KR100395095B1 - A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst - Google Patents

A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst Download PDF

Info

Publication number
KR100395095B1
KR100395095B1 KR10-1999-0061517A KR19990061517A KR100395095B1 KR 100395095 B1 KR100395095 B1 KR 100395095B1 KR 19990061517 A KR19990061517 A KR 19990061517A KR 100395095 B1 KR100395095 B1 KR 100395095B1
Authority
KR
South Korea
Prior art keywords
catalyst
nickel
manganese
alumina
methane
Prior art date
Application number
KR10-1999-0061517A
Other languages
Korean (ko)
Other versions
KR20010057530A (en
Inventor
이덕성
석승호
이재성
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR10-1999-0061517A priority Critical patent/KR100395095B1/en
Publication of KR20010057530A publication Critical patent/KR20010057530A/en
Application granted granted Critical
Publication of KR100395095B1 publication Critical patent/KR100395095B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst

Abstract

본 발명은 공침에 의해 니켈-망간-알루미나계 촉매를 제조하는 방법 및 이를 이용한 메탄의 이산화탄소 개질 방법을 제공한다.The present invention provides a method for preparing a nickel-manganese-alumina catalyst by coprecipitation and a method for carbon dioxide reforming of methane using the same.

본 발명에 의하면 니켈, 망간 및 알루미나의 염을 공침시켜 소성 및 환원과정을 거쳐 제조된 촉매를 메탄의 이산화탄소 개질반응에 사용할 경우, 코크의 생성이 방지되며 또한 평형 전환률에 근접하는 고활성 및 우수한 안정성을 나타낸다.According to the present invention, when a catalyst prepared by co-precipitation of salts of nickel, manganese and alumina is subjected to calcination and reduction, carbon dioxide reforming of methane is prevented from forming coke, and has high activity and good stability close to equilibrium conversion. Indicates.

Description

메탄 개질용 니켈-망간-알루미나계 촉매 제조방법, 이에 따라 제조된 촉매 및 이를 이용한 메탄의 이산화탄소 개질방법{A METHOD FOR PREPARING OF CATALYST FOR REFORMING OF METHANE AND CATALYST PREPARRED BY THE METHOD AND A METHOD FOR REFORMING OF METHAN BY USING THE CATALYST}METHODS FOR PREPARING OF CATALYST FOR REFORMING OF METHANE AND CATALYST PREPARRED BY THE METHOD AND A METHOD FOR REFORMING OF METHAN BY USING THE CATALYST}

본 발명은 메탄 개질용 니켈-망간-알루미나계 촉매 제조방법, 이에 따라 제조된 촉매 및 이를 이용한 메탄의 개질방법에 관한 것이며, 보다 상세하게는 우수한 활성 및 안정성을 갖는 메탄의 이산화탄소 개질용 니켈-망간-알루미나 촉매 제조방법, 이에 따라 제조된 촉매 및 이를 이용한 메탄의 개질방법에 관한 것이다.The present invention relates to a method for preparing a nickel-manganese-alumina catalyst for methane reforming, a catalyst prepared according to the present invention, and a method for reforming methane using the same, and more particularly, nickel-manganese for carbon dioxide reforming of methane having excellent activity and stability. The present invention relates to a method for preparing an alumina catalyst, a catalyst prepared accordingly, and a method for reforming methane using the same.

천연가스의 대부분을 차지하고 있는 메탄은 에너지원으로서 뿐만 아니라 기초화학원료로서 그 중요성이 증대되고 있으나 가장 안정한 탄화수소중 하나로 이를 활성화시키기 어려운 것이다. 따라서 이를 활성화시켜 유용한 화합물질로 전환하고자 하는 노력이 큰 관심사로 대두되고 있으며 특히 메탄을 환원제로서 배기가스 산화물의 환원에 이용하는 연구에 촛점이 모아지고 있다. 따라서 지구상에서 가장 풍부한 수소함유 화합물의 하나인 메탄을 환원제로서 이산화탄소와 접촉 개질시켜 수소 및 일산화탄소, 이른바 합성가스(Syn-gas)를 제조하는 이산화탄소 개질반응(Carbon dioxide reforming, CDR)은 지구 온난화라는 심각한 환경문제 해결의 한 방편으로 그리고 탄소자원의 재활용 측면에서 매우 유용하다.Methane, which occupies most of natural gas, is increasing in importance not only as an energy source but also as a basic chemical raw material, but it is one of the most stable hydrocarbons and is difficult to activate. Therefore, efforts to convert them into useful compounds by activating them have been of great interest, and in particular, the focus has been on researches on using methane as a reducing agent to reduce exhaust oxides. Therefore, carbon dioxide reforming (CDR), which produces methane, one of the most abundant hydrogen-containing compounds on earth, by contact reforming with carbon dioxide as a reducing agent, produces hydrogen, carbon monoxide, and so-called syn-gas. It is very useful as a solution to environmental problems and in terms of recycling carbon resources.

CO2+ CH4→2CO + 2H2 CO 2 + CH 4 → 2CO + 2H 2

이산화탄소 개질에 의해 얻어지는 합성가스는 기존의 수증기 개질반응에 비해 수소대 일산화탄소의 비가 1:1에 가깝기 때문에 옥소합성공정이나 Fisher-Tropsch 합성, 초산의 제조에 이용되며 또한 높은 흡열도를 갖기때문에 화학에너지 전송시스템(Chemical Energy Transport system, CET)등의 분야에서 공업적인 주목을 받고 있다.Synthetic gas obtained by carbon dioxide reforming is used for the oxo synthesis process, Fisher-Tropsch synthesis, acetic acid production, because the ratio of hydrogen to carbon monoxide is close to 1: 1 compared to the conventional steam reforming reaction. It is receiving industrial attention in the field of chemical energy transport system (CET).

이산화탄소의 개질반응은 매우 강한 흡열반응으로서, 주어진 온도에서의 이론적 최대 전환률인 평형전환률은 온도가 높아짐에 따라 증가하여 650℃ 이상의 온도에서 반응이 일어나며, 보통 850℃의 고온에서 반응을 진행시킨다. 이 반응은 반응기체의 탄소대 수소비가 높아 열역학적으로 탄소의 형성이 용이하다는 특징이 있어 보다 낮은 온도에서 우수한 활성을 보이며 코크의 생성과 소결에 의한 비활성화에 강한 촉매의 개발이 요구된다.The reforming reaction of carbon dioxide is a very strong endothermic reaction. The equilibrium conversion rate, which is the theoretical maximum conversion at a given temperature, increases with increasing temperature, and the reaction occurs at a temperature above 650 ° C., and usually proceeds at a high temperature of 850 ° C. This reaction is characterized by high carbon-to-hydrogen ratio of the reactor, thermodynamically easy to form carbon, showing excellent activity at lower temperatures and development of a catalyst that is resistant to coke formation and deactivation by sintering.

사용되는 촉매로는 크게 두 종류의 촉매계가 제시되고 있는데, 수증기 개질촉매로서 널리 알려진 니켈 촉매와 Rh, Pt, Ir 등의 귀금속 촉매로서 대부분 8족 전이금속들이며, 모두 평형전환률에 근접하는 높은 활성을 나타낸다고 보고되고 있다.Two types of catalysts have been suggested. Nickel catalysts are widely known as steam reforming catalysts and precious metal catalysts such as Rh, Pt, and Ir. Most of the Group 8 transition metals have high activity close to equilibrium conversion. It is reported.

귀금속 담지 촉매는 1990년 영국의 Cheertham 등에 의해(Veron, P.D.F, Green, M.L.H, Cheetham, A.K. and Ashcroft, A. T., Catal. Today, 13, 417, 1992) 처음 보고된 이래로 많은 연구가 이루어졌으며, 높은 반응활성 및 낮은 코크 생성의 안정한 촉매를 개발할 수 있음을 보여주고 있다. 그러나, 귀금속 촉매의 경우 다량의 촉매를 필요로 하는 실제 공정에 도입시 경제성이 떨어진다는 큰 문제점을 갖기때문에 보다 경제적인 촉매의 개발이 요구된다.Precious metal supported catalysts have been studied since the first reported in 1990 by Cheertham et al. (Veron, PDF, Green, MLH, Cheetham, AK and Ashcroft, AT, Catal. Today, 13, 417, 1992). It has been shown that stable catalysts of active and low coke production can be developed. However, in the case of the noble metal catalyst, since it has a big problem that the economic efficiency is poor when introduced into the actual process requiring a large amount of catalyst, the development of a more economical catalyst is required.

한편 수증기 개질 반응의 촉매로 널리 알려진 니켈계 촉매는 높은 활성을 가지고 경제적으로도 유리한 점이 있으나, 급격한 코크의 생성으로 촉매의 안정성이 저하되는 문제점이 있다. 코크의 생성에 대한 세부적인 기작은 아직까지 정립되어있지 않은 상태이나, 이산화탄소와 메탄의 반응에서 생성된 탄소가 촉매의 표면에 형성되는 것을 의미하며 이러한 코크의 생성은 촉매의 반응을 저하시킨다. 따라서, 다양한 촉매의 변형에 의하여 코크의 생성을 억제시켜 안정성을 확보하는 것에 연구의 촛점이 맞추어져 진행되고 있다.On the other hand, nickel-based catalysts, which are widely known as catalysts for steam reforming reactions, have high activity and are economically advantageous, but have a problem in that the stability of the catalysts is lowered due to rapid coke formation. The detailed mechanism for the formation of coke has not been established yet, but the carbon produced from the reaction of carbon dioxide and methane is formed on the surface of the catalyst, which produces a lower reaction of the catalyst. Therefore, research has been focused on securing coke production by ensuring various catalyst modifications to ensure stability.

이에 본 발명의 목적은 이산화탄소를 이용한 메탄의 개질에 대한 활성 및 안정성이 우수한 니켈-망간-알루미나계 촉매를 제조하는 방법을 제공하는 것이다. 본 발명의 다른 목적은 상기 방법에 의해 제조된 활성 및 안정성이 우수한 메탄개질용 니켈-망간-알루미나계 촉매를 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for preparing a nickel-manganese-alumina catalyst having excellent activity and stability for reforming methane using carbon dioxide. Another object of the present invention is to provide a methane-modified nickel-manganese-alumina catalyst having excellent activity and stability prepared by the above method.

본 발명의 또 다른 목적은 상기 니켈-망간-알루미나계 촉매를 이용하여 메탄을 개질하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for reforming methane using the nickel-manganese-alumina catalyst.

본 발명의 일견지에 의하면,According to one aspect of the invention,

촉매제조후 제조된 촉매에서 니켈-망간-알루미나가 1:1:6의 중량비로 존재하도록 니켈, 망간 및 알루미나의 염을 물에 용해시키고 공침시켜 침전물을 형성하는 단계;Dissolving and co-precipitating salts of nickel, manganese and alumina in water such that nickel-manganese-alumina is present in the catalyst prepared after the preparation in a weight ratio of 1: 1: 6 to form a precipitate;

침전물을 건조하고 700~1000℃에서 소성하는 단계; 및Drying the precipitate and calcining at 700˜1000 ° C .; And

700∼1000℃ 온도의 수소분위기하에서 환원하는 단계;Reducing the hydrogen at a temperature of 700 to 1000 ° C .;

로 이루어지는 니켈-망간-알루미나 촉매 제조방법이 제공된다.Provided is a method for preparing a nickel-manganese-alumina catalyst.

본 발명의 다른 견지에 의하면,According to another aspect of the present invention,

본 발명의 방법에 의해 제조된 니켈:망간:알루미나가 1:1:6 중량비로 존재하는 공침제조된 니켈-망간-알루미나 촉매가 제공된다.There is provided a co-prepared nickel-manganese-alumina catalyst in which the nickel: manganese: alumina produced by the process of the present invention is present in a 1: 1: 6 weight ratio.

본 발명의 또 다른 견지에 의하면,According to another aspect of the present invention,

본 발명에 의한 니켈-망간-알루미나 촉매 존재하에, 메탄과 이산화탄소가 1:1로 혼합된 가스를 100㎖/min의 속도로 반응기로 주입하여 600~1000℃의 온도에서 반응시키는 메탄 개질방법이 제공된다.In the presence of a nickel-manganese-alumina catalyst according to the present invention, there is provided a methane reforming method in which a gas mixed with methane and carbon dioxide 1: 1 is injected into a reactor at a rate of 100 ml / min and reacted at a temperature of 600 to 1000 ° C. do.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서는 공침하여 니켈-망간-알루미나계 촉매를 제조하게 되며 이는 이산화탄소를 이용한 메탄의 개질반응에 대하여 우수한 활성 및 안정성을 나타낸다.In the present invention, by coprecipitation, a nickel-manganese-alumina-based catalyst is prepared, which shows excellent activity and stability with respect to methane reforming using carbon dioxide.

