KR100475743B1 - R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법 - Google Patents

R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법 Download PDF

Info

Publication number
KR100475743B1
KR100475743B1 KR10-2002-0008353A KR20020008353A KR100475743B1 KR 100475743 B1 KR100475743 B1 KR 100475743B1 KR 20020008353 A KR20020008353 A KR 20020008353A KR 100475743 B1 KR100475743 B1 KR 100475743B1
Authority
KR
South Korea
Prior art keywords
thin film
ozone gas
magnetron sputtering
gas sensor
sno
Prior art date
Application number
KR10-2002-0008353A
Other languages
English (en)
Other versions
KR20020031360A (ko
Inventor
유광수
권정범
이동수
Original Assignee
유광수
권정범
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유광수, 권정범 filed Critical 유광수
Priority to KR10-2002-0008353A priority Critical patent/KR100475743B1/ko
Publication of KR20020031360A publication Critical patent/KR20020031360A/ko
Application granted granted Critical
Publication of KR100475743B1 publication Critical patent/KR100475743B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0039Specially adapted to detect a particular component for O3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

본 발명은 R.F. 마그네트론 스퍼터링법을 이용하여 알루미나 기판에 SnO2가 소량 첨가된 In2O3 박막을 증착한 반도체식 오존 가스센서와 그 제조방법에 관한 것으로, 저가이고 휴대 및 사용이 간편하며 초소형, 고감도를 지닌 장점이 있다. 이를 위하여 본 발명은 R.F. 마그네트론 스퍼터링법과 In2O3 박막을 이용한 것이 특징이다. 이는 기존 재료 및 제조방법(딥코팅, 스크린 프린팅법)에 의한 것보다 균질하고 초미립 입자크기에 의한 감지막의 비표면적 증가로 인하여 제한된 면적에서 감도를 향상시킬 수 있는 기술이다.
[색인어]
R.F. 마그네트론 스퍼터링법, In2O3 박막, 오존 가스센서

Description

R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존 가스센서 및 그 제조방법{In2O3 Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering and Their Fabrication Method}
본 발명은 오존 가스센서의 재료인 SnO2가 소량 첨가된 In2O3 박막을 R.F. 마그네트론 스퍼터링법으로 제조한 오존 가스센서와 그 제조방법에 대한 기술이다.
In2O3는 오존 가스센서의 재료로 널리 알려진 것으로 현재 많은 연구가 이루어지고 있는 물질이고 오존 감지에 있어서 우수한 선택성과 고감도의 특성을 나타낸다. 기존 오존 농도 측정에는 자외선 흡수법 등에 의한 정확한 오존 농도를 측정할 수 있지만 고가이며 운반 및 조작이 용이하지 못하기 때문에 범용적인 사용에는 한계가 있다. R.F. 마그네트론 스퍼터링법은 많이 사용되고 있는 기존 제조방법(딥코팅, 스크린 프린팅)에 비해 균질의 박막과 초미립 크기의 입자를 제조하여 감도를 더욱더 높일 수 있는 기술이다.
본 발명은 저농도의 오존 가스를 정확하게 감지하기 어려운 기존 반도체식 가스센서의 단점과 휴대하기 어렵고 고가인 자외선 흡수법 측정방법을 보완하기 위해 SnO2가 소량 첨가된 In2O3 물질을 타겟으로 사용하여 R.F. 마그네트론 스퍼터링법에 의하여 박막 센서를 제조하여 높은 감도와 휴대 용이 및 저가의 오존 가스센서를 제조하는데 주 목적이 있다.
본 발명의 특징은 SnO2가 소량 첨가된 In2O3 타겟을 사용하여 R.F. 마그네트론 스퍼터링법으로 박막 오존 가스센서를 제조하는 것인데, 균질하고 초미립 입자크기를 얻을 수 있다.
이하 다음과 같이 본 발명의 실시예에서 첨부된 도면과 함께 상세히 설명한다.
(실시예)
(가) 센서 제조
제반 제조공정은 도 1에 나타내었다. 기판재료는 알루미나(5.2 mm×10.2 mm×0.7 mm)를 사용했으며, 기판 앞면에 백금 전극을 형성하였고 기판 뒷면에는 백금박막을 사용하여 히터를 형성하였다. 센서의 구조는 도 2에 나타내었다.
위와 같은 기판에 전도성 페이스트를 이용하여 백금 리드선을 연결한 후, 500℃에서 30분 동안 열처리하여 부착하였다. 이상과 같이 준비된 기판위에 오존 가스 감지막으로 SnO2가 소량 첨가된 In2O3 박막을 RF 마그네트론 스퍼터링법으로 증착하였다. 증착조건은 다음과 같다.
Vacumm : 10-4 torr
RF power : 100 W
Sputtering time : 60 min.
이때 사용한 타겟(지름 2인치)의 조성은 5 중량%의 SnO2와 95 중량%의 In2O3 이었으며, 박막 증착시 기판의 온도는 300℃와 500℃이었다. 박막의 두께는 2000 Å정도였고, 시편의 일부를 공기 중 500℃에서 4시간동안 열처리를 하였다.
이렇게 만들어진 시편에 센서의 온도를 측정하기 K형 열전대를 세라믹 본드를 이용하여 기판 뒷면에 부착한 다음 150℃에서 3시간동안 오븐 속에 넣어 고정시켰다. 제조된 각각의 박막에 대하여 X-선회절분석기로 분석한 상분석 결과를 도 3에 나타내었다. 모두 In2O3 박막의 X-선 회절피크 (211), (222), (440)면이 나타났고 이것으로 보아 결정이 잘 형성되었음을 알 수 있었다. 그리고 SnO2의 X-선 회절피크가 나타나지 않은 것으로 보아 SnO2가 완전히 고용되었다.
(나) 박막의 표면 사진
도 4에 SnO2가 소량 첨가된 In2O3 박막의 표면 사진을 나타내었다. 4a와 b는 각각 기판온도 300℃에서 증착한 박막과 그 박막을 500℃에서 열처리 한 다음 주사전자현미경으로 찍은 미세구조이다. 큰 입자(grain)들과 작은 입자들이 혼재해 있고 기공(pore)이 많은 다공성 미세구조를 나타내었으며, 열처리 후 입자들이 약간 성장했지만 큰 차이는 없었다. 4c와 d는 각각 기판온도 500℃에서 증착한 박막과 그 박막을 500℃에서 열처리 한 다음의 미세구조이다. 미세구조는 기판온도 300℃에서 증착한 박막에 대한 열처리 전 ·후와 거의 비슷한 구조를 보였지만 열처리 후 작은 입자들의 성장으로 인해 큰 입자와 작은 입자 크기의 차이가 많이 줄어든 것을 볼 수 있고 이로 인해 기공율이 더 커졌다. 기공율의 증가는 오존가스와 SnO2 가 소량 첨가된 In2O3 박막 표면과의 접촉면을 넓게 하여 감도를 증가시켜 주었다.
(다) 오존 가스감도 특성
각각의 박막의 250℃ 작동온도에서 측정한 농도의 변화에 따른 오존 가스감도 특성 측정결과를 도5에 나타내었다. 이때, 가스감도는 오존가스 중에서의 센서저항/공기 중에서의 센서저항으로 하였다. 열처리를 하지 않은 박막보다 500℃에서 열처리한 박막의 감도가 높았으며, 300℃에서 증착한 박막이 500℃에서 증착한 박막보다 감도가 높았다. 이는 미세구조 관찰에서도 보았듯이 열처리로 인하여 기공율이 증가하여 가스와의 접촉 표면적이 증가하였기 때문으로 사료된다. 그리고 0.05 ppm의 낮은 농도에서도 낮지만 감응 특성을 확인할 수 있었다.
도 6에는 300℃에서 증착한 박막의 작동온도 변화에 따른 오존 가스에 대한 감도 특성을 나타내었다. 작동온도가 증가하면 감도는 감소하지만 오존 가스에 대한 센서의 응답특성이 빨라졌다. 350℃의 작동온도에서 반응시간은 약 30초 정도 걸렸지만 250℃에서는 약 2분 가량이 소요되었다. 또한 더 안정한 출력신호를 얻을 수 있었다. 본 발명의 실시예에서와 같이 제조한 SnO2가 소량 첨가된 In2O3 박막 오존 가스센서는 1 ppm 이하의 낮은 농도를 감지할 수 있는 우수한 센서로 사료된다.
SnO2가 소량 첨가된 In2O3 물질을 R.F. 마그네트론 스퍼터링법으로 제조한 오존 가스센서는 현재 상용화되어 있는 반도체식 오존센서에 비해 높은 감도와 자외선 흡수법 농도측정기에 비해 휴대하기 쉽고 가격이 낮다는 장점을 가지고 있다. 본 기술을 통하여 매우 낮은 농도의 가스도 감지가 가능한 고성능 가스센서의 제조와 초미립 세라믹 박막 제조기술확립에 기여할 것으로 기대된다.
도 1은 본 발명의 실시예에 따라 R.F. 마그네트론 스퍼터링법에 의한 SnO2가 소량 첨가된 In2O3 박막 오존 가스센서의 제조 공정도이다.
도 2는 본 발명의 실시예에 따라 제조한 센서의 구조이다.
도 3은 본 발명의 실시예에 따라 제조한 SnO2가 소량 첨가된 In2O3 박막의 X선회절도이다.
도 4는 본 발명의 실시예에 따라 제조한 SnO2가 소량 첨가된 In2O3 박막의 증착온도와 열처리 전·후의 미세구조를 비교한 주사전자현미경사진[a. 300℃에서 증착한 박막, b. 300℃에서 증착하여 500℃에서 열처리한 박막, c. 500℃에서 증착한 박막, d. 500℃에서 증착하여 500℃에서 열처리한 박막]이다.
도 5는 본 발명의 실시예에 따라 제조한 SnO2가 소량 첨가된 In2O3 박막 오존센서에 대하여 오존 농도 변화에 따른 감도 특성 나타낸 그래프이다.
도 6은 본 발명의 실시예에 따라 제조한 SnO2가 소량 첨가된 In2O3 박막 오존센서에 대하여 시간에 따른 감도의 변화를 나타낸 그래프이다.

Claims (2)

  1. 오존 가스센서용 감지막 재료는 SnO2가 1∼10 중량% 첨가된 In2O3를 감지물질로 하고, 구성요소는 알루미나 기판 뒷면에 히터 박막과 온도 측정을 위한 열전대가 형성되고 앞면에 전극과 감지막이 형성된 소자로 이루어졌으며, 250℃∼400℃의 작동온도에서 오존가스를 측정하는 것을 특징으로 하는 오존 가스센서.
  2. 오존 가스센서 제조방법을 R.F. 마그네트론 스퍼터링법으로 300℃∼500℃의 기판 온도에서 히터와 전극이 인쇄된 알루미나 기판에 2000 Å∼3000 Å 두께의 감지막을 증착시킨 다음 공기중 400℃∼600℃에서 열처리하는 것을 특징으로 하며, 구성요소는 알루미나 기판 뒷면에 히터 박막과 온도 측정을 위한 열전대가 형성되고 앞면에 전극과 감지막이 형성된 소자로 이루어졌으며, 250℃∼400℃의 작동온도에서 오존가스를 측정하는 것을 특징으로 한 오존 가스센서 제조방법.
KR10-2002-0008353A 2002-02-16 2002-02-16 R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법 KR100475743B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0008353A KR100475743B1 (ko) 2002-02-16 2002-02-16 R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0008353A KR100475743B1 (ko) 2002-02-16 2002-02-16 R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20020031360A KR20020031360A (ko) 2002-05-01
KR100475743B1 true KR100475743B1 (ko) 2005-03-15

Family

ID=19719281

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0008353A KR100475743B1 (ko) 2002-02-16 2002-02-16 R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR100475743B1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885929A (en) * 1987-10-08 1989-12-12 New Cosmos Electric Co. Ltd. Ozone gas sensor and ozone gas detecting device having ozone gas sensor
JPH0510909A (ja) * 1991-07-01 1993-01-19 Matsushita Electric Ind Co Ltd オゾンセンサ
JPH0682409A (ja) * 1992-09-03 1994-03-22 Matsushita Electric Ind Co Ltd オゾンセンサ
JPH08292167A (ja) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd オゾンセンサ
KR0172921B1 (ko) * 1996-11-15 1999-05-01 구자홍 오존측정용 후막가스센서의 제조방법
KR100236336B1 (ko) * 1997-12-04 1999-12-15 구자홍 산화물 반도체 후막형 오존센서 및 그의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885929A (en) * 1987-10-08 1989-12-12 New Cosmos Electric Co. Ltd. Ozone gas sensor and ozone gas detecting device having ozone gas sensor
JPH0510909A (ja) * 1991-07-01 1993-01-19 Matsushita Electric Ind Co Ltd オゾンセンサ
JPH0682409A (ja) * 1992-09-03 1994-03-22 Matsushita Electric Ind Co Ltd オゾンセンサ
JPH08292167A (ja) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd オゾンセンサ
KR0172921B1 (ko) * 1996-11-15 1999-05-01 구자홍 오존측정용 후막가스센서의 제조방법
KR100236336B1 (ko) * 1997-12-04 1999-12-15 구자홍 산화물 반도체 후막형 오존센서 및 그의 제조방법

Also Published As

Publication number Publication date
KR20020031360A (ko) 2002-05-01

Similar Documents

Publication Publication Date Title
Qu et al. A thin-film sensing element for ozone, humidity and temperature
Kreider et al. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides
Bondarenka et al. Thin films of poly-vanadium-molybdenum acid as starting materials for humidity sensors
Gong et al. Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance
Qu et al. Development of multi-functional sensors in thick-film and thin-film technology
Promsong et al. Thin tin-oxide film alcohol-gas sensor
US8132457B2 (en) Nano-porous alumina sensor
KR100475743B1 (ko) R.F. 마그네트론 스퍼터링법을 이용한 In2O3 박막 오존가스센서 및 그 제조방법
Panahi et al. Optimization of gas sensing performance of nanocrystalline SnO2 thin films synthesized by magnetron sputtering
Wisitsoraat et al. Ion-assisted e-beam evaporated gas sensor for environmental monitoring
RU2626741C1 (ru) Способ изготовления газового мультисенсора кондуктометрического типа на основе оксида олова
KR100776981B1 (ko) 표면 연마가 가능한 이리듐 산화물 복합재료 수소 이온 전극 및 그 제조방법
Ferreira et al. Nanostructured Cr (N, O) based thin films for relative humidity sensing
Bamsaoud et al. Nanosize SnO2 Based Tubular Resistive Gas Sensor for Hydrogen and Acetone Vapour
SU1569689A1 (ru) Датчик дл определени концентрации паров ацетона
RU2795666C1 (ru) Газоаналитический мультисенсорный чип на основе ZnO и способ его изготовления на основе золь-гель технологии
CN2148329Y (zh) 多孔硅湿敏传感器
Iken et al. Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors
KR100590305B1 (ko) 알코올 감지소자 및 그 제조방법
Polyakov et al. Surface phenomena of the thin diamond-like carbon films
KR100589660B1 (ko) 아이티오 박막 수소가스 감지소자 및 그 제조방법
JP3170909B2 (ja) ガス検出素子の製造法
Nisha et al. NO2 Gas Sensing Properties of In2O3 Thin Films Prepared by Pulsed D. C Magnetron Sputtering Technique
Patel et al. Synthesis of High Resistive BiFeO3 Thin Films for Ethanol Sensing Application Grown by PLD
Akram et al. Organic–Inorganic Composite Poly-N-Epoxypropylcarbazole-Nickel Phthalocynine-Cu2O Based Humidity Sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee