KR100481736B1 - Preparation of carbon nanocapsule using colloidal silica template - Google Patents

Preparation of carbon nanocapsule using colloidal silica template Download PDF

Info

Publication number
KR100481736B1
KR100481736B1 KR10-2002-0039970A KR20020039970A KR100481736B1 KR 100481736 B1 KR100481736 B1 KR 100481736B1 KR 20020039970 A KR20020039970 A KR 20020039970A KR 100481736 B1 KR100481736 B1 KR 100481736B1
Authority
KR
South Korea
Prior art keywords
nanometers
several
carbon nanocapsules
silica
colloidal silica
Prior art date
Application number
KR10-2002-0039970A
Other languages
Korean (ko)
Other versions
KR20020062269A (en
Inventor
장정식
임병권
Original Assignee
주식회사 동운인터내셔널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동운인터내셔널 filed Critical 주식회사 동운인터내셔널
Priority to KR10-2002-0039970A priority Critical patent/KR100481736B1/en
Publication of KR20020062269A publication Critical patent/KR20020062269A/en
Application granted granted Critical
Publication of KR100481736B1 publication Critical patent/KR100481736B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions

Abstract

수 나노미터에서 수십 나노미터 기공을 가진 탄소나노캡슐을 제조하는 방법을 제공함을 목적으로 한다.An object of the present invention is to provide a method for preparing carbon nanocapsules having pores of several nanometers to tens of nanometers.

콜로이드 실리카 표면을 비닐계실란으로 개질화하는 단계, Modifying the colloidal silica surface with vinylsilane,

이를 상온에서 양이온계, 음이온계, 비이온계 계면활성제중에서 택일한 것을 첨가, 교반하여 미셀을 형성하는 단계, Adding an optional one of a cationic, anionic and nonionic surfactant at room temperature to form a micelle by stirring;

이에 이중결합을 가지는 단량체와 라디칼 개시제 및 메틸메타아크릴레이트를 첨가하고 50℃ ∼ 90℃에서 중합, 방냉하는 단계, Adding a monomer having a double bond, a radical initiator, and methyl methacrylate thereto, polymerizing and cooling at 50 ° C. to 90 ° C.,

전기 중합물에서 나노입자층을 분리하고 이를 질소 분위기하에서 800℃이상 승온시켜 탄화, 방냉하는 단계, Separating the nanoparticle layer from the electropolymerized product and carbonizing and cooling the same by raising the temperature above 800 ° C. under a nitrogen atmosphere,

상기 탄화물에서 실리카를 제거, 건조하는 단계로 이루어짐을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.Removing the silica from the carbide, the method of producing a carbon nanocapsules of several nanometers to several tens of nanometers size using a microemulsion polymerization, characterized in that consisting of the step of drying.

Description

콜로이드 실리카 템플레이트를 이용한 수 나노미터에서 수십 나노 미터크기의 탄소나노캡슐의 제조방법 {Preparation of carbon nanocapsule using colloidal silica template}Preparation method of carbon nanocapsules of several nanometers to tens of nanometers using colloidal silica template {Preparation of carbon nanocapsule using colloidal silica template}

본 발명은 콜로이드 실리카 템플레이트를 이용하여 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐을 제조하는 방법에 관한 것이다. 탄소나노물질은 형태적으로 분류해 볼 때, 나노탄소튜브, 탄소나노캡슐, 메조기공 탄소폼 등으로 대별된다. 탄소나노캡슐은 나노미터 크기의 기공을 가지는 탄소캡슐을 의미하며, 약품전달체, 센서, 단백질 및 효소 보호제, 자기저장매체 등에 활용된다.The present invention relates to a method for preparing carbon nanocapsules having a size of several nanometers to several tens of nanometers using a colloidal silica template. In terms of morphological classification, carbon nanomaterials are roughly classified into nano carbon tubes, carbon nanocapsules, and mesoporous carbon foams. Carbon nanocapsule refers to a carbon capsule having nanometer-sized pores, and is used in drug carriers, sensors, protein and enzyme protection agents, and magnetic storage media.

최근 제올라이트, 메조기공 실리카등을 템플레이트로 이용하여 탄소나노캡슐에 대한 제조연구가 진행되어 산업적 응용이 활발히 진행되고 있다. (참조: Chem. Mater. vol 9, pp609-615, 1997, Chem. Mater. vol 9, pp2448-2458, Chem. Comm. pp2365-2366, 2000) 하지만 사용되어진 제올라이트와 메조기공 실리카의 가격이 비싸고, 탄소나노캡슐에 대한 제조공정이 복잡하여 실제 적용이 한정되어 왔던 것이 사실이다. 또한 상기방법에 의해 제조된 탄소나노캡슐의 경우, 기공크기가 수 나노 미터 크기로 제한되며 기공크기가 일정하지 못하여 응용범위에 대한 한계가 문제점으로 지적되어 왔다. Recently, research on the preparation of carbon nanocapsules using zeolite, mesoporous silica, etc. as a template has been conducted, and industrial applications are actively progressing. (See Chem. Mater. Vol 9, pp609-615, 1997, Chem. Mater. Vol 9, pp2448-2458, Chem. Comm. Pp2365-2366, 2000) However, the zeolite and mesoporous silica used are expensive, It is true that the manufacturing process for carbon nanocapsules has been complicated and practical applications have been limited. In addition, in the case of carbon nanocapsules manufactured by the above method, the pore size is limited to several nanometers in size, and the pore size is not constant.

종래의 문제점을 해결하기 위해서, 수 나노미터에서 수십 나노미터의 탄소나노캡슐을 선택적으로 제조하는 방법을 제공함을 목적으로 한다.In order to solve the conventional problems, an object of the present invention is to provide a method for selectively preparing carbon nanocapsules of several nanometers to several tens of nanometers.

콜로이드 실리카 표면을 비닐계실란으로 개질화하는 단계, Modifying the colloidal silica surface with vinylsilane,

이를 상온에서 양이온계, 음이온계, 비이온계 계면활성제중에서 택일한 것을 첨가, 교반하여 미셀을 형성하는 단계, Adding an optional one of a cationic, anionic and nonionic surfactant at room temperature to form a micelle by stirring;

이에 이중결합을 가지는 단량체와 라디칼 개시제 및 메틸메타아크릴레이트를 첨가하고 50℃ ∼ 90℃에서 중합, 방냉하는 단계, Adding a monomer having a double bond, a radical initiator, and methyl methacrylate thereto, polymerizing and cooling at 50 ° C. to 90 ° C.,

전기 중합물에서 나노입자층을 분리하고 이를 질소 분위기하에서 800℃이상 승온시켜 탄화, 방냉하는 단계,      Separating the nanoparticle layer from the electropolymerized product and carbonizing and cooling the same by raising the temperature above 800 ° C. under a nitrogen atmosphere,

상기 탄화물에서 실리카를 제거, 건조하는 단계로 이루어짐을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.     Removing the silica from the carbide, the method of producing a carbon nanocapsules of several nanometers to several tens of nanometers size using a microemulsion polymerization, characterized in that consisting of the step of drying.

< 발명의 바람직한 실시태양 >Preferred Embodiments of the Invention

본 발명에서는 입자크기가 균일한 상업화된 콜로이드 실리카를 이용하여 실리카 표면을 개질화시키고, 마이크로 에멀젼 중합방법을 이용하여 비닐모노머 단량체를 도입함으로써 기공 입자가 일정한 탄소나노캡슐을 용이하게 제조하는데 성공하였다.In the present invention, commercialized colloidal silica with uniform particle size was used to modify the silica surface, and micromonomer polymerization method was introduced to easily introduce a carbon nanocapsule having a uniform pore particle by introducing a vinyl monomer monomer.

따라서 본 발명자들은 상업화된 콜로이드 실리카를 템플레이트로 이용하여 기공크기가 균일한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐을 선택적으로 제조하는 방법에 관하여 상세히 설명한다.Therefore, the present inventors describe in detail a method for selectively preparing carbon nanocapsules having a pore size of several nanometers to several tens of nanometers using commercially available colloidal silica as a template.

입자크기가 균일한 상업화된 실리카를 템플레이트로 이용하고, 이를 실리카의 표면을 개질화 한 후 마이크로 에멀젼 중합방법에 의해 비닐계 단량체를 실리카 표면에 도입, 이를 탄화하여 기공크기가 수 나노미터에서 수십나노미터인 탄소나노캡슐을 제조한다. 콜로이드 실리카는 상업적으로 시판되는 제품들은 모두 이용가능하며, 본 발명에서는 알드리치사의 루독스(Ludox) SM-30 (평균입자크기: 8 나노미터), HS-40 (평균입자크기: 12 나노미터), TM-40 (평균입자크기: 22 나노미터)을 사용하였다. 본 발명에서 사용된 콜로이드 실리카의 평균입자크기는 콜로이드 실리카를 템플레이트로 사용하기에 최종적으로 얻어지는 탄소나노캡슐의 기공크기를 결정하는데 중요한 요인이 된다. 콜로이드 실리카 표면에 비닐계 단량체의 효과적 도입을 위해 비닐계 실란을 우선적으로 도입하였다. 콜로이드 실리카 표면 개질화를 위해서는 다양한 비닐계 실란이 적용가능하며, 본 발명에서는 클로로디메틸비닐실란을 사용하였다. 일정량의 증류수에 분산된 루독스(Ludox) 콜로이드 실리카에 일정량의 클로로 디메틸비닐실란을 천천히 적가하여 24시간 동안 계속 교반시켜준다. 비닐계 실란으로 표면개질된 콜로이드 실리카용액에 미셀(micelle)을 형성하기 위해 일정량의 계면활성제를 추가로 도입한다. 이용 가능한 계면활성제는 양이온 계면활성제, 음이온 계면활성제, 비이온 계면활성제 모두가 적용가능하나, 본 발명에서는 음이온 계면활성제인 소듐 도데실 설페이트 (sodium dodecyl sulfate : SDS) 일정량을 첨가하여 교반시켜 미셀을 형성하였다. 반응용기에 비닐계 단량체와 라디칼 개시제를 첨가하여 50-90℃에서 1-24시간 교반하면서 반응을 지속시켜 준다. 사용되는 비닐계 단량체는 이중결합을 가지는 화합물들은 모두 가능하나, 본 발명에서는 디비닐벤젠과 메틸메타아크릴레이트를 사용하였다. 또한 비닐계 단량체의 중합은 라디칼개시제를 이용하는 방법, 이온중합 및 레독스(redox)중합이 모두 가능하나, 본 발명에서는 라디칼 개시제를 사용하였다. 라디칼 개시제의 경우, 상업화된 모든 개시제가 사용 될 수 있으며, 본 발명에서는 아조비스이소부티로니트릴을 첨가하고, 메틸메타아크릴레이트를 반응물에 적가, 50℃ ∼90℃에서 중합시킨다. 중합이 종결된 반응용액은 상온으로 냉각시킨 후, 분액 깔대기로 옮겨 중합물을 회수하였으며, 50℃에서 24시간동안 건조시켰다. 얻어진 반응물은 질소 분위기 하에서 분당 1-10℃로 600-900℃까지 승온시킨후, 최종탄화온도에서 3-10시간동안 온도를 유지하여 탄화물을 얻었다. 얻어진 탄화물은 48 중량퍼센트 불소산 용액을 이용하여 실리카를 효과적으로 제거하였으며, 이에 24시간동안 건조하여 탄소나노캡슐을 제조하였다. 실리카 제거를 위해 사용된 화학제는 불소산 용액에 국한된 것이 아니며 가성소다(NaOH) 용액도 이용가능하다. 단량체의 종류와 도입량에 따라 탄소나노캡슐이 제조될 수 있다.     Commercialized silica having a uniform particle size was used as a template, and the surface of the silica was modified, and then a vinyl monomer was introduced to the silica surface by a microemulsion polymerization method. Carbon nanocapsules, which are meters, are prepared. Colloidal silica is available in all commercially available products, in the present invention, Aldrich's Ludox SM-30 (average particle size: 8 nanometers), HS-40 (average particle size: 12 nanometers), TM-40 (average particle size: 22 nanometers) was used. The average particle size of the colloidal silica used in the present invention is an important factor in determining the pore size of the finally obtained carbon nanocapsules for using the colloidal silica as a template. Vinyl silane was preferentially introduced for the efficient introduction of vinyl monomers to the colloidal silica surface. Various vinyl-based silanes are applicable for colloidal silica surface modification, and chlorodimethylvinylsilane was used in the present invention. A small amount of chloro dimethylvinylsilane was slowly added dropwise to Ludox colloidal silica dispersed in a certain amount of distilled water and the stirring was continued for 24 hours. A certain amount of surfactant is additionally introduced to form micelles in the colloidal silica solution surface-modified with vinyl silane. Available surfactants are all cationic surfactants, anionic surfactants, non-ionic surfactants are applicable, but in the present invention, by adding a certain amount of sodium dodecyl sulfate (SDS) anionic surfactant to stir to form micelles It was. The vinyl monomer and the radical initiator are added to the reaction vessel and the reaction is continued while stirring at 50-90 ° C. for 1-24 hours. The vinyl monomers used may be any compound having a double bond, but divinylbenzene and methyl methacrylate were used in the present invention. In addition, the polymerization of the vinyl monomer may be a method using a radical initiator, ionic polymerization and redox polymerization, but in the present invention, a radical initiator was used. In the case of radical initiators, all commercialized initiators may be used, and in the present invention, azobisisobutyronitrile is added, and methylmethacrylate is added dropwise to the reactant and polymerized at 50 ° C to 90 ° C. After the polymerization was terminated, the reaction solution was cooled to room temperature and then transferred to a separatory funnel to recover the polymer, and dried at 50 ° C. for 24 hours. The reaction product was heated to 600-900 ° C. at 1-10 ° C. per minute in a nitrogen atmosphere, and then maintained at a final carbonization temperature for 3-10 hours to obtain carbides. The obtained carbide was effectively removed silica using a 48% by weight fluoric acid solution, and dried for 24 hours to prepare a carbon nanocapsule. Chemicals used for silica removal are not limited to fluoric acid solutions, and caustic soda (NaOH) solutions are also available. Carbon nanocapsules may be prepared according to the type and amount of the monomer.

(실시예)(Example)

다음 실시예를 들어 상세히 설명하면 다음과 같다. 그러나 이 실시예는 본원 권리범위를 한정하는 것이 아님은 자명하다.For example, the following examples will be described in detail. However, it is obvious that this embodiment does not limit the scope of the present application.

실시예 1Example 1

탄소나노캡슐의 제조Preparation of Carbon Nanocapsules

100 밀리미터의 증류수를 담은 반응기에 클로로디메틸비닐실란 0.25 밀리미터와 Ludox TM-40 콜로이드 실리카 0.5 밀리리터를 첨가하여 혼합용액을 24시간 동안 교반하였다. 이에 소듐도데실설페이트(Sodium dodecyl sulfate : SDS) 16 그램을 첨가하여 교반시켜 반응용액에 미셀을 형성하였다. 디비닐벤젠 0.25 밀리리터와 아조비스이소부티로니트릴 0.05 그램을 상기반응용기에 첨가하여 1시간 교반시켰다. 메틸메타아클릴레이트 0.5 그램을 반응물에 천천히 적가하여 70℃에서 3시간동안 중합시켰다. 반응용액은 상온으로 방냉시킨 후 분액 깔대기로 옮겼다. 회수된 반응물을 50℃에서 24시간동안 건조하였다. 얻어진 반응물을 질소분위기하에서 분당 5℃로 800℃까지 승온시킨후, 800℃에서 5시간동안 온도를 유지하여 탄화물을 얻고 이를 방냉하였다. 탄화물은 48 중량퍼센트 불소산 용액을 이용하여 실리카를 제거하였으며, 이에 24시간 동안 건조하여 탄소나노캡슐을 제조하였다.0.25 milliliter of chlorodimethylvinylsilane and 0.5 milliliter of Ludox ™ -40 colloidal silica were added to a reactor containing 100 millimeters of distilled water, and the mixed solution was stirred for 24 hours. 16 grams of sodium dodecyl sulfate (SDS) was added thereto, followed by stirring to form micelles in the reaction solution. 0.25 milliliter of divinylbenzene and 0.05 grams of azobisisobutyronitrile were added to the reaction vessel and stirred for 1 hour. 0.5 grams of methyl methacrylate was slowly added dropwise to the reaction and polymerized at 70 ° C. for 3 hours. The reaction solution was cooled to room temperature and then transferred to a separatory funnel. The recovered reaction was dried at 50 ° C. for 24 hours. The reaction was heated to 5 ° C. per minute to 800 ° C. under a nitrogen atmosphere, and then maintained at 800 ° C. for 5 hours to obtain carbides and allowed to cool. Carbide was removed using silica using a 48 wt% hydrofluoric acid solution, and dried for 24 hours to prepare carbon nanocapsules.

제조된 탄소나노캡슐은 투과전자현미경(TEM)을 이용하여 분석한 결과 약 22 나노미터의 기공을 가지는 탄소나노캡슐이 얻어진 것을 확인하였다. 이를 도 1 및 도 2에 나타내었다. 도 1은 본 발명에 따라 수득되는 실리카-폴리디비닐벤젠/폴리메틸메타크릴레이트 나노구조체의 투과전자현미경 사진이고, 도 2는 본 발명에 따라 수득되는 실리카 나노 입자를 제거한 탄소나노캡슐의 투과전자현미경 사진이다.The prepared carbon nanocapsules were analyzed using a transmission electron microscope (TEM), and it was confirmed that carbon nanocapsules having pores of about 22 nanometers were obtained. This is shown in FIGS. 1 and 2. 1 is a transmission electron micrograph of a silica-polydivinylbenzene / polymethyl methacrylate nanostructure obtained according to the present invention, Figure 2 is a transmission electron of the carbon nanocapsule removing the silica nanoparticles obtained according to the present invention Photomicrograph.

일정한 입자크기의 상업화된 콜로이드 실리카를 이용함으로써 저렴하고도 용이하게 제조할 수 있으며, 일정한 기공 크기를 가지는 탄소나노캡슐을 저렴하게 제조할 수 있는 우수한 효과가 있다. By using a commercialized colloidal silica of a constant particle size can be prepared inexpensively and easily, there is an excellent effect that can be cheaply prepared carbon nanocapsules having a constant pore size.

도 1은 본 발명에 따라 수득되는 실리카-폴리디비닐벤젠/폴리메틸메타크릴레이트 나노구조체의 투과전자현미경 사진이다.1 is a transmission electron micrograph of a silica-polydivinylbenzene / polymethylmethacrylate nanostructure obtained according to the present invention.

도 2는 본 발명에 따라 수득되는 실리카 나노 입자를 제거한 탄소나노캡슐의 투과전자현미경 사진이다.Figure 2 is a transmission electron micrograph of the carbon nanocapsule removing the silica nanoparticles obtained in accordance with the present invention.

Claims (5)

콜로이드 실리카 표면을 비닐계실란으로 개질화하는 단계, Modifying the colloidal silica surface with vinylsilane, 이를 상온에서 양이온계, 음이온계, 비이온계 계면활성제중에서 택일한 것을 첨가, 교반하여 미셀을 형성하는 단계, Adding an optional one of a cationic, anionic and nonionic surfactant at room temperature to form a micelle by stirring; 이에 이중결합을 가지는 단량체와 라디칼 개시제 및 메틸메타아크릴레이트를 첨가하고 50℃ ∼ 90℃에서 중합, 방냉하는 단계, Adding a monomer having a double bond, a radical initiator, and methyl methacrylate thereto, polymerizing and cooling at 50 ° C. to 90 ° C., 전기 중합물에서 나노입자층을 분리하고 이를 질소 분위기하에서 800℃이상 승온시켜 탄화, 방냉하는 단계,Separating the nanoparticle layer from the electropolymerized product and carbonizing and cooling the same by raising the temperature above 800 ° C. under a nitrogen atmosphere, 상기 탄화물에서 실리카를 제거, 건조하는 단계로 이루어짐을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.Removing the silica from the carbide, the method of producing a carbon nanocapsules of several nanometers to several tens of nanometers size using a microemulsion polymerization, characterized in that consisting of the step of drying. 제 1 항에 있어서, 비닐계실란으로서 클로로디메틸실란임을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.[Claim 2] The method of claim 1, wherein the vinyl-based silane is chlorodimethylsilane. The method for preparing carbon nanocapsules having a size of several nanometers to several tens of nanometers using microemulsion polymerization. 제 1 항에 있어서, 이중결합을 가지는 비닐계 단량체로서는 디비닐벤젠임을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.The method of claim 1, wherein the vinyl monomer having a double bond is divinylbenzene, the method of producing carbon nanocapsules of several nanometers to tens of nanometers using microemulsion polymerization. 제1항에 있어서, 라디칼 개시제로서는 아조비스이소부티로니트릴임을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.The method of claim 1, wherein the radical initiator is azobisisobutyronitrile, characterized in that the preparation of carbon nanocapsules of several nanometers to several tens of nanometers using microemulsion polymerization. 제1항에 있어서, 탄화물의 실리카 제거제로서는 불소산용액이나 수산화나트륨용액임을 특징으로 하는 마이크로 에멀젼 중합을 이용한 수 나노미터에서 수십 나노미터 크기의 탄소나노캡슐의 제조 방법.The method for preparing carbon nanocapsules having a size of several nanometers to several tens of nanometers using microemulsion polymerization according to claim 1, wherein the silica remover of the carbide is a hydrofluoric acid solution or a sodium hydroxide solution.
KR10-2002-0039970A 2002-07-10 2002-07-10 Preparation of carbon nanocapsule using colloidal silica template KR100481736B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0039970A KR100481736B1 (en) 2002-07-10 2002-07-10 Preparation of carbon nanocapsule using colloidal silica template

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0039970A KR100481736B1 (en) 2002-07-10 2002-07-10 Preparation of carbon nanocapsule using colloidal silica template

Publications (2)

Publication Number Publication Date
KR20020062269A KR20020062269A (en) 2002-07-25
KR100481736B1 true KR100481736B1 (en) 2005-04-08

Family

ID=27727247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0039970A KR100481736B1 (en) 2002-07-10 2002-07-10 Preparation of carbon nanocapsule using colloidal silica template

Country Status (1)

Country Link
KR (1) KR100481736B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067483B1 (en) 2019-07-26 2020-01-17 주식회사 가온기술 A dispenser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814290A (en) * 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same
KR20010082910A (en) * 2000-02-22 2001-08-31 오승모 Method for Preparing Nanoporous Carbon Materials using Inorganic Templates
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814290A (en) * 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
KR20010082910A (en) * 2000-02-22 2001-08-31 오승모 Method for Preparing Nanoporous Carbon Materials using Inorganic Templates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067483B1 (en) 2019-07-26 2020-01-17 주식회사 가온기술 A dispenser

Also Published As

Publication number Publication date
KR20020062269A (en) 2002-07-25

Similar Documents

Publication Publication Date Title
Schmid et al. Polystyrene− silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization
Roghani-Mamaqani et al. In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites
Hu et al. Organic-inorganic nanocomposites synthesized via miniemulsion polymerization
Thickett et al. Recent advances in colloidal nanocomposite design via heterogeneous polymerization techniques
CN111303320B (en) Polymer/inorganic nano particle composite material and preparation method thereof
WO2004001107A2 (en) Carbon nanotube-filled composites
CA2759166A1 (en) Process for producing a particulate nanocomposite material
CN101851308A (en) In-situ suspension polymerization preparation method of nanocomposite material consisting of polyvinyl chloride and silicon dioxide and product thereof
Wu et al. Poly (vinyl chloride)-grafted multi-walled carbon nanotubes via Friedel-Crafts alkylation
Liu et al. Silica/poly (N, N′-methylenebisacrylamide) composite materials by encapsulation based on a hydrogen-bonding interaction
Sheng et al. Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres
Haldorai et al. Ionic liquid mediated synthesis of silica/polystyrene core–shell composite nanospheres by radical dispersion polymerization
Sala et al. Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites
Moraes et al. Poly (styrene‐co‐butyl acrylate)‐Brazilian Montmorillonite Nanocomposites, Synthesis of Hybrid Latexes via Miniemulsion Polymerization
CN103254373B (en) Preparation method of stable segmented copolymer PAPMA (Polymethyl Acrylate P-acetamide Phenyl Ester)-b-PNIPAM (Polyisopropyl Acrylamide) based Au nanometer particle
KR100481736B1 (en) Preparation of carbon nanocapsule using colloidal silica template
KR100481737B1 (en) Preparation of mesocellular carbon foam using colloidal silica template
CN109401731B (en) Amphiphilic polymer-loaded nanofluid and preparation method thereof
CN106670499A (en) Environment-friendly preparing method of nanometer copper with ascorbic acid and Arabic gum serving as reducing agent and protective agent
Yang et al. Preparation of polystyrene/clay nanocomposite by suspension and emulsion polymerization
CN113248733B (en) Preparation method of high-elasticity high-toughness nano composite hydrogel based on nano composite initiator
Du et al. Surface modification of silica nanoparticles by grafting poly (methyl methacrylate) using atom transfer radical polymerisation with activators regenerated by electron transfer
KR100606324B1 (en) Method for preparing conducting polymer nanocapsules using sonication-assisted polymerization
Feng et al. A controlled morphology of polymeric nanocapsules via the density of surface vinyl group for the precipitation polymerization
US20030050382A1 (en) Method for synthesis of exfoliated polymer/silicate nanocomposite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120309

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130320

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee