KR100417903B1 - Vapour barrier for use in the heat insulation of buildings - Google Patents

Vapour barrier for use in the heat insulation of buildings Download PDF

Info

Publication number
KR100417903B1
KR100417903B1 KR1019970707298A KR19970707298A KR100417903B1 KR 100417903 B1 KR100417903 B1 KR 100417903B1 KR 1019970707298 A KR1019970707298 A KR 1019970707298A KR 19970707298 A KR19970707298 A KR 19970707298A KR 100417903 B1 KR100417903 B1 KR 100417903B1
Authority
KR
South Korea
Prior art keywords
moisture
water vapor
proof layer
moisture proof
vapor diffusion
Prior art date
Application number
KR1019970707298A
Other languages
Korean (ko)
Other versions
KR19980703897A (en
Inventor
하르트비크 퀸첼
테오 그로스킨스키
Original Assignee
프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7759882&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100417903(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. filed Critical 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우.
Publication of KR19980703897A publication Critical patent/KR19980703897A/en
Application granted granted Critical
Publication of KR100417903B1 publication Critical patent/KR100417903B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/625Sheets or foils allowing passage of water vapor but impervious to liquid water; house wraps
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D12/00Non-structural supports for roofing materials, e.g. battens, boards
    • E04D12/002Sheets of flexible material, e.g. roofing tile underlay
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/30Orientation, displacement, position of the handled material
    • B65H2301/36Positioning; Changing position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/13Parts concerned of the handled material
    • B65H2701/131Edges
    • B65H2701/1313Edges trailing edge

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Braking Arrangements (AREA)
  • Lubricants (AREA)

Abstract

본 발명은 신축건물에서 또는 오래된 건물의 수리에서 열 절연수단으로 구체적으로 사용될 수 있는, 건물의 열 절연에서의 사용을 위한 방습층에 관한 것이다. 본 발명에 따른 방습층은 여기에서 다른 환경 조건하에서 수증기 확산을 실행할 수 있다. 이것은 주위습도에 의존하는 수증기 확산 저항을 가지고 게다가 적당한 인장강도 및 인열저항을 가지는 필수재료로서 사용되는 재료에 의해 달성된다.The present invention relates to a moisture proof layer for use in thermal insulation of buildings, which can be used specifically as a thermal insulation means in new buildings or in the repair of old buildings. The moisture barrier according to the invention is capable of carrying out water vapor diffusion under different environmental conditions here. This is achieved by a material used as an essential material which has a water vapor diffusion resistance depending on the ambient humidity and furthermore has a suitable tensile strength and tear resistance.

Description

건물의 열절연에서의 사용을 위한 방습층{VAPOUR BARRIER FOR USE IN THE HEAT INSULATION OF BUILDINGS}VAPOR BARRIER FOR USE IN THE HEAT INSULATION OF BUILDINGS

건물의 난방으로 인해 발생하는 이산화탄소의 방출을 감소시키기 위해, 열절연 수단은 신축건물의 건설공사에서 그리고 오래된 건물의 수리에서 실행된다. 건물의 소유주에 의해 계속하여 고려되어야 하는 경제적 이유때문에, 비용에대한 문제도 또한 고려되어야 한다. 더욱이, 건물의 외관은 마찬가지로 실제로 행해질 수 있는 것의 한계를 나타내는 중요한 요인이다. 그러므로, 예를들어 이런 종류의 열절연 수단은 내부에 있는 절연층을 통하여 보이는 골조를 가지는 건물에서만 실행될 수 있다. 또한 골조 목재에서의 허용가능한 수분량이 가능한 수증기의 확산에 의해 그리고 또한 방을 향한 방습층에 의해 특히 동절기 조건하에서 보장되어야 한다. 이와 반대로, 하절기에 목재기둥과 마개벽돌사이의 접합부를 통하여 침투하는 강우수분은 또한 골조로 이용된 목재의 긴 수명을 보장하기 위해, 또한 내부로 향하여 완전히 건조될 수 있어야 한다.In order to reduce the emissions of carbon dioxide caused by the heating of buildings, thermal insulation means are carried out in the construction of new buildings and in the repair of older buildings. Because of the economic reasons that must continue to be considered by the owner of the building, the question of cost must also be considered. Moreover, the appearance of the building is likewise an important factor in indicating the limitations of what can actually be done. Thus, for example, this kind of thermal insulation means can only be implemented in buildings having a framework visible through the internal insulation layer. The allowable amount of moisture in the framing wood should also be ensured by possible diffusion of water vapor and also by the moisture barrier towards the room, especially under winter conditions. In contrast, the rainwater that penetrates through the joint between the timber column and the stopper brick in the summer should also be able to completely dry inwards to ensure the long life of the timber used as the framework.

또한 유사한 어려움이 방수 정면덮개(예를들어 널깔개상의 루우핑 건재)가 있는 큰 피치의 지붕에서의 이어지는 완전한 서까래절연에서 발생한다. 그래서 Fraunhofer Institut fur Bauphysik에 의해 실행된 시험은 방습층이 확산-당량 공기층 두께(diffusion-equivalent air-layer thickness) 10m 보다 작은 수증기 확산저항값(water vapour diffusion resistance)(Sd-값)으로 내부에 적용되는 경우, 특히 북쪽으로 향한 지붕에서, 하절기에 널깔개가 건조하는 정도가 해롭지 않은 목재수분상태를 달성하기에 충분하지 않은 것으로 나타났다. 그러므로 방을 향해 적용되는 방습층은 더 이상 적당한 정도로 예를들어 대류에 의해 야기되는 수분의 축적을 제거할 수 없다.Similar difficulties also arise in the subsequent complete rafter insulation on large pitch roofs with waterproof faceplates (eg roofing roofing construction). Thus, tests conducted by Fraunhofer Institut fur Bauphysik applied the moisture barrier internally with a water vapor diffusion resistance (S d -value) of less than 10 m of diffusion-equivalent air-layer thickness. In the summer, especially on the north facing roof, the degree of drying of the planks was not found to be sufficient to achieve a harmless wood moisture condition. Therefore, the moisture barrier layer applied towards the room can no longer eliminate to a moderate degree the accumulation of moisture, for example caused by convection.

본 발명은 건물의 열절연에서의 사용을 위한, 특히 신축건물에서의 그리고 오래된 건물의 수리에서의 열절연 수단을 위한, 방을 향해 배치되는 방습층에 관한 것이다.The present invention relates to a moisture proof layer arranged towards a room for use in the thermal insulation of buildings, in particular for thermal insulation means in new buildings and in the repair of old buildings.

도 1은 평균상대습도에 의존하여 제시된 방습층의 확산-당량 공기층 두께(Sd-값)의 결과를 나타내며,FIG. 1 shows the results of the diffusion-equivalent air layer thickness (S d − value) of the moisture proof layer given depending on the average relative humidity,

도 2는 종래의 방습층과 습도 대응형 방습층이 있는 서까래사이 절연물의 설치후의 습도의 거동을 나타낸다.2 shows the behavior of humidity after installation of an insulator between a conventional moisture barrier and a rafter with a humidity-sensitive moisture barrier.

이러한 공지된 단점에서 기인하여, 본 발명의 목적은 용도가 늘 바뀌는 다른조건들에서 수분에 의한 사용된 건재의 손상을 가능한한 크게 방지하게 되는 것과 같은 건물요소와 대기 사이의 수증기 확산을 보장할 수 있는 방을 향해 배치되는 방습층을 만드는 것이다. 이 목적은 청구항 제 1항의 특징부에 언급한 특징에 의해 본 발명에 따라 달성된다.Due to these known disadvantages, the object of the present invention is to ensure the diffusion of water vapor between building elements and the atmosphere, such as to prevent as much as possible damage to the used building materials by moisture under different conditions of ever-changing use. It is to create a moisture barrier that is placed towards the room where it is located. This object is achieved according to the invention by the features mentioned in the characterizing part of claim 1.

본 발명의 더 이상의 개선점 및 구체예는 종속항들에 언급된 특징의 적용에서 나타난다.Further developments and embodiments of the invention emerge from the application of the features mentioned in the dependent claims.

본 발명에 따라, "습도 대응형 방습층"이라고도 칭할 수 있는, 방을 향해 적용되는 방습층은 필수 재료로서 주위습도에 의존하는 수증기 확산 저항값(Sd-값)을가지며 건설중인 건물에 이용될 수 있도록 충분한 인장강도 및 압축강도를 가지는 재료를 사용한다.In accordance with the present invention, a moisture proof layer applied towards the room, which may also be referred to as a "humidity-adaptive moisture proof layer", is an essential material and can be used in buildings under construction with a water vapor diffusion resistance value (S d -value) depending on the ambient humidity. Use materials with sufficient tensile and compressive strength.

필름형태로서 또는 캐리어 재료상의 코팅으로서 방습층으로 이용되는 재료는 방습층을 둘러싼 대기의 상대습도가 30% 내지 50%범위인 경우에 확산-당량 공기층 두께가 2 내지 5m인 수증기 확산 저항값(Sd-값)을 가져야 하고, 방습층을 둘러싼 대기의 상대습도가 하절기에 전형적인 습도, 60% 내지 80%인 경우에 확산 당량 공기층 두께가 1m 보다 작은 수증기 확산 저항값(Sd-값)을 가져야 한다.The material used as the moisture barrier layer in the form of a film or as a coating on the carrier material has a water vapor diffusion resistance value (S d −) with a diffusion-equivalent air layer thickness of 2 to 5 m when the relative humidity of the atmosphere surrounding the moisture barrier is in the range of 30% to 50%. Value), and the diffusion equivalent air layer thickness (S d -value) of less than 1 m when the relative humidity of the atmosphere surrounding the moisture barrier is typical humidity, 60% to 80% in summer.

이로 인해 하절기 조건하에서 보다 동절기 조건하에서 더 높은 수증기 확산저항이 달성된다. 이런 방법으로, 하절기의 건조과정은 사용된 재료 및 건물자체에 손상을 야기할 수 있는 값을 가질 수 있는 동절기 조건하에서의 수분 공급없이 유리하게 진행될 수 있다.This achieves higher water vapor diffusion resistance under winter conditions than under summer conditions. In this way, the drying process in summer can advantageously proceed without water supply under winter conditions, which can have a value which can cause damage to the materials used and the building itself.

현 시점에서의 기술적 수준의 단점이 이미 언급된 이용분야에 더하여, 본 발명은 금속지붕에 또는 목재기둥 건설에 또한 사용될 수 있고 열절연의 개선에 더하여, 건물비용 절감을 가져올 수 있다.In addition to the applications already mentioned, at the present time the disadvantages of the technical level, the present invention can also be used in the construction of metal roofs or wooden pillars and in addition to the improvement of the thermal insulation, can lead to savings in building costs.

원하는 성질을 가지는 방습층을 위한 재료로서, 예를 들어 BIEDERBICK, K., "Kunststoffe-kurz und bundig", Vogel-Verlag Wurzburg로부터 상세히 공지된 것처럼 나일론6, 나일론4, 또는 나일론3을 사용할 수 있다. 이 나일론들은 필름으로서 삽입되고 본질적으로 수증기확산 저항에 관하여 요구되는 특성을 가진다. 더욱이, 그것들은 건물에서의 사용을 위해 필요한 강도를 가지고, 그러므로 다른 추가적 비용없이 사용될 수 있다. 필름 두께는 10㎛ 내지 2mm의 범위일 수 있고, 바람직하게는 20㎛ 내지 100㎛의 범위이다.As the material for the moisture barrier having the desired properties, for example, nylon 6, nylon 4, or nylon 3 can be used as is known in detail from BIEDERBICK, K., "Kunststoffe-kurz und bundig", Vogel-Verlag Wurzburg. These nylons are inserted as films and have essentially the required properties with regard to water vapor diffusion resistance. Moreover, they have the strength required for use in buildings and therefore can be used without other additional costs. The film thickness can range from 10 μm to 2 mm, preferably from 20 μm to 100 μm.

그러나 충분한 강도를 가지지 않은 다른 재료도 사용될 수 있고 적당한 캐리어 재료에 적용될 수 있다. 캐리어 재료는 바람직하게는 낮은 수증기 확산 저항값(Sd)을 가지고 본 발명에 따라 요구되는 방습층의 특성은 본질적으로 코팅에 의해 구비된다.However, other materials that do not have sufficient strength may be used and may be applied to suitable carrier materials. The carrier material preferably has a low water vapor diffusion resistance value S d and the properties of the moisture barrier layer required according to the invention are essentially provided by the coating.

예를들어, 종이 웹과 같은 섬유강화 셀룰로로오스 재료, 합성 섬유 스펀 직물로 만들어진 필름 또는 심지어 천공된 폴리에틸렌 필름들이 캐리어 또는 캐리어들을 위한 재료로서 사용될 수 있다.For example, fiber reinforced cellulose materials such as paper webs, films made of synthetic fiber spun fabrics, or even perforated polyethylene films can be used as the material for the carrier or carriers.

재료는 또한 캐리어 재료상에 코팅으로서 존재할 수 있다. 코팅은 캐리어 재료의 한면에 적용될 수 있고 또한 특별한 경우 샌드위치처럼 두층의 캐리어 사이에 수용될 수 있다. 후자의 경우, 코팅재료는 기계적 마모에 대하여 양면으로부터 효과적으로 보호되고 그러므로 장기간에 거쳐 원하는 수증기 확산을 보장할 수 있다. 한층위에 다른 한 층을 깔아서 여러층 구조를 구성할 수 있다.The material may also be present as a coating on the carrier material. The coating can be applied to one side of the carrier material and can also be received between two layers of carriers, in particular cases like sandwiches. In the latter case, the coating material is effectively protected from both sides against mechanical wear and therefore can guarantee the desired water vapor diffusion over a long period of time. Multiple layers can be constructed by laying one layer on top of another.

캐리어 재료의 코팅을 위하여 다른 물질 및 재료가 사용될 수 있다. 그러므로 예를들어, 변성된 폴리비닐알콜과 같은 중합체가 적절한 코팅방법으로 적용될 수 있다. 여기에서 DIN 52615(단열 시험법의 독일 국내 표준; 건축 단열재의 수증기 불투과성 측정)에 따라 측정된 수증기 확산 저항값(Sd)은 건조한 환경과 습한 환경사이에서 10의 곱절이상 몇곱절로 변화한다.Other materials and materials may be used for the coating of the carrier material. Therefore, for example, a polymer such as modified polyvinyl alcohol can be applied by an appropriate coating method. The water vapor diffusion resistance value (S d ), measured according to DIN 52615 (German national standard for thermal insulation test; measurement of water vapor impermeability of building insulation), varies between multiples of more than 10 multiples between dry and wet environments. .

수증기 확산 저항값(Sd)은 확산-당량 공기층 두께로 정의된다. 수증기 확산 저항값(Sd)은 두께 S 의 재료와 동일한 수증기 확산 투과성 저항을 가지는 공기층의 두께(m)를 말한다. 이를 식으로 표현하면, 다음과 같다.The water vapor diffusion resistance value S d is defined as the diffusion-equivalent air layer thickness. The water vapor diffusion resistance value S d refers to the thickness m of the air layer having the same water vapor diffusion permeation resistance as the material of thickness S. If this is expressed as an equation, it is as follows.

수증기 확산 저항값(Sd) = 수증기 확산 저항지수(μ)·재료의 두께(S) (단위: m)Water vapor diffusion resistance value (S d ) = Water vapor diffusion resistance index (μ) and material thickness (S) (unit: m)

상기식에서, 수증기 확산 저항 지수(μ)는 공기의 수증기 확산 전도율 계수와 관심있는 재료의 대응하는 전도율 지수이고, 두께 S를 가지는 재료의 확산 투과성 저항(방습성)이 동일한 두께와 동일한 온도를 가지는 정지상태 공기층의 확산 투과성 저항(방습성)보다 몇 배 더 큰지를 나타내는 지수이다. 여기서, 수증기 확산 전도율은 수증기 분압 구배하에서, 면적, 시간 및 압력 구배 단위당 재료를 통해 확산하는 재료내에 존재하는 수증기 질량이다.(단위:kg/(m·h·Pa)).Where the water vapor diffusion resistance index (μ) is the water vapor diffusion conductivity coefficient of air and the corresponding conductivity index of the material of interest, and the stationary state where the diffusion permeability resistance (moisture resistance) of the material having thickness S has the same thickness and the same temperature It is an index indicating how many times larger than the diffusion permeability resistance (moisture resistance) of an air layer. Here, the vapor diffusion conductivity is the mass of water vapor present in the material that diffuses through the material per unit of area, time and pressure gradient under the partial pressure gradient of steam (unit: kg / (m · h · Pa)).

또한, 분산 합성수지, 메틸셀룰로오스, 아마씨유 알키드수지, 뼈아교 또는 단백질 유도체도 캐리어의 코팅재료로 사용될 수 있다.In addition, dispersed synthetic resin, methyl cellulose, flaxseed oil alkyd resin, bone glue or protein derivatives may also be used as the coating material of the carrier.

캐리어 재료가 한 면에 코팅되는 경우, 이 코팅은 기계적 영향에 대하여 보호가 필요하지 않거나 거의 필요하지 않는 면에 적용될 수 있다. 본 발명에 따른 방습층의 설치는 이 경우에 보호 캐리어 재료가 공간으로 향하는 면쪽으로 보이는 또는 공간으로부터 돌려진 면쪽으로 보이는 방법으로 행해질 수 있다.If the carrier material is coated on one side, this coating can be applied to the side which requires little or no protection against mechanical influence. The installation of the moisture barrier layer according to the invention can in this case be done in such a way that the protective carrier material is seen towards the face towards the space or towards the face turned from the space.

본 발명은 실시예에 의해 아래에 상세히 기술될 것이다.The invention will be described in detail below by way of examples.

본 발명에 따른 방습층은 여기에서 나일론6으로 구성되는 필름으로만 형성된다. 실험을 50㎛ 두께의 필름으로 실행하였다. 사용된 나일론6 필름은 독일켐프텐의 MF-Folien GmbH사에 의해 현재 제조되고 있다.The moisture proof layer according to the invention is here formed only of a film consisting of nylon 6. The experiment was carried out with a 50 μm thick film. The nylon 6 film used is currently manufactured by MF-Folien GmbH, Kempten, Germany.

(실험실 시험에서의 흡습성 거동)(Hygroscopic Behavior in Laboratory Tests)

습도 대응형 방습층의 수증기 확산 저항값(Sd)을 DIN 52 615에 따라 (33∼50% 및 50∼75%상대습도)사이의 두 습한 지역에서 뿐만아니라 건조지역(3∼50% 상대습도)에서 그리고 습한지역(50∼93%상대습도)에서 측정하였다. 50㎛ 두께의 방습층의 확산-당량 공기층 두께(Sd-값)에 대한 결과는 시험에서 유력한 평균상대습도에 의존하여 도 1에 제시된다. 건조지역에서와 습한지역에서의 Sd-값의 차이는 10의 곱절이상 몇곱절이어서 동절기에 30%에서 50%사이로 변화하고 하절기에 대략 60%에서 70%사이로 변화하는 실제 대기 조건하에서 확산기류가 방습층에 의해 명확하게 조절될 수 있는 것이 기대될 수 있다.The water vapor diffusion resistance value (S d ) of the humidity-resistance moisture barrier is not only in two humid areas between 33-50% and 50-75% relative humidity, but also in dry areas (3-50% relative humidity) according to DIN 52 615. And in humid areas (50-93% relative humidity). The results for the diffusion-equivalent air layer thickness (S d -value) of the 50 μm thick moisture barrier are shown in FIG. In dry and wet areas, the difference in S d -values is more than 10 multiply by several times, varying from 30% to 50% in winter and from about 60% to 70% in summer, with the diffusion airflow under actual atmospheric conditions. It can be expected that it can be clearly controlled by the moisture barrier.

(실제 적용의 예)(Example of actual application)

수학적 시험은 10cm 내지 20cm두께의 광물섬유로 만들어진 완전한 서까래 사이의 절연물 설치후의 방수성 2차 지붕이 있는 큰 피치의 지붕이 방을 향한 방습층에도 불구하고 몇년이내에 매우 습하게 되어 손상을 피할 수 없게 될 수 있는 것으로 나타났다. 그 상황은 예를들어, 동시에 북쪽방위를 통한 단파복사열 이득이 상대적으로 낮을때 1월의 50% 상대습도와 7월의 70%상대 습도사이에서 변화하는 높은 대기 습도때문에 특히 위험하다. Holzkirchen의 기후조건하에서 그런 건축물의 장기수분균형에 대한 습도 대응형 방습층의 작용은 그러므로 실험에서 이미 몇차례 증명되었던 방법의 도움으로 하위로 평가된다.Mathematical tests have shown that large pitch roofs with waterproof secondary roofs after installation of insulators between complete rafters made of 10 cm to 20 cm thick mineral fibers will become very moist within a few years, despite the moisture barriers facing the room, which can inevitably damage them. Appeared to be. The situation is particularly dangerous, for example, because of the high atmospheric humidity that varies between 50% relative humidity in January and 70% relative humidity in July when the shortwave radiation gains through the north direction are relatively low. Under Holzkirchen's climatic conditions, the action of the humidity-responsive moisture barrier on the long-term moisture balance of such a building is therefore assessed downside with the help of methods that have already been demonstrated several times in the experiment.

북쪽으로 향하고 널깔개, 역청펠트 및 타일커버링이 있고, 지붕이 그 주변환경과 흡습성 평형에 있는 비절연 높은 피치지붕으로부터 기인하여, 종래의 방습층이 있는 서까래 사이 절연물의 설치후의 습도의 거동과 방을 향한 습도 대응형 방습층이 있는 서까래 사이 절연물의 설치후의 습도의 거동이 도 2에 제시된다. 10년의 기간에 걸쳐, 지붕내에서 전체에 걸친 습도의 추이가 위에 표시되고 있고 널깔개의 목재수분의 차이가 아래에 표시되어 있다. 종래의 방습층이 있는 지붕에서의 습도가 관련장기간 동안 이루어짐이 당연한 목재수분값(>20 M.-%)이 이미 첫번째 1년내에 발생함과 함께 계절적 변동과 더블어 빠르게 상승하는 반면, 습도 대응형 방습층이 있는 지붕에서는 수분의 축적을 발견할 수 없다. 거기에서 하절기에 목재수분은 일정하게 20M-%이하로 떨어져서, 여기에 수분에 의한 손상의 우려가 없다.Humidity behavior and room after installation of insulators between rafters with conventional moisture barriers, due to non-insulated high pitch roofs facing north and with roof covering, bitumen felt and tile covering, the roof being in equilibrium with its surroundings and hygroscopicity. The behavior of humidity after installation of the insulation between the rafters with the humidity-adaptive moisture proof layer facing is shown in FIG. 2. Over the 10-year period, the trend of total humidity in the roof is shown above and the difference in plank wood moisture is shown below. Humidity-responsive moisture barriers, while the moisture in roofs with conventional moisture barriers is expected to occur over the relevant period of time (> 20 M .-%), which already occurs within the first year and rises rapidly with seasonal fluctuations. Accumulation of moisture is not found in the roof. From there, the wood moisture drops to 20 M-% or less constantly, and there is no fear of water damage here.

습도 대응형 방습층은 그러므로 오래된 건물에 손상의 큰 위험 없이 큰 피치의 지붕의 절연의 가능성을 열고 있다.Humidity-adaptive moisture barriers therefore open up the possibility of insulation of large pitch roofs without great risk of damage to older buildings.

Claims (10)

건물의 열 절연에서의 사용을 위한 방을 향해 배치되는 방습층에 있어서, 방습층의 적어도 일부분이 주위습도에 의존하는 수증기 확산 저항값(Sd)을 가지는 재료로 형성되고, 단, 재료는 방습층을 둘러싸는 대기의 상대습도가 30% 내지 50%범위인 경우에 확산-당량 공기층 두께가 2 내지 5m 인 수증기 확산 저항값(Sd-값)을 가지고, 상대습도가 60% 내지 80%의 범위인 경우에, 확산-당량 공기층 두께가 1m 미만인 수증기 확산 저항값(Sd-값)을 가지는 것을 특징으로 하는 방습층.In a moisture proof layer disposed towards a room for use in thermal insulation of a building, at least a portion of the moisture proof layer is formed of a material having a water vapor diffusion resistance value S d depending on the ambient humidity, provided that the material surrounds the moisture proof layer. Has a water vapor diffusion resistance value (S d -value) with a diffusion-equivalent air layer thickness of 2 to 5 m when the relative humidity of the air is in the range of 30% to 50%, and the relative humidity is in the range of 60% to 80%. The vapor barrier has a water vapor diffusion resistance value (S d -value) of which the diffusion-equivalent air layer thickness is less than 1 m. 제 1 항에 있어서, 재료가 필름인 것을 특징으로 하는 방습층.The moisture proof layer of Claim 1 whose material is a film. 제 2 항에 있어서, 필름이 나일론6, 나일론4 또는 나일론3으로부터 선택되는 것을 특징으로 하는 방습층.3. The moisture barrier layer according to claim 2, wherein the film is selected from nylon 6, nylon 4 or nylon 3. 제 2 항에 있어서, 필름이 10㎛ 내지 2mm의 두께를 가지는 것을 특징으로 하는 방습층.3. The moisture barrier layer according to claim 2, wherein the film has a thickness of 10 µm to 2 mm. 제 3 항에 있어서, 필름이 20㎛ 내지 100㎛의 두께를 가지는 것을 특징으로 하는 방습층.The moisture proof layer according to claim 3, wherein the film has a thickness of 20 µm to 100 µm. 제 1 항에 있어서, 재료가 캐리어 재료에 적용된 중합체 코팅인 것을 특징으로 하는 방습층.The moisture barrier of claim 1, wherein the material is a polymer coating applied to a carrier material. 제 6 항에 있어서, 중합체 코팅을 위한 중합체가 폴리비닐알콜, 분산합성수지, 메틸셀룰로오스, 아마씨유 알키드 수지, 뼈아교 또는 단백질 유도체로부터 선택되는 것을 특징으로 하는 방습층.7. Moisture proof layer according to claim 6, wherein the polymer for the polymer coating is selected from polyvinyl alcohol, dispersion synthetic resin, methylcellulose, linseed oil alkyd resin, bone glue or protein derivative. 제 1 항 내지 제 7 항 중 어느 한항에 있어서, 재료가 낮은 수증기 확산 저항값(Sd)을 가지는 캐리어 재료에 코팅으로서 적용되는 것을 특징으로 하는 방습층.8. Moisture proof layer according to any of the preceding claims, wherein the material is applied as a coating to a carrier material having a low water vapor diffusion resistance value (S d ). 제 1 항 내지 제 7 항 중 어느 한항에 있어서, 재료가 낮은 수증기 확산 저항값(Sd)을 가지는 캐리어 재료의 두층사이에 샌드위치처럼 수용되는 것을 특징으로 하는 방습층.8. Moisture proof layer according to any one of the preceding claims, characterized in that the material is contained as a sandwich between two layers of carrier material having a low water vapor diffusion resistance value (S d ). 제 1 항 내지 제 7 항 중 어느 한항에 있어서, 캐리어 재료가 섬유 강화 셀룰로오스 재료로부터 선택되는 것을 특징으로 하는 방습층.8. The moisture barrier layer according to any one of claims 1 to 7, wherein the carrier material is selected from fiber reinforced cellulose materials.
KR1019970707298A 1995-04-19 1996-04-18 Vapour barrier for use in the heat insulation of buildings KR100417903B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19514420A DE19514420C1 (en) 1995-04-19 1995-04-19 Vapor barrier for use in the thermal insulation of buildings
DE19514420.1 1995-04-19
PCT/DE1996/000705 WO1996033321A1 (en) 1995-04-19 1996-04-18 Vapour barrier for use in the heat insulation of buildings

Publications (2)

Publication Number Publication Date
KR19980703897A KR19980703897A (en) 1998-12-05
KR100417903B1 true KR100417903B1 (en) 2004-05-27

Family

ID=7759882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970707298A KR100417903B1 (en) 1995-04-19 1996-04-18 Vapour barrier for use in the heat insulation of buildings

Country Status (25)

Country Link
EP (1) EP0821755B1 (en)
JP (1) JP4471403B2 (en)
KR (1) KR100417903B1 (en)
CN (1) CN1082122C (en)
AT (1) ATE197832T1 (en)
AU (1) AU695567B2 (en)
BR (1) BR9608141A (en)
CA (1) CA2215502C (en)
CZ (1) CZ292207B6 (en)
DE (2) DE19514420C1 (en)
DK (1) DK0821755T3 (en)
EA (1) EA000491B1 (en)
EE (1) EE03622B1 (en)
ES (1) ES2153958T3 (en)
HU (1) HU221558B (en)
MX (1) MX9707769A (en)
NO (1) NO308548B1 (en)
NZ (1) NZ305338A (en)
PL (1) PL188198B1 (en)
RO (1) RO116102B1 (en)
SI (1) SI0821755T1 (en)
SK (1) SK284896B6 (en)
TR (1) TR199701201T1 (en)
UA (1) UA28098C2 (en)
WO (1) WO1996033321A1 (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29611626U1 (en) * 1996-07-04 1996-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80636 München Barrier to prevent air convection and pollutant emissions
DE29704323U1 (en) * 1997-02-26 1997-05-15 Textec Construct GmbH Technische Textilien und Werkstoffe, 16321 Lindenberg Sealing tape / sealing membrane as a connecting element in the construction industry
DE19902102B4 (en) * 1998-06-15 2007-07-05 Ökologische Bausysteme B.I. Moll GmbH & Co. KG Composite material
EP1002738B1 (en) * 1998-11-19 2005-05-18 Deutsche Rockwool Mineralwoll GmbH & Co. OHG Storage and transport unit for insulating elements
DE19861057C2 (en) * 1998-11-19 2002-09-12 Rockwool Mineralwolle Storage and transport unit for insulation elements
WO2000037751A1 (en) * 1998-12-21 2000-06-29 Icopal A/S A water vapour barrier and a method of making the same
EP1161394B1 (en) * 1999-03-18 2003-11-12 Océ Printing Systems GmbH Method and device for aligning individual sheets in a sheet processing machine
DE19913496C5 (en) 1999-03-25 2021-09-09 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Floor insulation element
EP1111144A1 (en) * 1999-12-23 2001-06-27 Fa. IFKo - Internationale Franchise Konzepte, Unternehmensberatungs- und Beteiligungsges. mbH Deutschland Building construction for decreasing heat loss in rooms
AUPQ707900A0 (en) 2000-04-20 2000-05-18 Hutton, Lawrence Coating composition
NZ528294A (en) 2001-03-08 2004-03-26 Biolog Insel Lothar Moll Gmbh Use of ionomers for the sealing of insulating materials
DE10146174C2 (en) * 2001-09-19 2003-10-16 Calsitherm Silikatbaustoffe Thermal insulation board for indoor installation
EP1296002A3 (en) 2001-09-24 2004-02-11 Icopal A/S A vapour barrier or underroof for buildings
DE10155925C1 (en) 2001-11-14 2003-03-20 Fraunhofer Ges Forschung Sound and thermal insulation pack for an aircraft cabin, comprises an enveloping membrane with water vapor diffusion resistance which is a function of the ambient humidity
EP1362694B1 (en) 2002-05-14 2004-08-18 Nötzli, Rolf Windproof moisture barrier for buildings
DE10239985B4 (en) * 2002-08-27 2006-03-30 Ökologische Bausysteme B.I. Moll GmbH & Co. KG Sealing tapes suitable for construction technology
JP4886515B2 (en) 2003-10-06 2012-02-29 サン−ゴバン・イソベール Mineral fiber insulation for shipbuilding
SI1680372T1 (en) 2003-10-06 2015-12-31 Saint-Gobain Isover Fire-proof door and fire-proof insert therefor
SE525985C2 (en) * 2003-10-17 2005-06-07 Saint Gobain Isover Ab Insulation systems for technical installations
DE10349170A1 (en) 2003-10-22 2005-05-19 Saint-Gobain Isover G+H Ag Steam brake with a shield against electromagnetic fields
US20060059852A1 (en) 2004-09-23 2006-03-23 Certainteed Corporation Laminated building materials
US20050260368A1 (en) 2004-05-18 2005-11-24 Ruid John O Packaging for insulation products
GB0423523D0 (en) 2004-10-22 2004-11-24 Hunt Tech Ltd Multi-layer vapour permeable thermal insulation system
DE102004059812A1 (en) * 2004-12-10 2006-06-29 Ewald Dörken Ag Steam brake for use in buildings
DE202004019654U1 (en) * 2004-12-14 2005-04-07 Orbita Film Gmbh Vapor barrier
DE102005020295A1 (en) * 2005-04-30 2006-11-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vapor barrier seal manufactured from textile for an interior space/indoors attaches to walls, ceilings or floors in an interior space
DE102006009260A1 (en) * 2006-02-28 2007-08-30 Saint-Gobain Isover G+H Ag Roof heat insulating system for building, has vapor barrier foil applied completely on main surface of mineral wool web that is wound to roll, where vapor barrier foil protrudes on longitudinal side of mineral wool web
US7838123B2 (en) 2006-06-13 2010-11-23 E. I. Du Pont De Nemours And Company Variable vapor barrier for moisture control in buildings
US7829197B2 (en) 2006-06-13 2010-11-09 E. I. Du Pont De Nemours And Company Variable vapor barrier for humidity control
US7838104B2 (en) 2006-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Variable vapor barrier for humidity control
DE102007052278B4 (en) 2007-11-02 2021-08-26 Saint-Gobain Isover G+H Ag Method for sealing a component covered over a large area with a construction film, an adhesive film or an adhesive tape, as well as a cutting template for this and a system
FR2925929B1 (en) 2007-12-28 2017-01-27 Saint Gobain Isover DETERGENT ACCESSORY FOR DOUBLING A WALL, INCLUDING PINCHING JAWS OF AN INSULATING MEMBRANE, AND WALL LINING DEVICE COMPRISING SUCH AN ACCESSORY
US8852749B2 (en) 2008-02-11 2014-10-07 E I Du Pont De Nemours And Company Compositions and structures having tailored water vapor transmission
DE202008011429U1 (en) * 2008-07-24 2009-12-03 Tremco Illbruck Produktion Gmbh sealing tape
DE102008037292A1 (en) 2008-08-11 2010-02-18 Saint-Gobain Isover G+H Ag Moisture-adaptive vapor barrier
US8763338B2 (en) 2009-03-28 2014-07-01 Ewald Dörken Ag Method for producing a functional layer of a building shell, and building shell and functional layer
DE102009017486A1 (en) 2009-04-15 2010-10-21 Saint-Gobain Isover G+H Ag Moisture protection system for building structures, in particular timber stand or roof structures with rafters or beams and the like
DE102009046739B4 (en) 2009-11-16 2020-03-05 Saint-Gobain Isover G+H Ag Two-component adhesive and sealant system
EP2501762B1 (en) 2009-11-16 2016-07-13 Saint-Gobain Isover Use of an adhesive and sealant system for bonding of vapour barrier films
DE102010016104A1 (en) 2010-03-23 2011-09-29 Saint-Gobain Isover G+H Ag Two-component adhesive and sealant system, useful e.g. for bonding plastics, comprises a first and/or second component comprising e.g. self-crosslinking polymers based on e.g. maleic acid-polystyrene-co-polymers and/or polyurethane
DK2510166T3 (en) 2009-12-10 2014-12-01 Saint Gobain Isover Moisture-adaptable vapor barrier, especially for heat insulation of buildings and method of producing such vapor barrier
DE102009060673A1 (en) 2009-12-28 2011-06-30 Saint-Gobain Isover G+H Ag, 67059 A vapor barrier or vapor barrier, sleeve seal for airtight seal of a vapor barrier or vapor barrier, method of manufacturing a sleeve device and method of airtight sealing of a vapor barrier or vapor barrier
DE102009060674A1 (en) 2009-12-28 2011-06-30 Saint-Gobain Isover G+H Ag, 67059 System and corresponding method for airtight sealing of a particular moisture-adaptive vapor barrier or vapor barrier
DE102010055788A1 (en) 2010-12-23 2012-06-28 Hanno-Werk Gmbh & Co. Kg Joint sealing tape
JP6159972B2 (en) 2011-07-01 2017-07-12 ディーエスエム アイピー アセッツ ビー.ブイ. Branched polyamide
FR2977601A1 (en) 2011-07-07 2013-01-11 Saint Gobain Isover WALL
EP2554758A1 (en) * 2011-08-02 2013-02-06 DSM IP Assets B.V. A water vapour control arranged facing the inside of a building
DE202011105371U1 (en) 2011-09-06 2012-12-10 Tremco Illbruck Produktion Gmbh sealing tape
DE202012101990U1 (en) 2012-05-23 2013-08-27 Tremco Illbruck Produktion Gmbh sealing tape
EP2692959B1 (en) 2012-07-29 2016-04-06 Hanno-Werk GmbH & Co. KG Bande de feuille
DE102012219988A1 (en) * 2012-10-31 2014-04-30 Saint-Gobain Isover G+H Ag Reversible water-binding mineral wool product
DE202013011733U1 (en) 2013-01-11 2014-04-09 Saint-Gobain Isover G+H Ag Adhesive and sealant system with curing indicator
ES2582678T3 (en) 2013-01-29 2016-09-14 Silu Verwaltung Ag Vapor-oriented steam barrier with humidity
FR3008704B1 (en) * 2013-07-19 2015-08-21 Rhodia Operations BARRIER WITH ADAPTIVE STEAM
DE102014008530A1 (en) 2014-02-13 2015-08-13 Ewald Dörken Ag Moisture-variable protective layer and use of a moisture-variable protective layer
DE102014008531A1 (en) * 2014-02-13 2015-08-13 Ewald Dörken Ag Insulated building construction
EP3124712B1 (en) 2015-07-30 2023-06-28 Hanno Werk GmbH & Co. KG Compressible joint sealing strip and method for the production thereof
DE202016101644U1 (en) 2016-03-24 2017-06-27 Coroplast Fritz Müller Gmbh & Co. Kg Overmouldable adhesive tape
EP3330470B1 (en) 2016-11-30 2022-06-01 Sika Technology AG Sealing tape with adhesive layer arrangement
DE102017000825B4 (en) 2017-01-28 2021-03-18 Walter Götz Vapor barrier film based on a filled polyamide for use in thermal insulation applications
DE202017102227U1 (en) 2017-04-12 2017-06-06 Hanno-Werk Gmbh & Co. Kg Joint sealing tape
DK3425132T3 (en) 2017-07-05 2022-04-25 Iso Chemie Gmbh INSTALLATION DEVICE FOR A SEALING TAPE FOR SEALING A JOINT BETWEEN A FRAME ELEMENT AND A STRUCTURE
FR3072698B1 (en) * 2017-10-19 2019-10-25 Saint-Gobain Isover FLAT ROOF INSULATION AND SYSTEM FOR THE THERMAL INSULATION OF FLAT ROOFS
DE102017011813A1 (en) 2017-12-20 2019-06-27 Saint-Gobain Isover G+H Ag Method for sealing a penetration and a blank template for carrying out the method
DE102020126123A1 (en) 2020-10-06 2022-04-07 SwissChem AG Process for producing a foil strip and foil strip
FR3118636A1 (en) 2021-01-07 2022-07-08 Saint-Gobain Isover Process for improving the airtightness of buildings using a membrane based on biopolymers
WO2022148925A1 (en) 2021-01-07 2022-07-14 Saint-Gobain Isover Method for improving the airtightness of buildings using a biopolymer-based membrane
FR3121459A1 (en) 2021-04-06 2022-10-07 Saint-Gobain Isover Process for improving the airtightness of buildings using a membrane based on biopolymers
FR3136491A1 (en) 2022-06-09 2023-12-15 Saint-Gobain Isover Process for improving the airtightness of buildings using a biopolymer-based membrane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1886678U (en) * 1963-08-03 1964-01-30 Wilhelm Connemann Flachsverwer PANEL-SHAPED COMPONENT, IN PARTICULAR ROOF TILE.
US3445322A (en) * 1965-10-18 1969-05-20 Ignatius T Agro Laminated building component
GB1598807A (en) * 1978-05-31 1981-09-23 Bicc Ltd Telecommunication cables
US4363836A (en) * 1980-02-23 1982-12-14 Shin-Etsu Chemical Co., Ltd. Priming compositions for a base of cement mortar or concrete
DE3033089A1 (en) * 1980-09-03 1982-04-08 Rheinhold & Mahla Gmbh, 6800 Mannheim INSULATION INCLINED ROOF
DE3235246A1 (en) * 1982-09-23 1984-03-29 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Heat insulating web for heat insulation of a steep roof in the space between the rafters, and steep roof insulated therewith
DE3423766A1 (en) * 1983-06-30 1985-01-03 Basf Ag, 6700 Ludwigshafen Composite elements for thermal insulation of flat roofs
JPS6274648A (en) * 1985-09-30 1987-04-06 三菱化成ポリテック株式会社 Plastic laminate having excellent gas barrier property
US4719723A (en) * 1985-10-03 1988-01-19 Wagoner John D Van Thermally efficient, protected membrane roofing system

Also Published As

Publication number Publication date
AU5331896A (en) 1996-11-07
NO308548B1 (en) 2000-09-25
EP0821755B1 (en) 2000-11-29
KR19980703897A (en) 1998-12-05
PL322730A1 (en) 1998-02-16
CN1082122C (en) 2002-04-03
ATE197832T1 (en) 2000-12-15
CA2215502C (en) 2005-08-30
TR199701201T1 (en) 1998-02-21
PL188198B1 (en) 2004-12-31
SK142097A3 (en) 1998-02-04
CZ321897A3 (en) 1998-02-18
EP0821755A1 (en) 1998-02-04
CZ292207B6 (en) 2003-08-13
NO974807L (en) 1997-12-19
AU695567B2 (en) 1998-08-13
EE9700246A (en) 1998-04-15
HUP9802610A2 (en) 1999-03-29
BR9608141A (en) 1999-02-09
DE59606169D1 (en) 2001-01-04
HU221558B (en) 2002-11-28
MX9707769A (en) 1998-06-30
EA000491B1 (en) 1999-08-26
RO116102B1 (en) 2000-10-30
NO974807D0 (en) 1997-10-17
SI0821755T1 (en) 2001-06-30
EA199700245A1 (en) 1998-06-25
WO1996033321A1 (en) 1996-10-24
DK0821755T3 (en) 2001-03-05
NZ305338A (en) 1998-12-23
EE03622B1 (en) 2002-02-15
JPH11504088A (en) 1999-04-06
CA2215502A1 (en) 1996-10-24
CN1185821A (en) 1998-06-24
JP4471403B2 (en) 2010-06-02
UA28098C2 (en) 2000-10-16
HUP9802610A3 (en) 2000-01-28
ES2153958T3 (en) 2001-03-16
SK284896B6 (en) 2006-02-02
DE19514420C1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
KR100417903B1 (en) Vapour barrier for use in the heat insulation of buildings
US7008890B1 (en) Vapor barrier for use in the thermal insulation of buildings
AU2014211459B2 (en) Variable-humidity directional vapour barrier
CA2627668A1 (en) Vapor barrier film
Lstiburek Understanding vapor barriers
Glass et al. Review of in-service moisture and temperature conditions in wood-frame buildings
EP0241752B1 (en) Underroof
Silberstein et al. Effects of air and moisture flows on the thermal performance of insulations in ventilated roofs and walls
RU2760892C1 (en) Heat insulation element, building structure, and method for preventing moisture damage to a building
Kunzel The smart vapor retarder: An innovation inspired by computer simulations/Discussion
Busching Effects of Moisture in Built-up-roofing: A State-of-the-art Literature Survey
EP3473781A1 (en) Flat roof insulation as well as system for the thermal insulation of flat roofs
Roseta et al. Study in real conditions and in laboratory of the application of expanded agglomerated cork as exterior wall covering
Zwaag et al. Mineral wool and water repellency
Lstiburek Vapor Barriers and Wall Design
Ahuja et al. Potential Pitfalls of a Green Building Material: A Case Study of Cellulose Insulation
JP3006708U (en) Slate roofing material to prevent condensation
Bomberg et al. Building envelope and environmental control: part 2 estimating performance of thermal insulation
Lstiburek et al. hen designing a building’s envelope and its interaction with the mechanical system, temperature, humidity, rain, and the interior climate often are ignored. The focus for the building may be more on aesthetics and cost than on performance.
Brandt et al. XIII INT. CONF. ON DURABILITY OF BUILDING MATERIALS
CA2369796A1 (en) Impregnated foam materials
DK153417B (en) Underroof having a moisture-absorbent layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee