KR100446599B1 - Catalyst for purifying exhaust gas of automobiles - Google Patents

Catalyst for purifying exhaust gas of automobiles Download PDF

Info

Publication number
KR100446599B1
KR100446599B1 KR1019970056432A KR19970056432A KR100446599B1 KR 100446599 B1 KR100446599 B1 KR 100446599B1 KR 1019970056432 A KR1019970056432 A KR 1019970056432A KR 19970056432 A KR19970056432 A KR 19970056432A KR 100446599 B1 KR100446599 B1 KR 100446599B1
Authority
KR
South Korea
Prior art keywords
catalyst
carrier
oxide
exhaust gas
metal
Prior art date
Application number
KR1019970056432A
Other languages
Korean (ko)
Other versions
KR19990034738A (en
Inventor
박상철
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1019970056432A priority Critical patent/KR100446599B1/en
Publication of KR19990034738A publication Critical patent/KR19990034738A/en
Application granted granted Critical
Publication of KR100446599B1 publication Critical patent/KR100446599B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Abstract

PURPOSE: To provide a catalyst for purifying exhaust gas from cars, which shows excellent activity of suppressing oxidation of sulfur dioxide. CONSTITUTION: The catalyst comprising at least one of a cocatalyst selected from the group consisting of a transition metal, an alkaline earth metal and oxides thereof and a noble metal supported on a metal is characterized in that the carrier is an oxidative carrier that is prepared by impregnating at least one metal oxide selected from the group consisting of a chromium oxide, a zinc oxide and a magnesium oxide with a porous medium selected from a titanium dioxide or a zirconium dioxide.

Description

자동차 배기가스 정화용 촉매{Catalyst for purifying exhaust gas of automobiles}Catalyst for purifying exhaust gas of automobiles

본 발명은 자동차 배기가스 정화용 촉매에 관한 것으로서, 보다 상세하게는 황산화물에 대한 산화억제 활성을 나타낼 수 있는 자동차 배기가스 정화용 촉매에 관한 것이다.The present invention relates to a catalyst for automobile exhaust gas purification, and more particularly, to a catalyst for automobile exhaust gas purification that can exhibit oxidation inhibitory activity against sulfur oxides.

최근들어 전세계적으로 환경파괴에 대한 우려와 함께 환경보호에 대한 관심이 높아지고 있는데, 환경오염은 대기오염, 수질오염, 토양오염 등으로 대별될 수 있다.In recent years, there has been a growing concern about environmental protection along with concerns about environmental destruction. Environmental pollution can be roughly classified into air pollution, water pollution, and soil pollution.

이중, 특히 대기오염에 의한 현상으로는 염화불화수소(CFC)의 사용으로 인한 오존층의 파괴, 화석 연료를 사용할 때 발생하는 이산화탄소에 의한 지구 온실화 등을 들 수 있다. 또한, 각종 오염물질 배출시설로부터 배출되는 황산화물, 질소산화물, 탄화수소 등은 동식물에 각종 질병을 유발한다.In particular, the phenomenon due to air pollution includes the destruction of the ozone layer due to the use of hydrogen fluoride (CFC), the global greenhouse due to carbon dioxide generated when using fossil fuel. In addition, sulfur oxides, nitrogen oxides, hydrocarbons, and the like emitted from various pollutant discharge facilities cause various diseases to animals and plants.

대기오염은 주로 연소체로부터 발생되며 연소체의 배출시설 구조와 작동방법, 그리고 외부 기상조건 등에 의해 피해의 경중이 결정된다. 대표적인 연소체로는 자동차를 들 수 있다.Air pollution mainly comes from combustion bodies, and the severity of the damage is determined by the structure of the combustion facility, the method of operation, and external weather conditions. Representative combustion bodies include automobiles.

자동차는 다른 대기오염 배출시설과는 달리 움직이면서 오염물질을 배출한다는 특징을 가지고 있는데, 생활수준이 향상되면서 자동차 사용이 급속하게 증가됨에 따라 자동차로 인한 대기오염 문제가 심각해지고 있다.Unlike other air pollution emission facilities, cars emit pollutants while moving, and as the use of automobiles increases rapidly as living standards improve, the air pollution problem caused by cars becomes serious.