본 발명의 니켈-망간-알루미나계 촉매는 공침법에 의해 제조된다.The nickel-manganese-alumina catalyst of the present invention is prepared by coprecipitation.

공침은 일반적인 방법으로 행하여진다. 즉, 니켈염, 망간염 및 알루미나염을 물에 용해시킨 후 교반하면서 용액의 산도를 조절하여 고체 침전물을 얻는다. 산도는 염화칼륨등의 물질을 투입하여 조절하고 이와 같이 산도를 조절하면서 계속 교반하면 용액의 산도가 알칼리성으로 되면서 침전물이 얻어진다. 합성된 촉매를 고온에서 소성시키고 환원과정을 거치면서 금속이외의 성분은 없어지므로 니켈염, 망간염, 알루미나염으로는 니켈, 망간 및 알루미나의 질산염, 초산염, 염산염등을 사용하여 촉매를 제조할 수 있으며, 질산염이 보다 바람직한 것이다. 이때 니켈의 질산염, 망간의 질산염 및 알루미나염은 촉매제조후 촉매중 니켈:망간:알루미나의 중량비가 1:1:6이 되도록 혼합된다. 만일, 니켈과 망간의 함량이 상기 비율보다 작은 경우에는 촉매를 사용하여 메탄을 개질하는 경우 촉매상에 코크는 형성되지 않지만 반응활성이 저하되며 니켈 함량은 동일하게 유지하면서 망간의 함량을 감소시키는 경우에는 반응활성은 증가되나 코크가 형성될 수 있다.Co-precipitation is done in the usual way. That is, the nickel salt, manganese salt and alumina salt are dissolved in water, and then the acidity of the solution is adjusted while stirring to obtain a solid precipitate. The acidity is adjusted by adding a substance such as potassium chloride, and continuously stirring while adjusting the acidity in this way to obtain a precipitate while the acidity of the solution becomes alkaline. As the synthesized catalyst is calcined at a high temperature and undergoes a reduction process, components other than metal disappear, and thus nickel, manganese, and alumina salts can be used to prepare a catalyst using nitrates, acetates, and hydrochloride salts of nickel, manganese, and alumina. And nitrates are more preferred. At this time, the nitrate, manganese nitrate, and alumina salt of nickel are mixed so that the weight ratio of nickel: manganese: alumina in the catalyst is 1: 1: 6. If the content of nickel and manganese is less than the ratio, when the methane is reformed using a catalyst, coke is not formed on the catalyst, but the reaction activity is decreased, and the content of nickel is reduced while maintaining the same nickel content. Reaction activity is increased but coke may form.

이와 같이 침전물을 형성한후 이를 건조 및 소성한다.After the precipitate is formed in this way, it is dried and calcined.

일반적인 촉매제조 과정에서 합성된 촉매는 젖어있으므로 건조가 필요하며 이때 건조는, 예를들어 100~120℃에서 약 8~12시간동안 행하고 소성은 700~1000℃에서 행한다. 만일 700℃이하의 온도에서 소성하게 되면, 금속 복합체를 형성하지않아 활성이 저하되며, 1000℃이상의 온도에서 소성하는 경우 촉매의 기공이 파괴되어 표면적이 감소함으로 활성이 저하된다. 바람직한 온도는 900℃이다.Since the catalyst synthesized in the general catalyst production process is wet, drying is necessary. At this time, the drying is performed at 100 to 120 ° C. for about 8 to 12 hours, and the firing is performed at 700 to 1000 ° C. If calcined at a temperature of 700 ° C. or less, the activity is lowered without forming a metal complex, and when calcined at a temperature of 1000 ° C. or more, the pores of the catalyst are destroyed to decrease the surface area. Preferred temperature is 900 ° C.

소성된 촉매는 그 후 700∼1000℃의 온도에서 환원처리한다.The calcined catalyst is then reduced at a temperature of 700 to 1000 ° C.

즉, 수소분위기하에서 2시간동안 상기 온도에서 촉매를 환원처리한다. 환원처리는 촉매의 반응활성점이 금속성분이므로 반드시 거쳐야 하는 과정이다. 즉, 촉매를 제조하여 소성과정을 거치면 금속은 산화물 형태(예, MnO 및 NiO)로 존재하게되는데 이를 환원과정을 통해 금속 형태(예, Mn 및 Ni)로 전환시킨다. 이때 환원온도가 700℃보다 낮은 경우에는 금속의 환원정도가 낮아서 활성이 저하되며 1000℃이상인 경우에는 촉매의 열화에 의해 비표면적이 감소하여 또한 활성이 저하된다. 바람직하게는 약 900℃에서 환원하는 경우 가장 활성이 우수하고 촉매를 사용하여메탄을 개질하는 경우 촉매상에 코크가 형성되지 않는 우수한 안정성을 나타낸다.That is, the catalyst is reduced at this temperature for 2 hours under a hydrogen atmosphere. The reduction treatment is a process that must be performed because the reactive active point of the catalyst is a metal component. That is, when the catalyst is prepared and calcined, the metal is present in the form of oxides (eg, MnO and NiO), which is converted into the form of metals (eg, Mn and Ni) through a reduction process. At this time, when the reduction temperature is lower than 700 ℃, the degree of reduction of the metal is low, the activity is lowered. Preferably, reducing at about 900 ° C. is the most active and exhibits excellent stability that no coke is formed on the catalyst when the methane is reformed using the catalyst.

상기 공침에 의해 제조된 니켈-망간-알루미나 촉매 존재하에 메탄과 이산화탄소가 1:1로 혼합된 가스를 100ml/min의 속도로 반응기에 주입하여 600~1000℃에서 개질반응시켜 메탄을 일산화탄소와 수소로 개질한다.In the presence of the nickel-manganese-alumina catalyst prepared by the coprecipitation, a gas in which methane and carbon dioxide were mixed at a ratio of 1: 1 was injected into the reactor at a rate of 100 ml / min, and reformed at 600 to 1000 ° C. to convert methane into carbon monoxide and hydrogen. Reform.

본 발명에 의해 제조된 니켈-망간-알루미나 촉매 존재하에 메탄을 이산화탄소와 반응시켜 개질함으로써 촉매표면에 코크가 침적되지 않음으로 우수한 활성 및 안정성 있게 메탄을 개질할 수 있다.By modifying methane by reacting methane with carbon dioxide in the presence of the nickel-manganese-alumina catalyst prepared according to the present invention, it is possible to reform methane with excellent activity and stability because no coke is deposited on the catalyst surface.

이는 공침법에 의하여 촉매를 제조한 후 고온으로 소성시키는 과정에서 니켈-망간-알루미나의 금속 복합체가 형성됨에 기인한 것으로 여겨지며, 제조된 촉매의 구조 분석 결과 또한 니켈-망간-알루미나 금속복합체가 형성됨을 나타낸다.This is believed to be due to the formation of a metal complex of nickel-manganese-alumina in the process of preparing the catalyst by coprecipitation and calcining at high temperature, and the structural analysis of the prepared catalyst also shows that the nickel-manganese-alumina metal complex is formed. Indicates.

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예 1Example 1

제조된 촉매상에 니켈, 망간, 알루미나가 1:1:6의 중량비로 존재하도록 니켈질산염, 망간질산염 및 알루미나질산염을 공침시켜 제조한 촉매 0.5g을 반응기에 충진하고, 100℃에서 12시간 건조한후 900℃까지 승온시킨 다음 6시간 동안 공기분위기하에서 소성시키고, 다시 수소분위기에서 2시간동안 900℃에서 환원시켰다.0.5 g of a catalyst prepared by co-precipitating nickel nitrate, manganese nitrate and alumina nitrate was present in the reactor so that nickel, manganese and alumina were present in the weight ratio of 1: 1: 6 on the prepared catalyst, and dried at 100 ° C for 12 hours. The temperature was raised to 900 ° C. and then calcined under an air atmosphere for 6 hours, followed by reduction at 900 ° C. for 2 hours in a hydrogen atmosphere.

그 후 메탄과 이산화탄소가 1:1로 혼합된 가스를 100㎖/min의 속도로 반응기로 주입하여 900℃에서 개질반응시켰다.Thereafter, a mixture of methane and carbon dioxide 1: 1 was injected into the reactor at a rate of 100 ml / min, and reformed at 900 ° C.

반응성 측정은 석영관으로 제작된 연속 흐름반응장치를 사용하여 행하였으며, 반응전후의 성분분석은 기체 크로마토그래피를 이용하여 행하였다.Reactivity was measured using a continuous flow reactor made of a quartz tube, and component analysis before and after the reaction was performed using gas chromatography.

그 결과 이산화탄소의 전환률은 98.5%로 평형전환률과 근접한 우수한 활성을 나타냈으며, 200시간동안 반응상태를 유지한 결과 최종 이산화탄소의 전환율은 98.2%로 초기반응활성과 거의 동일하였다.As a result, the conversion rate of carbon dioxide was 98.5%, showing excellent activity close to the equilibrium conversion rate. After maintaining the reaction state for 200 hours, the conversion rate of the final carbon dioxide was 98.2%, which was almost the same as the initial reaction activity.

실시예 2Example 2

촉매의 환원온도를 각각 700℃, 800℃, 900℃ 및 1000℃로 하고 반응온도를 650℃로한것을 제외하고는 실시예 1과 같은 방법으로 시험하였다. 촉매의 특성을 조사하기위해 전환률이 높은 영역에서는 비교하기 어려우며, 본 발명의 촉매가 낮은 온도에서도 활성과 안정성을 나타내는지 알아보기위해 촉매의 반응온도를 650℃로 택하였다.The reduction temperature of the catalyst was tested in the same manner as in Example 1 except that the reaction temperature was 700 ° C, 800 ° C, 900 ° C and 1000 ° C, and the reaction temperature was 650 ° C. In order to investigate the characteristics of the catalyst, it is difficult to compare in the region of high conversion rate, and the reaction temperature of the catalyst was selected as 650 ° C. in order to determine whether the catalyst of the present invention shows activity and stability even at low temperatures.

그 결과, 이산화탄소의 전환률은 각각 32.5%, 50.3%, 71.5% 및 46.5%를 나타냈으며, 어느 경우에 있어서 코크의 형성에 의한 비활성화는 관찰되지 않았다. 특히 촉매의 환원온도는 900℃인 경우 가장 우수한 전환률을 나타내었다.As a result, the conversion rate of carbon dioxide was 32.5%, 50.3%, 71.5% and 46.5%, respectively, and in any case, no deactivation by coke formation was observed. In particular, the reduction temperature of the catalyst showed the best conversion rate at 900 ℃.

비교예 1Comparative Example 1

니켈-망간-알루미나의 비율을 1:0.5:6으로 하고 반응온도를 650℃로 하는 것 외에는 실시예 1과 동일한 조건에서 실험한 결과, 이산화탄소의 전환률은 77.5%로우수하였으나 약 100시간 후에는 촉매표면에 코크가 형성되어 반응활성을 나타내지 않았다.The experiment was carried out under the same conditions as in Example 1 except that the ratio of nickel-manganese-alumina was 1: 0.5: 6 and the reaction temperature was 650 ° C. The conversion rate of carbon dioxide was 77.5% as low, but after about 100 hours Coke was formed on the surface and did not show reaction activity.

비교예 2Comparative Example 2

니켈대 알루미나의 비가 1:6이 되도록 알루미나에 니켈을 담지한 촉매를 사용하는 것 외에는 실시예 1과 동일한 조건에서 실험한 결과, 초기 이산화탄소의 전환률은 98.5%이었으나 반응시작후 5분경과시 촉매 표면에 급격하게 코크가 형성되어 반응활성이 저하되었다.The experiment was carried out under the same conditions as in Example 1 except for using a catalyst loaded with alumina so that the ratio of nickel to alumina was 1: 6. The initial carbon dioxide conversion was 98.5%, but the surface of the catalyst was 5 minutes after the start of the reaction. Coke formed suddenly in the reaction activity and the reaction activity was lowered.

비교예 3Comparative Example 3

니켈:망간:알루미나의 비가 1:1:6이 되도록 알루미나에 니켈과 망간을 담지한 촉매를 사용하는 것 외에는 실시예 1과 동일한 조건에서 실험한 결과, 이산화탄소의 전환률은 초기에 88.7% 이었으나, 200시간이 지난 후에 73.5%로 활성이 저하되었으며 촉매에 코크가 침적되었다.Experiments were carried out under the same conditions as in Example 1 except that a nickel-manganese-supported catalyst was used in the alumina so that the ratio of nickel: manganese: alumina was 1: 1: 6. The conversion rate of carbon dioxide was initially 88.7%, but 200 After some time, the activity was lowered to 73.5% and coke was deposited on the catalyst.

본 발명에 의하여 니켈, 망간 및 알루미나의 질산염을 공침시켜 소성 및 환원과정을 거쳐 제조된 촉매를 메탄의 이산화탄소 개질반응에 사용할 경우, 특히 촉매상에 코크가 생성되지않아 촉매의 비활성화가 방지된다. 본 발명의 촉매는 메탄을 개질함에 있어서 평형 전환률에 근접하는 고활성 및 우수한 안정성을 제공한다.According to the present invention, when a catalyst prepared through calcination and reduction process by co-precipitating nitrates of nickel, manganese and alumina is used for carbon dioxide reforming of methane, in particular, no coke is formed on the catalyst to prevent inactivation of the catalyst. The catalyst of the present invention provides high activity and good stability close to equilibrium conversion in reforming methane.

Claims (4)

제조된 촉매에서 니켈-망간-알루미나가 1:1:6의 중량비로 존재하도록 니켈, 망간 및 알루미나의 염을 물에 용해시키고 공침시켜 침전물을 형성하는 단계;Dissolving and co-precipitating salts of nickel, manganese and alumina in water so that nickel-manganese-alumina is present in the prepared catalyst in a weight ratio of 1: 1: 6 to form a precipitate; 침전물을 건조하고 700~1000℃로 소성하는 단계; 및Drying the precipitate and calcining at 700 to 1000 ° C; And 700∼1000℃ 온도의 수소분위기하에서 환원하는 단계;Reducing the hydrogen at a temperature of 700 to 1000 ° C .; 로 이루어지는 니켈-망간-알루미나 촉매 제조방법.Method for producing a nickel-manganese-alumina catalyst. 청구항 1항에 있어서, 상기 니켈, 망간 및 알루미나의 염은 니켈, 망간 및 알루미나의 질산염, 초산염 및 염산염등으로 구성되는 그룹으로부터 선택됨을 특징으로하는 니켈-망간-알루미나 촉매 제조방법.The method of claim 1, wherein the salts of nickel, manganese and alumina are selected from the group consisting of nitrates, acetates and hydrochlorides of nickel, manganese and alumina. 청구항 1항 또는 2항의 방법으로 제조된 니켈-망간-알루미나 촉매.Nickel-manganese-alumina catalyst prepared by the method of claim 1 or 2. 상기 청구항 3항의 촉매 존재하에, 메탄과 이산화탄소가 1:1로 혼합된 가스를 100㎖/min의 속도로 반응기로 주입하여 600~1000℃의 온도에서, 반응시키는 메탄 개질방법.In the presence of the catalyst of claim 3, a methane reforming method of reacting at a temperature of 600 ~ 1000 ℃ by injecting a gas of 1: 1 mixed with carbon dioxide into the reactor at a rate of 100ml / min.
KR10-1999-0061517A 1999-12-24 1999-12-24 A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst KR100395095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061517A KR100395095B1 (en) 1999-12-24 1999-12-24 A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061517A KR100395095B1 (en) 1999-12-24 1999-12-24 A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst

Publications (2)

Publication Number Publication Date
KR20010057530A KR20010057530A (en) 2001-07-04
KR100395095B1 true KR100395095B1 (en) 2003-08-21

Family

ID=19629133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0061517A KR100395095B1 (en) 1999-12-24 1999-12-24 A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst

Country Status (1)

Country Link
KR (1) KR100395095B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328397B1 (en) * 2011-06-08 2013-11-13 성균관대학교산학협력단 Nickel-based co2 reforming catalyst deposited with metal oxide, preparation method thereof and apparatus for measuring catalytic activity for co2 reforming using the same
CN103949115B (en) * 2014-05-22 2015-12-09 福州大学 A kind of method of in-situ preparation denitrating catalyst on filtrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191664A (en) * 1975-06-16 1980-03-04 Union Oil Company Of California Thermally stable nickel-alumina catalysts useful for methanation and other reactions
EP0692451A1 (en) * 1994-07-13 1996-01-17 Zhaolong Zhang A stable and active nickel catalyst for carbon dioxide reforming of methane to synthesis gas
JPH0925101A (en) * 1995-07-10 1997-01-28 Agency Of Ind Science & Technol Method for reforming methane with carbon dioxide and catalyst used for the same
JPH10192708A (en) * 1996-12-29 1998-07-28 Sekiyu Sangyo Kasseika Center Catalyst for reforming of carbon dioxide and reforming method
JPH1179705A (en) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol Method for reforming methane with co2 and production of metallic catalyst carried by highly heat resistant alumina aerogel and used in same
KR19990075095A (en) * 1998-03-17 1999-10-05 박호군 Nickel-alumina aerogel catalyst for carbon dioxide reforming of methane and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191664A (en) * 1975-06-16 1980-03-04 Union Oil Company Of California Thermally stable nickel-alumina catalysts useful for methanation and other reactions
EP0692451A1 (en) * 1994-07-13 1996-01-17 Zhaolong Zhang A stable and active nickel catalyst for carbon dioxide reforming of methane to synthesis gas
JPH0925101A (en) * 1995-07-10 1997-01-28 Agency Of Ind Science & Technol Method for reforming methane with carbon dioxide and catalyst used for the same
JPH10192708A (en) * 1996-12-29 1998-07-28 Sekiyu Sangyo Kasseika Center Catalyst for reforming of carbon dioxide and reforming method
JPH1179705A (en) * 1997-09-05 1999-03-23 Agency Of Ind Science & Technol Method for reforming methane with co2 and production of metallic catalyst carried by highly heat resistant alumina aerogel and used in same
KR19990075095A (en) * 1998-03-17 1999-10-05 박호군 Nickel-alumina aerogel catalyst for carbon dioxide reforming of methane and preparation method thereof

Also Published As

Publication number Publication date
KR20010057530A (en) 2001-07-04

Similar Documents

Publication Publication Date Title
US8524119B2 (en) Catalyst for preparing synthesis gas from natural gas and carbon dioxide, and preparation method thereof
US6808652B2 (en) Modified ⊖-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
Slagtern et al. Partial oxidation of methane to synthesis gas using La-MO catalysts
Hayakawa et al. Partial oxidation of methane to synthesis gas over some titanates based perovskite oxides
KR101529906B1 (en) Process for operating hts reactor
KR101447683B1 (en) Iron modified Ni-based perovskite type catalyst, Preparing method thereof, and Producing method of synthesis gas from combined steam CO2 reforming of methane using the same
CN108855109A (en) A kind of chemical chain partial oxidation methane preparing synthetic gas carrier of oxygen and its preparation method and application
Miyamoto et al. Effect of basicity of metal doped ZrO2 supports on hydrogen production reactions
JP3761947B2 (en) Catalyst composition for producing synthesis gas and method for producing synthesis gas using the same
KR102035714B1 (en) Nickel catalysts for reforming hydrocarbons
KR100395095B1 (en) A method for preparing of catalyst for reforming of methane and catalyst preparred by the method and a method for reforming of methan by using the catalyst
JP2023126492A (en) Ammonia synthesis catalyst
JPH0977501A (en) Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
Shishido et al. Steam reforming of CH4 over Ni/Mg-Al catalyst prepared by spc-method from hydrotalcite
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
KR101400889B1 (en) Carbonhydrate reforming catalyst and the method of preparation thereof
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
KR100406363B1 (en) A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same
JPH0371174B2 (en)
KR20130098620A (en) Complex metal oxide catalysts and method for preparing for methanol synthesis from co_2, method of methanol production using complex metal oxide catalysts
AU2012258290B2 (en) Nickel based catalysts for hydrocarbon reforming
JPH08131835A (en) Production of catalyst composition for producing synthesis gas of hydrogen and carbon monoxide from methane and carbon dioxide
JPH01224046A (en) Catalyst for reforming methanol
JPS6246482B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee