KR100512451B1 - recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof - Google Patents

recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof Download PDF

Info

Publication number
KR100512451B1
KR100512451B1 KR10-2002-0010837A KR20020010837A KR100512451B1 KR 100512451 B1 KR100512451 B1 KR 100512451B1 KR 20020010837 A KR20020010837 A KR 20020010837A KR 100512451 B1 KR100512451 B1 KR 100512451B1
Authority
KR
South Korea
Prior art keywords
magnetic nanoparticles
catalyst
organic
magnetic
metal complex
Prior art date
Application number
KR10-2002-0010837A
Other languages
Korean (ko)
Other versions
KR20030071233A (en
Inventor
이진규
이우
윤태종
오윤석
Original Assignee
(주)에프이에이 코퍼레이션
이진규
이우
윤태종
오윤석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프이에이 코퍼레이션, 이진규, 이우, 윤태종, 오윤석 filed Critical (주)에프이에이 코퍼레이션
Priority to KR10-2002-0010837A priority Critical patent/KR100512451B1/en
Priority to PCT/KR2002/002369 priority patent/WO2003072247A1/en
Priority to AU2002367727A priority patent/AU2002367727A1/en
Publication of KR20030071233A publication Critical patent/KR20030071233A/en
Application granted granted Critical
Publication of KR100512451B1 publication Critical patent/KR100512451B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

본 발명은 계면활성제와 같이 전하를 가지는 이온성 유기화합물이나 유기금속 촉매 화합물을 합성해 이를 자성체 나노 입자의 표면에 결합시킴으로써 과량의 표면처리 물질이 없이도 유기 용매에 잘 분산되고 덩어리지지 않는 자성체 나노입자를 합성하는 방법을 보여주고 있다. The present invention synthesizes an ionic organic compound or an organometallic catalyst compound having a charge, such as a surfactant, and binds it to the surface of the magnetic nanoparticles, so that the magnetic nanoparticles are not dispersed and agglomerated well in an organic solvent without an excessive surface treatment material. It shows how to synthesize.

또한 이온성 유기금속 촉매가 촉매활성을 가지는 경우 이에 대한 제조 방법 및 촉매 반응 진행 방법을 제공하고 있으며, 자성체 나노입자를 지지체로 하여 결합된 유기금속 촉매의 뛰어난 촉매 효과와 함께 자성체 나노 입자의 자기적 성질을 이용한 독특한 재사용 기능을 가짐으로써 기존의 균일계 촉매를 쉽게 분리, 회수, 그리고 재사용하기 위해 지지체에 고정화시킨 비균일계촉매가 보여 주었던 문제점을 해소함으로써 촉매개발 분야와 나노기술 분야에 큰 영향을 줄 것으로 기대된다.In addition, when the ionic organometallic catalyst has a catalytic activity, the present invention provides a preparation method and a catalytic reaction progressing method. The unique reusability function of the material solves the problems of the heterogeneous catalyst immobilized on the support for easy separation, recovery, and reuse of the homogeneous catalyst, thereby greatly affecting the field of catalyst development and nanotechnology. It is expected to give.

Description

자성체 나노입자에 지지된 재사용가능한 유기금속촉매 및 그 제조방법{recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof}Recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing art}

본 발명은 촉매의 회수가 용이한 유기금속촉매, 분산성이 개선된 자성체 나노입자, 이들의 제조방법 및 이용방법에 관한 것으로서, 보다 상세하게는 유기금속 촉매를 자성체 나노 입자 표면에 고정화시켜 유기금속촉매를 제조하는 방법 및 이와 같이 제조된 유기금속촉매를 유기 용매에 균일하게 분산시킨 것을 이용하여 촉매 반응을 실시한 후 지지체의 자기적 성질을 이용하여 용이하게 촉매를 회수하는 것을 특징으로 하는 촉매회수방법, 상기 방법에 의한 자성체 나노입자의 분산성 개선방법 및 이들 방법에 의하여 제조된 유기금속촉매 및 자성체 나노입자의 결합체에 관한 것이다. The present invention relates to an organometallic catalyst for easy recovery of a catalyst, magnetic nanoparticles with improved dispersibility, a method for preparing and using the same, and more particularly, to an organometallic catalyst by immobilizing an organic metal catalyst on a surface of a magnetic nanoparticle. Catalytic recovery method using the magnetic properties of the support after carrying out the catalytic reaction using a method for producing a catalyst and a homogeneous dispersion of the organometallic catalyst prepared in this way in an organic solvent The present invention relates to a method for improving dispersibility of magnetic nanoparticles by the above method, and a combination of an organometallic catalyst and magnetic nanoparticles prepared by these methods.

유기 금속 화학은 촉매 연구와 생 무기/유기 금속 분야 등으로 최근에 많은 화학자들에 의해서 급속히 연구되고 있는 분야이고 실제 산업체 공정에 많이 적용되고 있다. 특히 촉매 연구 분야는 높은 온도와 압력 하에서 낮은 수율로 진행되는 반응을 촉매를 이용해 쉽게 높은 수율로 진행되게 할 수 있기 때문에 주요 연구 대상이 되어 왔다.Organometallic chemistry is a field that has been rapidly researched by many chemists in recent years, such as catalyst research and bioinorganic / organic metals, and has been applied to many industrial processes. Particularly, the field of catalyst research has been a major research subject because the reaction which proceeds at a low yield under high temperature and pressure can be easily progressed at a high yield using a catalyst.

일반적으로 반응 혼합물과 동일한 상(phase)으로 섞이는 촉매(균일계 촉매, homogeneous catalyst)는 반응성이 대단히 높고, 정량적인 촉매 반응을 진행할 수 있으며, 또한 촉매 반응의 메커니즘을 연구하기 쉽다는 장점이 있는 것으로 알려져 있다. 하지만, 이러한 촉매는 반응물과의 분리가 어렵고 증류(distillation)와 같은 열적 처리를 통해 분리하기엔 촉매 자체가 열에 불안정한 경우가 많고, 이러한 점은 실제 촉매의 사용에 있어서 중요한 문제점으로 제기되어 왔다. In general, catalysts (homogeneous catalysts) that are mixed in the same phase as the reaction mixture have the advantage of being extremely reactive, capable of quantitative catalytic reactions, and easy to study mechanisms of catalytic reactions. Known. However, these catalysts are difficult to separate from the reactants and the catalyst itself is often heat instable for separation through thermal treatment such as distillation, which has been raised as an important problem in the actual use of the catalyst.

한편, 최근 중금속 원소를 포함하는 유기금속 화합물 중 광학 특이성(enantioselectivity), 위치 특이성(regioselectivity) 등에 독특한 활성을 보여주는 로듐(Rh) 촉매는 상용화되어 사용되고 있는 코발트나 철 계열의 촉매에 비하여 그 활성은 대단히 높은 것으로 알려져 있다. 그러나, 로듐은 희토류 금속으로써 매우 비싸다는 경제적인 문제와 일회 사용 후 폐기되어 방류되는데 따르는 심각한 환경문제를 가지고 있어 상용화되지 못하고 있는 실정이다. On the other hand, among the organometallic compounds containing heavy metal elements, the rhodium (Rh) catalyst, which exhibits unique activities such as optical specificity (enantioselectivity) and regioselectivity, is much more active than the cobalt or iron-based catalysts that are commercially used. It is known to be high. However, rhodium is a rare earth metal and is not commercialized due to economic problems that are very expensive and serious environmental problems that are discarded after being used once.

이와 같은 문제점을 극복하기 위한 것으로서, 촉매 반응 뒤 회수가 가능하여 생성물과의 분리가 용이하도록 함으로써, 환경친화적일 뿐 아니라 경제적으로도 유리한 재사용가능한 유기금속 촉매의 연구가 활발히 진행 중에 있다.In order to overcome such a problem, since the recovery after the catalytic reaction to facilitate the separation from the product, research on reusable organometallic catalysts that are not only environmentally friendly but also economically advantageous are in progress.

지금까지 촉매의 재사용이 가능하도록 하는 방법에는 여러 가지가 이용되어 왔는데 크게 두 가지로 분류하면 다음과 같다. Until now, a variety of methods have been used to enable the reuse of catalysts. The two main categories are as follows.

제1 방법은, 수용성 유기금속 촉매를 이용하는 방법으로, 물에 녹는 유기 리간드를 금속과 결합시킴으로써 촉매 자체를 물에 녹여 사용할 수 있게 만든 후, 유기용매와 층 분리된 상태(biphasic system)에서 촉매 반응을 진행시키고, 반응 뒤 유기층만을 추출(extraction)한 후 분리된 물 층의 촉매를 쉽게 회수하여 재사용이 가능하도록 하는 것이다. The first method is a method using a water-soluble organometallic catalyst, in which the organic ligand dissolved in water is combined with a metal to make the catalyst itself dissolved in water, and then catalyzed in a biphasic system with an organic solvent. After the reaction, only the organic layer is extracted (extraction) after the reaction to recover the catalyst of the separated water layer to make it possible to reuse.

제2 방법은 유기금속 촉매를 어떤 유기 용매나 물에 분해되지 않는 안정한 무기물 또는 유기물 지지체의 표면에 화학적으로 결합시켜 반응 혼합물과 불균일한 상태(불균일계 촉매, heterogeneous catalyst)로 촉매 반응을 진행하도록 하고, 반응 뒤 여과를 통해서 쉽게 회수와 재사용이 가능하게 만드는 것이다. The second method chemically bonds the organometallic catalyst to the surface of a stable inorganic or organic support that does not decompose into any organic solvent or water, so that the catalytic reaction proceeds in a heterogeneous state with the reaction mixture (heterogeneous catalyst). It is then made easy to recover and reuse through filtration after the reaction.

하지만, 수용성 촉매를 이용하는 상기 제1 방법의 경우에는 물에 녹는 리간드의 합성이 어려워 그 종류에 한계가 있고, 상기 제2 방법의 경우에는 불균일계로 바뀐 촉매 반응시 지지체가 마이크로 단위의 비교적 큰 부피를 가지기 때문에 확산이 제대로 되지 않는다는 한계가 있다. 또한, 마이크로미터 이하의 크기를 갖는 작은 크기의 지지체를 사용할 경우 확산문제를 완화시킬 수는 있지만, 여과와 같은 간단한 방법으로는 촉매의 분리와 회수가 어려워 실제로 재사용하는 것이 아직까지는 용이하지 못한 상태이다.However, in the first method using a water-soluble catalyst, it is difficult to synthesize a ligand that is soluble in water, and in the case of the second method, the support has a relatively large volume of micro units in the catalyst reaction changed into a heterogeneous system. There is a limit that diffusion does not work properly. In addition, diffusion problems can be alleviated by using a small support with a size of less than one micrometer. However, simple methods such as filtration make it difficult to separate and recover the catalyst, which is not yet easy to reuse. .

본 발명자들은 상기한 제2 방법 중 마이크로미터 이하의 크기를 가지는 지지체를 사용하는 방법에 있어서, 이 방법이 가지는 촉매의 회수곤란성이라는 단점을 개선하기 위한 수단을 제공하는 것을 목적으로 하고 있다. The inventors of the present invention aim to provide a means for improving the disadvantage of the recovery difficulty of the catalyst in the method of using a support having a size of micrometer or less in the second method.

이를 위하여 본 발명자들은 수용성 자성체 나노입자를 촉매지지체로 사용하는 것을 착안하였다. 즉, 수용성 자성체 나노 입자(ferrofluid)의 경우, 완전한 결합을 이루지 못하게 되는 표면의 금속 원자들 자리에 생기는 이온성 전하들 간의 정전기적 반발력이 자성체 나노 입자간의 자기적 인력보다 세기 때문에 물 속에 분산될 수 있다는 원리를 이용하는 것이다. To this end, the present inventors conceived the use of water-soluble magnetic nanoparticles as catalyst supports. In other words, in the case of water-soluble magnetic nanoparticles (ferrofluid), the electrostatic repulsion between ionic charges in the place of the metal atoms of the surface that can not form a complete bond can be dispersed in water because the magnetic attraction between the magnetic nanoparticles is stronger than It is to use the principle.

이와 관련하여, 또 다른 관점에서 본 발명은 기존에 개발된 수용성 자성체 나노입자의 용액 내 분산성을 개선시키는 것을 목적으로 한다. In this regard, in another aspect, the present invention aims to improve the dispersibility of the water-soluble magnetic nanoparticles previously developed in solution.

즉, 이러한 수용성 ferrofluid 용액은 액체이면서도 자기적인 성질을 가지므로 고진공계의 접합부나 유체의 흐름을 조절하는 자기밸브 등의 응용분야에 실제로 사용되고 있다. 그러나 유기용매에 녹는 자성체 나노입자의 개발은 아직 성공적이지 못한 상태이다. That is, such a water-soluble ferrofluid solution has a liquid and magnetic property, so it is actually used in applications such as magnetic valves for controlling the flow of high vacuum systems and fluids. However, the development of magnetic nanoparticles soluble in organic solvents has not been successful.

보통 이를 유기용매에 녹게 하기 위해 사용되는 방법은 스테아르산(또는 옥타데칸산, CH3(CH2)16CO2H)과 같이 긴 알킬작용기를 가지는 유기산 물질로 자성체 나노입자의 표면을 처리하여 카복실레이트 작용기가 표면과 반응하고 소수성의 긴 알킬 사슬이 밤송이의 바늘모양으로 표면에 많이 존재하게 하는 것이다. 이 때, 과량의 스테아르산과 같은 유기산 물질이 존재하는 경우 소위 이중층(bilayer) 구조물을 이루면서 알킬사슬 간의 반데르발스 인력에 의해 또 다른 한 층의 유기산이 만들어 지면서 제일 바깥 쪽으로 이온성을 가지는 카복실레이트 작용기가 위치하게 된다.[참고문헌: G. Markvich, T. Fried, G. Shemer, Adv . Mater., 2001, 13, 1158] . 이 이온성 카복실레이트 작용기들 간의 정전기적 반발력에 의해 자성체 나노입자들끼리의 자기적 인력이 상쇄되어 자성체 나노입자가 유기용매 속에서 안정한 상태로 존재하게 되는 것이다.Usually, the method used to dissolve it in an organic solvent is an organic acid substance having a long alkyl functional group, such as stearic acid (or octadecanoic acid, CH 3 (CH 2 ) 16 CO 2 H), to treat the surface of magnetic nanoparticles with carboxyl The rate functional group reacts with the surface and causes the hydrophobic long alkyl chain to be present on the surface in the shape of chestnut needles. At this time, when an excessive amount of organic acid material such as stearic acid is present, another layer of organic acid is formed by van der Waals attraction between alkyl chains, forming a so-called bilayer structure, and having an outer ionic functional group. [References: G. Markvich, T. Fried, G. Shemer, Adv . Mater ., 2001, 13 , 1158. The magnetic attraction between the magnetic nanoparticles is canceled by the electrostatic repulsion between the ionic carboxylate functional groups, and the magnetic nanoparticles are present in a stable state in the organic solvent.

그러나 이들 과량의 유기산 물질이 제거되면 이중층 구조가 깨어지면서 이온성 반발력이 사라지게 되어 자성체 나노입자들은 서로 뭉쳐 침전을 형성하게 된다. 따라서 아직까지는 유기용매에 속에서 과량의 유기산 종류의 첨가제가 없이 아주 긴 안정성을 보이는 자성체 나노입자는 보고된 바가 없다. However, when these excess organic acid materials are removed, the bilayer structure is broken and the ionic repulsive force disappears, and the magnetic nanoparticles aggregate together to form a precipitate. Therefore, there are no magnetic nanoparticles showing very long stability without excess additive of organic acid type in organic solvent.

이에, 본 발명에서는 계면활성제와 같이 전하를 가지는 이온성 유기화합물이나 유기금속 촉매 화합물을 합성하고 이를 자성체 나노 입자의 표면에 결합시킴으로써 과량의 표면처리 물질이 없이도 유기 용매에 잘 분산되고 덩어리지지 않는 자성체 나노입자를 합성하는데 그 목적이 있다.Accordingly, in the present invention, by synthesizing an ionic organic compound or an organometallic catalyst compound having a charge like a surfactant and binding it to the surface of the magnetic nanoparticles, a magnetic substance that is well dispersed and does not lump in an organic solvent without an excessive surface treatment material The purpose is to synthesize nanoparticles.

즉, 본 발명의 제1 목적은 이렇게 자성체 나노입자 표면에 고정화된 유기금속 화합물이 촉매활성을 가지는 경우와 관련한 것으로서, 자성체 나노입자에 고정화된 유기금속촉매의 촉매로서의 성능개선에 주안점을 둔 것이고, 본 발명의 제2 목적은 상기 나노입자체 부착되는 유기화합물로 인한 자성체 나노입자 자체의 성능개선이라는 측면에 주안점을 둔 것으로 요약될 수 있다. That is, the first object of the present invention relates to the case where the organometallic compound immobilized on the surface of the magnetic nanoparticle has catalytic activity, and focuses on the performance improvement as a catalyst of the organometallic catalyst immobilized on the magnetic nanoparticle. The second object of the present invention can be summarized as focusing on the aspect of improving the performance of the magnetic nanoparticles themselves due to the organic compound attached to the nanoparticles.

상기 목적을 달성하기 위하여, 본 발명은 유기리간드와 금속으로 이루어진 유기-금속 착화합물을 자성체 나노입자 표면에 고정화시키는 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 제공한다. In order to achieve the above object, the present invention is characterized in that the organic-metal complex compound consisting of an organic ligand and a metal is immobilized on the surface of the magnetic nanoparticles, the production of organic metal catalysts easy to recover / reuse supported on the magnetic nanoparticles Provide a method.

본 발명은 또한, 상기 유기금속촉매에 있어서 유기리간드에 이온성 치환기가 존재하거나, 유기-금속 착화합물 전체에 이온성이 존재하는 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention also provides an organic metal catalyst that is easy to recover / reuse, supported by magnetic nanoparticles, characterized in that an ionic substituent is present in the organic ligand or ionicity is present in the entire organic-metal complex. It further provides a method for producing a metal catalyst.

본 발명은 또한, 상기 방법에 있어서, 상기 유기-금속 착화합물의 유기리간드는 이온성 치환기로서 카르복실기를 포함하는 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention further provides a method for producing an organometallic catalyst which is easy to recover / reuse supported on magnetic nanoparticles, wherein the organic ligand of the organo-metal complex compound contains a carboxyl group as an ionic substituent. Provides even more.

본 발명은 또한, 상기 방법에 있어서, 상기 유기-금속 착화합물의 금속이 전이금속인 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention further provides a method for producing an easy-to-recover / reuse organometallic catalyst supported on magnetic nanoparticles, wherein the metal of the organo-metal complex is a transition metal.

본 발명은 또한, 상기 방법에 있어서, 상기 자성체 나노입자가 금속 페라이트(MOㆍFe2O3)인 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention also provides a method for producing an easy-to-recoverable / reusable organometallic catalyst supported on magnetic nanoparticles, wherein the magnetic nanoparticles are metal ferrite (MO.Fe 2 O 3 ) in the above method. Provide more.

본 발명은 또한, 상기 방법에 있어서, 상기 금속 페라이트에 포함된 금속(M)은 Fe, Mn, Co, Ni, Cu 및 Zn로 구성된 군 중 어느 하나인 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention is also characterized in that the metal (M) contained in the metal ferrite is any one of the group consisting of Fe, Mn, Co, Ni, Cu and Zn, supported on magnetic nanoparticles It further provides a method for producing an organometallic catalyst that is easy to recover / reuse.

본 발명은 또한, 상기 방법에 있어서, 상기 자성체 나노입자의 크기가 1-300nm인 것을 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention further provides a method for producing an organometallic catalyst which is easy to recover / reuse supported on magnetic nanoparticles, wherein the magnetic nanoparticles have a size of 1-300 nm.

본 발명은 또한, 상기 방법에 있어서, 염기성 용액에서 공침법에 의해 상기 자성체 나노입자를 생성하고, 상기 자성체 나노입자와 상기 이온성 유기-금속 착화합물을 극성 유기용매 속에서 반응시켜 상호 결합시키는 공정을 포함하는 특징으로 하는, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매의 제조방법을 더욱 제공한다.The present invention also provides a method of producing the magnetic nanoparticles by coprecipitation in a basic solution, and reacting the magnetic nanoparticles with the ionic organo-metal complex in a polar organic solvent to bind to each other. It further provides a method for producing an organometallic catalyst, characterized in that it is easy to recover / reuse the magnetic nanoparticles supported.

본 발명은 또한, 상기한 방법에 의하여 제조된, 자성체 나노입자에 지지된 회수/재사용이 용이한 유기금속촉매을 더욱 제공한다.The present invention further provides an organometallic catalyst which is easy to recover / reuse supported by the magnetic nanoparticles prepared by the above method.

본 발명은 상기 유기금속촉매를 사용하여 소정의 화학반응을 행하고, 자력을 이용하여 이들 촉매를 분리, 회수 및 재사용하는 것을 특징으로 하는 유기금속촉매의 재활용 방법을 더욱 제공한다.The present invention further provides a method for recycling an organometallic catalyst, which performs a predetermined chemical reaction using the organometallic catalyst and separates, recovers and reuses these catalysts by using a magnetic force.

본 발명은 다른 관점에서, 계면활성제와 같은 이온성 유기화합물 또는 유기리간드와 금속으로 이루어지고 상기 유기리간드에 이온성 치환기가 존재하거나 유기-금속 착화합물 전체에 이온성이 존재하는 유기-금속 착화합물을 자성체 나노입자 표면에 고정시키는 것을 특징으로 하는, 분산성이 개선된 자성체 나노입자의 제조방법 및 이 방법에 의하여 제조되는 분산성이 개선된 자성체 나노입자를 제공한다.In another aspect, the present invention provides a magnetic material comprising an ionic organic compound such as a surfactant, or an organic-metal complex composed of an organic ligand and a metal and in which the ionic substituent is present in the organic ligand or ionicity exists in the entire organic-metal complex. Provided is a method for preparing magnetic nanoparticles having improved dispersibility, and the magnetic nanoparticles having improved dispersibility prepared by the method.

상기 유기-금속 착화합물을 이루는 유기리간드는 이온성 치환기가 존재하거나, 유기- 금속 착화합물 전체에 이온성이 존재하는 것이 바람직하다. 이러한 구성은 자성체 나노입자의 분산성을 개선시키는 데 매우 중요하다. 특히 상기 유기리간드에 이온성 치환기는 특별히 한정되지는 않고, 예를 들면 카르복실기가 포함될 수 있다. 또한, 상기 유기-금속 착화합물을 이루는 금속 역시 특별히 한정되는 것이 아니나, 일반적으로 전이금속에 촉매특성이 우수하므로, 유기금속촉매로서 전이금속을 사용하는 것이 바람직한 경우가 많다.The organic ligand constituting the organo-metal complex is preferably an ionic substituent, or ionic in the organo-metal complex. This configuration is very important for improving the dispersibility of the magnetic nanoparticles. In particular, the ionic substituent in the organic ligand is not particularly limited, and for example, a carboxyl group may be included. In addition, the metal constituting the organo-metal complex is also not particularly limited, but in general, it is preferable to use a transition metal as an organometallic catalyst, because the catalyst property is excellent in the transition metal.

상기 자성체 나노입자는 다음의 일반식으로 표현되는 금속 페라이트(MOㆍFe2O3)을 사용할 수 있다. 이러한 금속 페라이트는 본질적으로 자성을 띠고 있으므로, 본 발명에의 용도에 부합된다. 이 때, 상기 금속 페라이트에 포함된 금속(M)은 특별히 한정되지 않으나, 일반적으로 많이 사용되는 것은 Fe, Mn, Co, Ni, Cu 및 Zn 등이다. 또한, 유기금속 촉매가 부착된 후, 용액에서의 분산성을 고려하면 자성체 나노입자의 크기가 1-300nm 정도로 작은 것이 바람직하다.As the magnetic nanoparticles, a metal ferrite (MO · Fe 2 O 3 ) represented by the following general formula may be used. These metal ferrites are inherently magnetic and therefore are suitable for use in the present invention. At this time, the metal (M) contained in the metal ferrite is not particularly limited, but generally used are Fe, Mn, Co, Ni, Cu and Zn. In addition, after the organometallic catalyst is attached, considering the dispersibility in the solution, it is preferable that the size of the magnetic nanoparticles is as small as 1-300nm.

상기한 자성체 나노입자는 일반적으로 염기성 용액에서 공침법에 의해 생성되고, 상기 자성체 나노입자와 상기 이온성 유기-금속 착화합물은 극성 유기용매 속에서 상호 반응하여 결합된다. 상기 방법에 의하여 제조된 자성체에 지지된 유기금속촉매를 사용하여 소정의 화학반응을 행하는 경우에는, 촉매반응 완료 후, 자력을 이용하여 이들 촉매를 분리, 회수 및 재사용하는 것이 가능하다. The magnetic nanoparticles are generally produced by coprecipitation in a basic solution, and the magnetic nanoparticles and the ionic organo-metal complex are reacted with each other in a polar organic solvent to be bonded. When a predetermined chemical reaction is carried out using the organometallic catalyst supported on the magnetic body produced by the above method, after completion of the catalytic reaction, it is possible to separate, recover and reuse these catalysts using magnetic force.

한편, 본 발명을 자성체의 나노입자의 측면에서 살펴보면, 이온성 유기-금속 착화합물 또는 계면활성제와 같은 이온성 유기화합물 자성체 나노입자에 부착시킴으로써, 과량의 표면처리제의 사용없이도 자성체 나노입자의 용액 분산성을 높이고 이로서 자성체 나노입자의 활용도를 높인 점에 있다. On the other hand, the present invention in terms of the nanoparticles of the magnetic material, by attaching to the ionic organic compound magnetic nanoparticles, such as ionic organic-metal complex or surfactant, dispersibility of the magnetic nanoparticle solution without the use of excess surface treatment agent It is to increase the utilization of magnetic nanoparticles thereby.

이하, 첨부된 도면 및 실시예를 참조로 하여 본원 발명을 더욱 상세히 설명하도록 한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.

본 발명의 유기금속촉매 재료로서 클로로(1,5-사이클로옥타디엔)로듐(I) 이량체{chloro(1,5-cyclooctadiene)rhodium(I) dimer}를 예로 들어 설명한다. 이 재료는 Sigma-Aldrich 사로부터 구입 가능하고, 코발트 페라이트(ferrite) 자성체 나노 입자는 공침법(coprecipitation)을 이용해 합성 가능하다. 이들로부터 양이온성 로듐 촉매가 결합된 코발트 페라이트(ferrite) 자성체 나노 입자를 합성하는 과정과 형성의 확인 과정을 설명한다.As the organometallic catalyst material of the present invention, chloro (1,5-cyclooctadiene) rhodium (I) dimers {chloro (1,5-cyclooctadiene) rhodium (I) dimer} will be described as an example. The material is available from Sigma-Aldrich and cobalt ferrite magnetic nanoparticles can be synthesized using coprecipitation. From this, a process of synthesizing cobalt ferrite magnetic nanoparticles having a cationic rhodium catalyst bonded thereto and confirming the formation thereof will be described.

자성을 띠는 코발트 페라이트 자성체 나노 입자는 그 동안 널리 알려져 있는 공침법을 변형시켜 합성할 수 있었다.[참고문헌: D. Zins, V. Cabuil, R. Massart, J. Mol . Liq., 1999, 83, 217] 합성된 코발트 페라이트 자성체 나노 입자의 화학적 조성은 유도 결합 플라스마 원자 방출 기기 (Inductive Coupled Plasma-Atomic Emission Spectroscopy, Shimazu/ICP-1000IV)를 이용해 CoFe2.14O4 임을 알 수 있었고, 그것의 결정학적 특성은 X-선 회절 무늬(X-ray diffraction, Phillips 3710)를 확인해 스피넬(spinel)구조 임을 확인했다.(도 2) 또한 합성된 코발트 페라이트의 자기적 특성 조사 실험에서는 VSM(Vibration Sample Magnetometer, Lake Shore Model 7304)을 통해 상온에서 포화자기력 값이 Ms = 60 emu/g임을 확인하였다.Magnetically cobalt ferrite magnetic nanoparticles can be synthesized by modifying widely known coprecipitation methods. D. Zins, V. Cabuil, R. Massart, J. Mol . Liq ., 1999, 83 , 217] The chemical composition of the synthesized cobalt ferrite magnetic nanoparticles is CoFe 2.14 O 4 using Inductive Coupled Plasma-Atomic Emission Spectroscopy (Shimazu / ICP-1000IV). X-ray diffraction (X-ray diffraction, Phillips 3710) confirmed its crystallographic properties as a spinel structure (Fig. 2). (Vibration Sample Magnetometer, Lake Shore Model 7304) confirmed that the saturation magnetic force value at room temperature M s = 60 emu / g.

코발트 페라이트(ferrite) 자성체 나노 입자 표면에 화학적 결합이 가능한 하기 화학식 1로 표시되는 카르복실산(carboxylic acid)이 포함된 양전하를 띠는 유기로듐 화합물을 무수 에탄올에서 클로로(1,5-사이클로옥타디엔)로듐(I) 이량체{chloro(1,5-cyclooctadiene)rhodium(I) dimmer, Rh(cod)Cl2,}를 AgBF4로 처리한 후 벤조산(benzoic acid)을 첨가하는 방법으로 합성할 수 있었다.A positively charged organic rhodium compound containing a carboxylic acid represented by the following Chemical Formula 1, which is capable of chemical bonding on the surface of a cobalt ferrite magnetic nanoparticle, is chloro (1,5-cyclooctadiene) in anhydrous ethanol. ) Rhodium (I) dimer {chloro (1,5-cyclooctadiene) rhodium (I) dimmer, Rh (cod) Cl 2 ,} can be synthesized by AgBF 4 and adding benzoic acid. there was.

이 반응에서 합성된 촉매{[Rh(cod)(η6-benzoic acid)]BF4}의 수율은 87%정도 된다.(도 3). 이 양이온성 로듐 촉매는 수소 및 탄소 핵 자기 공명 분광법 (1H, 13C NMR spectroscopy, Bruker/Avance DPX-300) 실험으로 분자의 구조를 확인했고, 질량 분석 (FAB-mass spectroscopy) 실험을 통해서 합성된 로듐 촉매의 질량을 확인했다. 이 로듐 촉매는 아세톤이나 염화메틸렌에 잘 녹고 디에틸에테르에는 녹지 않는 화학적 특성을 지녔다.The yield of the catalyst {[Rh (cod) (η 6 -benzoic acid)] BF 4 } synthesized in this reaction is about 87% (Fig. 3). This cationic rhodium catalyst was identified by hydrogen and carbon nuclear magnetic resonance spectroscopy ( 1 H, 13 C NMR spectroscopy, Bruker / Avance DPX-300) to confirm the structure of the molecule and synthesized by mass spectrometry (FAB-mass spectroscopy). The mass of the prepared rhodium catalyst was confirmed. This rhodium catalyst has chemical properties that are soluble in acetone or methylene chloride and insoluble in diethyl ether.

이렇게 합성된 촉매 자체의 촉매 활성을 확인하기 위해 염화메틸렌에 녹인 다음 4-비닐아니솔(4-vinylanisole, 0.1 ml, 0.75 mmol)을 일산화탄소와 수소를 1:2의 비율로 해서 500psi의 압력을 가해 히드로포밀화 반응을 완결 시켰고, 촉매 반응 생성물의 수율은 99% 이상이며, 90%의 위치 선택성을 나타냈다. 하지만, 예상대로 이 균일계 촉매에서는 생성물로부터 촉매 자체를 회수하는데 어려움이 많은 단점을 보였다.(도 4)In order to confirm the catalytic activity of the synthesized catalyst itself, it was dissolved in methylene chloride, and 4-vinylanisole (4-vinylanisole, 0.1 ml, 0.75 mmol) was added at a pressure of 500 psi in a ratio of 1: 2 of carbon monoxide and hydrogen. The hydroformylation reaction was completed, and the yield of the catalytic reaction product was 99% or more, showing 90% position selectivity. As expected, however, this homogeneous catalyst showed many disadvantages in recovering the catalyst itself from the product (FIG. 4).

이와 같이 합성된 양이온성 로듐 촉매를 디메틸포름아미드(DMF, dimethylformamide) 용매에서 코발트 페라이트 자성체 나노 입자와 반응시켜 로듐 촉매가 결합된 코발트 페라이트 자성체 나노 입자를 합성할 수 있었다. 예상대로 양이온성 로듐 촉매의 양(+)전하들 간의 정전기적 반발에 의해 자성체 나노입자들이 자기적 인력에 의해 덩어리지는 현상이 일어나지 않고 유기용매에도 잘 분산되는 이상적인 자성체 지지체에 고정화된 분산성 촉매임을 확인할 수 있었다. The cationic rhodium catalyst thus synthesized was reacted with the cobalt ferrite magnetic nanoparticles in a dimethylformamide (DMF) solvent to synthesize cobalt ferrite magnetic nanoparticles having a rhodium catalyst. As expected, it is a dispersible catalyst immobilized on an ideal magnetic support, which is well dispersed in organic solvents without magnetic agglomeration due to electrostatic repulsion between positive charges of cationic rhodium catalyst. I could confirm it.

과량의 로듐 촉매 화합물이 함께 존재하는 것을 피하기 위해 유기용매로 여러 번 세척하고 자력이용분리법(magnetic decantation)을 통해 자성체 지지체에 고정화된 분산성 촉매만을 분리 정제하였다. 이 자성체 지지체에 고정화된 분산성 촉매를 이용해서 3시간동안(균일계의 경우 1시간) 55 ℃에서 이산화탄소와 수소의 비율을 1:2로 하여 500psi 압력을 가해 4-비닐아니솔(4-vinylanisole)의 히드로포밀화(hydroformylation) 반응시킨 결과 균일계 촉매를 이용한 경우와 동일하게 100% 반응수율을 보였고, 90% 이상의 위치 선택성(regioselectivity)을 나타냄을 확인할 수 있었다. In order to avoid the presence of excess rhodium catalyst compound was washed several times with an organic solvent and separated and purified only the dispersible catalyst immobilized on the magnetic support by magnetic decantation. Using a dispersible catalyst immobilized on the magnetic support, 500 psi pressure was applied at 55 ° C. in a ratio of 1: 2 at 55 ° C. for 3 hours to give 4-vinylanisole (4-vinylanisole). As a result of hydroformylation reaction of), the reaction yield was 100% and the position selectivity (regioselectivity) was more than 90%.

또한, 이렇게 사용된 자성체 지지체에 고정화된 분산성 촉매는 강한 자석을 용기 바닥에 부착시킨 후 용액을 따라내는 자력이용분리법을 통해 쉽고 간편하게 회수하여 재사용하는 것이 가능했으며, 5회 연속적인 히드로포밀화(hydroformylation) 반응을 진행 한 결과 촉매 활성에 전혀 변화가 없었고, 동일한 위치 선택성을 나타냈다.(도 5) In addition, the dispersable catalyst immobilized on the magnetic support used in this way was able to be easily and easily recovered and reused by using a magnetic separation method in which a strong magnet was attached to the bottom of the container and followed by a solution, and five consecutive hydroformylations ( As a result of the hydroformylation reaction, there was no change in the catalytic activity and showed the same position selectivity (FIG. 5).

실시예Example 1 One

1. One. 양이온성Cationic 로듐rhodium 촉매의 제조 Preparation of the catalyst

질소 대기 하에서 100 ml 1-neck RBF(round bottom flask) 안에 [Rh(cod)Cl]2 (0.1 g, 0.20 mmol)을 넣고 20 ml의 무수 에탄올에 완전히 녹인 후, AgBF4 (0.08 g, 0.40 mmol)을 넣고 30분 동안 교반기를 이용해 저어주면 뿌옇게 침전이 생김을 볼 수 있다. 이 침전물을 질소 하에서 유리 여과기(glass filter)를 이용해 걸러내면 맑은 노란색 에탄올 용액을 얻을 수 있다.[Rh (cod) Cl] 2 (0.1 g, 0.20 mmol) was added to 100 ml 1-neck RBF (round bottom flask) under nitrogen atmosphere and dissolved completely in 20 ml of absolute ethanol, followed by AgBF 4 (0.08 g, 0.40 mmol). ) And stir for 30 minutes using a stirrer to see whitish precipitate. The precipitate is filtered off with a glass filter under nitrogen to give a clear yellow ethanol solution.

이 걸러진 에탄올 용액에 벤조산(0.06 g, 0.50 mmol)을 넣고 1시간 동안 저어주면서 반응을 진행시키자, 용액이 갈색으로 변하면서 완결되었다. 이 갈색 용액에서 회전 증발기(rotary evaporator)를 이용하여 용매의 대부분을 제거한 후, 소량의 아세톤에 녹인 후 과량의 디에틸에테르를 넣어 재결정(re-crystallization) 과정을 진행시켰다.  Benzoic acid (0.06 g, 0.50 mmol) was added to the filtered ethanol solution, followed by stirring for 1 hour to complete the reaction. The solution turned brown. Most of the solvent was removed from the brown solution by using a rotary evaporator, and then dissolved in a small amount of acetone, followed by re-crystallization by adding an excess of diethyl ether.

이 결정을 여과기로 걸러서 갈색 고체를 얻는다. (수율 87%) 이 생성물은 1H, 13C NMR 실험을 통해서 구조가 [Rh(cod)(η6-benzoic acid)]BF4 임을 확인할 수 있었다.{1H NMR (acetone-d 6 ): δ 8.04(d, 2H, ph), δ 7.62(m, 1H, ph), δ 7.50(m, 2H, ph), δ 4.14(s, 4H, cod), δ 2.54(m, 1H, cod), δ 1.79(m, 4H, cod). 13C NMR (d6, acetone): δ 167.75(-C=O), δ 133.82(ph), δ 131.48(ph), δ 130.52(ph), δ 129.36(cod), δ 129.30(ph), δ 28.71(cod)}The crystals are filtered off to obtain a brown solid. (Yield 87%) The product was confirmed to be [Rh (cod) (η 6 -benzoic acid)] BF 4 by 1 H, 13 C NMR experiment. { 1 H NMR (acetone- d 6 ): δ 8.04 (d, 2H, ph), δ 7.62 (m, 1H, ph), δ 7.50 (m, 2H, ph), δ 4.14 (s, 4H, cod), δ 2.54 (m, 1H, cod), δ 1.79 (m, 4H, cod). 13 C NMR (d6, acetone): δ 167.75 (-C = O), δ 133.82 (ph), δ 131.48 (ph), δ 130.52 (ph), δ 129.36 (cod), δ 129.30 (ph), δ 28.71 (cod)}

또한, 질량 분석 실험을 통해서 얻어진 결과물의 질량이 420임을 확인 할 수 있었다.In addition, it was confirmed that the mass of the result obtained through the mass spectrometry experiment is 420.

2. 2. 양이온성Cationic 촉매가 결합된 코발트  Cobalt with Catalyst 페라이트ferrite 자성체  Magnetic material 나노입자의Nanoparticles 제조 Produce

250 ml 1-neck RBF(round bottom flask)속에 코발트 페라이트 자성체 나노 입자(1 g)을 넣고 100 ml 디메틸포름아미드를 넣어서 깨끗하게 분산시켰다. 그리고 [Rh(cod)(η6-benzoic acid)]BF4(0.4 g, 1 mmol)을 다른 10 ml 디메틸포름아미드에 녹인 후 이것을 코발트 페라이트 자성체 나노 입자용액에 교반기를 이용해 저으면서 적가 하였다.Cobalt ferrite magnetic nanoparticles (1 g) were added to 250 ml 1-neck RBF (round bottom flask), and 100 ml dimethylformamide was added to disperse cleanly. Then, [Rh (cod) (η 6 -benzoic acid)] BF 4 (0.4 g, 1 mmol) was dissolved in another 10 ml dimethylformamide, which was added dropwise to the cobalt ferrite magnetic nanoparticle solution with stirring using a stirrer.

2시간 동안 반응을 진행시키고, 원심분리기 튜브 안에 위의 용액 10 ml를 넣고, 클로로포름:헥산 = 1:1 혼합 유기 용매 50 ml를 섞은 뒤 원심 분리기를 통해 침전물을 얻었다 . 이때, 과량으로 존재할 수 있는 로듐 착화합물 자체를 제거하기 위해서 혼합된 유기 용매로 여러 번 씻어 주었다. 이렇게 얻어진 물질을 아세톤에 다시 분산시키고, 원심 분리기를 통해 가라앉은 것을 제거하고 여액 만을 취하였다.  The reaction was allowed to proceed for 2 hours, 10 ml of the above solution was placed in a centrifuge tube, 50 ml of chloroform: hexane = 1: 1 mixed organic solvent was mixed, and a precipitate was obtained through a centrifuge. At this time, in order to remove the rhodium complex itself may be present in excess was washed several times with a mixed organic solvent. The material so obtained was dispersed again in acetone, the sinking was removed via centrifuge and only the filtrate was taken.

취해진 여액을 회전 증발기를 이용 용매를 모두 제거하여 최종 결과물을 얻었다.(도 6) 유도 결합 플라스마 원자 방출 기기 실험과 EPMA (Electro Probe Micro Analysis, WDS모드, JEOL/JXA-8900R)실험을 통해서 결과물의 화학적 조성을 조사한 결과 {[Rh(cod)(η6-benzoic acid)]BF4}0.013-CoFe2.14O 4임을 알 수 있었고, FT-IR(Fourier Transfer-Infrared Spectroscopy, Bomem DA8) 실험을 통해서 코발트 페라이트 자성체 나노 입자로부터 형성되는 메탈-산소 신축(M-O, 578 cm-1) 피크는 계속 유지되고, 반응 전 코발트 페라이트 자성체 나노 입자 표면에 존재하던 질산염 이온의 피크(NO3 -, 1382 cm-1)가 사라지며, 로듐 촉매에 의한 탄소-수소 신축(C-H, 2900 cm-1)에 의한 피크가 생겨남을 확인함으로써, 코발트 페라이트 나노 입자 표면에 로듐 촉매가 존재함을 알 수 있었다.(도 7)The filtrate was removed using a rotary evaporator to remove all solvents to obtain a final result. (FIG. 6) Inductively coupled plasma atomic emission device experiment and EPMA (Electro Probe Micro Analysis, WDS mode, JEOL / JXA-8900R) experiment. The chemical composition was found to be {[Rh (cod) (η 6 -benzoic acid)] BF 4 } 0.013 -CoFe 2.14 O 4 , and cobalt ferrite through FT-IR (Fourier Transfer-Infrared Spectroscopy, Bomem DA8) experiment. metal nanoparticles are formed from a magnetic body-oxygen stretch (MO, 578 cm -1) peak is maintained, before reaction of cobalt ferrite of the nitrate ion was present in the magnetic material nanoparticle surface peak (NO 3 -, 1382 cm -1 ) a Disappearing, by confirming that the peak by the carbon-hydrogen stretching (CH, 2900 cm -1 ) by the rhodium catalyst occurs, it can be seen that the rhodium catalyst is present on the surface of the cobalt ferrite nanoparticles (Fig. 7).

또한, 고-분해능 투과 전자 현미경(HRTEM, High-resolution Transmission Electron Microscope, JEOL/JEM-3000F) 실험을 통해서 촉매 결합 시에도 코발트 페라이트 자성체 나노 입자의 구조가 변하지 않음을 알 수 있었고, 전체 입자의 크기도 평균 10 nm 정도 되는 것을 관찰 할 수 있었다.(도 8) In addition, the high-resolution transmission electron microscope (HRTEM) experiment showed that the structure of the cobalt ferrite magnetic nanoparticles did not change even when the catalysts were bound, and the size of the whole particles was not changed. It could be observed that the average is about 10 nm (Fig. 8).

3. 로듐 촉매가 결합된 코발트 페라이트 자성체 나노 입자를 이용한 4-비닐아니솔의3. Preparation of 4-vinylanisole using cobalt ferrite magnetic nanoparticles with rhodium catalyst 히드로Heathrow 포밀화Formyization 반응 reaction

100 ml 고압 반응 용기(autoclave)안에, 로듐 촉매가 결합된 코발트 페라이트 자성체 나노 입자(4 mg, 로듐의 몰수는 0.018 mmol 이다)를 넣고, 10 ml 무수 염화메틸렌을 넣은 후, 4-비닐아니솔(0.1 ml, 0.75 mmol) 그리고 젓게 막대 넣고 고압 반응용기 뚜껑을 닫았다. 일산화탄소 기체를 170 psi의 압력으로 가하고, 수소 기체를 330 psi의 압력을 가한 후, 고압 반응 용기를 기름 중탕 장치에 넣고, 55℃의 온도 하에서 3시간 동안 자력교반기를 이용 저으면서 반응을 진행하였다. In a 100 ml high pressure autoclave, cobalt ferrite magnetic nanoparticles (4 mg, the number of moles of rhodium is 0.018 mmol) combined with a rhodium catalyst were added, 10 ml of anhydrous methylene chloride was added, and 4-vinylanisole ( 0.1 ml, 0.75 mmol) and stir the rods and close the lid of the high pressure reactor. Carbon monoxide gas was added at a pressure of 170 psi, hydrogen gas was applied at a pressure of 330 psi, and the high pressure reaction vessel was placed in an oil bath apparatus, and the reaction was performed while stirring using a magnetic stirrer for 3 hours at a temperature of 55 ° C.

반응을 마친 후, 고압 반응 용기 안의 기체를 빼내고 뚜껑을 열어, 안의 내용물 중 로듐 촉매가 결합된 코발트 페라이트 자성체 나노입자를 자력이용분리법(magnetic decantation)을 이용해 회수한다. 회수되고 남은 용액을 회전 증발기를 이용 용매를 모두 제거한 뒤에 생성된 알데히드 product를 1H NMR 실험을 통해서 촉매 반응 수율과 위치 선택성(가지 난 알데히드: 9.82 ppm, 선형 알데히드: 9.65 ppm)을 결정할 수 있다. 1H NMR 실험 결과 100%의 반응 수율과 함께 90% 이상의 위치 선택성을 나타냈다.After the reaction, the gas in the high-pressure reaction vessel is removed, the lid is opened, and the cobalt ferrite magnetic nanoparticles in which the rhodium catalyst is bound are recovered from the contents by magnetic decantation. After removing the solvent from the recovered solution using a rotary evaporator, the resulting aldehyde product was subjected to 1 H NMR experiment to determine the catalytic reaction yield and position selectivity (branched aldehyde: 9.82 ppm, linear aldehyde: 9.65 ppm). 1 H NMR experiments showed greater than 90% position selectivity with a reaction yield of 100%.

또한, 유도 결합 플라스마 원자 방출 기기 실험을 통해서 촉매 반응 시 손실되는 로듐 촉매 양을 조사한 결과, 0.1 ppm 이하의 농도로 녹아 나오는 로듐 촉매의 양이 거의 없음을 확인하였다.In addition, as a result of investigating the amount of rhodium catalyst lost during the catalytic reaction through an inductively coupled plasma atom emission device experiment, it was confirmed that there was almost no amount of rhodium catalyst dissolved at a concentration of 0.1 ppm or less.

4. 회수된 4. Recovered 로듐rhodium 촉매 결합된 코발트  Catalyzed Cobalt 페라이트ferrite 자성체  Magnetic material 나노Nano 입자를 이용한 연속적인  Continuous with particles 히드로Heathrow 포밀화Formyization 반응 reaction

상기 과정 중 고압 반응 용기의 기체를 빼낸 후, 강한 자석을 이용하여 분리, 회수한 로듐 촉매가 고정화된 자성체 나노입자에 다시 무수 염화메틸렌 10 ml와 0.1 ml의 4-비닐아니솔, 일산화탄소와 수소 기체를 넣고 동일한 방법으로 촉매 반응을 진행시켰다. 마찬가지로 1H NMR 실험을 통해 반응성과 위치 선택성을 조사하였다.After degassing the high-pressure reaction vessel during the above process, 10 ml of anhydrous methylene chloride and 0.1 ml of 4-vinylanisole, carbon monoxide and hydrogen gas were returned to the magnetic nanoparticles to which the rhodium catalyst, which was separated and recovered using a strong magnet, was immobilized. The catalyst reaction was carried out in the same manner. Likewise, reactivity and site selectivity were investigated by 1 H NMR experiment.

조사된 결과는 상기 제시된 결과와 동일하며, 5회 이상 연속 적인 반응을 실시해도 그 반응성이나 위치 선택성에 아무런 영향을 주지 않았다. 또한 유도 결합 플라스마 원자 방출 기기 실험을 통해서 반응 도중 자성체 나노입자 지지체 표면으로부터 로듐 촉매 화합물이 떨어져 나가면서 손실되는 양을 조사 한 결과 반응 용액 속의 로듐 금속 양이0.1 ppm 이하로 측정되어 실질적으로 거의 손실되지 않음을 알 수 있었다.The results examined were the same as the results presented above, and no more than five consecutive reactions had any effect on their reactivity or site selectivity. In addition, the amount of rhodium metal in the reaction solution was measured to be 0.1 ppm or less in the reaction solution through the inductively coupled plasma atom emission device experiment. It was found that.

지금까지 설명한 바와 같이, 본 발명은 자성체 나노 입자를 촉매의 지지체로 사용함에 따라 균일계 촉매와 불균일계 촉매의 단점을 극복 할 있는 새롭고 독특한 결과를 제공하고 있고, 이 유기 용매에 잘 분산되는 나노 크기 수준의 지지체를 이용한 촉매는 또 다른 유기금속 촉매에 적용시킬 경우 모든 균일계 촉매시스템에 일반적으로 사용할 수 있으리라 기대된다. 그리고, 이와 같이 전하를 가지는 유기물이나 유기금속 화합물을 자성체 나노 입자 표면에 결합시켜 과량의 표면처리제가 존재하지 않는 상태에서도 안정하게 유기 용매에 분산시키는 기술은 궁극적으로 나노기술학(nanotechnology), 나노 전자기학(nanoelectronics), 생물학(biological) 등의 분야에 아주 효과적으로 응용될 것으로 예상된다As described so far, the present invention provides new and unique results that overcome the shortcomings of homogeneous and heterogeneous catalysts by using magnetic nanoparticles as a support for the catalyst, and nano-sizes that are well dispersed in this organic solvent. Catalysts with levels of support are expected to be generally available for all homogeneous catalyst systems when applied to another organometallic catalyst. In addition, the technique of binding the charged organic material or organometallic compound to the surface of the magnetic nanoparticle and stably dispersing it in the organic solvent even in the absence of excess surface treatment agent ultimately results in nanotechnology, nanoelectromagnetics ( It is expected to be applied very effectively in the fields of nanoelectronics, biology, etc.

도 1은 전형적인 로듐 촉매에 의한 4-비닐 아니솔의 히드로포밀화 반응을 그린 모식도1 is a schematic diagram illustrating hydroformylation of 4-vinyl anisole over a typical rhodium catalyst.

도 2는 합성된 코발트 페라이트 자성체 나노 입자의 결정학적 특성을 나타내는 X-선 회절 무늬2 is an X-ray diffraction pattern showing crystallographic characteristics of the synthesized cobalt ferrite magnetic nanoparticles

도 3은 양 전하성 로듐 촉매의 합성 모식도3 is a schematic of synthesis of a positively charged rhodium catalyst

도 4는 양 전하성 로듐 촉매에 의한 4-비닐 아니솔의 히드로포밀화 반응결과를 보인 표 (b : 가지난 알데히드, l : 선형 알데히드)Figure 4 is a table showing the results of the hydroformylation reaction of 4-vinyl anisole by positively charged rhodium catalyst ( b : branched aldehyde, l : linear aldehyde)

도 5는 양 전하성 로듐 촉매가 결합된 코발트 페라이트 자성체 나노 입자에 의한 4-비닐 아니솔의 히드로포밀화 반응결과를 보인 표FIG. 5 is a table showing the results of hydroformylation of 4-vinyl anisole by cobalt ferrite magnetic nanoparticles having a positively charged rhodium catalyst.

도 6은 코발트 페라이트 자성체 나노 입자의 표면에 합성된 양 전하성 로듐 촉매를 결합시키는 모식도6 is a schematic diagram of bonding a positively charged rhodium catalyst synthesized on the surface of the cobalt ferrite magnetic nanoparticles

도 7은 초기 코발트 페라이트 자성체 나노 입자의 FR-IR spectra와 합성된 양전하성 로듐 촉매의 FT-IR spectra, 그리고 두 물질을 결합 시킨 것의 FR-IR spectra를 보인 그래프7 is a graph showing the FR-IR spectra of the initial cobalt ferrite magnetic nanoparticles, the FT-IR spectra of the positively charged rhodium catalyst synthesized, and the FR-IR spectra of the two materials combined

도 8은 양 전하성 로듐 촉매가 결합된 코발트 페라이트 자성체 나노 입자의 고-분해능 투과 전자 현미경 그림FIG. 8 is a high-resolution transmission electron micrograph of cobalt ferrite magnetic nanoparticles coupled with a positively charged rhodium catalyst.

Claims (13)

이온성 치환기를 포함하는 유기리간드와 전이금속으로 이루어진 것으로서 전체에 이온성이 존재하는 유기-금속 착화합물을 자성체 나노입자 표면에 결합시키는 것을 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법. Easy to recover / reuse magnetic nanoparticles and organics, comprising an organic ligand including an ionic substituent and a transition metal, the organic-metal complex having ionicity in its entirety bound to the surface of the magnetic nanoparticles -Method of producing a homogeneous catalyst in which a metal complex is combined. 삭제delete 제1항에 있어서, 상기 유기-금속 착화합물의 유기리간드는 이온성 치환기로서 카르복실기를 포함하는 것을 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법. The method according to claim 1, wherein the organic ligand of the organo-metal complex compound comprises a carboxyl group as an ionic substituent, which is easy to recover / reuse, of a homogeneous catalyst combined with magnetic nanoparticles and an organo-metal complex. Manufacturing method. 삭제delete 제1항에서, 상기 자성체 나노입자는 금속 페라이트(MOㆍFe2O3)인 것을 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법.The method of claim 1, wherein the magnetic nanoparticles are metal ferrite (MO.Fe 2 O 3 ), which is easy to recover / reuse, and is a method for preparing a homogeneous catalyst in which magnetic nanoparticles and an organic-metal complex are combined. . 제5항에 있어서, 상기 금속 페라이트에 포함된 금속(M)은 Fe, Mn, Co, Ni, Cu 및 Zn로 구성된 군 중 어느 하나인 것을 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법.The method of claim 5, wherein the metal (M) contained in the metal ferrite is any one of the group consisting of Fe, Mn, Co, Ni, Cu and Zn, easy recovery / reuse, magnetic nanoparticles And a process for preparing a homogeneous catalyst in which an organo-metal complex is combined. 제1항에 있어서, 상기 자성체 나노입자의 크기는 1-300nm인 것을 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법.The method of claim 1, wherein the magnetic nanoparticles have a size of 1-300 nm, and the recovery / reuse of the magnetic nanoparticles and the organic-metal complex compound are combined. 제1항에 있어서, The method of claim 1, 염기성 용액에서 공침법에 의해 상기 자성체 나노입자를 생성하고, The magnetic nanoparticles are produced by coprecipitation in a basic solution, 상기 자성체 나노입자와 상기 이온성 유기-금속 착화합물을 극성 유기용매 속에서 반응시켜 상호 결합시키는 공정을 포함하는 특징으로 하는, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매의 제조방법.Uniformity in which magnetic nanoparticles and the organic-metal complex are easily recovered and reused, comprising the step of reacting the magnetic nanoparticles with the ionic organo-metal complex in a polar organic solvent and bonding them together. Method for producing a catalyst. 제1항, 제3항, 제5항 내지 제8항 중 어느 한 항에 기재된 방법에 의하여 제조된, 회수/재사용이 용이한, 자성체 나노입자와 유기-금속 착화합물이 결합된 균일계 촉매. A homogeneous catalyst in which magnetic nanoparticles and an organo-metal complex are combined, which is easy to recover / reuse, prepared by the method according to any one of claims 1, 3, and 5 to 8. 제9항 기재의 촉매를 이용하여 소정의 화학반응을 행하고, 자력을 이용하여 이들 촉매를 분리, 회수 및 재사용하는 것을 특징으로 하는 균일계 촉매의 재활용 방법. A method for recycling a homogeneous catalyst, characterized in that a predetermined chemical reaction is carried out using the catalyst according to claim 9, and the catalyst is separated, recovered and reused using a magnetic force. 삭제delete 이온성 치환기를 포함하는 유기리간드와 금속으로 이루어진 것으로서 전체에 이온성이 존재하는 유기-금속 착화합물을 1-100nm 크기의 자성체 나노입자 표면에 결합시키는 것을 특징으로 하는, 자성체 나노입자의 분산성 개선방법. A method of improving the dispersibility of magnetic nanoparticles, comprising an organic ligand including an ionic substituent and a metal, and bonding an organic-metal complex having ionicity to the surface of the magnetic nanoparticle having a size of 1-100 nm. . 제12항 기재의 방법에 의하여 제조된 것을 특징으로 하는 분산성이 개선된 자성체 나노입자. A magnetic nanoparticle having improved dispersibility, which is prepared by the method of claim 12.
KR10-2002-0010837A 2002-02-28 2002-02-28 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof KR100512451B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2002-0010837A KR100512451B1 (en) 2002-02-28 2002-02-28 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof
PCT/KR2002/002369 WO2003072247A1 (en) 2002-02-28 2002-12-17 Organometallic catalyst immobilized on magnetic nanoparticle and process for the production thereof
AU2002367727A AU2002367727A1 (en) 2002-02-28 2002-12-17 Organometallic catalyst immobilized on magnetic nanoparticle and process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0010837A KR100512451B1 (en) 2002-02-28 2002-02-28 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof

Publications (2)

Publication Number Publication Date
KR20030071233A KR20030071233A (en) 2003-09-03
KR100512451B1 true KR100512451B1 (en) 2005-09-05

Family

ID=27764626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0010837A KR100512451B1 (en) 2002-02-28 2002-02-28 recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof

Country Status (3)

Country Link
KR (1) KR100512451B1 (en)
AU (1) AU2002367727A1 (en)
WO (1) WO2003072247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976289B1 (en) 2017-12-11 2019-05-07 경희대학교 산학협력단 Multifunctional particles and microfluid reaction system using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572673B1 (en) * 2003-10-06 2006-04-19 이진규 Fat-soluble ferrofluids, preparation method and use thereof
KR100604976B1 (en) * 2004-09-03 2006-07-28 학교법인연세대학교 Water-Soluble Nanoparticles Stabilized with Multi-Functional Group Ligands
KR100859748B1 (en) 2004-12-29 2008-09-24 학교법인 포항공과대학교 Synthesis of heterogeneous transitional metal catalysts
ES2301296B1 (en) * 2005-09-16 2009-05-29 Consejo Superior Investig. Cientificas BIOSENSOR MANOPARTICULA, ELABORATION PROCEDURE AND ITS APPLICATIONS.
WO2007142269A1 (en) * 2006-06-07 2007-12-13 National University Corporation Chiba University Organic-inorganic hybrid composite material and method for producing the same
KR100926128B1 (en) * 2007-06-19 2009-11-11 포항공과대학교 산학협력단 Magnetic nanocatalyst and method for the preparation thereof
US8043702B2 (en) 2008-08-25 2011-10-25 Seoul National University Research & Development Business Foundation (Snu R&Db Foundation) Magnetic nanoparticles surface-modified with dithiocarbamate
US8157986B2 (en) 2008-08-27 2012-04-17 Seoul National University Research & Development Business Foundation Magnetic nanoparticle complex
CN107866202A (en) * 2017-11-15 2018-04-03 苏州纳贝通环境科技有限公司 A kind of preparation method of nano combined microcapsules water treatment agent
CN111841638B (en) * 2019-04-30 2022-05-13 杭州师范大学 Visible light catalyst and CO catalytic conversion thereof2Use of benzazepine for the synthesis of benzazepine
CN110117368B (en) * 2019-06-10 2021-12-28 青岛大学 Bell-shaking type magnetic nanocomposite material with cavity structure and preparation method thereof
CN112892574A (en) * 2021-01-25 2021-06-04 华南理工大学 Multi-element heterojunction core-shell catalyst suitable for electro-Fenton and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325195A (en) * 1995-05-31 1996-12-10 Nec Corp Metal-coated carbon nanotube and its production
KR19980048888A (en) * 1996-12-18 1998-09-15 김종진 Surface treatment method of magnetic metal powder
JP2001031695A (en) * 1999-07-21 2001-02-06 Keiogijuku Multilayer sandwich complex and its production
KR20030015593A (en) * 2001-08-16 2003-02-25 한국과학기술원 Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW340806B (en) * 1995-03-28 1998-09-21 Mitsui Toatsu Chemicals Modified Raney catalyst and process for preparation thereof
GB9622284D0 (en) * 1996-10-25 1996-12-18 Johnson Matthey Plc Improved catalyst
US5872074A (en) * 1997-01-24 1999-02-16 Hydro-Quebec Leached nanocrystalline materials process for manufacture of the same, and use thereof in the energetic field
US6239065B1 (en) * 1998-12-22 2001-05-29 Hydro-Quebec Process for the preparation of a supported catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325195A (en) * 1995-05-31 1996-12-10 Nec Corp Metal-coated carbon nanotube and its production
KR19980048888A (en) * 1996-12-18 1998-09-15 김종진 Surface treatment method of magnetic metal powder
JP2001031695A (en) * 1999-07-21 2001-02-06 Keiogijuku Multilayer sandwich complex and its production
KR20030015593A (en) * 2001-08-16 2003-02-25 한국과학기술원 Method for Synthesis of Core-Shell type and Solid Solution type Metallic Alloy Nanoparticles via Transmetalation Reactions and Their Applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976289B1 (en) 2017-12-11 2019-05-07 경희대학교 산학협력단 Multifunctional particles and microfluid reaction system using the same

Also Published As

Publication number Publication date
WO2003072247A1 (en) 2003-09-04
AU2002367727A1 (en) 2003-09-09
KR20030071233A (en) 2003-09-03

Similar Documents

Publication Publication Date Title
KR100512451B1 (en) recyclable ionic-organometallic catalysts immobilized on magnetic nanoparticles and methods of preparing thereof
Yoon et al. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling
Veisi et al. In situ immobilized palladium nanoparticles on surface of poly-methyldopa coated-magnetic nanoparticles (Fe3O4@ PMDA/Pd): a magnetically recyclable nanocatalyst for cyanation of aryl halides with K4 [Fe (CN) 6]
Farzad et al. Fe3O4/SiO2 nanoparticles coated with polydopamine as a novel magnetite reductant and stabilizer sorbent for palladium ions: synthetic application of Fe3O4/SiO2@ PDA/Pd for reduction of 4-nitrophenol and Suzuki reactions
Huang et al. A3-coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films
EP2834195B1 (en) A process for preparing ferrite nanocrystals
Tajbakhsh et al. Nano Fe 3 O 4 supported biimidazole Cu (i) complex as a retrievable catalyst for the synthesis of imidazo [1, 2-a] pyridines in aqueous medium
EP2804186B1 (en) Coated magnetic nanoparticles
Yoon et al. Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters
Vibhute et al. Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@ SiO2 for Huisgen 1, 3-dipolar cycloaddition
Rangraz et al. Magnetic chitosan composite as a green support for anchoring diphenyl diselenide as a biocatalyst for the oxidation of sulfides
KR20120036338A (en) Method for preparing an organic-compatible and water-compatible composition of metal nanocrystals, and resulting composition
Yadav et al. Fabrication of copper‐based silica‐coated magnetic nanocatalyst for efficient one‐pot synthesis of chalcones via A3 coupling of aldehydes‐alkynes‐amines
Ahmad et al. Iron oxide nanoparticles: an efficient nano-catalyst
KR101156615B1 (en) Complexes comprising magnetite nano particles and preparation method thereof
US8268068B2 (en) Metal-polymer coordination complex incorporating phosphorus atoms and applications using such a complex
Yathindranath et al. A general synthesis of metal (Mn, Fe, Co, Ni, Cu, Zn) oxide and silica nanoparticles based on a low temperature reduction/hydrolysis pathway
Amiens et al. Organometallic synthesis of nanoparticles
Moeinian et al. Three-dimensional organometallic thallium (I) supramolecular polymer nanostructures synthesized with sonochemical process
Zhang et al. Synthesis of Fe3O4 Microspheres‐Supported Catalysts for Suzuki Coupling Reaction
KR101350400B1 (en) The magnetic metal oxide nano particles, the magnetic intermetallic compound nano particles and methods of making them
Hao et al. {[Co2 (btec)(2, 2′-bipy) 2]· H2O} n metal–organic framework: Structure and activity in the solvent-free oxidation of cyclohexene with oxygen
Khaleghi et al. Fast synthesis of [1, 2, 3]-triazole derivatives on a Fe/Cu-embedded nano-catalytic substrate
EP2230244B1 (en) Phosphorus polymers and their uses
KR100582921B1 (en) Preparation of metal nano-particles from metal compounds containing aminoalkoxide ligands

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080826

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee