KR100484098B1 - Metal Powder Coating Phosphor and Manufacturing Method Thereof - Google Patents

Metal Powder Coating Phosphor and Manufacturing Method Thereof Download PDF

Info

Publication number
KR100484098B1
KR100484098B1 KR10-1998-0052870A KR19980052870A KR100484098B1 KR 100484098 B1 KR100484098 B1 KR 100484098B1 KR 19980052870 A KR19980052870 A KR 19980052870A KR 100484098 B1 KR100484098 B1 KR 100484098B1
Authority
KR
South Korea
Prior art keywords
phosphor
metal
metal powder
coated
powder
Prior art date
Application number
KR10-1998-0052870A
Other languages
Korean (ko)
Other versions
KR20000038023A (en
Inventor
정일혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-1998-0052870A priority Critical patent/KR100484098B1/en
Publication of KR20000038023A publication Critical patent/KR20000038023A/en
Application granted granted Critical
Publication of KR100484098B1 publication Critical patent/KR100484098B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명은 금속분말 코팅 형광체 및 그 제조방법을 개시한다. (a) 금속염을 물에 용해시킨 후 여기에 환원제 또는 환원성 가스를 투입함으로써 상기 금속염으로부터 금속을 환원시켜 금속분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하는 단계; 및 (b) 상기 금속 콜로이드 용액을 교반하면서 여기에 형광체를 첨가함으로써 상기 형광체의 표면에 상기 금속을 코팅하는 단계를 포함하는 것을 특징으로 하는 본 발명의 방법에 따라 제조된 금속분말 코팅 형광체는 종래의 금속산화물 코팅 형광체에 비하여 전도도가 향상되어 이를를 이용하여 형성된 형광막을 채용한 표시소자는 휘도가 향상된다. The present invention discloses a metal powder coated phosphor and a method of manufacturing the same. (a) dissolving the metal salt in water and then reducing the metal from the metal salt by adding a reducing agent or a reducing gas to form a metal colloidal solution in which the metal powder is dispersed in a colloidal phase; And (b) coating the metal on the surface of the phosphor by adding the phosphor to the metal colloid solution while stirring the metal powder coated phosphor prepared according to the method of the present invention. Compared to the metal oxide coated phosphor, the conductivity is improved, and thus the display device employing the fluorescent film formed using the same improves the luminance.

Description

금속분말 코팅 형광체 및 그 제조방법Metal Powder Coating Phosphor and Manufacturing Method Thereof

본 발명은 여기원으로서 전자선을 이용하는 표시소자에 이용되는 금속분말 코팅 형광체 및 그 제조방법에 관한 것으로서, 보다 상세하게는 전자선을 이용하는 경우 전자에 의한 대전(charge up) 현상을 제거하기 위해서 그 표면에 금속분말을 코팅시킨 형광체 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal powder-coated phosphor used in a display element using an electron beam as an excitation source, and to a method of manufacturing the same. The present invention relates to a phosphor coated with a metal powder and a method of manufacturing the same.

일반적으로 표시소자에 사용되는 형광체는 부도체이다. 이러한 형광체에 전자선을 조사하면 공급된 에너지의 일부만이 형광체 발광에 관여하고 대부분의 에너지는 형광체의 대전에 의해 손실되기 때문에 표시소자의 휘도가 저하되는 문제점이 있다. In general, the phosphor used in the display element is an insulator. When the electron beam is irradiated to such a phosphor, only a part of the supplied energy is involved in phosphor emission, and most of the energy is lost by charging of the phosphor, thereby degrading the luminance of the display device.

이러한 현상은 전계 방출 표시소자(field emission display: FED), 평면형 음극선관(flat cathode ray tube), 진공형광표시관(vacuum fluorescent display: VFD) 등과 같이 저전압에서 구동되는 표시소자의 경우에 특히 현저하다. 위와 같은 대전에 의한 표시소자의 휘도저하문제를 해결하기 위해서 형광막 상부에 알루미늄막과 같은 전도성증착막을 형성하여 대전을 방지하는 방법을 생각할 수 있으나, 위와 같이 저전압에서 구동되는 표시소자의 경우에는 전자선의 투과두께가 얇기 때문에 전도성증착막을 적층하는 방법은 실질적으로 적용하기 곤란하다. This is especially true for display devices that are driven at low voltages, such as field emission displays (FEDs), flat cathode ray tubes, and vacuum fluorescent displays (VFDs). . In order to solve the problem of lowering the brightness of the display device due to the above-mentioned charging, a method of preventing charging by forming a conductive deposition film such as an aluminum film on the fluorescent film can be considered. However, in the case of the display device driven at a low voltage, the electron beam Since the permeation thickness of is thin, the method of laminating the conductive deposition film is practically difficult to apply.

따라서, 종래에는 저전압에서 구동되는 표시소자에 사용되는 형광체에 있어서 대전에 의한 휘도저하 문제를 해결하기 위해서 형광체의 표면에 인듐주석산화물(indium tin oxide : ITO)과 같은 전도성 금속산화물을 코팅시키거나 형광체 조성물내에 전도성 금속산화물을 첨가하는 방법을 사용하고 있다. 그러나, 이 방법에 의하면 전도성 금속산화물의 전도성이 낮고 입자의 크기가 커서 혼합이 불균일해지므로 고가의 전도성 산화물의 사용량이 많아진다. 따라서, 전도성 금속산화물을 사용하는 방법은 비경제적일 뿐만 아니라 표시소자의 휘도가 불량한 문제를 해결하기 어렵다. Therefore, in order to solve the problem of deterioration of brightness caused by charging in the phosphor used in a display device driven at a low voltage, a phosphor or a conductive metal oxide such as indium tin oxide (ITO) is coated on the surface of the phosphor. A method of adding a conductive metal oxide to the composition is used. However, according to this method, since the conductivity of the conductive metal oxide is low and the particle size is large, the mixing becomes uneven, so that the amount of the expensive conductive oxide is increased. Therefore, the method of using the conductive metal oxide is not only economical, but also difficult to solve the problem of poor luminance of the display device.

이러한 문제점을 개선하기 위해서 형광체에 아연금속분말을 첨가하는 방법도 있으나, 아연금속분말은 입자가 크고 설파이드계 형광체의 표면에서 황과 반응하여 전도성을 크게 저하시키는 문제점이 있다. 이와 같은 문제점은 아연금속분말 뿐만 아니라 전이금속분말의 경우에도 일반적으로 나타난다. In order to improve this problem, there is also a method of adding a zinc metal powder to the phosphor, but the zinc metal powder has a problem that the particle size is large and the conductivity is greatly reduced by reacting with sulfur on the surface of the sulfide-based phosphor. This problem generally occurs in the case of transition metal powder as well as zinc metal powder.

따라서, 본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하기 위해서 부도체인 형광체에 충분한 전도성을 부여하여 형광체의 수전능력을 증대시킴으로써 표시소자화면의 휘도를 향상시킬 수 있는 형광체를 제공하는데 있다. Accordingly, an object of the present invention is to provide a phosphor capable of improving the brightness of a display device screen by providing sufficient conductivity to a phosphor, which is a non-conductor, to increase the power receiving capability of the phosphor to solve the above problem.

본 발명이 이루고자 하는 다른 기술적 과제는 상기 조성물을 이용하여 안료 코팅 형광체를 제조하는 방법을 제공하는 것이다. Another technical problem to be achieved by the present invention is to provide a method for producing a pigment-coated phosphor using the composition.

상기 과제를 달성하기 위하여 본 발명은 전자선을 여기원으로 이용하는 형광체에 있어서, 상기 형광체는 그 표면이 은, 금, 백금, 및 팔라듐으로 이루어진 그룹에서 선택된 어느 하나 이상의 금속분말로 코팅된 설파이드계 형광체인 것을 특징으로 하는 금속분말 코팅 형광체를 제공한다. 이때, 은, 금, 백금 또는 팔라듐 이외의 아연과 같은 다른 금속은 설파이드계 형광체 표면의 황(S)과 반응하여 전도성이 없는 금속 설파이드 화합물을 형성하기 때문에 본 발명의 효과를 달성할 수 없다. In order to achieve the above object, the present invention is a phosphor using an electron beam as an excitation source, wherein the phosphor is a sulfide-based phosphor whose surface is coated with any one or more metal powder selected from the group consisting of silver, gold, platinum, and palladium. It provides a metal powder coating phosphor, characterized in that. At this time, other metals such as silver, gold, platinum or zinc other than palladium cannot react with sulfur (S) on the surface of the sulfide-based phosphor to form a non-conductive metal sulfide compound, and thus the effect of the present invention cannot be achieved.

본 발명에 따른 금속분말 코팅 형광체에 있어서, 상기 금속분말은 그 평균입경이 50nm ~ 3㎛인 것이 바람직하다. 상기 금속분말의 평균입경이 50nm 미만이면 전도성이 저하되는 문제점이 있고, 3㎛을 초과하면 형광체 표면으로 광이 방출되는 것이 방해되는 문제점이 있다. In the metal powder-coated phosphor according to the present invention, the metal powder preferably has an average particle diameter of 50 nm to 3 μm. If the average particle diameter of the metal powder is less than 50nm, there is a problem that the conductivity is lowered, if it exceeds 3㎛ there is a problem that the light is emitted to the surface of the phosphor.

본 발명에 따른 금속분말 코팅 형광체에 있어서, 상기 금속분말의 코팅량은 상기 형광체 100 중량부에 대하여 0.1 ~ 10중량부의 비율인 것이 바람직하다. 상기 금속콜로이드의 코팅량이 상기 형광체 100 중량부에 대하여 0.1 중량부 미만의 비율이면 전도성 상승효과가 미미하며 10중량부 초과의 비율이면 광방출이 저하되는 문제점이 있다.In the metal powder coated phosphor according to the present invention, the coating amount of the metal powder is preferably in a ratio of 0.1 to 10 parts by weight based on 100 parts by weight of the phosphor. If the coating amount of the metal colloid is less than 0.1 part by weight with respect to 100 parts by weight of the phosphor, there is a problem in that the conductivity synergistic effect is insignificant.

상기 다른 기술적 과제를 달성하기 위해서 본 발명은 (a) 금속염을 물에 용해시킨 후 여기에 환원제 또는 환원성 가스를 투입함으로써 상기 금속염으로부터 금속을 환원시켜 금속분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하는 단계; 및 (b) 상기 금속 콜로이드 용액을 교반하면서 여기에 설파이드계 형광체를 첨가함으로써 상기 형광체의 표면에 상기 금속을 코팅하는 단계를 포함하는 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법을 제공한다.In order to achieve the above another technical problem, the present invention provides a metal colloidal solution in which a metal powder is dispersed in a colloidal phase by reducing metal from the metal salt by dissolving the metal salt in water and then adding a reducing agent or a reducing gas thereto. Forming; And (b) coating the metal on the surface of the phosphor by adding a sulfide-based phosphor to the metal colloid solution while stirring the metal colloidal solution.

본 발명에 따른 금속분말 코팅 형광체의 제조방법에 있어서, 상기 금속염은 은, 금, 백금, 및 팔라듐으로 이루어진 그룹에서 선택된 어느 하나 이상의 금속을 포함하는 화합물인 것이 바람직하다. In the method for producing a metal powder coated phosphor according to the present invention, the metal salt is preferably a compound containing at least one metal selected from the group consisting of silver, gold, platinum, and palladium.

본 발명에 따른 금속분말 코팅 형광체의 제조방법에 있어서, 상기 금속분말은 그 평균입경이 50nm ~ 3㎛이 되도록 조절되는 것이 바람직하다. 이러한 금속분말의 조절은 농도, 온도, pH 등에 의해서 이루어진다.In the method for producing a metal powder-coated phosphor according to the present invention, the metal powder is preferably adjusted so that the average particle diameter is 50nm ~ 3㎛. Such metal powder is controlled by concentration, temperature, pH, and the like.

본 발명에 따른 금속분말 코팅 형광체의 제조방법에 있어서, 상기 금속분말의 코팅량은 상기 형광체 100 중량부에 대하여 0.1 ~ 20중량부의 비율이 되도록 조절되는 것이 바람직하다.In the method of manufacturing a metal powder-coated phosphor according to the present invention, the coating amount of the metal powder is preferably adjusted to be a ratio of 0.1 to 20 parts by weight with respect to 100 parts by weight of the phosphor.

본 발명에 따른 금속분말 코팅 형광체의 제조방법에 있어서, 상기 금속 콜로이드 용액에 수용성 바인더를 더 첨가할 수 있는데, 상기 수용성 바인더는 젤라틴, 아라비아 고무, 및 폴리비닐알콜수지로 이루어진 그룹에서 선택된 어느 하나 이상인 것이 바람직하다.In the method of manufacturing a metal powder-coated phosphor according to the present invention, a water-soluble binder may be further added to the metal colloid solution, wherein the water-soluble binder is at least one selected from the group consisting of gelatin, gum arabic, and polyvinyl alcohol resin. It is preferable.

본 발명에 따른 금속분말 코팅 형광체는 종래의 금속산화물 코팅 형광체에 비하여 전도도가 향상된다. 따라서, 본 발명에 따른 금속분말 코팅 형광체를 사용하여 형성된 형광막을 채용한 표시소자는 그 화면의 휘도가 향상된다.The metal powder-coated phosphor according to the present invention has improved conductivity compared to conventional metal oxide coated phosphors. Therefore, the display element employing the fluorescent film formed using the metal powder coated phosphor according to the present invention improves the brightness of the screen.

이하, 본 발명에 따른 금속분말 코팅 형광체의 제조방법을 더욱 상세히 설명하기로 한다.Hereinafter, a method of manufacturing a metal powder coated phosphor according to the present invention will be described in more detail.

먼저, 염화금산(HAuCl4)와 같은 은, 금, 백금, 또는 팔라듐의 염(salt)을 적정량의 물에 용해시킨다. 이어서, 여기에 환원제 또는 환원성 가스를 투입함으로써 상기 금속염으로부터 금속을 환원시켜 금속분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성한다. 이때 사용되는 환원제의 한 예로서는 포름알데히드와 pH를 약알카리성으로 조절하기 위한 탄산칼륨(K2CO3)의 조합을 들 수 있다. 한편, 금속 콜로이드의 입자크기에 따라서 금속분말이 형광체 표면에 코팅되지 않는 경우가 있다. 이 경우에는 금속 콜로이드 용액에 수용성 바인더를 적정량 더 첨가하면 된다. 이때 사용되는 상기 수용성 바인더로서는 젤라틴, 아라비아 고무, 또는 폴리비닐알콜수지가 바람직하다.First, salts of silver, gold, platinum, or palladium such as gold chloride (HAuCl 4 ) are dissolved in an appropriate amount of water. Subsequently, a reducing agent or a reducing gas is added thereto to reduce the metal from the metal salt to form a metal colloidal solution in which the metal powder is dispersed in a colloidal form. An example of a reducing agent used at this time may include a combination of formaldehyde and potassium carbonate (K 2 CO 3 ) for adjusting the pH to weak alkalinity. On the other hand, depending on the particle size of the metal colloid, the metal powder may not be coated on the surface of the phosphor. In this case, an appropriate amount of a water-soluble binder may be further added to the metal colloid solution. The water-soluble binder used at this time is preferably gelatin, gum arabic, or polyvinyl alcohol resin.

계속해서, 상기 금속 콜로이드 용액을 교반하면서 여기에 설파이드계 형광체를 서서히 첨가하면 설파이드계 형광체의 표면에 금속분말이 균일하게 코팅된다. 주의하여야 할 점은 여기에서 설명한 공정순서에 따르지 않으면 금속분말이 설파이드계 형광체의 표면에서 황과 반응하여 금속설파이드 화합물을 형성함으로써 전도성을 상실하게 된다는 점이다. 마지막으로, 상기 결과물을 여과 및 건조하면 본 발명에 따른 금속분말 코팅 형광체를 얻을 수 있다.Subsequently, when the sulfide-based phosphor is slowly added thereto while stirring the metal colloidal solution, the metal powder is uniformly coated on the surface of the sulfide-based phosphor. It should be noted that the metal powder reacts with sulfur on the surface of the sulfide-based phosphor to form a metal sulfide compound unless the process sequence described herein is followed, thereby losing the conductivity. Finally, filtering and drying the resultant can obtain a metal powder coating phosphor according to the present invention.

이하, 본 발명을 실시예를 통해 더욱 상세히 설명하고자 하는데, 본 발명의 범위가 하기 실시예로 한정되는 것이 아님은 물론이다. 본 발명의 실시예 및 비교예에 있어서, 제조된 형광체의 각종 성능평가는 다음 방법에 의하여 실시하였다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples. In Examples and Comparative Examples of the present invention, various performance evaluations of the prepared phosphor were carried out by the following method.

(1) 형광체 저항 측정(1) phosphor resistance measurement

유리기판위에 20㎛ 두께의 형광막을 형성한 후, 0.2cm의 거리에 전극을 두고 Fluca사의 저항측정기를 사용하여 형광체의 저항을 측정하였다.After forming a 20 μm-thick fluorescent film on a glass substrate, the electrode was placed at a distance of 0.2 cm and the resistance of the phosphor was measured using a resistance measuring instrument of Fluca.

(2) 형광체 휘도 측정(2) phosphor brightness measurement

유리기판위에 20㎛ 두께의 형광막을 형성한 후, 전류 1mA, 전압 100V의 조건에서 PSI사의 Darsa 시스템을 사용하여 형광체의 휘도를 측정하였다. 이때, 휘도는 교예의 형광체의 휘도를 100으로 하고 이에 대한 상대휘도로 평가하였다.After forming a 20 μm thick fluorescent film on the glass substrate, the luminance of the phosphor was measured using a Darsa system of PSI under a current of 1 mA and a voltage of 100 V. In this case, the luminance was evaluated as a relative luminance with the luminance of the phosphor of the teaching material as 100.

<실시예 1><Example 1>

25℃의 물 200㎖에 HAuCl4 0.173g을 용해시킨 후 여기에 환원제로서 20% H2O2 5㎖를 투입함으로써 Au3+이온을 환원하여 Au 금속 분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하였다. 이어서, 상기 Au 콜로이드 용액을 교반하면서 여기에 ZnS:Ag 청색 발광 형광체 100g을 첨가함으로써 상기 형광체의 표면을 Au 분말로 코팅하였다. 이어서, 상기 형광체를 여과하고 건조하여 Au 분말이 코팅된 ZnS:Ag 형광체를 얻었다.Dissolve 0.173 g of HAuCl 4 in 200 ml of water at 25 ° C, and then add 5 ml of 20% H 2 O 2 as a reducing agent to reduce Au 3+ ions, thereby dispersing Au colloidal metal colloidal solution. Formed. Subsequently, while stirring the Au colloidal solution, the surface of the phosphor was coated with Au powder by adding 100 g of a ZnS: Ag blue light emitting phosphor thereto. Subsequently, the phosphor was filtered and dried to obtain a ZnS: Ag phosphor coated with Au powder.

<실시예 2><Example 2>

25℃의 물 200㎖에 PdCl2 16.7g을 용해시킨 후 여기에 환원가스로서 H2가스를 투입함으로써 Pd2+이온을 환원하여 Pd 금속 분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하였다. 이어서, 상기 Pd 콜로이드 용액을 교반하면서 여기에 (Zn, Cd)S:Ag 오렌지색 발광 형광체 100g을 첨가함으로써 상기 형광체의 표면을 Pd 분말로 코팅하였다. 이어서, 상기 형광체를 여과하고 건조하여 Pd 분말이 코팅된 (Zn, Cd)S:Ag 형광체를 얻었다.After dissolving 16.7 g of PdCl 2 in 200 ml of water at 25 ° C., H 2 gas was added thereto as a reducing gas to reduce Pd 2+ ions to form a metal colloidal solution in which Pd metal powder was dispersed in a colloidal form. Subsequently, the surface of the phosphor was coated with Pd powder by adding 100 g of the (Zn, Cd) S: Ag orange light emitting phosphor while stirring the Pd colloidal solution. Subsequently, the phosphor was filtered and dried to obtain a (Zn, Cd) S: Ag phosphor coated with Pd powder.

<실시예 3><Example 3>

25℃의 물 200㎖에 PtCl4 1. 73g을 용해시킨 후 여기에 환원가스로서 H2가스를 투입함으로써 Pd4+이온을 환원하여 Pt 금속 분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하였다. 이어서, 상기 Pt 콜로이드 용액을 교반하면서 여기에 (Zn, Cd)S:Ag 청색 발광 형광체 100g을 첨가함으로써 상기 형광체의 표면을 Pt 분말로 코팅하였다. 이어서, 상기 형광체를 여과하고 건조하여 Pt 분말이 코팅된 (Zn, Cd)S:Ag 형광체를 얻었다.1.73 g of PtCl 4 was dissolved in 200 ml of water at 25 ° C. and H 2 gas was added thereto as a reducing gas to reduce Pd 4+ ions to form a metal colloidal solution in which Pt metal powder was dispersed in a colloidal form. . Subsequently, the surface of the phosphor was coated with Pt powder by adding 100 g of (Zn, Cd) S: Ag blue light emitting phosphor thereto while stirring the Pt colloidal solution. Subsequently, the phosphor was filtered and dried to obtain a (Zn, Cd) S: Ag phosphor coated with Pt powder.

<실시예 4><Example 4>

25℃의 물 400㎖에 AgNO3 15.7g을 용해시킨 후 여기에 환원가스로서 H2가스를 투입함으로써 Ag+이온을 환원하여 Ag 금속 분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하였다. 이어서, 여기에 젤라틴 0.5g을 물 50㎖에 용해시킨 것을 더 첨가하였다. 계속해서, 상기 Ag 콜로이드 용액을 교반하면서 여기에 ZnS:Cu, Al 녹색 발광 형광체 100g을 첨가함으로써 상기 형광체의 표면을 Ag 분말로 코팅하였다. 이어서, 상기 형광체를 여과하고 건조하여 Ag 분말이 코팅된 ZnS:Cu, Al 형광체를 얻었다.After dissolving 15.7 g of AgNO 3 in 400 ml of water at 25 ° C., H 2 gas was added thereto as a reducing gas to reduce Ag + ions to form a metal colloidal solution in which Ag metal powder was dispersed in a colloidal form. Subsequently, it was further added to 0.5 g of gelatin dissolved in 50 ml of water. Subsequently, while stirring the Ag colloidal solution, the surface of the phosphor was coated with Ag powder by adding 100 g of ZnS: Cu, Al green light emitting phosphor thereto. Subsequently, the phosphor was filtered and dried to obtain a ZnS: Cu, Al phosphor coated with Ag powder.

<비교예 1>Comparative Example 1

ITO 분말 10g을 ZnS:Ag 형광체 100g을 단순혼합하여 얻은 형광체를 이용하여 형광막을 형성한 후 위에서 설명한 방법에 따라 저항과 휘도를 측정하였다.10g of ITO powder was formed by using a phosphor obtained by simply mixing 100g of ZnS: Ag phosphor, and then, resistance and brightness were measured according to the method described above.

<비교예 2>Comparative Example 2

ZnS:Ag 형광체 대신 (Zn, Cd)S:Ag 형광체 100g을 사용한 것을 제외하고는 비교예 1과 동일한 방법에 따라 ITO 분말이 코팅된 (Zn, Cd)S:Ag 오렌지색 발광 형광체를 얻었다. A (Zn, Cd) S: Ag orange light emitting phosphor coated with ITO powder was obtained in the same manner as in Comparative Example 1 except that 100 g of the (Zn, Cd) S: Ag phosphor was used instead of the ZnS: Ag phosphor.

<비교예 3>Comparative Example 3

ZnS:Ag 형광체 대신 (Zn, Cd)S:Ag 형광체 100g을 사용한 것을 제외하고는 비교예 1과 동일한 방법에 따라 ITO 분말이 코팅된 (Zn, Cd)S:Ag 청색 발광 형광체를 얻었다. A (Zn, Cd) S: Ag blue light emitting phosphor coated with ITO powder was obtained in the same manner as in Comparative Example 1 except that 100 g of the (Zn, Cd) S: Ag phosphor was used instead of the ZnS: Ag phosphor.

<비교예 4><Comparative Example 4>

ZnS:Ag 형광체 대신 ZnS:Cu, Al 녹색 발광 형광체 100g을 사용한 것을 제외하고는 비교예 1과 동일한 방법에 따라 ITO 분말이 코팅된 ZnS:Cu, Al 녹색 발광 형광체를 얻었다. A ZnS: Cu, Al green light emitting phosphor coated with ITO powder was obtained in the same manner as in Comparative Example 1 except that 100 g of the ZnS: Cu and Al green light emitting phosphors were used instead of the ZnS: Ag phosphors.

형광체의 저항(㏀)  Phosphor Resistance 상대휘도(%)  Relative luminance (%) 실시예 1 Example 1 1         One 105     105 실시예 2 Example 2 10        10 110     110 실시예 3 Example 3 20        20 115     115 실시예 4 Example 4 15        15 110     110 비교예 1 Comparative Example 1 1,000 이하      1,000 or less 100     100 비교예 2 Comparative Example 2 1,000 이하      1,000 or less 100     100 비교예 3 Comparative Example 3 1,000 이하      1,000 or less 100     100 비교예 4 Comparative Example 4 1,000 이하      1,000 or less 100     100

표 1을 참조하면, 실시예 1 ~ 4에 따라 제조된 금속분말 코팅 형광체는 비교예 1 ~ 4에 따라 제조된 ITO 코팅 형광체에 비하여 저항이 약 50 ~ 1,000배 저하되어 그 만큼 전도도가 향상되었음을 알 수 있다. 따라서, 실시예 1 ~ 4에 따른 금속분말 코팅 형광체를 사용하여 형성된 형광막을 채용한 표시소자의 화면의 휘도가 비교예 1의 경우보다 5 ∼ 15% 정도 향상되었다.Referring to Table 1, the metal powder-coated phosphors prepared according to Examples 1 to 4 showed that the conductivity was reduced by about 50 to 1,000 times as compared to the ITO coated phosphors prepared according to Comparative Examples 1 to 4, thereby improving conductivity. Can be. Therefore, the brightness of the screen of the display element employing the fluorescent film formed by using the metal powder coated phosphors according to Examples 1 to 4 was improved by about 5 to 15% compared to that of Comparative Example 1.

이는 본 발명에 따른 금속분말이 코팅된 형광체를 이용하면 공급된 전자선의 에너지의 이용률이 증가하여 형광체의 발광휘도가 높아지므로 결국 표시소자 화면의 휘도가 향상되기 때문이다.This is because when the phosphor coated with the metal powder according to the present invention is used, the utilization rate of the energy of the supplied electron beam is increased to increase the luminous luminance of the phosphor, thereby improving the brightness of the display device screen.

상기한 바와 같이, 본 발명에 따른 금속분말 코팅 형광체는 종래의 금속산화물 코팅 형광체에 비하여 전도도가 향상된다. 따라서, 본 발명에 따른 금속분말 코팅 형광체를 사용하여 형성된 형광막을 채용한 표시소자는 그 화면의 휘도가 향상된다. As described above, the metal powder-coated phosphor according to the present invention has improved conductivity compared to conventional metal oxide coated phosphors. Therefore, the display element employing the fluorescent film formed using the metal powder coated phosphor according to the present invention improves the brightness of the screen.

Claims (9)

전자선을 여기원으로 이용하는 형광체에 있어서,In a phosphor using an electron beam as an excitation source, 상기 형광체는 그 표면이 은, 금, 백금, 및 팔라듐으로 이루어진 그룹에서 선택된 어느 하나 이상의 금속분말로 코팅된 설파이드계 형광체인 것을 특징으로 하는 금속분말 코팅 형광체.The phosphor is a metal powder coated phosphor, characterized in that the surface is a sulfide-based phosphor coated with any one or more metal powder selected from the group consisting of silver, gold, platinum, and palladium. 제1항에 있어서, 상기 금속분말은 그 평균입경이 50nm ~ 3㎛인 것을 특징으로 하는 금속분말 코팅 형광체.The metal powder coated phosphor according to claim 1, wherein the metal powder has an average particle diameter of 50 nm to 3 µm. 제1항에 있어서, 상기 금속분말의 코팅량은 상기 형광체 100 중량부에 대하여 0.1 ~ 10중량부의 비율인 것을 특징으로 하는 금속분말 코팅 형광체.According to claim 1, wherein the coating amount of the metal powder is a metal powder coating phosphor, characterized in that the ratio of 0.1 to 10 parts by weight based on 100 parts by weight of the phosphor. (a) 금속염을 물에 용해시킨 후 여기에 환원제 또는 환원성 가스를 투입함으로써 상기 금속염으로부터 금속을 환원시켜 금속분말이 콜로이드상으로 분산되어 있는 금속 콜로이드 용액을 형성하는 단계; 및(a) dissolving the metal salt in water and then reducing the metal from the metal salt by adding a reducing agent or a reducing gas to form a metal colloidal solution in which the metal powder is dispersed in a colloidal phase; And (b) 상기 금속 콜로이드 용액을 교반하면서 여기에 형광체를 첨가함으로써 상기 형광체의 표면에 상기 금속을 코팅하는 단계를 포함하는 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.(b) coating the metal on the surface of the phosphor by adding the phosphor thereto while stirring the metal colloidal solution. 제4항에 있어서, 상기 금속염은 은, 금, 백금, 및 팔라듐으로 이루어진 그룹에서 선택된 어느 하나 이상의 금속을 포함하는 화합물인 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.The method of claim 4, wherein the metal salt is a compound including any one or more metals selected from the group consisting of silver, gold, platinum, and palladium. 제4항에 있어서, 상기 금속분말은 그 평균입경이 50nm ~ 3㎛인 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.The method of claim 4, wherein the metal powder has an average particle diameter of 50nm ~ 3㎛ manufacturing method of the metal powder coated phosphor. 제5항에 있어서, 상기 금속분말의 코팅량은 상기 형광체 100 중량부에 대하여 0.1 ~ 10중량부의 비율인 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.The method of claim 5, wherein the coating amount of the metal powder is 0.1 to 10 parts by weight based on 100 parts by weight of the phosphor. 제4항에 있어서, 상기 금속 콜로이드 용액에 수용성 바인더를 더 첨가하는 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.The method of claim 4, wherein a water-soluble binder is further added to the metal colloidal solution. 제8항에 있어서, 상기 수용성 바인더는 젤라틴, 아라비아 고무, 및 폴리비닐알콜수지로 이루어진 그룹에서 선택된 어느 하나 이상인 것을 특징으로 하는 금속분말 코팅 형광체의 제조방법.The method of claim 8, wherein the water-soluble binder is any one or more selected from the group consisting of gelatin, gum arabic, and polyvinyl alcohol resin.
KR10-1998-0052870A 1998-12-03 1998-12-03 Metal Powder Coating Phosphor and Manufacturing Method Thereof KR100484098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0052870A KR100484098B1 (en) 1998-12-03 1998-12-03 Metal Powder Coating Phosphor and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0052870A KR100484098B1 (en) 1998-12-03 1998-12-03 Metal Powder Coating Phosphor and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20000038023A KR20000038023A (en) 2000-07-05
KR100484098B1 true KR100484098B1 (en) 2005-09-02

Family

ID=19561231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0052870A KR100484098B1 (en) 1998-12-03 1998-12-03 Metal Powder Coating Phosphor and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100484098B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269030B (en) * 2020-01-21 2022-03-22 徐州凹凸光电科技有限公司 Preparation method and application of integrated metal/ceramic composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207888A (en) * 1987-02-24 1988-08-29 Sony Corp Fluorescent substance for color cathode ray tube
KR890016145A (en) * 1988-04-14 1989-11-28 김정배 Blue pigmented phosphor and its manufacturing method
JPH0333185A (en) * 1989-06-29 1991-02-13 Nichia Chem Ind Ltd Phosphor and its manufacture
KR19990060038A (en) * 1997-12-31 1999-07-26 손욱 Low Voltage Phosphors and Manufacturing Methods Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207888A (en) * 1987-02-24 1988-08-29 Sony Corp Fluorescent substance for color cathode ray tube
KR890016145A (en) * 1988-04-14 1989-11-28 김정배 Blue pigmented phosphor and its manufacturing method
JPH0333185A (en) * 1989-06-29 1991-02-13 Nichia Chem Ind Ltd Phosphor and its manufacture
KR19990060038A (en) * 1997-12-31 1999-07-26 손욱 Low Voltage Phosphors and Manufacturing Methods Thereof

Also Published As

Publication number Publication date
KR20000038023A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
US4442377A (en) Phosphors
US4377769A (en) Cathodoluminescent display device including conductive or semiconductive coating on the phosphor
US20060237690A1 (en) Phosphor for low-voltage electron beam, method of producing the same, and vacuum fluorescent display
JPS6233266B2 (en)
KR19980050947A (en) Light emitting particles for field emission display and light emitting layer forming method using the same
JP2746186B2 (en) Phosphor
US4826727A (en) Phosphorescent material for electroluminescent display, comprising silver sulfide in copper sulfide coating on phosphor particles and/or elemental sulfur in dielectric binder for phosphor particles
KR100484098B1 (en) Metal Powder Coating Phosphor and Manufacturing Method Thereof
US8821759B2 (en) Rare earth ion doped lanthanum gallate luminous material containing metal particles and preparation method thereof
US5635048A (en) Method for forming low-energy electron excited fluorescent screen
US20150129802A1 (en) Metal nanoparticle-coating silicate luminescent material and preparation method therefor
CN109994624A (en) Composite nanometer particle and its preparation method and application
US5906721A (en) Composition and method for preparing phosphor films exhibiting decreased coulombic aging
CN1330736C (en) Phosphor for display device, its production method, and color display device using the same
US6171464B1 (en) Suspensions and methods for deposition of luminescent materials and articles produced thereby
JPS6261293A (en) Electroluminescent device
JP4990526B2 (en) Nanoparticle phosphor and method for producing the same
JPH0717899B2 (en) Luminescent composition
CN104059636B (en) Metal nano particle-doped ternary sulfide luminescent material and preparation method
JPH03234789A (en) Phosphor excited by slow electron beam and fluorescent film
JPS6271192A (en) Phosphor material for electroluminescent display
JP2001181620A (en) Method for treating surface of fluorescent substance and fluorescent film
JPS5871982A (en) Fluorescent display tube excited with slow electronic rays
EP1719810A1 (en) Green light-emitting phosphor for displays and field-emission display using same
JP3520597B2 (en) Method for manufacturing fluorescent display tube

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee