JPH01100869A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPH01100869A
JPH01100869A JP62255928A JP25592887A JPH01100869A JP H01100869 A JPH01100869 A JP H01100869A JP 62255928 A JP62255928 A JP 62255928A JP 25592887 A JP25592887 A JP 25592887A JP H01100869 A JPH01100869 A JP H01100869A
Authority
JP
Japan
Prior art keywords
electrolyte
dispersed
lignin sulfonate
lead
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62255928A
Other languages
Japanese (ja)
Inventor
Masaatsu Tsubota
坪田 正温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62255928A priority Critical patent/JPH01100869A/en
Publication of JPH01100869A publication Critical patent/JPH01100869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the overdischarge durability and the rapid discharge property by using a gel-form electrolyte in which a substance with the function to capture lead ion is dissolved, dispersed, or suspended. CONSTITUTION:Clad type positive electrode plates which consist of lead alloy collectors including no Sb, and paste type negative electrode plates are laminated through porous bodies such as a glass mat and separators respectively to compose an electrode plate group. As the electrolyte, SiO2 (0.5 to 10wt.%) is added to sulfuric acid, and lignin sulfonate (0.01 to 5wt.%) is added, at the same time, to be dispersed and suspended. Prior to the gelling of the electrolyte, the electrolyte is poured in the storage battery and charged. The lignin sulfonate is made viscose and dissolved partially in the gelled electrolyte to capture Pb ions, and the insoluble substance is dispersed evenly. The SiO2 is effective to disperse the lignin sulfonate evenly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉鉛蓄電池の改良に関するもので、特に過放
電性能の向上と急放電特性の向上とを図るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in sealed lead-acid batteries, and particularly to improvements in overdischarge performance and rapid discharge characteristics.

従来の伎術とその問題点 密閉i@蓄電池は信頼性、杼済牲がありかつ起電ノ〕が
高いという特徴を生かして、近年、従来からの予111
源用途のみでなくコンパクトディスクやヘッドホンステ
レオなどのオーディオ機器のポータプル1111として
用いられるようになってきた。
Conventional techniques and their problems Sealed i@storage batteries have been developed in recent years by taking advantage of their reliability, safety, and high electromotive force.
It has come to be used not only as a source but also as a portable device for audio equipment such as compact discs and headphone stereos.

また自動車用鉛蓄電池においてはメンテナンスフリー化
が進み、使用中補水が不要でかつ電解液が漏出しない密
閉形が登場するようになった。これらの用途においては
放電後充電せずに長期間放置されることも多々あるため
、このような使用条件においても劣化しない性能が要求
されている。
In addition, lead-acid batteries for automobiles have become increasingly maintenance-free, and sealed types that do not require water replenishment during use and do not leak electrolyte have appeared. In these applications, batteries are often left unused for long periods of time without being charged after discharging, so performance that does not deteriorate even under such usage conditions is required.

また、鉛蓄電池はtIl電電流が大きくなるほど、温度
が低下するほど放電容量が減少するが、これは電解液で
ある硫酸イオンの拡散の遅れによるものである。密閉形
特に゛コロイダルシリカ(SiO2)や水ガラスなどの
ゲル化剤を希硫酸に添加して流動性をなくしたゲル電解
液においては、5102の三次元網目構造に硫酸イオン
がファンデルワールス力により結合しているので動きに
くく従って放電性能特に急放電性能が液式(開放形)電
池に比し劣るという欠点があった。
In addition, the discharge capacity of lead-acid batteries decreases as the tIl current increases and as the temperature decreases, but this is due to a delay in the diffusion of sulfate ions, which are the electrolytic solution. In a sealed type gel electrolyte, especially one in which a gelling agent such as colloidal silica (SiO2) or water glass is added to dilute sulfuric acid to eliminate fluidity, sulfate ions are trapped in the three-dimensional network structure of 5102 due to van der Waals forces. Since they are bonded together, they are difficult to move and therefore have a disadvantage in that their discharge performance, particularly rapid discharge performance, is inferior to liquid type (open type) batteries.

過放電性能の改良に関しては、これまで格子合金組成や
電解液組成の改良によって抵抗短絡状態で1ケ月程度の
放置に耐えるようになったが、しかし、ニッケル・カド
ミウム電池と比較するとかなり劣っている。また、高率
放電性能については極板の薄形化によってその改良が試
みられているが、薄形化によって充放電サイクル寿命が
短くなるという欠点があった。
Regarding improvements in overdischarge performance, improvements to the lattice alloy composition and electrolyte composition have made it possible to withstand being left in a short-circuited state for about a month, but this is considerably inferior compared to nickel-cadmium batteries. . Furthermore, attempts have been made to improve the high rate discharge performance by making the electrode plates thinner, but this has the drawback of shortening the charge/discharge cycle life.

本発明はゲル状電解液をもつ密閉鉛蓄電池の耐過放電性
能と急放電性能との向上を図るもので以下本発明の構成
について述べる。
The present invention aims to improve the overdischarge resistance and rapid discharge performance of a sealed lead acid battery having a gel electrolyte, and the structure of the present invention will be described below.

問題点を解決するための手段 本発明密閉鉛蓄電池はsl 02を添加することによっ
て希硫酸をゲル化または、高粘稠化した電解液中に、ガ
イオンを捕捉する作用のある物質を溶解、分散または懸
濁させて構成する。陽イオンを捕捉する物質としては高
分子電解質が適しており、例えばリグニンスルホン酸塩
やチオリグニンまたイオン交換樹脂などが好ましい。こ
れら高分子電解質は、官能基の末端がNa1か[」1で
あり、前者のタイプは比較的水に可溶であるのに対し、
後者のタイプは難溶性である。また官能基としてはこの
ほか、フェノール基、メトキシル基、カルボキシル基な
どがリグニンの分子鎖の末端に結合している。これらの
官能基は電解液溶液中では一部分?!離してイオンにな
ってイオン交換機能を有するようになる。
Means for Solving the Problems The sealed lead-acid battery of the present invention has dilute sulfuric acid gelled or highly viscous electrolyte solution by adding SL02 to dissolve and disperse a substance that has the effect of capturing Ga-ion. or constitute in suspension. A polymer electrolyte is suitable as a substance that captures cations, and preferable examples include lignin sulfonate, thiolignin, and ion exchange resin. These polymer electrolytes have a terminal functional group of Na1 or [''1, and while the former type is relatively soluble in water,
The latter type is poorly soluble. In addition, functional groups such as phenol groups, methoxyl groups, and carboxyl groups are bonded to the ends of the lignin molecular chain. Are these functional groups part of the electrolyte solution? ! When separated, it becomes ions and has an ion exchange function.

作用 次に本発明の作用を述べると、鉛蓄電池正負極板の充放
電反応メカニズムは、Pb O2や同が直接固相反応に
よりPb S O4に変化したりあるいは逆にPb S
 O4がPb O2や)に変換される訳ではなく、すべ
てPb2+イオンとなって溶解しこれが例えば放電では
H2804と反応してPb S O4となって析出する
。つまり充放電反応は溶解−析出反応である。希硫酸中
における)イオンの溶解性は硫N濃度が低いほど大きい
ので、過放電すると正負極活物質が大部分Pb S O
aとなって硫酸が消費されて著しく低濃度になる。この
ためnイオンが多量に電解液中に溶出し、これが正負極
板間で円に還元されてブリッジのようになって内部短絡
を生起する原因となる。本発明による電池構成において
は、電解液中に溶解、または分散させた高分子電解質の
末端の陽イオン基がこの随イオンを捕捉しそれと入れ替
わる、すなわち、イオン交換が行われる。
Function Next, to describe the function of the present invention, the charging/discharging reaction mechanism of the positive and negative electrode plates of a lead-acid battery is such that PbO2 and PbO2 change into PbSO4 through a direct solid phase reaction, or conversely, PbS
O4 is not converted into PbO2, etc., but all dissolves as Pb2+ ions, which react with H2804 during discharge, for example, and precipitate as PbSO4. In other words, the charge/discharge reaction is a dissolution-precipitation reaction. The solubility of ions (in dilute sulfuric acid) increases as the sulfur/N concentration decreases, so when overdischarged, most of the positive and negative electrode active materials become Pb SO
sulfuric acid is consumed and the concentration becomes extremely low. For this reason, a large amount of n ions are eluted into the electrolytic solution, which is reduced to a circle between the positive and negative electrode plates, forming a bridge-like structure and causing an internal short circuit. In the battery configuration according to the present invention, the terminal cationic group of the polymer electrolyte dissolved or dispersed in the electrolytic solution captures this associated ion and replaces it, that is, ion exchange is performed.

これによって極板群内の内部短絡の原因となるnイオン
が捕捉でき、代りに放出される鴎やHなどは鉛蓄電池に
とっては全く無害の物質であるから何ら問題はない。
As a result, the n ions that cause internal short circuits in the electrode plate group can be captured, and the ions and H released instead are completely harmless substances for lead-acid batteries, so there is no problem.

一方本発明は急放電性能の向上にも効果がある。On the other hand, the present invention is also effective in improving rapid discharge performance.

前述したように鉛蓄電池の放電反応は溶解−析出反応で
あるから、放電時随イオンが電極近傍に溶は出すことに
なるが、急放電の場合それが多量に生成するために電極
表面でPb S O4となって析出するのが遅れる、い
わゆる結晶化過電圧が発生して分極が大きくなるという
現象が見られる。電解液に溶解または分散させた高分子
電解質は、急放電時に生成し8た)イオンを吸着して取
り込むとともに末端の官能基の陽イオンと交換して捕捉
する。
As mentioned above, the discharge reaction of a lead-acid battery is a dissolution-precipitation reaction, so during discharge, ions are dissolved near the electrode, but in the case of sudden discharge, a large amount of these ions are generated, and Pb is formed on the electrode surface. A phenomenon is observed in which the precipitation as SO4 is delayed, a so-called crystallization overvoltage occurs, and polarization increases. The polymer electrolyte dissolved or dispersed in the electrolytic solution adsorbs and captures ions generated during rapid discharge (8), and also captures them by exchanging them with the cations of the terminal functional groups.

このため同イオンの電極界面近傍での蓄積が起りにくく
放電反応が阻害されないという効果がある。
Therefore, the same ions are less likely to accumulate near the electrode interface, and the discharge reaction is not inhibited.

実滴例 実質的にアンチモンを含まない鉛合金集電体よりなるク
ラッド式正極板とペースト式負極板とを、それぞれガラ
スマットの如き多孔体やセパレータを介して積重ねて極
板群を構成する。電解液は硫酸にSiO2を0.5〜1
0%(重量)添加するとともにリグニンスルホン酸塩を
0.01〜5%(重量)添加してよく撹拌して分散懸濁
させる。電解液がゲル化する前に該電解液を蓄電池内に
注入して後充電する。リグニンスルホン酸塩は粘稠にな
りゲル化した電解液中に一部溶解し不溶性物質はその中
に均一に分散して存在する。この場合5102はゲル化
剤として働くのみでなく、リグニンスルホン酸塩を均一
に分散させるのに有効である。
Actual Droplet Example A clad positive electrode plate and a paste negative electrode plate made of a lead alloy current collector substantially free of antimony are stacked together with a porous material such as a glass mat or a separator interposed therebetween to form an electrode plate group. The electrolyte is 0.5 to 1 SiO2 in sulfuric acid.
At the same time, 0.01 to 5% (weight) of lignin sulfonate is added and stirred well to disperse and suspend. Before the electrolytic solution gels, the electrolytic solution is injected into the storage battery for post-charging. The lignin sulfonate is partially dissolved in the viscous and gelled electrolyte, and the insoluble substances are uniformly dispersed therein. In this case, 5102 not only acts as a gelling agent, but is also effective in uniformly dispersing the lignin sulfonate.

発明の効果 密閉鉛蓄電池を過放電したりあるいは深放電した状態で
充電せずに放置しても、極板間の内部短絡が発生しない
ので、このような不規則な使われ方をづるコンシューマ
−用途や太陽光発電用に特に最適である。また急放電時
の分極を減少できるので従来のゲル電解液をもつゲララ
ド式密閉鉛蓄電池の高率放電性能を向上させることが出
来る。
Effects of the Invention Even if a sealed lead-acid battery is over-discharged or left uncharged in a deeply discharged state, an internal short circuit between the electrode plates will not occur. It is especially suitable for applications such as photovoltaic power generation. Furthermore, since polarization during rapid discharge can be reduced, the high rate discharge performance of Gellerad sealed lead-acid batteries with conventional gel electrolytes can be improved.

Claims (1)

【特許請求の範囲】 1、実質的にアンチモンを含まない鉛合金格子を使用し
た正および負極板と該極板間に配置したセパレータおよ
び実質的に流動性のない電解液とからなる酸素ガス再結
合による密閉式の電池であつて、前記電解液は鉛イオン
を捕捉する機能を有する物質を溶解、分散または懸濁さ
せた、ゲル状であることを特徴とする密閉鉛蓄電池。 2、鉛イオンを捕捉する機能を有する物質が、リグニン
系化合物およびその誘導体である、特許請求の範囲第1
項記載の密閉鉛蓄電池。
[Claims] 1. Oxygen gas regeneration consisting of positive and negative electrode plates using a lead alloy grid substantially free of antimony, a separator disposed between the electrode plates, and an electrolyte with substantially no fluidity. 1. A sealed lead-acid battery, characterized in that the electrolyte is in a gel-like state in which a substance having a function of capturing lead ions is dissolved, dispersed, or suspended. 2. Claim 1, wherein the substance having the function of capturing lead ions is a lignin compound or a derivative thereof.
Sealed lead-acid batteries as described in section.
JP62255928A 1987-10-09 1987-10-09 Sealed lead storage battery Pending JPH01100869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255928A JPH01100869A (en) 1987-10-09 1987-10-09 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255928A JPH01100869A (en) 1987-10-09 1987-10-09 Sealed lead storage battery

Publications (1)

Publication Number Publication Date
JPH01100869A true JPH01100869A (en) 1989-04-19

Family

ID=17285519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255928A Pending JPH01100869A (en) 1987-10-09 1987-10-09 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPH01100869A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910130A1 (en) * 1997-10-17 1999-04-21 Japan Storage Battery Company Limited Lead acid battery
WO2004105161A3 (en) * 2003-05-26 2005-06-16 Akiya Kozawa Lead-acid battery having an organic polymer additive and process of charging thereof
JP2007165273A (en) * 2005-11-17 2007-06-28 Gs Yuasa Corporation:Kk Anode for lead acid storage battery, and the lead acid battery using the anode
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151773A (en) * 1983-02-18 1984-08-30 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPS59157966A (en) * 1983-02-24 1984-09-07 Shin Kobe Electric Mach Co Ltd Sealed type lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151773A (en) * 1983-02-18 1984-08-30 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPS59157966A (en) * 1983-02-24 1984-09-07 Shin Kobe Electric Mach Co Ltd Sealed type lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910130A1 (en) * 1997-10-17 1999-04-21 Japan Storage Battery Company Limited Lead acid battery
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it
WO2004105161A3 (en) * 2003-05-26 2005-06-16 Akiya Kozawa Lead-acid battery having an organic polymer additive and process of charging thereof
JP2007165273A (en) * 2005-11-17 2007-06-28 Gs Yuasa Corporation:Kk Anode for lead acid storage battery, and the lead acid battery using the anode

Similar Documents

Publication Publication Date Title
CN111430667A (en) Negative electrode slurry, negative electrode plate, power battery and electric automobile
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US20060127764A1 (en) Electrochemical cells electrodes and binder materials for electrochemical cells electrodes
JPH01100869A (en) Sealed lead storage battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JPS5894770A (en) Leakage-less closed type lead battery
JP2021111445A (en) Lead-acid battery
JPH04188560A (en) Manufacture of negative electrode for non-aqueous electrolyte secondary battery
JP3047463B2 (en) Lead storage battery
JP2002100347A (en) Lead-acid battery
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
KR100433470B1 (en) Method of manufacturing inorganic gel electrolyte for lead-acid battery by adding of binding agent and the electrolyte
JPH0750616B2 (en) Lead acid battery
JP2000348715A (en) Manufacture of lead-acid battery
CN111416123A (en) Additive for improving performance of lead-acid storage battery positive lead plaster
JPS63190252A (en) Lead storage battery
JP2855677B2 (en) Sealed lead-acid battery
JPS6386272A (en) Sealed lead acid battery
JP2003100289A (en) Sealed lead acid battery and method of using the same
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP3582068B2 (en) How to charge lead storage batteries
JPH09219214A (en) Alkaline storage battery
JPH0412586B2 (en)