자동차 배기가스의 성분과 배출량은 엔진의 온도, 압력 및 공기의 비율에 관계가 있다. 즉, 엔진의 공연비(air/fuel ratio)를 적절히 조절함으로써 배기가스 정화효율을 높일 수 있다. 또한 배기가스 성분과 배출량은 사용되는 연료원과 정화장치의 종류에 의해서도 크게 좌우된다.The composition and emissions of automotive exhaust gases are related to the engine's temperature, pressure and proportion of air. That is, the exhaust gas purification efficiency can be improved by appropriately adjusting the air / fuel ratio of the engine. Exhaust gas components and emissions also depend largely on the type of fuel source and purification equipment used.

가솔린을 연료원으로 사용하는 스파크 점화식 엔진에 의해 구동되는 자동차에 대해서는 삼원 촉매와 같은 배기가스 제거 기술이 많이 개발되고 있어서, 가솔린 차량에 의한 오염물질의 배출은 현저하게 감소되고 있다.For automobiles driven by spark ignition engines using gasoline as a fuel source, many exhaust gas removal technologies such as three-way catalysts have been developed, and emissions of pollutants by gasoline vehicles have been significantly reduced.

이에 반해, 경유를 연료원으로 사용하는 디젤식 엔진은 열효율은 좋은 반면 악성 오염물질을 다량 배출하기 때문에 선진국에서는 그 사용을 규제하고 있다. 그러나, 아직도 많은 나라에서 트럭과 같은 대형차에 이러한 디젤식 엔진이 많이 장착되어 있다. 그럼에도 불구하고, 가솔린 자동차에 비해 경유를 사용하는 디젤 자동차의 배기가스를 정화시키는 기술은 매우 낙후된 상태여서 이에 대한 지속적인 연구가 요구되고 있다.In contrast, diesel engines using diesel as a fuel source have good thermal efficiency, but emit large amounts of malignant pollutants. However, many diesel engines such as trucks are still equipped in many countries. Nevertheless, compared to gasoline cars, the technology for purifying the exhaust gas of diesel vehicles using diesel is very poor, and continuous research is required.

경유를 사용하는 디젤 자동차는 사용되는 연료원의 성분 특성과 엔진 기관의구조적 특성이 가솔린 자동차와는 다르기 때문에 배출되는 오염물질의 성분도 다소 차이가 있는데, 일산화탄소 및 탄화수소의 배출량은 가솔린 자동차보다 적으나, 가솔린 자동차와는 달리 다량의 황산화물(SOx)과 입자상 물질을 배출한다.Diesel vehicles using diesel have slightly different pollutants than gasoline vehicles because the characteristics of the fuel source and engine engine are different from those of gasoline vehicles.The emissions of carbon monoxide and hydrocarbons are lower than those of gasoline vehicles. Unlike gasoline cars, they emit large amounts of sulfur oxides (SOx) and particulate matter.

특히, 경유 중에 다량 함유되어 있는 유황 성분이 문제가 되고 있는데, 유황 성분은 산소와 반응하여 이산화황을 배출한다.In particular, a sulfur component contained in a large amount in diesel oil is a problem, and the sulfur component reacts with oxygen to release sulfur dioxide.

그런데 현재 널리 사용되고 있는 촉매들은 각종 유해성분-미연소 탄화수소, 일산화탄소, 질소산화물, 가용성 유기물(SOF: soluble organic fraction) 등-에 대한 정화효율은 우수하지만 저온에서 이산화황을 다량 흡착한다는 단점이 있다. 이렇게 흡착된 이산화황은 350℃ 이상의 고온 분위기에서는 탈착되어 촉매 성분에 의해 산화되거나 또는 스스로 산화되어 삼산화황으로서 배출된다.However, currently widely used catalysts have excellent purification efficiency for various harmful components-unburned hydrocarbons, carbon monoxide, nitrogen oxides, soluble organic fractions (SOF), etc., but have a disadvantage of adsorbing large amounts of sulfur dioxide at low temperatures. The sulfur dioxide adsorbed in this way is desorbed in a high temperature atmosphere of 350 ° C. or higher and oxidized by the catalyst component or oxidized by itself and discharged as sulfur trioxide.

이렇게 배출되는 삼산화황은 수증기 등과 결합하여 황산을 만들어냄으로서 산성비의 폐해를 입히기고 하고, 그 자체가 결정 성장의 핵을 제공하여 입자상 물질의 생성을 증가시키기도 한다. 또한, 촉매에 피독인자로 작용하여 촉매 후처리 장치의 성능 저하를 촉진시키는 것은 물론 후처리 장치에 침착되어 배압증가 등의 폐해를 일으킨다.Sulfur trioxide released in this way causes sulfuric acid by combining with water vapor to cause acid rain, and itself provides a nucleus of crystal growth, thereby increasing the production of particulate matter. In addition, it acts as a poisoning factor to the catalyst to promote the deterioration of the performance of the catalyst aftertreatment device, as well as to be deposited on the aftertreatment device, causing a back pressure increase and the like.

따라서 촉매의 담체 및 활성 성분은 이산화황 분위기에서 안정해야 하고 이산화황을 산화시키지 않는 것이어야 한다.Thus, the carrier and active component of the catalyst must be stable in a sulfur dioxide atmosphere and must not oxidize sulfur dioxide.

본 발명이 이루고자 하는 기술적 과제는 이산화황에 대한 산화억제 활성이 우수한 자동차 배기가스 정화용 촉매를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a catalyst for purifying automobile exhaust gas having excellent oxidation inhibitory activity against sulfur dioxide.

본 발명의 기술적 과제는 전이금속, 알칼리 토금속 및 그들의 산화물로 이루어진 군으로부터 선택된 적어도 하나의 조촉매와 귀금속이 담체에 담지된 자동차 배기가스 정화용 촉매에 있어서, 상기 담체가 다공체에 지르코늄 산화물, 크롬 산화물, 알루미늄 산화물, 아연 산화물, 마그네슘 산화물 및 실리콘 산화물로부터 선택된 적어도 하나의 금속 산화물이 함침된 산화성 담체인 것을 특징으로 하는 자동차 배기가스 정화용 촉매에 의하여 달성될 수 있다.Technical problem of the present invention is a catalyst for automobile exhaust gas purification in which at least one promoter and a noble metal selected from the group consisting of transition metals, alkaline earth metals and oxides thereof are supported on a carrier, wherein the carrier is a zirconium oxide, chromium oxide, At least one metal oxide selected from aluminum oxide, zinc oxide, magnesium oxide and silicon oxide can be achieved by a catalyst for automobile exhaust purification, characterized in that it is an impregnated oxidative carrier.

본 발명에 따른 자동차 배기가스 정화용 촉매에 있어서, 상기 다공체로는 이산화티탄 또는 이산화지르코늄을 들 수 있으며, 상기 산화물의 함량은 다공체의 총량을 기준으로 하여 3-20중량%인 것이 바람직하다.In the catalyst for automobile exhaust gas purification according to the present invention, the porous body may include titanium dioxide or zirconium dioxide, and the content of the oxide is preferably 3-20% by weight based on the total amount of the porous body.

도 1은 종래의 담체 및 본 발명에 따라 산화성 담체에 대한 SO2 TPD(temperature Programmed Desorption) 테스트 결과를 나타낸 그래프이다.1 is a graph showing the results of a SO2 temperature programmed desorption (TPD) test for a conventional carrier and an oxidative carrier according to the present invention.

이산화황 가스는 매우 강한 산성을 나타내는 가스로서 저온에서 담체 표면에 흡착되어 있다가 고온이 되면 탈착되면서 산화한다. 그런데 담체의 표면이 강산성을 띄게 되면 저온에서의 이산화황의 흡착량이 감소하며, 결과적으로 고온에서의 탈착 및 삼산화황으로의 산화반응도 억제될 수 있다. 따라서, 이러한 원리를 이용하여 본 발명에서는 담체의 표면을 강산성화시킬 수 있는 물질을 함침시킨 산화성 담체를 제조함으로써 이산화황의 산화활성을 억제하였다.Sulfur dioxide gas is a gas having a very strong acidity, which is adsorbed on the surface of the carrier at low temperature and then oxidized when it is desorbed. However, when the surface of the carrier is strongly acidic, the amount of adsorption of sulfur dioxide at a low temperature is reduced, and as a result, desorption at high temperatures and oxidation to sulfur trioxide can be suppressed. Therefore, in the present invention using this principle, the oxidation activity of sulfur dioxide was suppressed by preparing an oxidizing carrier impregnated with a substance capable of strongly acidifying the surface of the carrier.

본 발명에서는 지르코늄 산화물, 크롬 산화물, 알루미늄 산화물, 아연 산화물, 마그네슘 산화물, 실리콘 산화물 등으로 다공체인 이산화티탄 또는 이산화지르코늄의 표면을 강산화성화시킨 산화성 담체를 채용함으로써 이산화탄소에 대한 산화억제 활성을 개선할 수 있다. 이렇게 얻어진 본 발명의 촉매는 입자상 물질의 증가, 촉매의 성능 열화, 산성비 유발 등을 방지할 수 있다.In the present invention, it is possible to improve the oxidation inhibitory activity on carbon dioxide by employing an oxidizing carrier that strongly oxidizes the surface of the porous titanium dioxide or zirconium dioxide with zirconium oxide, chromium oxide, aluminum oxide, zinc oxide, magnesium oxide, silicon oxide, and the like. Can be. The catalyst of the present invention thus obtained can prevent an increase in particulate matter, deterioration of the performance of the catalyst, induction of acid rain, and the like.

또한, 본 발명의 촉매는 통상의 담체를 채용하는 기존의 촉매에 비해 개선된 내열성을 나타내므로 고온에서도 안정적으로 촉매 활성을 발휘할 수 있다.In addition, the catalyst of the present invention exhibits improved heat resistance compared to conventional catalysts employing conventional carriers, and thus can stably exhibit catalytic activity even at high temperatures.

이러한 본 발명의 자동차 배기가스 정화용 촉매는 하기와 같은 통상의 방법에 따라 제조될 수 있다.The catalyst for purifying automobile exhaust gas of the present invention may be prepared according to a conventional method as follows.

먼저, 지르코늄, 크롬, 알루미늄, 아연, 마그네슘 및 실리콘중 적어도 하나의 질산염 수화물을 소정량의 증류수에 용해시킨다. 이 용액에 다공체를 넣고 교반하에 60-80℃의 온도로 가열하여 다공체의 세공 내에 지르코늄 산화물, 크롬 산화물, 알루미늄 산화물, 아연 산화물, 마그네슘 산화물 및 실리콘 산화물중 적어도 하나의 금속 산화물이 함침된 다공체 분말을 제조한다. 이 분말을 오븐에서 건조시킨후, 500-600℃에서 2-5시간 동안 소성하여 산화성 담체를 수득한다.First, at least one nitrate hydrate of zirconium, chromium, aluminum, zinc, magnesium and silicon is dissolved in a predetermined amount of distilled water. Into this solution, a porous body was heated to a temperature of 60-80 ° C. under stirring to obtain a porous powder impregnated with at least one metal oxide of zirconium oxide, chromium oxide, aluminum oxide, zinc oxide, magnesium oxide and silicon oxide in the pores of the porous body. Manufacture. The powder is dried in an oven and then calcined at 500-600 ° C. for 2-5 hours to obtain an oxidizing carrier.

다음으로, 이 산화성 담체에 전이금속, 알칼리 토금속 및 그의 산화물과 적어도 하나의 귀금속을 담지하여 최종 생성물인 촉매를 수득한다.Next, the oxidizing carrier is supported with transition metals, alkaline earth metals and oxides thereof and at least one precious metal to obtain a final product catalyst.

이하, 실시예를 들어 본 발명을 보다 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

담체의 제조Preparation of Carrier

비이커에 36.7937g의 질산알루미늄 수화물(Al(NO3)3·9H2O)을 넣고, 여기에 30g의 탈이온수를 넣어 질산알루미늄 수용액을 제조하였다. 이 용액에 100g의 TiO2을 넣고 교반하에 70℃로 가열하였다. 이어서, 120℃에서 12시간 동안 건조시킨 다음, 600℃에서 5시간 동안 소성하여 산화성 담체인 Al-TiO2를 제조하였다.36.7937 g of aluminum nitrate hydrate (Al (NO 3) 3 .9H 2 O) was placed in a beaker, and 30 g of deionized water was added thereto to prepare an aqueous aluminum nitrate solution. 100 g of TiO2 was added to the solution and heated to 70 ° C under stirring. Subsequently, the resultant was dried at 120 ° C. for 12 hours and then calcined at 600 ° C. for 5 hours to prepare Al-TiO 2, which is an oxidizing carrier.

제조된 담체에 대한 SO2 TPD (Temperature Programmed Desorption) 테스트SO2 Temporary Programmed Desorption (TPD) Test on Prepared Carrier

전술한 바와 같이 제조된 담체 1g을 반응관에 넣은후, 반응관 내에 He 가스를 1시간 동안 주입하였다. 이어서, 이 반응관에 SO2 가스를 100㎖/분의 속도로 30분 동안 주입한 다음, 다시 He 가스를 1시간 동안 공급하면서 온도를 5℃/분의 속도로 550℃까지 승온시켰다. 이때, SO2 분석기를 이용하여 SO2 가스의 흡, 탈착을 측정하였다. 그 결과를 도 1에 곡선 (a)로서 나타내었다.After putting 1 g of the carrier prepared as described above into the reaction tube, He gas was injected into the reaction tube for 1 hour. Subsequently, SO2 gas was injected into the reaction tube at a rate of 100 ml / min for 30 minutes, and then the temperature was raised to 550 ° C. at a rate of 5 ° C./min while He gas was supplied for 1 hour. At this time, the adsorption and desorption of the SO 2 gas was measured using an SO 2 analyzer. The result is shown in FIG. 1 as curve (a).

실시예 2Example 2

질산알루미늄 수화물 대신에 63.5947g의 질산마그네슘 수화물 (Mg(NO3)2·6H2O)을 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법을 사용하여 산화성 담체인 Mg-TiO2를 제조하였다. 이 담체에 대하여 실시예 1에서와 동일한 방법으로 SO2 TPD 테스트를 실시하고 그 결과를 도 1에 곡선 (b)로서 나타내었다.An oxidative carrier Mg-TiO 2 was prepared in the same manner as in Example 1 except for using 63.5947 g of magnesium nitrate hydrate (Mg (NO 3) 2 .6H 2 O) instead of aluminum nitrate hydrate. The carrier was subjected to the SO2 TPD test in the same manner as in Example 1, and the results are shown as curves (b) in FIG.

실시예 3Example 3

질산알루미늄 수화물 대신에 36.5535g의 질산아연 수화물(Zn(NO3)·6H2O)을 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법을 사용하여 산화성 담체인 Zn-TiO2를 제조하였다. 이 담체에 대하여 실시예 1에서와 동일한 방법으로 SO2 TPD 테스트를 실시하고 그 결과를 도 1에 곡선 (c)로서 나타내었다.An oxidative carrier Zn-TiO 2 was prepared in the same manner as in Example 1 except that 36.5535 g of zinc nitrate hydrate (Zn (NO 3) .6H 2 O) was used instead of the aluminum nitrate hydrate. This carrier was subjected to the SO2 TPD test in the same manner as in Example 1, and the results are shown as a curve (c) in FIG.

실시예 4Example 4

질산알루미늄 수화물 대신에 26.3218g의 질산마그네슘 수화물(Cr(NO3)3·9H2O)을 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법을 사용하여 산화성 담체인 Cr-TiO2를 제조하였다. 이 담체에 대하여 실시예 1에서와 동일한 방법으로SO2 TPD 테스트를 실시하고 그 결과를 도 1에 곡선 (d)로서 나타내었다.An oxidative carrier Cr-TiO 2 was prepared in the same manner as in Example 1 except that 26.3218 g of magnesium nitrate hydrate (Cr (NO 3) 3 .9H 2 O) was used instead of the aluminum nitrate hydrate. The carrier was subjected to the SO2 TPD test in the same manner as in Example 1, and the results are shown as curves (d) in FIG.

비교예Comparative example

TiO2에 대하여 실시예 1에서와 동일한 방법으로 SO2 TPD 테스트를 실시하여 그 결과를 도 1에 곡선 (e)로서 나타내었다.The SO 2 TPD test was performed on TiO 2 in the same manner as in Example 1, and the result is shown as a curve (e) in FIG. 1.

도 1의 결과로부터 알 수 있듯이, TiO2의 경우(비교예)에는 350℃ 근처에서 피크를 나타낸다. 이에 반하여, TiO2에 각각 Al, Mg, Zn, Cr을 첨가한 경우(실시예 1-4)에는 온도가 상승하여도 SO2 가스의 탈착량에 큰 변화가 없음을 알 수 있다. 즉, 종래의 TiO2 담체에 비해 본 발명에 따른 산화성 담체는 이산화황에 대한 산화억제 활성이 우수한 것으로 나타났다.As can be seen from the result of FIG. 1, in the case of TiO 2 (comparative example), a peak is shown at around 350 ° C. FIG. On the other hand, when Al, Mg, Zn, and Cr were added to TiO2, respectively (Example 1-4), it turns out that there is no big change in the desorption amount of SO2 gas even if temperature rises. That is, the oxidative carrier according to the present invention has been shown to have excellent oxidation inhibitory activity against sulfur dioxide, compared to the conventional TiO2 carrier.

본 발명에 따른 촉매는 이산화황에 대한 산화억제 활성이 우수하다. 따라서, 이산화황이 산화됨에 따라 수반되는 여러 가지 폐해, 예를 들면 산성비 유발, 입자상 오염 물질의 증가 등을 방지할 수 있다는 잇점이 있다.The catalyst according to the present invention has excellent oxidation inhibitory activity against sulfur dioxide. Therefore, there is an advantage that it is possible to prevent various adverse effects accompanying the oxidation of sulfur dioxide, for example, causing acid rain, increase in particulate contaminants, and the like.

Claims (2)

전이금속, 알칼리 토금속 및 그들의 산화물로 이루어진 군으로부터 선택된 적어도 하나의 조촉매와 귀금속이 담체에 담지된 자동차 배기가스 정화용 촉매에 있어서,In the catalyst for automobile exhaust gas purification in which at least one promoter and a precious metal selected from the group consisting of transition metals, alkaline earth metals and oxides thereof are supported on a carrier, 상기 담체가 이산화티탄 또는 이산화지르코늄으로부터 선택된 다공체에 크롬 산화물, 아연 산화물 및 마그네슘 산화물로부터 선택된 하나 이상의 금속 산화물이함침된 산화성 담체인 자동차 배기가스 정화용 촉매.A catalyst for purifying automobile exhaust gas, wherein the carrier is an oxidative carrier impregnated with at least one metal oxide selected from chromium oxide, zinc oxide and magnesium oxide in a porous body selected from titanium dioxide or zirconium dioxide. 제1항에 있어서, 상기 산화물의 함량이 다공체의 총량을 기준으로 하여 3-20중량%인 것을 특징으로 하는 자동차 배기가스 정화용 촉매.The catalyst for purifying automobile exhaust gas according to claim 1, wherein the content of the oxide is 3-20% by weight based on the total amount of the porous body.
KR1019970056432A 1997-10-30 1997-10-30 Catalyst for purifying exhaust gas of automobiles KR100446599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970056432A KR100446599B1 (en) 1997-10-30 1997-10-30 Catalyst for purifying exhaust gas of automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970056432A KR100446599B1 (en) 1997-10-30 1997-10-30 Catalyst for purifying exhaust gas of automobiles

Publications (2)

Publication Number Publication Date
KR19990034738A KR19990034738A (en) 1999-05-15
KR100446599B1 true KR100446599B1 (en) 2004-10-14

Family

ID=37362395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970056432A KR100446599B1 (en) 1997-10-30 1997-10-30 Catalyst for purifying exhaust gas of automobiles

Country Status (1)

Country Link
KR (1) KR100446599B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402430B1 (en) * 2000-10-26 2003-10-22 삼성엔지니어링 주식회사 Catalyst for decomposition of toxic pollutants and producing process thereof
KR100382051B1 (en) * 2000-12-29 2003-05-09 한국전력기술 주식회사 Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP4645786B2 (en) * 2001-06-08 2011-03-09 三菱自動車工業株式会社 Exhaust gas purification catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232250A (en) * 1984-05-02 1985-11-18 Matsushita Electric Ind Co Ltd Catalyst body for purifying exhaust gas
JPH03221144A (en) * 1990-01-24 1991-09-30 Cataler Kogyo Kk Exhaust gas purifying catalyst
KR920016139A (en) * 1991-02-05 1992-09-24 이데미쓰 쇼오스께 Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0857314A (en) * 1994-08-22 1996-03-05 Toyota Motor Corp Catalyst for purification of exhaust gas
JPH09225308A (en) * 1996-02-27 1997-09-02 Hitachi Ltd Exhaust gas purification catalyst for internal engine and exhaust gas treatment method
KR100210538B1 (en) * 1996-02-02 1999-07-15 와다 아끼히로 Catalyst for purifying exhaust gased and method for preparing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232250A (en) * 1984-05-02 1985-11-18 Matsushita Electric Ind Co Ltd Catalyst body for purifying exhaust gas
JPH03221144A (en) * 1990-01-24 1991-09-30 Cataler Kogyo Kk Exhaust gas purifying catalyst
KR920016139A (en) * 1991-02-05 1992-09-24 이데미쓰 쇼오스께 Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0857314A (en) * 1994-08-22 1996-03-05 Toyota Motor Corp Catalyst for purification of exhaust gas
KR100210538B1 (en) * 1996-02-02 1999-07-15 와다 아끼히로 Catalyst for purifying exhaust gased and method for preparing the same
JPH09225308A (en) * 1996-02-27 1997-09-02 Hitachi Ltd Exhaust gas purification catalyst for internal engine and exhaust gas treatment method

Also Published As

Publication number Publication date
KR19990034738A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
US6265342B1 (en) Catalyst for purification of exhaust gas from diesel engine
US6685899B1 (en) Catalyst and method for purifying exhaust gas from vehicle engines
KR100213183B1 (en) Catalyst for purifying exhaust gases of automobile and preparing method thereof
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
KR100446599B1 (en) Catalyst for purifying exhaust gas of automobiles
US5955046A (en) Catalytic material for removing nitrogen oxides apparatus for treating nitrogen oxides using the material, and method of removing nitrogen oxides
KR20030004345A (en) Method for Catalytic Reduction of Nitrogen Oxide Emissions
KR19980069257A (en) Catalyst for purification of automobile exhaust
KR100408511B1 (en) Catalyst for purifying exhaust gas of automobile and method for manufacturing the same
KR20000008359A (en) Catalyst for purifying vehicle exhaust gas
JPH09239276A (en) Exhaust gas cleaning catalyst
KR19990065512A (en) Catalyst for purification of automobile exhaust
KR100389900B1 (en) Catalyst for the purification of diesel exhaust gas
JPH01247710A (en) Purifying device for automobile exhaust
KR100408503B1 (en) Catalyst for purifying exhaus gas of vehicle
KR100892520B1 (en) Ruthenium and potassium containing nitric oxide storage and reduction catalyst
KR100455271B1 (en) Catalyst for purifying exhaust gas of automobiles and method for manufacturing the same
JP3446184B2 (en) Nitrogen oxide removal method
KR20000008360A (en) Catalyst for purifying vehicle exhaust gas
KR100588857B1 (en) Method for manufacturing catalyzed diesel particulate filter system
KR19990036569A (en) Catalyst for exhaust purification of automobile
KR19990071157A (en) Catalyst for purification of automobile exhaust
KR19990084403A (en) Catalyst for purification of automobile exhaust
JPH06154607A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
KR100892528B1 (en) Composition of nox storage-reduction catalyst containg potassium and manganese

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee