KR100510862B1 - Method for preparing cathode active materials for the secondary lithium ion battery - Google Patents

Method for preparing cathode active materials for the secondary lithium ion battery Download PDF

Info

Publication number
KR100510862B1
KR100510862B1 KR10-1999-0003589A KR19990003589A KR100510862B1 KR 100510862 B1 KR100510862 B1 KR 100510862B1 KR 19990003589 A KR19990003589 A KR 19990003589A KR 100510862 B1 KR100510862 B1 KR 100510862B1
Authority
KR
South Korea
Prior art keywords
active material
acid
minutes
solution
solvent
Prior art date
Application number
KR10-1999-0003589A
Other languages
Korean (ko)
Other versions
KR20000055128A (en
Inventor
신원석
양호석
이영기
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR10-1999-0003589A priority Critical patent/KR100510862B1/en
Publication of KR20000055128A publication Critical patent/KR20000055128A/en
Application granted granted Critical
Publication of KR100510862B1 publication Critical patent/KR100510862B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 수산(oxalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 푸마르산(fumaric acid) 등의 유기산중 하나 또는 두 가지 이상이 용매에 녹아 있는 반응기를 20-50℃로 유지한 후 이 반응기에 리튬, 니켈, 코발트 혼합 금속 용액을 60분 이상에 걸쳐 적정하고, 30분 이상에 걸쳐 숙성한 후, 다시 코발트 용액만을 30분 이상에 걸쳐 공침용액에 적정,숙성하여 용매를 제거한다음 소성하여 5-50 마이크론 사이의 일정한 입도분포를 갖는 양극활물질을 수득하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법에 관한 것으로, 본 발명의 방법은 비용면에서 경제적이고 간단한 방법으로 일정한 입도분포를 갖는 양극 활물질을 수득할 수 있을 뿐만 아니라 순차적인 금속의 적하로 양극 활물질의 표면을 코팅함으로써 전지의 고율 충방전 특성을 향상시킬 수 있는 이점을 갖는다.The present invention maintains a reactor in which one or two or more organic acids such as oxalic acid, succinic acid, tartaric acid, and fumaric acid are dissolved in a solvent at 20-50 ° C. Then, the lithium, nickel, cobalt mixed metal solution was titrated in this reactor for 60 minutes or more, aged for 30 minutes or more, and then only the cobalt solution was titrated and aged in the coprecipitation solution for 30 minutes or more to remove the solvent. It relates to a method for producing a cathode active material for a secondary battery, characterized in that by firing to obtain a positive electrode active material having a constant particle size distribution of 5-50 microns, the method of the present invention is economical and simple in terms of cost and a constant particle size distribution In addition to obtaining a positive electrode active material having a coating, the surface of the positive electrode active material is coated with a sequential drop of metal to improve the high rate charge and discharge characteristics of the battery. It has the advantage that it can kill.

Description

이차전지용 양극 활물질의 제조방법{METHOD FOR PREPARING CATHODE ACTIVE MATERIALS FOR THE SECONDARY LITHIUM ION BATTERY} Manufacturing method of positive electrode active material for secondary battery {METHOD FOR PREPARING CATHODE ACTIVE MATERIALS FOR THE SECONDARY LITHIUM ION BATTERY}

본 발명은 리튬 이차전지에 사용되는 양극 활물질의 제조방법에 관한 것으로, 더욱 상세하게는 수산(Oxalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 푸마르산(fumaric acid) 등의 유기산을 금속 킬레이트제로 사용하고 여기에 금속을 적하함에 있어서 1차로 리튬, 니켈, 코발트 혼합 금속용액을 적하한 후 2차로 코발트를 다시 적하하여 1차 적하시 공침된 구형입자의 표면을 코발트로 코팅함으로써 전압이 많이 걸려 층상의 양극 활물질 구조가 파괴되기 쉬운 표면을 안정화하고 충방전 수명과 성능을 향상시킬 수 있는 양극 활물질(LixNi1-YCoYO2(0<Y<1))의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a positive electrode active material used in a lithium secondary battery, and more particularly, organic acids such as oxalic acid, succinic acid, tartaric acid, and fumaric acid. When used as a metal chelating agent and dropping the metal on it, the mixture of lithium, nickel, cobalt mixed metal solution is first added dropwise and then cobalt is added dropwise again and the surface of the spherical particles coprecipitated during the first drop is coated with cobalt. In the manufacturing method of the positive electrode active material (Li x Ni 1-Y Co Y O 2 (0 <Y <1)) that can stabilize the surface of the layered positive electrode active material structure that is easily caught and improve the charge and discharge life and performance It is about.

종래 전자계산기, 손목시계 등에 사용되는 소형화 슬림화된 리튬 2차전지의 구성은 리튬 금속 혼합 산화물, 예를 들면 리튬코발트산화물(LiCoO2), 리튬니켈산화물(LiNiO2), 리튬망간산화물(LiMn2O4)등을 양극 활물질로 하고, 탄소재료 또는 금속 리튬, 리튬합금 등을 음극으로 하며, 유기용매에 리튬염을 적당량 용해시킨 것을 전해액으로 하여 구성되어 있다.The miniaturized slimmer lithium secondary battery used in conventional electronic calculators, watches, and the like is a lithium metal mixed oxide, such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMn 2 O). 4 ) is used as a positive electrode active material, carbon material or metal lithium, lithium alloy, etc. as a negative electrode, and an appropriate amount of lithium salt dissolved in an organic solvent is used as an electrolyte solution.

이러한 리튬 이차전지의 예로서 일본 소니 에너지 테크사는 고온 고상법으로 합성한 리튬코발트산화물 활물질을 이용한 양극과 탄소재를 이용한 음극 및 유기전해액으로 구성된 리튬 이차전지를 개발, 상품화하였다. 그러나, 리튬니켈산화물(LiNiO2)의 경우 용량은 리튬코발트산화물(LiCoO2)에 비해 높지만 수명이 급격히 떨어지는 문제점을 가지고 있어 아직 상품화되지는 못하였고, 현재 니켈의 고 용량과 코발트의 수명 안정성을 겸비한 리튬니켈코발트 산화물의 합성에 관한 연구가 계속되어지고 있는데, 그 대표적인 것으로 고온 고상법과 액상에 의한 합성법이 있다.As an example of such a lithium secondary battery, Japan Sony Energy Tech Co., Ltd. developed and commercialized a lithium secondary battery composed of a positive electrode using a lithium cobalt oxide active material synthesized by a high temperature solid state method, a negative electrode using a carbon material, and an organic electrolyte solution. However, the capacity of lithium nickel oxide (LiNiO 2 ) is higher than that of lithium cobalt oxide (LiCoO 2 ), but has a problem that the life is sharply lowered, but it has not been commercialized yet. Studies on the synthesis of lithium nickel cobalt oxide are continuing, and the representative ones are the high temperature solid state method and the synthesis method by liquid phase.

이중, 니켈과 코발트를 균일하게 혼합하기 위해서는 액상에 의한 제조방법이 유리하며, 현재까지 유기산과 수산화암모늄(NH4OH)을 이용해 산성조건에서 용매에 녹아있는 출발물질을 겔화시켜 미세분말을 얻는 졸-겔법과, 일정한 pH영역에서 금속용액을 금속 히드록사이드 형태로 침전시키는 수산화 공침법이 알려져 있다.Among them, in order to uniformly mix nickel and cobalt, a manufacturing method using a liquid phase is advantageous.So far, a sol obtained by gelling a starting material dissolved in a solvent in an acidic condition using an organic acid and ammonium hydroxide (NH 4 OH) is obtained. The gel method and the hydroxide co-precipitation method of precipitating a metal solution in the form of metal hydroxide in a constant pH range are known.

그러나, 졸-겔법의 경우는 소성시 5∼10배정도 부풀어 오르는 현상과 입도와 탭밀도값이 작아 전지에의 적용 및 상업적 생산에 문제점이 있다. 또한, 수산화 공침법의 경우는 입자를 성장시킨 후 염을 제거하기 위한 세척과정의 반복이 필요하다는 단점이 있다.However, in the case of the sol-gel method, the swelling phenomenon and the particle size and tap density value are about 5 to 10 times during firing, which causes problems in application to a battery and commercial production. In addition, the hydroxide coprecipitation method has a disadvantage that it is necessary to repeat the washing process to remove the salt after growing the particles.

본 발명의 목적은 상기와 같은 종래의 문제점을 해결하기 위한 것으로, 리튬 이차전지에 사용되는 양극 활물질을 제조함에 있어서, 유기산을 킬레이트제로 사용하고 여기에 금속을 2단계로 나누어 적하함으로써 양극 활물질 표면을 코팅하도록 하여 고율 충방전 특성을 향상시킨 리튬 니켈 코발트계 양극 활물질의 제조방법을 제공하는 것이다.An object of the present invention is to solve the conventional problems as described above, in the production of a positive electrode active material used in a lithium secondary battery, by using an organic acid as a chelating agent and dropping the metal in two stages dropping the surface of the positive electrode active material It is to provide a method for producing a lithium nickel cobalt-based positive electrode active material to improve the high rate charge and discharge characteristics by coating.

즉, 본 발명은 수산(oxalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 푸마르산(fumaric acid) 등의 유기산중 하나 또는 두 가지 이상이 용매에 녹아 있는 반응기를 20-50℃로 유지한 후 이 반응기에 리튬, 니켈, 코발트 혼합 금속 용액을 60분 이상에 걸쳐 적정하고, 30분 이상에 걸쳐 숙성한 후, 다시 코발트 용액만을 30분 이상에 걸쳐 공침용액에 적정,숙성하여 용매를 제거한다음 소성하여 5-50 마이크론 사이의 일정한 입도분포를 갖는 양극활물질을 수득하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법에 관한 것이다. That is, in the present invention, a reactor in which one or two or more organic acids, such as oxalic acid, succinic acid, tartaric acid, and fumaric acid, is dissolved in a solvent, is used at 20-50 ° C. After maintaining, the lithium, nickel, and cobalt mixed metal solution was titrated in this reactor for 60 minutes or more, aged for 30 minutes or more, and then only the cobalt solution was titrated and aged in the coprecipitation solution for 30 minutes or more. The present invention relates to a method for manufacturing a cathode active material for a secondary battery, which is removed and calcined to obtain a cathode active material having a constant particle size distribution of 5-50 microns.

이하, 본 발명을 더욱 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명의 이차전지용 양극 활물질을 제조하기 위하여 먼저, 용액이 균일하게 섞일 수 있도록 교반기 및 베풀이 장착된 반응기에 용매를 주입하고 여기에 수산(Oxalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 푸마르산(fumaric acid) 등의 유기산을 전체 금속대비 0.4 내지 3당량, 바람직하게는 0.8 내지 2당량으로 녹인다. 본 발명에서 상기 용매로는 물, 알콜류, 테트라하이드로퓨란(THF)과 같은 비알콜성 유기 용매로 구성되는 그룹으로부터 선택되는 1종을 단독으로 사용하거나 2종 이상의 혼합용매를 사용한다. 특히 바람직한 것은 메탄올이다.In order to manufacture the positive electrode active material for a secondary battery of the present invention, first, a solvent is injected into a reactor equipped with a stirrer and a beaker so that the solution can be uniformly mixed therein, and oxalic acid, succinic acid, and tartaric acid. ), And organic acids such as fumaric acid are dissolved in an amount of 0.4 to 3 equivalents, preferably 0.8 to 2 equivalents relative to the total metals. In the present invention, as the solvent, one kind selected from the group consisting of water, alcohols, and nonalcoholic organic solvents such as tetrahydrofuran (THF) may be used alone or two or more kinds of mixed solvents may be used. Especially preferred is methanol.

그 후 반응기의 온도를 10∼50℃, 바람직하게는 20∼30℃가 되게 유지한 상태에서 1차로 2차에 적정할 코발트 함량만큼을 제외한 리튬, 니켈, 코발트의 혼합 금속용액을 30분 이상, 바람직하게는 3시간 이상에 걸쳐 유기산 용액에 적정한다. 이때, 리튬 및 니켈, 코발트의 당량에 의한 혼합비는 1.00≤Li/(Ni,Co)≤1.03의 범위가 바람직하고, 니켈 및 코발트의 혼합비는 (LixNi1-YCoYO2(0<Y<1)의 범위로 하는 것이 바람직하다. 본 발명에서 가장 성능이 좋은 양극 활물질의 조성은 Ni,Co 금속과 같은 당량의 Li이 들어 있는 것이다. 그러나 소성시 상대적으로 높은 휘발성을 나타내는 Li이 많이 휘발되므로 Li/(Ni,Co)=1의 최종 조성을 맞추기 위해 처음에 약간 많은 양의 Li을 사용하는 것이 바람직하다. 금속의 형태는 나이트레이트, 설페이트, 아세테이트 등이 될 수 있다. 본 발명에서 수득된 양극활물질 LixNi1-YCoYO2의 조성비가 x=0.97 내지1.04이고, y는 0 내지 1인 것이 바람직하다.Thereafter, while maintaining the temperature of the reactor at 10 to 50 ° C, preferably at 20 to 30 ° C, a mixed metal solution of lithium, nickel, and cobalt except for the amount of cobalt to be firstly titrated in the second is 30 minutes or more, Preferably it is titrated to the organic acid solution over 3 hours. In this case, the mixing ratio of lithium, nickel and cobalt equivalents is preferably in the range of 1.00 ≦ Li / (Ni, Co) ≦ 1.03, and the mixing ratio of nickel and cobalt is (Li x Ni 1-Y Co Y O 2 (0 < It is preferable to set it as the range of Y <1) The composition of the positive electrode active material having the best performance in the present invention is that the equivalent of Li, such as Ni and Co metal, is contained, but a large amount of Li exhibits a relatively high volatility upon firing. Since it is volatilized, it is preferable to use a slightly larger amount of Li initially to match the final composition of Li / (Ni, Co) = 1 The form of the metal may be nitrate, sulfate, acetate, etc. Obtained in the present invention It is preferable that the composition ratio of the positive electrode active material Li x Ni 1-Y Co Y O 2 is x = 0.97 to 1.04, and y is 0 to 1.

적정이 완료된 후 30분 이상 교반을 계속하여 2차로 처음에 제외되었던 함량만큼의 코발트용액만을 서서히 다시 적정한다.After the titration was completed, stirring was continued for 30 minutes or more, and only the cobalt solution of the amount which was initially excluded from the second titration was slowly titrated again.

이상과 같이 1차 2차에 걸쳐 적정이 모두 완료되면 65∼100℃ 정도로 상압 또는 진공 감압하에서 용매를 제거하여 고체상의 유기금속 착물을 얻은 후 이 유기 금속착물을 대기중 250∼650℃에서 5∼50시간의 전처리를 거쳐 전구물질을 얻는다. 더욱 바람직한 소성 방법은 200-350℃에서 5-30시간 동안 소성한 후 400-650℃에서 5-20시간 동안 소성하는 것이다.As described above, when all the titrations are completed in the first and second rounds, the solvent is removed under atmospheric pressure or vacuum pressure at about 65 to 100 ° C. to obtain a solid organometallic complex, and then the organic metal complex is 5 to 5 ° C. at 250 to 650 ° C. in air. The precursor is obtained after 50 hours of pretreatment. A more preferred firing method is firing at 200-350 ° C. for 5-30 hours and then firing at 400-650 ° C. for 5-20 hours.

다음으로 수득된 전구물질을 다시 한 번 잘 혼합한 후 산소를 함유하는 대기분위기하 700∼800℃에서 5∼40시간에 걸쳐 본소성함으로써 표면이 코발트로 코팅된 리튬니켈코발트산화물(LixNi1-YCoYO2(0<Y<1))화합물을 제조한다.Next, the obtained precursor was mixed well once again and then calcined for 5 to 40 hours at 700 to 800 ° C. under an oxygen-containing air atmosphere, thereby coating lithium nickel cobalt oxide (Li x Ni 1). -Y Co Y O 2 (0 <Y <1)) is prepared.

제조된 입자의 크기는 반응기에서 금속용액을 적정할 때의 교반속도, 용매의 양과 종류, 적정속도, 반응기온도 등의 조합에 의해 2∼50㎛사이의 원하는 입자를 얻을 수 있게 된다.The size of the prepared particles can be obtained a desired particle of 2 ~ 50㎛ by a combination of the stirring speed, the amount and type of solvent, the titration rate, the reactor temperature, etc. when the metal solution is titrated in the reactor.

이하, 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1Example 1

베풀과 교반기가 장착된 2ℓ 반응기에 128.6g의 수산(98%,C2O4H2·2H2O), 600㎖의 메탄올을 넣고 25℃로 유지하면서 400rpm으로 교반하면서 수산을 용해하였다. 리튬아세테이트(CH3COOLi·2H2O)53.06g, 코발트나이트레이트(Co(NO3)2·6H2O)14.55g, 니켈나이트레이트(Ni(NO3)2·6H2O)116.32g을 550㎖의 메탄올에 녹인후 수산용액에 3시간 동안 균일한 속도로 1차 적정하였다. 적정완료후 1시간 동안 교반하고 코발트나이트레이트 (Co(NO3)2·6H2O)14.55g을 50㎖의 메탄올에 녹인 용액을 1시간에 걸쳐 공침된 용액에 균일한 속도로 2차 적정하였다. 2차적정이 완료된 후 계속 교반하면서 65∼70℃에서 용매를 모두 제거하고 고체상의 유기 금속착물을 수득하였다. 이 유기 금속착물을 공기 분위기하 300℃에서 20시간, 500℃에서 5시간의 열처리를 거쳐 전구물질을 수득하였다. 이 전구물질을 잘 섞어준 후 다시 750℃에서 20시간의 소성으로 15∼20마이크론 크기의 구형 활물질을 얻었다.128.6 g of hydroxyl (98%, C 2 O 4 H 2 .2H 2 O) and 600 ml of methanol were added to a 2 L reactor equipped with a beaker and a stirrer to dissolve the hydroxide while stirring at 400 rpm while maintaining the temperature at 25 ° C. 53.06 g of lithium acetate (CH 3 COOLi · 2H 2 O), 14.55 g of cobalt nitrate (Co (NO 3 ) 2 · 6H 2 O), 116.32 g of nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O) After dissolving in 550ml of methanol, the solution was first titrated with aquatic solution at a uniform speed for 3 hours. After completion of the titration, the solution was stirred for 1 hour, and 14.55 g of cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) was dissolved in 50 ml of methanol. . After completion of the second titration, all of the solvent was removed at 65-70 ° C. with continuous stirring to obtain a solid organic metal complex. The organometallic complex was subjected to a heat treatment for 20 hours at 300 ° C. and 5 hours at 500 ° C. under an air atmosphere to obtain a precursor. After mixing the precursors well, a spherical active material having a size of 15 to 20 microns was obtained by firing at 750 ° C. for 20 hours.

얻어진 활물질을 이용하여 전지특성을 조사하기 위하여 다음과 같이 전극을 제조하였다. In order to investigate battery characteristics using the obtained active material, an electrode was prepared as follows.

양극 활물질, 도전제(super P), 및 바인더(PVDF, 호모폴리머 KF1300)를 중량비 92%, 4%, 4%로 혼합한 5g에 7g의 NMP용매를 적가하여 균일 혼합상의 슬러리가 만들어 질 때까지 섞는다. 이 슬러리를 닥터-블레이드(doctor-blade)를 이용하여 알루미늄(Al)극판위에 250미크론 두께로 코팅한 후 130℃에서 30분간 NMP가 완전하게 증발될 때까지 건조한다. 이 극판을 두께가 150∼180미크론이 되도록 프레싱한 후 코인-셀(coin-cell)의 캔(can)크기에 맞게 절단하여 밀착한다. 이 후의 공정은 글로브박스(glove box)안에서 진행된다. 리튬포일을 코인-셀의 캡에 프레싱한 후 전해액과 세퍼레이터(Celgard)를 캔에 주입하고 캡과 캔을 프레스기를 이용하여 밀봉한다. 전해액은 에틸렌카보네이트/디메틸카보네이트(EC/DMC)(1/1부피%)에 1몰의 LiPF6를 사용하였다. 코인셀 숙성은 40℃에서 12시간 또는 상온에서 24시간 정도로 하며 초기 형성조건은 0.1C(18mAh/g)로 1회 충방전하였다. 이후의 충방전 조건은 0.2C(3회)∼0.5C(10회)를 하였다. 충전전압은 4.3V이고, 방전 종지 전압은 2.75V였다.5 g of a positive electrode active material, a conductive material (super P), and a binder (PVDF, homopolymer KF1300) at 92%, 4%, and 4% by weight were added dropwise to 7g of NMP solvent until a slurry of homogeneous mixed phase was formed. Mix The slurry is coated with a doctor-blade on an aluminum (Al) plate with a thickness of 250 microns and then dried at 130 ° C. for 30 minutes until the NMP is completely evaporated. The electrode plate is pressed to have a thickness of 150 to 180 microns, and then cut into close contact with the can size of a coin-cell. The subsequent process is carried out in a glove box. After pressing the lithium foil into the cap of the coin-cell, the electrolyte and the separator (Celgard) are injected into the can, and the cap and the can are sealed using a press. As the electrolyte, 1 mol of LiPF 6 was used for ethylene carbonate / dimethyl carbonate (EC / DMC) (1/1% by volume). Coin cell aging was carried out at 40 ° C. for 12 hours or at room temperature for 24 hours, and initial formation conditions were charged and discharged at 0.1 C (18 mAh / g) once. Subsequent charge and discharge conditions were 0.2C (3 times) to 0.5C (10 times). The charge voltage was 4.3V and the discharge end voltage was 2.75V.

실시예 2Example 2

교반속도를 600rpm으로 한 것을 제외하고는 실시예 1과 동일하게 실시하여 7~12 마이크론 크기의 구형 활물질을 얻었다.A spherical active material having a size of 7 to 12 microns was obtained in the same manner as in Example 1 except that the stirring speed was set at 600 rpm.

실시예 3Example 3

베풀과 교반기가 장착된 2ℓ 반응기에 128.6g의 수산(98%,C2O4H2·2H2O), 600㎖의 메탄올을 넣고 25℃로 유지하면서 400rpm으로 교반하여 수산을 용해하였다. 리튬아세테이트(CH3COOLi·2H2O)53.06g, 코발트나이트레이트(Co(NO3)2·6H2O)14.55g, 니켈나이트레이트(Ni(NO3)2·6H2O)123.7g을 550㎖의 메탄올에 녹인 후 수산용액에 3시간 동안 균일한 속도로 1차 적정하였다. 적정완료후 1시간 동안 교반하고 코발트나이트레이트 (Co(NO3)2·6H2O)7.25g을 50㎖의 메탄올에 녹인 용액을 1시간에 걸쳐 공침된 용액에 균일한 속도로 2차 적정하였다. 2차적정이 완료된 후 다시 1시간 동안 계속 교반하면서 65∼70℃에서 용매를 모두 제거하고 고체상의 유기 금속착물을 수득하였다. 이 유기 금속착물을 공기 분위기하 300℃에서 20시간, 500℃에서 5시간의 열처리를 거쳐 전구물질을 수득하였다. 이 전구물질을 잘 섞어준 후 다시 750℃에서 20시간의 소성으로 15∼20마이크론 크기의 구형활물질을 얻었다. 이를 이용한 전극의 제조는 실시예 1과 동일하게 실시하였다.128.6 g of hydroxyl (98%, C 2 O 4 H 2 .2H 2 O) and 600 ml of methanol were added to a 2 L reactor equipped with a beaker and a stirrer, and stirred at 400 rpm while dissolving the hydroxyl. 53.06 g of lithium acetate (CH 3 COOLi · 2H 2 O), 14.55 g of cobalt nitrate (Co (NO 3 ) 2 · 6H 2 O), 123.7 g of nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O) After dissolving in 550ml of methanol, the solution was first titrated with aquatic solution at a uniform speed for 3 hours. After completion of the titration, the solution, which was stirred for 1 hour and dissolved in cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) in 50 ml of methanol, was secondly titrated at a uniform rate to the solution precipitated over 1 hour. . After completion of the second titration, all of the solvent was removed at 65-70 ° C while stirring was continued for another 1 hour to obtain a solid organic metal complex. The organometallic complex was subjected to a heat treatment for 20 hours at 300 ° C. and 5 hours at 500 ° C. under an air atmosphere to obtain a precursor. After mixing the precursors well, a spherical active material having a size of 15 to 20 microns was obtained by firing at 750 ° C. for 20 hours. Preparation of the electrode using the same was carried out in the same manner as in Example 1.

비교예 1Comparative Example 1

베풀과 교반기가 장착된 2ℓ 반응기에 128.6g의 수산(98%,C2O4H2·2H2O), 600㎖의 메탄올을 넣고 25℃로 유지하면서 400rpm으로 교반하여 수산을 용해하였다. 리튬아세테이트(CH3COOLi·2H2O)53.06g, 코발트나이트레이트(Co(NO3)2·6H2O)29.1g, 니켈나이트레이트(Ni(NO3)2·6H2O)116.32g을 600㎖의 메탄올에 녹인후 균일한 속도로 수산용액에 적정하였다. 적정 후 1시간 동안 교반하여 65∼70℃에서 용매를 모두 제거하고 고체상의 침전물을 얻었다. 이 침전물을 공기 분위기하 300℃에서 20시간, 500℃에서 5시간의 열처리를 거쳐 전구물질을 수득하였다. 이 전구물질을 잘 섞어준 후 다시 750℃에서 20시간의 소성으로 15∼20마이크론 크기의 구형활물질을 얻었다. 이를 이용하여 실시예 1과 동일한 방법으로 전지전극을 제조하였다.128.6 g of hydroxyl (98%, C 2 O 4 H 2 .2H 2 O) and 600 ml of methanol were added to a 2 L reactor equipped with a beaker and a stirrer, and stirred at 400 rpm while dissolving the hydroxyl. Lithium acetate (CH 3 COOLi · 2H 2 O ) 53.06g, cobalt nitrate (NO (Co 3) 2 · 6H 2 O) 29.1g, nickel nitrate (Ni (NO 3) 2 · 6H 2 O) 116.32g After dissolving in 600 mL of methanol, the solution was titrated with an aqueous solution at a uniform rate. After the titration, the mixture was stirred for 1 hour to remove all of the solvent at 65 to 70 ° C to obtain a solid precipitate. The precipitate was subjected to heat treatment at 300 ° C. for 20 hours at 500 ° C. and 5 hours at 500 ° C. to obtain a precursor. After mixing the precursors well, a spherical active material having a size of 15 to 20 microns was obtained by firing at 750 ° C. for 20 hours. Using this, a battery electrode was manufactured in the same manner as in Example 1.

상기 실시예 1∼3 및 비교예 1의 방법에 따라 제조된 활물질의 입도, 형상 및 충방전 결과를 하기 표 1에 나타내었다.The particle size, shape, and charge and discharge results of the active materials prepared according to the methods of Examples 1 to 3 and Comparative Example 1 are shown in Table 1 below.

입도(㎛)Particle size (㎛) 0.1C 1차 방전 용량(mAh/g)0.1C primary discharge capacity (mAh / g) 0.2C 3차 방전 용량(mAh/g)0.2C tertiary discharge capacity (mAh / g) 0.5C 1차 방전 용량(mAh/g)0.5C primary discharge capacity (mAh / g) 0.5C 10차 방전 용량(mAh/g)0.5C 10th discharge capacity (mAh / g) 실시예 1Example 1 15∼2015-20 190190 189189 180180 179179 실시예 2Example 2 7∼127-12 192192 191191 181181 180180 실시예 3Example 3 15∼2015-20 197197 195195 184184 183183 비교예 1Comparative Example 1 15∼2015-20 194194 184184 173173 168168

이상에서 살펴본 바와 같이 금속 킬레이트제로 유기산을 사용하고 금속을 분리하여 투입함으로써 비용면에서 경제적인 것은 물론 코발트 금속이 활물질 표면을 코팅하게 되어 충방전 특성이 우수한 리튬니켈코발트계 양극 활물질을 합성할 수 있는 장점이 있다.As described above, by using an organic acid as a metal chelating agent and injecting the metal separately, it is economical in terms of cost and cobalt metal coats the surface of the active material, and thus it is possible to synthesize a lithium nickel cobalt-based cathode active material having excellent charge and discharge characteristics. There is an advantage.

Claims (7)

수산(oxalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 푸마르산(fumaric acid) 등의 유기산중 하나 또는 두 가지 이상이 용매에 녹아 있는 반응기를 20-50℃로 유지한 후 이 반응기에 리튬, 니켈, 코발트 혼합 금속 용액을 60분 이상에 걸쳐 적정하고, 30분 이상에 걸쳐 숙성한 후, 다시 코발트 용액만을 30분 이상에 걸쳐 공침용액에 적정,숙성하여 용매를 제거한다음 소성하여 5-50 마이크론 사이의 일정한 입도분포를 갖는 양극활물질을 수득하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.After maintaining one or two or more of the organic acids such as oxalic acid, succinic acid, tartaric acid, and fumaric acid in a solvent, the reactor is maintained at 20-50 ° C. Lithium, nickel and cobalt mixed metal solution was titrated over 60 minutes, aged for 30 minutes or more, and then cobalt solution alone was titrated and aged in the coprecipitation solution for 30 minutes or more to remove the solvent, and then calcined. A method for producing a cathode active material for secondary batteries, characterized by obtaining a cathode active material having a constant particle size distribution of -50 microns. 제 1항에 있어서, 상기 유기산을 전체 금속대비 0.4 내지 3.0당량 사용하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.The method of claim 1, wherein the organic acid is used in an amount of 0.4 to 3.0 equivalents based on the total amount of metals. 제 2항에 있어서, 상기 유기산을 전체 금속대비 0.8 내지 2.0당량 사용하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.The method of claim 2, wherein the organic acid is used in an amount of 0.8 to 2.0 equivalents based on the total amount of metals. 제 1항에 있어서, 상기 소성 전처리를 250-650℃에서 5-50시간 동안 행하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.The method of claim 1, wherein the firing pretreatment is performed at 250-650 ° C. for 5-50 hours. 제 4항에 있어서, 상기 소성 전처리를 200-350℃에서 5-30시간 동안 행한 후 400-650℃에서 5-20시간 동안 소성하여 단계적으로 행하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.5. The method of claim 4, wherein the firing pretreatment is performed at 200-350 ° C. for 5-30 hours and then calcined at 400-650 ° C. for 5-20 hours. 제 1항에 있어서, 수득된 양극활물질 LixNi1-YCoYO2의 조성비가 x=0.97 내지1.04이고, y는 0 내지 1인 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.The method of claim 1, wherein the composition ratio of the obtained positive electrode active material Li x Ni 1-Y Co Y O 2 is x = 0.97 to 1.04, y is 0 to 1. 제 1항에 있어서, 상기 용매로 물, 알콜류, 비알콜성 유기 용매로 구성되는 그룹으로부터 선택되는 1종을 단독으로 사용하거나 2종 이상의 혼합용매를 사용하는 것을 특징으로 하는 이차전지용 양극 활물질의 제조방법.The cathode active material according to claim 1, wherein the solvent is one selected from the group consisting of water, alcohols and non-alcoholic organic solvents, or two or more mixed solvents are used. Way.
KR10-1999-0003589A 1999-02-03 1999-02-03 Method for preparing cathode active materials for the secondary lithium ion battery KR100510862B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0003589A KR100510862B1 (en) 1999-02-03 1999-02-03 Method for preparing cathode active materials for the secondary lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0003589A KR100510862B1 (en) 1999-02-03 1999-02-03 Method for preparing cathode active materials for the secondary lithium ion battery

Publications (2)

Publication Number Publication Date
KR20000055128A KR20000055128A (en) 2000-09-05
KR100510862B1 true KR100510862B1 (en) 2005-08-26

Family

ID=19573231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0003589A KR100510862B1 (en) 1999-02-03 1999-02-03 Method for preparing cathode active materials for the secondary lithium ion battery

Country Status (1)

Country Link
KR (1) KR100510862B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170046079A (en) 2015-10-20 2017-04-28 캐논 가부시끼가이샤 Aqueous ink, ink cartridge, and ink jet recording method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295851A4 (en) 2000-11-16 2008-08-20 Hitachi Maxell Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same
KR20030012557A (en) * 2001-08-01 2003-02-12 이병우 Method for Preparation of Cathode Materials in Secondary Lithium Batteries by Oxalate Precipitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970054741A (en) * 1995-12-20 1997-07-31 양승택 Manufacturing method of positive electrode material for lithium secondary battery
EP0834470A2 (en) * 1996-09-27 1998-04-08 Sharp Kabushiki Kaisha Process for preparing lithium nickel material and non-aqueous secondary battery having positive electrode prepared from this material
EP0834471A2 (en) * 1996-09-30 1998-04-08 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
KR20000009220A (en) * 1998-07-22 2000-02-15 손욱 Production method of cathodic activated material for secondary lithium cell use using sol-gel method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970054741A (en) * 1995-12-20 1997-07-31 양승택 Manufacturing method of positive electrode material for lithium secondary battery
EP0834470A2 (en) * 1996-09-27 1998-04-08 Sharp Kabushiki Kaisha Process for preparing lithium nickel material and non-aqueous secondary battery having positive electrode prepared from this material
EP0834471A2 (en) * 1996-09-30 1998-04-08 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
KR20000009220A (en) * 1998-07-22 2000-02-15 손욱 Production method of cathodic activated material for secondary lithium cell use using sol-gel method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170046079A (en) 2015-10-20 2017-04-28 캐논 가부시끼가이샤 Aqueous ink, ink cartridge, and ink jet recording method

Also Published As

Publication number Publication date
KR20000055128A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP7416956B2 (en) Cathode material, its manufacturing method, and lithium ion battery
CN109461925B (en) Single crystal nickel cobalt lithium manganate positive electrode material, precursor and preparation method thereof
US6383235B1 (en) Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
KR100660759B1 (en) A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
CN1326259C (en) Method for making positive active material of chargeable lithium cell
CA2247350C (en) Anode active material, its producing process, and lithium ion secondary cell using the anode active material
CN110690416A (en) High-nickel ternary positive electrode material for lithium secondary battery and preparation method thereof
JP2003331846A (en) Active material for battery and its manufacturing method, active material precursor for battery, battery and its manufacturing method
KR20050048452A (en) The surface-coated cathode material for lithium secondary battery
KR20190060705A (en) Method for producing positive electrode active material
EP4002522A1 (en) Lithium ion battery positive electrode material and preparation method therefor, and lithium ion battery
DE19751552C2 (en) Active material for the cathode of a lithium ion battery and method of manufacture
KR100734225B1 (en) A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
KR20150144613A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN115043387A (en) Preparation method of manganese iron ammonium phosphate, lithium manganese iron phosphate and application thereof
KR100872370B1 (en) Spinel type Cathode Active Material for Lithium Secondary Batteries and Manufacturing Method for the Same
JPH11149926A (en) Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material
CN109755486A (en) The nickle cobalt lithium manganate and preparation method thereof of LiFePO4 cladding
KR100510862B1 (en) Method for preparing cathode active materials for the secondary lithium ion battery
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
US20010016284A1 (en) Positive active material for rechargeable lithium battery and method of preparing same
KR100561560B1 (en) The preparation of cathode active materials by using organic acids as the chelate for the secondary lithium ion battery
KR100528455B1 (en) Method for preparing high performance cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same
KR100388576B1 (en) Manganese composite hydroxide, method for preparing thereof and cathod active materials containing thereof
CN112510194B (en) Ternary cathode material of lithium ion battery, preparation method of ternary cathode material and lithium ion battery

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130819

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140819

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160819

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170821

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 14

EXPY Expiration of term