 반응을 보조하기 위해 가열이 필요할 수 있다.The reservoir 100 is for preparing a polymer solution to prepare a polymer solution through a combination of a polymer and a solvent. The polymer usable in the present invention is not limited to thermoplastic resins, and most synthetic resins such as thermosetting resins can be used. Polymers that can be used include polyimide, nylon, polyaramid, poly benzimidazole, polyetherimide, polyacrylonitrile, pyti (polyethylene terephthalate), polypropylene, polyaniline, polyethylene oxide, and piene (polyethylene naphthalate) , PB (polybutylene terephthalate), SB (styrene styrene butadiene rubber), polystyrene, FVC (polyvinylchloride), polyvinyl alcohol, FV diep (polyvinylidene fluoride), polyvinyl butylene , PIEL (poly L-lactic acid), Fiji (propylene glycol alginate) and the like or copolymers or derivatives thereof. A solvent is selected according to these polymers to prepare a polymer solution. In order to transfer the polymer solution of the reservoir 100, the apparatus of FIG. 1 selects a structure in which compressed air or nitrogen gas is blown into the reservoir 100, but a known transfer method such as a pump may be used. There is no particular limitation on the method. The polymer solution may be mixed with additives such as resins, plasticizers, UV stabilizers, crosslinking agents, curing agents, reaction initiators, and the like that are compatible with the polymer. Dissolution of most polymers does not require special heating, but heating may be required to assist the dissolution reaction.

상기 저장조(100)의 폴리머 용액은 절연되고 고전압이 인가된 방사구금(102)의 방사노즐(104)을 통해 토출된다. 상기 방사노즐(104)의 양옆에 위치된 에어분사 구(106)를 통해 공기가열기(108)에서 가열된 압축공기가 분사된다.The polymer solution of the reservoir 100 is discharged through the spinning nozzle 104 of the spinneret 102 insulated and applied with a high voltage. The compressed air heated in the air heater 108 is injected through the air injection holes 106 positioned at both sides of the spinning nozzle 104.

상기 방사구금(102)의 구조에서 방사노즐(104)과 에어분사구(106)부분의 구조 설명을 위한 도 2a, 2b를 참조하면, 도 2a는 방사노즐(104)의 양측에 나이프에지상의 에어분사구(106)를 갖는 것으로 도 1에 도시된 것과 동일한 구조로서, 방사노즐(104)은 상부에 폴리머 용액이 들어와 하단에 형성된 모세관을 거치면서 방사되는 구조로서, 이와 같은 구조의 방사노즐(104) 다수개가 일정 간격으로 일렬로 배치되고, 이 방사노즐(104)의 배열과 평행하도록 양측에 나이프에지상의 에어분사구(106)를 둘 수 있어 여러개의 방사노즐(104)로 나노섬유를 방사할 수 있는 이점을 갖는다. 각 부분의 바람직한 치수는 에어분사구(106)의 간격인 에어갭(a)은 0.1~5mm범위 이내로 사용가능하고, 특히 0.5~2mm가 바람직하다. 에어분사구(106)의 하단 모세관 직경(d)은 0.1~2.0mm, 특히 0.2~0.5mmm가 바람직하고, 에어분사구(106)의 하단 모세관의 길이와 직경의 비(L/d)는 1~20의 값이면 사용가능하며, 특히 2~10의 범위가 바람직하다. 그리고 에어분사구(106)의 하단과 방사노즐(104)의 하단과의 높이 차이인 노즐돌출부(e)는 방사노즐(104)의 오염을 방지하는 역할을 수행하는 것으로 그 값은 -5~10mm이 바람직하며, 0~10mm가 특히 바람직하다. Referring to Figures 2a, 2b for explaining the structure of the spinneret 102 and the air injection port 106 in the structure of the spinneret 102, Figure 2a is a knife edge air on both sides of the spinneret 104 As the structure having the injection hole 106 and the same as shown in Figure 1, the radiation nozzle 104 is a structure in which the spinning through the capillary tube formed in the polymer solution at the upper end, the spinning nozzle 104 of such a structure A plurality of them are arranged in a line at regular intervals, and the knife-edge air injection holes 106 can be placed on both sides so as to be parallel to the arrangement of the spinning nozzles 104 so that the nanofibers can be radiated by the plurality of spinning nozzles 104. That has the advantage. The preferred dimension of each part is that the air gap a, which is the interval between the air injection holes 106, can be used within the range of 0.1 to 5 mm, particularly preferably 0.5 to 2 mm. The lower end capillary diameter (d) of the air injection hole (106) is preferably 0.1 to 2.0 mm, particularly 0.2 to 0.5 mmm, and the ratio (L / d) of the length and diameter of the lower end capillary of the air injection hole (106) is 1 to 20. If it is a value of, it can be used, Especially the range of 2-10 is preferable. And the nozzle projection (e), which is the height difference between the lower end of the air injection port 106 and the lower end of the radiation nozzle 104 serves to prevent contamination of the radiation nozzle 104, the value is -5 ~ 10mm It is preferable and 0-10 mm is especially preferable.

도 2b는 방사노즐(104)은 도 2a의 구조와 동일하며 에어분사구(106)는 방사노즐(104)을 원형으로 둘러싸는 원통형의 구조로 방사되는 나노섬유의 주위로 에어분사구(106)로부터의 압축공기가 고르게 분사되므로 도 2a의 구조, 즉 나이프에지상보다 배향에 이점을 가질 수 있다. 방사노즐(104)이 다수개가 필요한 경우 방사 구금에 이와 같은 구조의 방사노즐(104)과 에어분사구(106)를 배열하면 되지만, 그 제작과정에 도 2a의 구조보다 많은 노력을 기울여야 한다.FIG. 2B shows that the spinneret 104 is identical to the structure of FIG. 2A and the air jet 106 is discharged from the air jet 106 to the periphery of the nanofibers that are spun into a cylindrical structure that circularly surrounds the spinneret 104. Since compressed air is evenly injected, it may have an advantage in orientation than the structure of FIG. If the number of the radiation nozzles 104 is required, the radiation nozzle 104 and the air injection hole 106 of such a structure may be arranged in the spinneret, but more efforts must be made in the manufacturing process than the structure of FIG. 2A.

다시 도 1로 돌아가서, 상기 방사구금(102)의 방사노즐(104)로부터 토출된 폴리머 용액은 하부의 석션 콜렉터(110) 상에 웹 상태로 포집된다. 상기 콜렉터(110)는 접지된 상태이고, 석션을 위해 송풍기(112)가 에어포집관(114)을 통해 공기를 흡입하도록 구성하여 방사노즐(104)과 콜렉터(110)사이의 고전압과 송풍기(112)의 흡입에 의해 석션이 이루어지게 된다. 송풍기가 흡입하는 공기에는 용매가 포함되어 있어 용매회수장치(SRS, Solvent Recovery System, 도시되지 않음)를 통해 리사이클 되도록 구성하는 것이 바람직하다. 이 용매회수장치는 공지의 것을 채택하여 사용할 수 있다.1, the polymer solution discharged from the spinneret 104 of the spinneret 102 is collected in a web state on the suction collector 110 in the lower portion. The collector 110 is grounded, and the blower 112 is configured to suck air through the air collecting pipe 114 for suction, so that the high voltage and the blower 112 between the radiation nozzle 104 and the collector 110. Suction is performed. The air sucked by the blower may contain a solvent and may be configured to be recycled through a solvent recovery system (SRS, Solvent Recovery System, not shown). This solvent recovery device can be used by adopting a known one.

이와 같은 공정 구성중 전압이 인가되는 부분이나 접지되는 부분이 명확하게 다른 장치와 구분되어 있음으로 인해 절연방법의 구현이 용이해 진다.Since the part where voltage is applied or the part being grounded in this process configuration is clearly distinguished from other devices, it is easy to implement the insulation method.

상기 에어분사구(106)를 통한 압축공기 분사와 콜렉터(110)를 통한 석션으로 인해 본 발명의 가장 큰 장점인 노즐 오염 최소화를 이룰 수 있다. 노즐 오염은 앞에서 별도로 언급한 적은 없지만 멜트브로운 방사를 제외한 방사법을 이용한 제조공정에서 심각한 방해요인으로 작용하는데, 본 발명은 압축공기 분사와 석션을 통해 이를 최소화할 수 있는 것이다. 그리고, 상기 노즐돌출부(e)가 노즐 오염을 없애는 더욱 바람직한 역할을 수행한다. 상기 노즐돌출부(e)의 조절로 분사되는 압축공기가 노즐을 깨끗하게 하는 역할을 같이 수행할 수 있게 하기 때문이다.Compressed air injection through the air injection port 106 and suction through the collector 110 can achieve a nozzle contamination, which is the greatest advantage of the present invention. Although nozzle contamination has not been mentioned before, it acts as a serious obstacle in the manufacturing process using the spinning method except melt blown spinning, and the present invention can minimize this through compressed air injection and suction. In addition, the nozzle protrusion (e) plays a more preferable role of eliminating nozzle contamination. This is because the compressed air injected by the adjustment of the nozzle protrusion e may serve to clean the nozzle.

또한, 상기 콜렉터상에 소정의 기재를 두고, 상기 기재상에 웹 상태로 방사 된 섬유를 포집하여 복합화하는 방법을 채택하여 고성능 필터, 와이퍼 등으로 사용하도록 구성할 수 있다. 상기 기재로는 멜트브로운 부직포, 스펀본드 부직포, 니들펀칭 및 스펀레이스 부직포 등의 부직포나 직물, 편물, 종이 등 나노섬유 층이 추가 가능한 기재이면 사용에 제한은 없다.In addition, by placing a predetermined substrate on the collector, a method of collecting and complexing the fibers spun in a web state on the substrate can be configured to be used as a high performance filter, a wiper and the like. The substrate may be any non-woven fabric such as a meltblown nonwoven fabric, a spunbond nonwoven fabric, needle punching and a spunlace nonwoven fabric, and a nanofiber layer such as a woven fabric, a knitted fabric, a paper, and the like.

본 발명의 공정 조건은 다음과 같다.Process conditions of the present invention are as follows.

상기 방사구금(102)에 인가되는 전압은 1kV~300kV의 범위가 바람직하고, 10~100kV가 특히 바람직하다. 상기 폴리머 용액의 토출압력은 0.01~200kg/cm2 범위로 사용할 수 있으며, 특히 0.1~20kg/cm2의 범위가 바람직한데, 이로부터 고토출량을 실현할 수 있어 대량생산에 적합하다. 정전방사법과 비교하여 0.1~5cc/min·hole의 고토출량으로 폴리머 용액을 토출할 수 있다. The voltage applied to the spinneret 102 is preferably in the range of 1 kV to 300 kV, particularly preferably 10 to 100 kV. The discharge pressure of the polymer solution can be used in the range of 0.01 ~ 200kg / cm 2 , and particularly preferably in the range of 0.1 ~ 20kg / cm 2 , from this it is possible to realize a high discharge amount is suitable for mass production. Compared to the electrospinning method, the polymer solution can be discharged at a high discharge amount of 0.1 to 5 cc / min.hole.

상기 에어분사구(106)로 분사되는 압축공기의 유속은 10~10,000m/min, 특히 100~3,000m/min범위가 바람직하고, 공기의 온도는 상온에서 300℃, 특히 상온에서 100℃의 범위가 바람직하며, 그리고 방사노즐(104) 하단과 석션 콜렉터(110)사이의 간격(DCD, Die to Collector Distance)은 1~200cm, 특히 10~50cm가 바람직하다.The flow rate of the compressed air injected into the air injection port 106 is preferably in the range of 10 ~ 10,000m / min, in particular 100 ~ 3,000m / min, the temperature of the air is 300 ℃ at room temperature, in particular in the range of 100 ℃ Preferably, the distance between the lower end of the spinning nozzle 104 and the suction collector 110 (DCD, Die to Collector Distance) is preferably 1 to 200 cm, particularly 10 to 50 cm.

이하, 본 발명의 바람직한 실시예를 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention.

하기의 실시예에 사용된 제조장치는 도 1의 구조인 나이프에지상의 방사구금이었다. 방사노즐의 직경은 0.25mm이고, 노즐의 L/d는 10, DCD는 350mm로 맞추었으며, 방사노즐의 수 500개, 다이의 폭은 750mm, 노즐돌출부(e)는 약 0~3mm, 에어분 사구의 압축공기 유속은 300~3,000m/min의 범위내로 유지하였다.The manufacturing apparatus used in the following example was a spinneret on a knife edge having the structure of FIG. The diameter of the spinning nozzle is 0.25mm, the nozzle L / d is set to 10 and the DCD is 350mm.The number of spinning nozzles is 500, the width of the die is 750mm, and the nozzle protrusion (e) is about 0 ~ 3mm, the air powder The compressed air flow rate of sand dunes was maintained within the range of 300-3,000 m / min.

[표 1]TABLE 1

번호number 폴리머Polymer 용매menstruum 농도(%)density(%) DCD(mm)DCD (mm) 방사압력(kgf/cm2)Spinning Pressure (kgf / cm 2 ) 인가전압(kV)Applied voltage (kV) 실시예 1Example 1 PANPAN DMFDMF 1515 350350 33 3030 실시예 2Example 2 PANPAN DMFDMF 2020 350350 44 4040 실시예 3Example 3 PANPAN DMFDMF 2020 350350 66 5050 비교예 1Comparative Example 1 PANPAN DMFDMF 2525

실시예 1의 경우 유동성과 방사성은 좋으나 웹의 형성이 불량하였고, 실시예 2와 3의 경우 유동성과 방사성 및 웹의 형성이 양호하였으며 SEM사진으로 검토하여 본 결과 직경분포가 약 500nm~2㎛로 측정되었다. 특히 실시예 3의 경우 직경분포가 500nm~1.2㎛로 균일하게 분포되어 있음을 확인할 수 있었다. 비교예 1의 경우 PAN 25%용액 제조가 어려워 결과를 얻지 못하였다.Example 1 showed good fluidity and radioactivity but poor web formation. Examples 2 and 3 showed good fluidity and radioactivity and web formation. Was measured. In particular, in the case of Example 3, it was confirmed that the diameter distribution is uniformly distributed to 500nm ~ 1.2㎛. In the case of Comparative Example 1, 25% solution of the PAN solution was difficult to obtain the result.

[표 2]TABLE 2

번호number 방사압력(kgf/cm2)Spinning Pressure (kgf / cm 2 ) 인가전압(kV)Applied voltage (kV) 직경분포(nm)Diameter distribution (nm) 실시예 4Example 4 33 2121 933.96-1470933.96-1470 실시예 5Example 5 33 3030 588.69-1000588.69-1000 실시예 6Example 6 2.92.9 4040 500.9-970.8500.9-970.8 실시예 7Example 7 33 6060 397.97-520.85397.97-520.85 실시예 8Example 8 3.13.1 8080 280.01-831.60280.01-831.60 실시예 9Example 9 3.53.5 4040 588.69-933.77588.69-933.77 실시예 10Example 10 44 4040 633.9-1510633.9-1510

상기 표 2는 실시예 4~10의 조건과 그 결과를 나타낸 것으로, 사용 폴리머로는 나일론66, 사용용매는 포름산(formic acid)이고 폴리머 용액 농도는 25%이었다. Table 2 shows the conditions and results of Examples 4 to 10. The polymer used was nylon 66, the solvent used was formic acid, and the polymer solution concentration was 25%.

상기 표 2의 직경분포는 SEM사진의 검토결과로서 균일한 직경의 나노파이버가 불규칙하게 배열된 웹상태로 얻어졌다.The diameter distribution of Table 2 was obtained in a web state in which nanofibers of uniform diameter were irregularly arranged as a result of examination of SEM photographs.

본 발명은 섬유 직경이 수나노미터에서 수백나노미터 사이인 나노섬유로 웹을 구성할 수 있게 하며, 정전방사법과 비교하여 고토출량을 가지므로 나노섬유 웹을 대량생산할 수 있다. 또한 폴리머용액을 사용하므로 폴리머에 가열할 필요성이 줄어들고, 열가소성 및 열경화성 수지 모두 사용가능하다는 장점을 갖는다.The present invention enables the web to be composed of nanofibers having a fiber diameter of several nanometers to several hundred nanometers, and has a high discharge amount compared to the electrospinning method, so that the nanofiber web can be mass produced. In addition, the use of a polymer solution reduces the need to heat the polymer and has the advantage that both thermoplastic and thermosetting resins can be used.

또한 일렉트로-브로운 방사공정에 사용되는 장치 구성에서, 방사구금의 절연이 용이하며, 석션을 통해 용제회수가 가능하다. In addition, in the device configuration used in the electro-blowing process, the spinneret can be easily insulated, and the suction can be recovered.

Claims (5)

삭제delete 폴리머 용액을 제조하기 위한 저장조, 상기 저장조로부터 이송된 폴리머 용액이 토출되는 방사노즐, 상기 방사노즐의 하단으로 압축공기가 분사되는 에어분사구, 상기 방사노즐에 고전압을 인가하는 전압부여수단, 상기 방사노즐로부터 토출된 방사 섬유를 웹 상태로 포집하기 위한 접지된 콜렉터를 포함한 나노섬유 제조장치에 있어서,A reservoir for producing a polymer solution, a spin nozzle for discharging the polymer solution transferred from the reservoir, an air jet port for compressed air is injected into the bottom of the spin nozzle, voltage applying means for applying a high voltage to the spin nozzle, the spin nozzle In the nanofiber manufacturing apparatus comprising a grounded collector for collecting the spun fibers discharged from the web state, 상기 방사노즐의 하단은 에어 분사구의 하단보다 10 mm 이하의 거리만큼 돌출한 것을 특징으로 하는 나노섬유 제조장치.The lower end of the spinning nozzle is nanofiber manufacturing apparatus, characterized in that protruding by a distance of 10 mm or less than the lower end of the air injection port. 제2항에 있어서, 상기 저장조로부터 방사노즐로 폴리머 용액을 이송시키기 위한 펌프가 구비된 것을 특징으로 하는 나노섬유 제조장치.According to claim 2, Nanofiber manufacturing apparatus characterized in that the pump is provided for transferring the polymer solution from the reservoir to the spinning nozzle. 제2항에 있어서, 방사 다이의 폭을 따라 배치된 다수의 상기 방사 노즐을 갖는 방사 다이를 포함하는 나노섬유 제조장치.3. The apparatus of claim 2, comprising a spinning die having a plurality of said spinning nozzles disposed along the width of the spinning die. 제4항에 있어서, 방사 다이의 폭이 약 750 mm인 나노섬유 제조장치.The apparatus of claim 4, wherein the spinning die is about 750 mm wide.
KR1020020068887A 2002-11-07 2002-11-07 A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process KR100543489B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020068887A KR100543489B1 (en) 2002-11-07 2002-11-07 A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020068887A KR100543489B1 (en) 2002-11-07 2002-11-07 A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process

Publications (2)

Publication Number Publication Date
KR20040040692A KR20040040692A (en) 2004-05-13
KR100543489B1 true KR100543489B1 (en) 2006-01-23

Family

ID=37337977

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020068887A KR100543489B1 (en) 2002-11-07 2002-11-07 A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process

Country Status (1)

Country Link
KR (1) KR100543489B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072183B1 (en) 2008-07-25 2011-10-10 주식회사 효성 Method for Preparing Nanoweb Filter and Nanoweb Filter Prepared by the same
CN102517690A (en) * 2011-12-14 2012-06-27 燕山大学 Method for preparing polyaniline composite conductive fiber
CN104372422A (en) * 2014-11-07 2015-02-25 江西先材纳米纤维科技有限公司 Device and method for quickly manufacturing fluffy polymer nano-fibers
CN106435841A (en) * 2016-09-21 2017-02-22 天津工业大学 Polyacrylonitrile porous carbon fiber preparation method
KR102499594B1 (en) 2021-10-07 2023-02-14 김보영 Double nanofiber manufacturing equipment for weaving

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583850B1 (en) * 2004-05-04 2006-05-26 재단법인서울대학교산학협력재단 Mass fabrication method of preparing conductive polyaniline nanofibers using dispersion polymerization
JP5031559B2 (en) * 2004-06-17 2012-09-19 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Filament bundle-like long fibers and method for producing the same
KR100835082B1 (en) * 2006-04-06 2008-06-03 주식회사 엘지화학 Crosslinked polyvinyl alcohol nanofiber web using eletrospinning and process for preparing the same
MX2009001100A (en) * 2006-07-31 2009-02-10 Du Pont Nonwoven web comprising polyarenazole microfibers and process for making same.
EP2046864B1 (en) * 2006-07-31 2009-11-18 E.I. Du Pont De Nemours And Company Polyarenazole microfilaments and process for making same
WO2011156258A1 (en) 2010-06-07 2011-12-15 3M Innovative Properties Company Filtration methods and devices
TR201703562A2 (en) 2017-03-08 2018-09-21 Univ Istanbul Teknik POLYMERIZATION OF 3-METOXITHIOPHENE (MOT) MONOMER ON POLY (ACRYLONITRYL-CO-ITACONIC ACID) MATRIX AND PRODUCTION OF NANOPARTICLES FROM PRODUCED NANOLIF METHOD WITH NANOLIF METHOD METHOD

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263361A (en) * 1986-05-09 1987-11-16 東レ株式会社 Production of nonwoven fabric
US5122048A (en) * 1990-09-24 1992-06-16 Exxon Chemical Patents Inc. Charging apparatus for meltblown webs
US5227172A (en) * 1991-05-14 1993-07-13 Exxon Chemical Patents Inc. Charged collector apparatus for the production of meltblown electrets
JPH06306755A (en) * 1993-04-20 1994-11-01 Toray Ind Inc Production of melt-blow nonwoven fabric
JPH07145542A (en) * 1993-11-18 1995-06-06 Kuraray Co Ltd Production of melt blown nonwoven fabric of polyamide
KR20010033404A (en) * 1997-12-22 2001-04-25 로날드 디. 맥크레이 Process for Forming Films, Fibers and Base Webs from Thermoset Polymers
JP2001288670A (en) * 2000-03-30 2001-10-19 Uni Charm Corp Method and device for producing nonwoven fabric
KR20020051066A (en) * 2000-12-22 2002-06-28 박호군 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor
KR20020093179A (en) * 2001-06-07 2002-12-16 주식회사 나노테크닉스 A process of preparing for the ultra fine staple fiber
KR20030077384A (en) * 2002-03-26 2003-10-01 주식회사 나노테크닉스 A electro-blown spinning process of preparing for the nanofiber web

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263361A (en) * 1986-05-09 1987-11-16 東レ株式会社 Production of nonwoven fabric
US5122048A (en) * 1990-09-24 1992-06-16 Exxon Chemical Patents Inc. Charging apparatus for meltblown webs
US5227172A (en) * 1991-05-14 1993-07-13 Exxon Chemical Patents Inc. Charged collector apparatus for the production of meltblown electrets
JPH06306755A (en) * 1993-04-20 1994-11-01 Toray Ind Inc Production of melt-blow nonwoven fabric
JPH07145542A (en) * 1993-11-18 1995-06-06 Kuraray Co Ltd Production of melt blown nonwoven fabric of polyamide
KR20010033404A (en) * 1997-12-22 2001-04-25 로날드 디. 맥크레이 Process for Forming Films, Fibers and Base Webs from Thermoset Polymers
JP2001288670A (en) * 2000-03-30 2001-10-19 Uni Charm Corp Method and device for producing nonwoven fabric
KR20020051066A (en) * 2000-12-22 2002-06-28 박호군 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor
KR20020093179A (en) * 2001-06-07 2002-12-16 주식회사 나노테크닉스 A process of preparing for the ultra fine staple fiber
KR20030077384A (en) * 2002-03-26 2003-10-01 주식회사 나노테크닉스 A electro-blown spinning process of preparing for the nanofiber web

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072183B1 (en) 2008-07-25 2011-10-10 주식회사 효성 Method for Preparing Nanoweb Filter and Nanoweb Filter Prepared by the same
CN102517690A (en) * 2011-12-14 2012-06-27 燕山大学 Method for preparing polyaniline composite conductive fiber
CN104372422A (en) * 2014-11-07 2015-02-25 江西先材纳米纤维科技有限公司 Device and method for quickly manufacturing fluffy polymer nano-fibers
CN106435841A (en) * 2016-09-21 2017-02-22 天津工业大学 Polyacrylonitrile porous carbon fiber preparation method
KR102499594B1 (en) 2021-10-07 2023-02-14 김보영 Double nanofiber manufacturing equipment for weaving

Also Published As

Publication number Publication date
KR20040040692A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
KR100549140B1 (en) A electro-blown spinning process of preparing for the nanofiber web
KR100543489B1 (en) A manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process
JP5654356B2 (en) Composite nonwoven web and method for making and using the same
EP1834020B1 (en) Improved electroblowing web formation process
KR101457821B1 (en) Non-woven fiber fabric, and production method and production device therefor
KR101072183B1 (en) Method for Preparing Nanoweb Filter and Nanoweb Filter Prepared by the same
KR100780346B1 (en) An electro-centrifugal spinning apparatus and a method for mass production of nano-fibers using the same
EP1915474B1 (en) Improved electroblowing fiber spinning process
JP5819832B2 (en) Nozzles, apparatus, systems and methods for forming nanofibrous webs and articles made by this method
JP5009100B2 (en) Extra fine fiber nonwoven fabric, method for producing the same, and apparatus for producing the same
US20060012084A1 (en) Electroblowing web formation process
KR101118081B1 (en) Method of manufacturing nanofiber web
KR101948608B1 (en) Non-woven fabric manufacturing apparatus
JP2010285720A (en) Method for producing nonwoven fabric and apparatus for production
KR100696319B1 (en) Porous nano-fiber and method of manufacturing the same
KR20120077244A (en) Nozzle block for electrospinning
KR101191388B1 (en) Nozzle block using nozzles for electrospinning
KR20230092103A (en) Biodegradable meltblown nonwoven fabric and manufacturing method thereof
KR101834401B1 (en) Nano fabrics for beddings and its Manufacturing method
KR101573808B1 (en) Hybrid nanofiber filter media

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131219

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 14