KR100477616B1 - Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte - Google Patents

Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte Download PDF

Info

Publication number
KR100477616B1
KR100477616B1 KR10-2002-0065515A KR20020065515A KR100477616B1 KR 100477616 B1 KR100477616 B1 KR 100477616B1 KR 20020065515 A KR20020065515 A KR 20020065515A KR 100477616 B1 KR100477616 B1 KR 100477616B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
gel electrolyte
mixed
electrolyte
structural strength
Prior art date
Application number
KR10-2002-0065515A
Other languages
Korean (ko)
Other versions
KR20040036842A (en
Inventor
박진
박승빈
양승만
홍원희
최천락
김정헌
Original Assignee
주식회사 아트라스비엑스
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아트라스비엑스, 한국과학기술원 filed Critical 주식회사 아트라스비엑스
Priority to KR10-2002-0065515A priority Critical patent/KR100477616B1/en
Publication of KR20040036842A publication Critical patent/KR20040036842A/en
Application granted granted Critical
Publication of KR100477616B1 publication Critical patent/KR100477616B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 밀폐형 납축전지에 사용되는 무기 젤 전해질의 저온 제조방법에 관한 것으로, 젤 전해질의 구성 요소중 하나 이상의 온도를 -5 내지 15 ℃로 냉각하여 2000rpm 이상으로 혼합하여 제조하는 것을 특징으로 한다. 본 발명에 의해 제조된 밀폐형 납축전지용 젤 전해질은 같은 조성을 가지고 실온에서 제조한 젤 전해질에 비해 우수한 구조적 강도를 보인다. 또한 더 적은 양의 무기 입자를 사용하여 동일한 수준의 구조적 강도를 가지는 젤 전해질을 제조할 수 있게 된다. 이는 구조적 강도 향상을 위해 일반적으로 사용되는 첨가제를 사용하지 않아도 구조적 강도 향상이 가능함을 의미한다. 게다가 적은 양의 무기 입자를 사용하더라도 구조적 강도의 약화가 없다는 것은, 동일한 수준의 구조적 강도를 가지는 젤 전해질에 비해 더 많은 황산을 포함하는 것이 가능하다는 것을 의미하며, 이는 곧 우수한 충전 용량과 수명 성능을 가지는 축전지가 된다는 것이다.The present invention relates to a low-temperature manufacturing method of an inorganic gel electrolyte used in a sealed lead acid battery, characterized in that the mixture is prepared by cooling at least one of the components of the gel electrolyte to -5 to 15 ℃ by mixing at 2000rpm or more. The gel electrolyte for sealed lead acid batteries manufactured by the present invention has excellent structural strength compared to gel electrolytes prepared at room temperature with the same composition. It is also possible to produce gel electrolytes having the same level of structural strength using less inorganic particles. This means that structural strength can be improved without using additives that are generally used for structural strength. In addition, the absence of a decrease in structural strength even with the use of small amounts of inorganic particles means that it is possible to include more sulfuric acid than gel electrolytes having the same level of structural strength, which leads to excellent charge capacity and lifetime performance. Branch is a battery.

Description

납축전지용 무기 젤 전해질의 저온 제조 방법 및 그 전해질{Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte}Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte

본 발명은 수용액 상태에서 전리하여 이온을 생기게 하고 전류를 이끌 수 있는 납축전지용 무기 젤 전해질, 특히 저온에서 제조하는 납축전지용 무기 젤 전해질의 저온 제조 방법 그 전해질에 관한 것이다.The present invention relates to a low-temperature manufacturing method of an inorganic gel electrolyte for lead acid batteries, in particular a lead-acid battery inorganic gel electrolyte produced at low temperature, which can be ionized in an aqueous solution to generate ions and lead to electric current.

납축전지는 각각 납과 산화납으로 이루어진 두 극판과 전해질인 황산 사이의 산화와 환원 반응에 의해 충방전이 가능한 2차전지이다. 이것은 일반적으로 복수의 양극과 음극판을 포함하고 있으며, 각각의 판들을 인접한 판들과 격리시키는 격리판과 함께 그 음극판과 양극판이 번갈아 배치된다. 이렇게 배치된 극판과 격리판 이외의 공간은 전해질인 황산으로 채워져 있다.A lead acid battery is a secondary battery capable of charging and discharging by oxidation and reduction reactions between two electrode plates made of lead and lead oxide and sulfuric acid, an electrolyte. It generally includes a plurality of positive and negative plates, the negative plates and the positive plates being alternately arranged with a separator to isolate each plate from adjacent plates. The spaces other than the electrode plates and separator plates thus arranged are filled with sulfuric acid as an electrolyte.

납축전지는 오랜 사용 역사에 따른 안정적인 기술이며, 저렴한 가격과 대용량화 및 재사용이 용이한 장점을 가지고 있다. 그러나 납축전지를 충방전용으로 사용하는 경우에 주기적인 보액이 필요하고, 대형화시에 전해질인 황산의 층리화 현상에 따른 극판의 부식과 황산화(sulfation) 문제를 가지고 있는데, 이로 인해 축전지의 수명이 짧아져 상당한 비용부담의 문제가 발생한다. 또한 과충전시 발생하는 가스에 의한 폭발의 위험성도 있다.Lead acid battery is a stable technology according to a long history of use, and has the advantages of low price, large capacity and easy reuse. However, when lead-acid batteries are used for charging and discharging, periodic replenishment is required, and there is a problem of corrosion and sulfation of the electrode plates due to the stratification phenomenon of sulfuric acid, which is an electrolyte, in large-scale. This shortens the problem of significant cost. In addition, there is a risk of explosion by the gas generated during overcharging.

극판의 부식과 황산화 문제에 대한 대안으로 전해질인 황산을 무기 젤이나 흡수유리매트(absorptive glass mat, AGM)에 포함시켜 사용하게 되나, 흡수유리매트의 경우 사용중 발열의 문제가 발생하며, 무기 젤에 비해 황산의 층리화가 크다. 특히 대형 산업용 전지의 경우, 황산의 층리화 현상이 적고 상대적으로 황산의 함유량이 높기 때문에 성능이 우수한 젤 전해질을 주로 사용한다.As an alternative to the problem of corrosion and sulphation of the plates, sulfuric acid, which is an electrolyte, is included in inorganic gel or absorptive glass mat (AGM). Compared to the stratification of sulfuric acid. In particular, in the case of large industrial batteries, gel electrolytes having excellent performance are mainly used because of less layering of sulfuric acid and relatively high sulfuric acid content.

무기 젤은 일반적으로 퓸드 실리카(fumed silica)나 콜로이드 상태의 실리케이트등의 무기 입자를 황산 수용액 중에서 젤화시켜 제조한다. 이 경우, 산소 재결합에 의해 가스 발생량이 감소하여, 축전지를 밀폐 상태로 사용할 수 있기 때문에, 전해액의 주기적 첨가 등의 보수가 불필요하고 폭발의 위험성도 적다. 또한 전해액의 층리화가 작기 때문에 극판의 부식이나 황산화가 감소하여 수명도 더 길어진다. 그러나 이러한 무기 젤 전해질은 황산에 비해 낮은 충전 용량 수명 성능, 그리고 반복되는 충방전에 따른 젤의 균열 등의 문제를 가지고 있다.Inorganic gels are generally prepared by gelling inorganic particles such as fumed silica or colloidal silicates in aqueous sulfuric acid. In this case, the amount of gas generated is reduced by oxygen recombination, and the storage battery can be used in a sealed state, so that maintenance such as periodic addition of the electrolyte solution is unnecessary and the risk of explosion is small. In addition, since the stratification of the electrolyte is small, corrosion and sulfateization of the electrode plate are reduced, resulting in a longer lifetime. However, these inorganic gel electrolytes have problems such as low charge capacity life performance and gel cracking due to repeated charging and discharging, compared to sulfuric acid.

일반적으로 무기 젤 중의 무기 입자의 비율이 높아지면, 사용중 젤의 균열과 같은 물리적 변형이 감소하는 등 물리적인 강도는 높아지나, 이에 반해 충전 용량은 낮아진다고 알려져 있다. 무기 젤 전해질이 가지고 있는 이러한 문제들을 해결하기 위해 소량의 결합제를 사용하는데, 결합제가 무기 입자들간의 결합을 강화하여 충전 용량을 낮추지 않으면서도 기계적인 강도를 높일 수 있다. 그러나 결합제를 사용할 경우, 젤화 시간의 단축으로 인한 충진의 문제가 있다.In general, it is known that the higher the proportion of inorganic particles in the inorganic gel, the higher the physical strength, such as reduced physical deformation such as cracking of the gel during use, while lowering the filling capacity. To solve these problems with inorganic gel electrolytes, a small amount of binder is used, which enhances the bond between the inorganic particles and increases mechanical strength without lowering the filling capacity. However, when using a binder, there is a problem of filling due to the shortening of the gelation time.

미국 특허 제3,172,782호에는 3∼10중량%의 실리카를 포함하는 젤 전해질이 발표되어 있다.U.S. Patent No. 3,172,782 discloses a gel electrolyte comprising 3-10% by weight of silica.

미국 특허 제4,937,156호와 유럽 특허 제325,672호에는 3∼5중량%의 실리카 입자에 0.1∼1.0중량%의 폴리아크릴아마이드를 첨가하여 제조한 젤에 대해 발표되어 있다.U.S. Patent No. 4,937,156 and European Patent No. 325,672 disclose gels prepared by adding 0.1 to 1.0 wt% polyacrylamide to 3-5 wt% silica particles.

본 발명은 젤 제조시 혼합하는 구성 요소 중 하나 이상의 요소를 저온으로 냉각하여 혼합함으로써 향상된 구조적 강도를 가지는 밀폐형 납축전지에 사용되는 무기 젤 전해질을 제조하는 것을 목적으로 한다.An object of the present invention is to prepare an inorganic gel electrolyte for use in a sealed lead acid battery having improved structural strength by cooling at least one of the components to be mixed at the time of gel preparation by mixing at low temperature.

상기 목적을 달성하는 본 발명에 따른 무기 젤 전해질의 저온 제조 방법은, 밀폐형 납축전지용 젤 전해질을 구성하는 요소인 무기 입자, 황산, 물 중 하나 이상을 -5 내지 20℃로 냉각시킨 후 2000rpm 이상으로 혼합하여 제조하는 것을 그 특징으로 한다.In the low-temperature manufacturing method of the inorganic gel electrolyte according to the present invention for achieving the above object, after cooling at least one of the inorganic particles, sulfuric acid, water that is a component constituting the gel electrolyte for the sealed lead acid battery to -5 to 20 ℃ more than 2000rpm It is characterized by manufacturing by mixing.

무기 입자를 사용하여 납축전지용 젤 전해질을 제조하는 경우 황산이 물과 혼합될 때 용해열이 발생하여 입자-황산-물 분산의 온도가 혼합 전보다 높아진다. 특히 납축전지용 젤 전해질에 사용되는 황산의 농도의 경우, 상온에서 혼합할 경우, 황산의 농도와 혼합시의 온도에 따라 다르지만, 혼합 직후 약 100℃까지 입자-황산-물 분산의 온도가 상승한다.When inorganic gel particles are used to produce a gel electrolyte for lead acid batteries, heat of dissolution occurs when sulfuric acid is mixed with water, resulting in a higher temperature of the particle-sulfuric acid-water dispersion than before mixing. In particular, the concentration of sulfuric acid used in the lead-acid battery gel electrolyte, depending on the concentration of sulfuric acid and the temperature at the time of mixing when mixed at room temperature, the temperature of the particle-sulfuric acid-water dispersion rises to about 100 ℃ immediately after mixing .

이렇게 고속 혼합 직후의 온도가 낮을수록 입자-황산-물 분산의 젤화를 통해 높은 구조적 강도를 가지는 젤을 제조할 수 있다. 이를 위해서 젤 전해질을 구성하는 무기 입자, 황산, 물의 구성 요소들 중 하나 이상의 구성 요소의 온도를 낮추어 혼합하게 된다. 젤을 구성하는 입자-황산-물 분산이 최종적으로 혼합되기 전에, 이들 구성 요소들 일부가 사전에 혼합될 수 있으나, 역시 최종 혼합 전에 냉각되어 혼합된다.Thus, the lower the temperature immediately after the high-speed mixing, it is possible to prepare a gel having a high structural strength through the gelation of particle-sulfuric acid-water dispersion. To this end, the temperature of one or more of the inorganic particles, sulfuric acid, and water components of the gel electrolyte is lowered and mixed. Before the particle-sulfuric acid-water dispersion constituting the gel is finally mixed, some of these components may be mixed in advance, but also cooled and mixed before final mixing.

이하에 실시예를 통해 본 발명을 상세히 설명하였으며, 이에 제한되는 것은 아니다.Hereinafter, the present invention has been described in detail with reference to Examples, but is not limited thereto.

[실시예 1]Example 1

퓸드 실리카인 에어로실 200(Aerosil 200, Degussa)을 20중량%로 물과 혼합하여 실리카-물 분산을 준비하고, 황산을 물에 혼합하여 황산 수용액을 준비하였다. 준비한 실리카-물 분산을 5℃로 냉각시킨 황산 수용액과 2000rpm 이상에서 혼합하여 응집된 입자를 분산시켰다. 이때 최종적인 실리카-황산-물 분산에서 실리카는 8중량%, 황산 수용액은 38중량%였다. 이렇게 혼합한 실리카-황산-물 분산의 교반을 중지하고 젤화를 진행시켜 실리카-황산 젤 전해질을 제조하였다.Aerosil 200, a fumed silica (Aerosil 200, Degussa) was mixed with water at 20% by weight to prepare a silica-water dispersion, and sulfuric acid was mixed with water to prepare an aqueous sulfuric acid solution. The prepared silica-water dispersion was mixed with an aqueous sulfuric acid solution cooled to 5 ° C. at 2000 rpm or more to disperse the aggregated particles. In the final silica-sulfuric acid-water dispersion, silica was 8% by weight and sulfuric acid was 38% by weight. The stirring of the silica-sulfuric acid-water dispersion thus mixed was stopped and gelation was performed to prepare a silica-sulphate gel electrolyte.

[실시예 2]Example 2

실리카-물 분산을 5℃로 냉각시킨 후 황산 수용액과 혼합하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.The silica-water dispersion was prepared in the same manner as in Example 1 except that the mixture was cooled to 5 ° C. and then mixed with an aqueous sulfuric acid solution.

[비교예 1]Comparative Example 1

실리카-물 분산과 황산 수용액을 냉각시키지 않고 혼합하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.Prepared in the same manner as in Example 1, except that the silica-water dispersion and the aqueous sulfuric acid solution were mixed without cooling.

[시험예][Test Example]

상기 실시예 1과 2 및 비교예 1에 따라 각 젤 전해질의 구조적 강도를 평가하기 위해서 동적 진동 테스트(dynamic oscillation test)를 통해 25℃에서 저장탄성률(storage modulus)을 측정하고, 그 측정된 각 전해질의 저장탄성률을 도 1에 함께 나타내었다. 측정에는 Rheometrics사의 ARES Fluid Rheometer를 사용하였다. 참고로, 저장탄성율 값이 높을수록 젤 전해질을 이루는 입자간의 결합이 강하다고 할 수 있다.In order to evaluate the structural strength of each gel electrolyte according to Examples 1 and 2 and Comparative Example 1, the storage modulus was measured at 25 ° C. through a dynamic oscillation test, and each measured electrolyte was measured. The storage modulus of is shown in FIG. Rheometrics ARES Fluid Rheometer was used for the measurement. For reference, the higher the storage modulus value, the stronger the bond between the particles forming the gel electrolyte.

저장탄성율의 측정 결과, 최종 혼합 전에 황산 수용액만 냉각하거나, 황산 수용액과 실리카-물 분산을 모두 냉각한 후 혼합하여 제조한 실시예 1과 2의 젤 전해질의 저장탄성율(도 1의 그래프 b 및 c)은, 냉각 과정 없이 실온의 황산 수용액과 실리카-물 분산을 혼합하여 제조한 비교예 1에 따른 젤 전해질의 저장탄성률(도 1의 그래프 a)에 비해 높게 나타났다. 이는 혼합 전의 냉각을 통해, 혼합시 발생하는 용해열에 의해 실리카-황산-물 분산이 높은 온도를 경험하는 것을 방지하며, 이렇게 낮은 온도에서 젤화가 진행되는 것이 최종적인 젤의 구조적 강도 향상을 가져온다는 것을 보여준다.As a result of measuring the storage modulus, the storage modulus of the gel electrolytes of Examples 1 and 2 prepared by cooling only the aqueous sulfuric acid solution before the final mixing, or by cooling and mixing both the aqueous sulfuric acid solution and the silica-water dispersion (graphs b and c of FIG. 1). ) Is higher than the storage elastic modulus (graph a of FIG. 1) of the gel electrolyte according to Comparative Example 1 prepared by mixing a sulfuric acid aqueous solution and a silica-water dispersion at room temperature without cooling. This prevents the silica-sulfuric acid-water dispersion from experiencing a high temperature by the heat of dissolution that occurs during mixing, through cooling before mixing, and that gelling at such a low temperature leads to an improvement in the final structural strength of the gel. Shows.

본 발명에 의해 제조된 밀폐형 납축전지용 젤 전해질은, 냉각하지 않아 용해열로 인한 높은 온도를 경험한 젤 전해질보다 우수한 구조적 강도를 가진다는 장점이 있다. 따라서 결과적으로 더 작은 비율의 실리카로도 밀폐형 납축전지에 사용되는 젤 전해질로서 요구되는 구조적 강도를 확보하는 것이 가능하여, 그에 상당하는 황산의 함유량을 높여서 더 우수한 충전 용량과 수명 성능을 이룰 수 있게 된다.The gel electrolyte for a sealed lead acid battery manufactured by the present invention has an advantage of having structural strength superior to that of a gel electrolyte which does not cool and experiences a high temperature due to heat of dissolution. As a result, even smaller proportions of silica make it possible to obtain the structural strength required as a gel electrolyte used in sealed lead acid batteries, thereby increasing the content of sulfuric acid corresponding thereto to achieve better charging capacity and longer life performance. .

도 1은 각기 다른 온도의 실리카 분산과 황산 수용액을 혼합하여 제조한 납축전지용 무기 젤 전해질의 저장탄성율(storage modulus)을 측정한 그래프로서, (a)는 비교예 1에 따라 실온(25℃)의 실리카 분산과 실온(25℃)의 황산 수용액을 혼합하여 제조한 경우이고, (b)는 본 발명의 실시예 1에 따라 실온(25℃)의 실리카 분산과 5℃의 황산 수용액을 혼합하여 제조한 경우이고, (c)는 본 발명의 실시예 2에 따라 5℃의 실리카 분산과 5℃의 황산 수용액을 혼합하여 제조한 경우이다.1 is a graph measuring the storage modulus of the inorganic gel electrolyte for lead acid batteries prepared by mixing silica dispersion and sulfuric acid aqueous solution at different temperatures, and (a) is room temperature (25 ° C.) according to Comparative Example 1 Is prepared by mixing silica dispersion and aqueous sulfuric acid solution at room temperature (25 ° C.), and (b) is prepared by mixing silica dispersion at room temperature (25 ° C.) and aqueous sulfuric acid solution at 5 ° C. according to Example 1 of the present invention. In one case, (c) was prepared by mixing 5 ° C. silica dispersion and 5 ° C. aqueous sulfuric acid solution according to Example 2 of the present invention.

Claims (7)

납축전지용 무기 젤 전해질을 구성하는 요소인 무기 입자, 황산, 물 중 하나 이상을 -5℃ 내지 20℃로 냉각시킨 후 2000rpm 이상으로 혼합하여 제조하는 것을 특징으로 하는 납축전지용 무기 젤 전해질의 저온 제조방법.Low temperature of the inorganic gel electrolyte for lead acid battery, characterized in that at least one of the inorganic particles, sulfuric acid, and water constituting the inorganic gel electrolyte for lead acid battery is cooled to -5 ℃ to 20 ℃ and mixed at 2000rpm or more. Manufacturing method. 삭제delete 청구항 1에 있어서, 상기 무기 입자와 물의 일부를 혼합하고, 황산과 물의 나머지 일부를 혼합한 다음, 이들 두 혼합물을 혼합하여 제조하는 것을 특징으로 하는 납축전지용 무기 젤 전해질의 저온 제조방법.The method of claim 1, wherein the inorganic particles and a part of the water are mixed, sulfuric acid and a part of the water are mixed, and then the two mixtures are prepared by mixing the inorganic gel electrolyte for a lead acid battery. 청구항 1에 있어서, 상기 무기 입자와 물의 일부를 먼저 혼합후 냉각시키고, 황산과 물의 나머지 일부를 혼합한 다음, 이들 두 혼합물을 혼합하여 제조하는 것을 특징으로 하는 납축전지용 무기 젤 전해질의 저온 제조방법.The method of claim 1, wherein the inorganic particles and a portion of the water are first mixed and cooled, and then sulfuric acid and the remaining portion of the water are mixed, and then the two mixtures are mixed to prepare the low temperature manufacturing method of the inorganic gel electrolyte for lead acid battery. . 청구항 1에 있어서, 상기 황산과 물의 일부를 먼저 혼합후 냉각시키고, 황산과 물의 나머지 일부를 혼합한 다음, 이들 두 혼합물을 혼하여 제조하는 것을 특징으로 하는 납축전지용 무기 젤 전해질의 저온 제조방법.The method of claim 1, wherein the sulfuric acid and a portion of the water are first mixed and then cooled, and the remaining portion of the sulfuric acid and the water is mixed, and then the two mixtures are mixed to prepare the low temperature manufacturing method of the inorganic gel electrolyte for lead acid battery. 청구항 3에 있어서, 상기 무기 입자와 물의 일부가 혼합된 분산과, 상기 황산과 물의 나머지 일부가 혼합된 수용액을 각각 냉각시킨 후 혼합하여 제조하는 것을 특징으로 하는 납축전지용 무기 젤 전해질의 저온 제조방법.The method of claim 3, wherein the inorganic particles and a part of the water are mixed, and the aqueous solution in which the sulfuric acid and the other part of the water are mixed is produced by cooling and mixing the low temperature manufacturing method of the inorganic gel electrolyte for lead acid battery. . 청구항 1 및 3 내지 7의 방법으로 제조된 것을 특징으로 하는 납축전지용 무기 젤 전해질.An inorganic gel electrolyte for lead acid batteries, which is prepared by the method of claims 1 and 3 to 7.
KR10-2002-0065515A 2002-10-25 2002-10-25 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte KR100477616B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0065515A KR100477616B1 (en) 2002-10-25 2002-10-25 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0065515A KR100477616B1 (en) 2002-10-25 2002-10-25 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte

Publications (2)

Publication Number Publication Date
KR20040036842A KR20040036842A (en) 2004-05-03
KR100477616B1 true KR100477616B1 (en) 2005-03-23

Family

ID=37335481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0065515A KR100477616B1 (en) 2002-10-25 2002-10-25 Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte

Country Status (1)

Country Link
KR (1) KR100477616B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595401B1 (en) * 2004-11-05 2006-06-30 주식회사 디지털텍 Method for preparing gel-type polymer electrolyte comprising inorganic fillers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678069A (en) * 1979-11-30 1981-06-26 Shin Kobe Electric Mach Co Ltd Manufacture of paste for plate of lead acid battery
JPS57168470A (en) * 1981-04-09 1982-10-16 Matsushita Electric Ind Co Ltd Manufacture of pasted electrode for lead acid battery
JPS63160157A (en) * 1986-12-24 1988-07-02 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead acid battery
US4871428A (en) * 1988-03-24 1989-10-03 C & D Charter Power Systems, Inc. Method for in situ forming lead-acid batteries having absorbent separators
KR890015445A (en) * 1988-03-05 1989-10-30 김순강 Manufacturing method of solid electrolyte and storage battery using solid electrolyte
KR910019282A (en) * 1990-04-26 1991-11-30 왕 리앤샹 High capacity colloidal storage batteries, colloidal electrodes used therein, and methods for their preparation
KR20030049115A (en) * 2001-12-14 2003-06-25 한국전지주식회사 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
KR20030073601A (en) * 2002-03-12 2003-09-19 한국과학기술원 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and such a electrolyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678069A (en) * 1979-11-30 1981-06-26 Shin Kobe Electric Mach Co Ltd Manufacture of paste for plate of lead acid battery
JPS57168470A (en) * 1981-04-09 1982-10-16 Matsushita Electric Ind Co Ltd Manufacture of pasted electrode for lead acid battery
JPS63160157A (en) * 1986-12-24 1988-07-02 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead acid battery
KR890015445A (en) * 1988-03-05 1989-10-30 김순강 Manufacturing method of solid electrolyte and storage battery using solid electrolyte
US4871428A (en) * 1988-03-24 1989-10-03 C & D Charter Power Systems, Inc. Method for in situ forming lead-acid batteries having absorbent separators
KR910019282A (en) * 1990-04-26 1991-11-30 왕 리앤샹 High capacity colloidal storage batteries, colloidal electrodes used therein, and methods for their preparation
KR20030049115A (en) * 2001-12-14 2003-06-25 한국전지주식회사 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
KR20030073601A (en) * 2002-03-12 2003-09-19 한국과학기술원 Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and such a electrolyte

Also Published As

Publication number Publication date
KR20040036842A (en) 2004-05-03

Similar Documents

Publication Publication Date Title
Lambert et al. Advances in gelled-electrolyte technology for valve-regulated lead-acid batteries
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP3445821B2 (en) Absorption mat type lead-acid battery with improved heat transfer
US3711332A (en) Lead gel storage battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2008204638A (en) Control valve type lead-acid battery, and manufacturing method thereof
CN104067436A (en) Lead-acid battery
KR100477616B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery at low temperature and such a electrolyte
CN101740780A (en) Rare earth alloy of anode plate grid for lead-acid storage battery
JPH07240227A (en) Sealed lead-acid battery
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
JP2004327299A (en) Sealed lead-acid storage battery
KR100433471B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and such a electrolyte
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JP2006185743A (en) Control valve type lead-acid battery
JP4887590B2 (en) Sealed lead acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP2004207003A (en) Liquid type lead acid storage battery
JPH0233859A (en) Lead-acid battery
JPH01100869A (en) Sealed lead storage battery
KR20200046405A (en) Method for manufacturing electrolyte containing phase change material
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
KR20230058087A (en) Methods for manufacturing components of lead-acid batteries
JP3614440B2 (en) High energy battery electrolyte and method for producing the electrolyte

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170301

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180312

Year of fee payment: 14