KR100381538B1 - film thickness and composition control method using surface photoabsorption - Google Patents

film thickness and composition control method using surface photoabsorption Download PDF

Info

Publication number
KR100381538B1
KR100381538B1 KR10-2000-0039293A KR20000039293A KR100381538B1 KR 100381538 B1 KR100381538 B1 KR 100381538B1 KR 20000039293 A KR20000039293 A KR 20000039293A KR 100381538 B1 KR100381538 B1 KR 100381538B1
Authority
KR
South Korea
Prior art keywords
light
value
thickness
composition ratio
thin film
Prior art date
Application number
KR10-2000-0039293A
Other languages
Korean (ko)
Other versions
KR20020005839A (en
Inventor
김영동
Original Assignee
학교법인 고황재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 고황재단 filed Critical 학교법인 고황재단
Priority to KR10-2000-0039293A priority Critical patent/KR100381538B1/en
Publication of KR20020005839A publication Critical patent/KR20020005839A/en
Application granted granted Critical
Publication of KR100381538B1 publication Critical patent/KR100381538B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

본 발명은 반응 챔버에서 성장하고 있는 박막의 두께와 박막 물질의 조성비를 광의 반사율을 통해 얻어진 측정 수치와 설정된 기준 수치를 비교하여 챔버로 유입되는 원료 가스량을 피트백함으로써 성장하는 박막 두께 및 조성비를 조절하도록 하여 반도체의 안정성을 높이도록 한 표면 광반사기를 이용한 박막 두께 및 조성비 조절 방법에 관한 것이다.The present invention adjusts the thickness and composition ratio of growth by pitbacking the amount of source gas flowing into the chamber by comparing the measured value obtained through light reflectance with the composition ratio of the thickness and thickness of the thin film growing in the reaction chamber. It relates to a thin film thickness and composition ratio control method using a surface light reflector to increase the stability of the semiconductor.

본 발명은 발광기로부터 반응 챔버의 웨이퍼로 광이 발광되는 단계와; 발광되는 광과 동일한 각으로 반사되는 반사광을 광검출기를 이용하여 광의 세기를 검출하는 단계와; 광검출기에서 검출된 신호 수치를 비교기에 인가하여 광신호 수치와 초퍼의 진동 수치를 비교하여 수치를 산출한 후 그 수치를 PC로 입력하는 단계와; PC로 입력된 광산출 수치를 목표 수치와 비교하여 작을 경우에는 밸브를 열어 원료 가스 공급을 늘리도록 하고, 클 경우에는 밸브를 닫아 원료 가스 공급을 줄이도록 하는 단계로 이루어져 성장하고 있는 박막의 두께 및 조성비를 실시간으로 컨트롤하고, 동시에 성장에 필요한 원료 가스를 적정량 공급함으로써 반도체의 안정성을 높이도록 한 것이다.The invention comprises the steps of emitting light from a light emitter to a wafer in a reaction chamber; Detecting the intensity of light by using a photodetector for the reflected light reflected at the same angle as the emitted light; Applying a signal value detected by the photodetector to a comparator, comparing the optical signal value with the vibration value of the chopper, calculating the numerical value, and inputting the numerical value to the PC; When the light extraction value inputted by the PC is smaller than the target value, the step is to open the valve to increase the supply of the raw material gas, and when it is large, close the valve to reduce the supply of the raw material gas. The composition ratio was controlled in real time, and at the same time, an appropriate amount of source gas required for growth was supplied to increase the stability of the semiconductor.

Description

표면 광반사기를 이용한 박막 두께 및 조성비 조절 방법{film thickness and composition control method using surface photoabsorption}Film thickness and composition control method using surface photoabsorption}

본 발명은 표면 광반사기를 이용한 박막 두께 및 조성비 조절 방법에 관한 것으로서 반응 챔버 내에 성장하고 있는 박막의 두께와 그 물질의 조성비를 광의 반사율을 이용하여 실시간으로 모니터링하고, 아울러 반사율을 통해 얻어진 측정 수치와 기준 수치를 비교하여 챔버로 유입되는 원료 가스량을 피트백(feed back)함으로써 성장하는 박막의 두께 및 그 조성비를 조절하도록 하여 반도체의 안정성을 높이도록 한 것이다.The present invention relates to a method for controlling the thickness and composition ratio of a thin film using a surface light reflector. The thickness of the thin film growing in the reaction chamber and the composition ratio of the material are monitored in real time using a reflectance of light, and the measured values obtained through reflectance and By comparing the reference value and feed back the amount of the source gas flowing into the chamber (feed back) to control the thickness and composition ratio of the growing thin film to increase the stability of the semiconductor.

일반적으로 산업체에서 가장 활발하게 쓰이는 기상화학증착법(CVD:Chemical Vapor Deposition)은 증착하고자 하는 금속 또는 비금속 이온들을 포함하는 원료 물질이 기체 상태로 증착 구역으로 이동하고, 여기에 적절한 온도와 압력이 유지되도록 하면 기판 표면까지 확산을 통해 이동하여 표면 위에 흡착되며, 흡착된 물질은 기판으로 받은 열에너지에 의해 열역학적인 반응을 일으켜 소정 두께를 갖는 박막이 형성되고, 반응 생성물들이 탈착된다. 그리고, 탈착된 반응 생성물들이 기상으로 확산된 후 배기된다.In general, chemical vapor deposition (CVD) is most commonly used in industry to ensure that raw materials containing metal or nonmetal ions to be deposited are transferred to the deposition zone in a gaseous state, where appropriate temperature and pressure are maintained. The lower surface of the substrate moves through diffusion to be adsorbed on the surface, and the adsorbed material undergoes a thermodynamic reaction by thermal energy received from the substrate to form a thin film having a predetermined thickness, and the reaction products are desorbed. The desorbed reaction products are then diffused into the gas phase and then evacuated.

이러한 증착법은 적절한 온도와 압력이 유지되는 가운데 투입되는 원료량에 따라 박막의 두께가 결정됨으로써 투입되는 원료는 많은 실험을 거쳐 산출된 데이터를 바탕으로 이루어졌으나, 확산되는 가운데 여러 조건(온도, 압력, 기판의 온도 등)이 변할 경우 박막 두께에 큰 변화를 가져오게 됨으로써 반도체의 질이 낮아지게 되고, 불량률이 증가되는 원인이 되었다.This deposition method is based on the data calculated through a lot of experiments by the thickness of the thin film is determined according to the amount of raw material input while maintaining the appropriate temperature and pressure, but the various conditions (temperature, pressure, When the temperature of the substrate changes), a large change in the thickness of the substrate is caused, resulting in a decrease in the quality of the semiconductor and an increase in the defective rate.

본 발명은 이와 같은 문제점을 해결하기 위해 안출한 것으로서 발광기로 부터 반응 챔버의 웨이퍼로 광이 발광되는 단계와; 발광되는 광과 동일한 각으로 반사되는 반사광을 광검출기를 이용하여 광의 세기를 검출하는 단계와; 광검출기에서 검출된 신호 수치를 비교기로 인가하여 광신호 수치에서 초퍼의 진동수와 같은 수치만을 산출하고 그 수치를 PC로 입력하는 단계와; PC로 입력된 광신호 수치를 목표 수치와 비교하여 작을 경우에는 밸브를 열어 가스 공급을 늘리도록 하고 클 경우에는 밸브를 닫아 가스 공급을 줄이도록 하는 단계로 이루어져 박막 성장에 필요한 원료 가스를 적정량 공급함과 동시에 박막의 두께 및 조성비를 실시간으로 컨트롤 할 수 있도록 한 것이다.The present invention has been made to solve the above problems, and the step of emitting light from the light emitter to the wafer of the reaction chamber; Detecting the intensity of light by using a photodetector for the reflected light reflected at the same angle as the emitted light; Applying a signal value detected by the photodetector to a comparator to calculate only a value equal to the frequency of the chopper from the optical signal value and input the value into a PC; Compare the optical signal value input to the PC with the target value to open the valve to increase the gas supply when it is small, and to close the valve to reduce the gas supply when it is small to supply the proper amount of raw material gas for thin film growth. At the same time, the thickness and composition ratio of the thin film can be controlled in real time.

도 1은 본 발명에 따른 표면 광반사기의 개략적인 구성을 도시한 구성도.1 is a block diagram showing a schematic configuration of a surface light reflector according to the present invention.

도 2는 본 발명에 따른 흐름도.2 is a flow chart in accordance with the present invention.

도 3은 본 발명에 따른 블럭도.3 is a block diagram according to the present invention;

도 4는 본 발명에 따른 알미늄갈륨비소 양자우물레이저 반도체막이 성장하는 동안에 변화된 표면 광반사기의 신호를 도시한 그래프.4 is a graph showing the signal of the surface light reflector changed during the growth of the aluminum gallium arsenide quantum well laser semiconductor film according to the present invention.

<도면의 주요 부분에 대한 부호의 간단한 설명><Brief description of symbols for main parts of the drawings>

2:반응 챔버 4,4a,4b:밸브 5:웨이퍼 7:발광기2: reaction chamber 4, 4a, 4b: valve 5: wafer 7: light emitter

11:광검출기 12:PC11: Photodetector 12: PC

이하 본 발명의 실시예를 첨부 도면을 참조하여 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

표면 광반사기(1)는 도 1에 도시된 바와 같이 반응 챔버(2)의 유입구(3)로 원료와 가스를 선택적으로 차단하거나 보내는 역할을 하는 밸브(4)(4a)(4b)가 구비되어 있고, 반응 챔버(2) 내부로 웨이퍼(5)가 올려지는 안착부(6) 및 미도시한 발열부가 구비되어 있다.As shown in FIG. 1, the surface light reflector 1 is provided with valves 4, 4a and 4b that selectively block or send raw materials and gases to the inlet 3 of the reaction chamber 2. And a seating portion 6 on which the wafer 5 is placed inside the reaction chamber 2 and a heat generating portion, not shown.

또한, 반응 챔버(2) 외측으로 소정 거리를 갖는 곳에 미도시한 전원 공급에 따라 광을 발생시키는 발광기(7)가 설치되어 있고, 발광기(7)의 전면에 초퍼가 위치하여 일정한 진동수를 갖는 펄스빔으로 만든 후 편광판(9)과 렌즈(10)를 통해 반응 챔버(2)의 웨이퍼(5) 표면에 발광하도록 구비되어 있다.In addition, a light emitter 7 for generating light in accordance with a power supply not shown is provided in a place having a predetermined distance to the outside of the reaction chamber 2, and a chopper is located in front of the light emitter 7 to have a constant frequency. After making a beam, it is provided to emit light on the surface of the wafer 5 of the reaction chamber 2 through the polarizing plate 9 and the lens 10.

또한, 초퍼에서 나온 진동수의 정보는 비교기(8)로 인가된다.In addition, the frequency information from the chopper is applied to the comparator 8.

그리고, 반응 챔버(2)의 근접한 곳에 입사되는 광의 세기에 따라 가변되는 전기 신호로 변환시키는 광검출기(11)가 구비되어 있고, 광검출기(11)의 출력측은 상기 비교기(8)의 입력측에 접속되어 있다.In addition, a photodetector 11 for converting an electric signal varying according to the intensity of light incident in the vicinity of the reaction chamber 2 is provided, and an output side of the photodetector 11 is connected to an input side of the comparator 8. It is.

또한, 비교기(8)의 출력측은 데이터 베이스를 갖는 프로그램이 내장된 PC(12)의 시리얼 포트에 케이블로 연결되어 있고, PC(12)의 통신포트에 상기 밸브(4)(4a)(4b)를 동작시키는 미도시한 회로에 접속되어 있다.In addition, the output side of the comparator 8 is connected by a cable to the serial port of the PC 12 in which a program having a database is embedded, and the valves 4, 4a and 4b are connected to the communication port of the PC 12. Is connected to a circuit not shown.

이러한 구성의 편광 장치를 이용한 박막 두께 조절법은 도 2, 3에 도시된 바와 같이 반응 챔버(2)의 유입구(3)로 원료와 가스를 유입시키고, 압력과 온도를 유지하면 열역학적 반응에 의해 기판 위에 박막이 성장하는 가운데 미도시한 전원을 ON 하면 발광기(7)로부터 광이 발생되고, 광은 초퍼(7a)를 통과하면서 일정한 주파수(약 50Hz)를 가진 펄스빔이 되며 비교기(8)로는 그 주파수 신호를 인가함과 동시에 펄스빔은 편광판(9)과 렌즈(10)를 통해 소정 각도로 반응 챔버(2) 내의 웨이퍼(5)로 향하게 하는 단계를 경유한 다음, 상기 웨이퍼상에 발광되는 각과 동일한 각으로 반사되는 반사광을 광검출기(11)를 이용하여 반사광의 세기를 검출하는 단계를 거친다.In the thin film thickness control method using the polarizing device having such a configuration, as shown in FIGS. 2 and 3, the raw material and the gas are introduced into the inlet port 3 of the reaction chamber 2, and when the pressure and the temperature are maintained, As the thin film grows and the power not shown is turned on, light is generated from the light emitter 7, and the light passes through the chopper 7a and becomes a pulse beam having a constant frequency (about 50 Hz). At the same time as applying the signal, the pulsed beam is directed through the polarizing plate 9 and the lens 10 to the wafer 5 in the reaction chamber 2 at a predetermined angle, and then the same as the angle emitted on the wafer. The reflected light reflected at an angle is subjected to the step of detecting the intensity of the reflected light using the photodetector 11.

또한, 광검출기(11)를 통해 전기 신호로 변환된 신호 수치를 비교기(8)로 인가하여 초퍼에서 온 진동수와 같은 광신호 수치만을 산출하고, 그 수치를 PC(12)로 입력하는 단계를 통해 반응 챔버(2) 내에서 박막의 두께나 그 박막 물질의 조성비를 추정한다.In addition, by applying the signal value converted into an electrical signal through the photodetector 11 to the comparator 8 to calculate only the optical signal value, such as the frequency from the chopper, and input the value to the PC 12 The thickness of the thin film and the composition ratio of the thin film material in the reaction chamber 2 are estimated.

그리고, PC(12)로 입력된 검출량을 데이터 베이스 목표 수치와 비교하는 과정에서 검출량(광산출 수치)이 적은 경우에는 각각의 밸브(4)(4a)(4b)를 열어 가스 공급을 늘리도록 하고, 그 수치가 큰 경우에는 밸브(4)(4a)(4b)를 닫아 가스 공급을 줄이도록 하는 단계를 실시간으로 모니터링하면서 조절한다.When the detection amount (light output value) is small in the process of comparing the detection amount input to the PC 12 with the database target value, each of the valves 4, 4a, 4b is opened to increase the gas supply. If the value is large, the valve 4, 4a and 4b are closed to adjust the monitoring to reduce the gas supply in real time.

즉, 성장하는 박막의 두께를 조절할 경우에는 밸브(4)(4a)(4b)를 동시에 열거나 닫으면 되고, 박막의 조성비를 조절할 때는 예를 들어 두 번째의 원료 가스가 많고 적음에 따라 검출 신호량이 차이가 나므로 밸브(4a)만을 열거나 닫으면 된다.That is, when adjusting the thickness of the growing thin film, the valves 4, 4a and 4b may be opened or closed at the same time, and when adjusting the composition ratio of the thin film, for example, the amount of the detection signal is increased as the second source gas is large and small. Since there is a difference, only the valve 4a needs to be opened or closed.

다시 요약하자면 챔버 내로 유입되는 가스의 변동과 웨이퍼 표면에서 성장하고 있는 박막의 두께 및 조성비에 따라 가변되는 광의 양을 전기 신호로 변환시키고, 이 변환된 수치를 PC의 목표 수치와 비교하여 크거나 작을 경우 밸브를 조절하여 유입되는 원료 가스량을 컨트롤함으로써, 박막의 두께 및 조성비를 컨트롤하는 것이다.In summary, the amount of light that varies depending on the fluctuations of the gas flowing into the chamber and the thickness and composition ratio of the thin film growing on the wafer surface is converted into an electrical signal, and the converted value is compared with the target value of the PC. In this case, the thickness and composition ratio of the thin film are controlled by controlling the amount of raw gas introduced by adjusting the valve.

한편, 도 4의 그래프는 표면 광반사기의 신호 수치와 밸브의 작동 상태를 설명하기 위한 것으로서 선들은 원료 가스의 공급을 보여 주고 있으며, 이 수치가 높은 수치이면 밸브가 열린 경우이고 낮은 수치이면 밸브가 닫힌 경우를 의미한다.On the other hand, the graph of Figure 4 is for explaining the signal value of the surface light reflector and the operating state of the valve, the lines showing the supply of the raw material gas, the higher the value is the valve is open and the lower value is the valve is It means closed.

이 그래프에 나타난 바와 같이 0초부터 180초까지는 비소, 갈륨, 알미늄의 원료 가스가 모두 공급되며, AlGaAs 3종 화합물 반도체 박막이 성장하고 있는 중이며, 이후는 갈륨과 알미늄 원료 가스를 교대로 열고 닫는 과정을 거치면서 GaAs 박막을 단원자층 두께로 컨트롤하면서 성장시키고 있고, 그 이후 360초 이후에는 다시 모든 밸브를 다 열어 AlGaAs 화합물 박막이 성장하고 있음을 보여 준다.As shown in this graph, the source gas of arsenic, gallium, and aluminum is supplied from 0 to 180 seconds, and the AlGaAs 3 compound semiconductor thin film is growing, and then the gallium and aluminum source gas are alternately opened and closed. The GaAs thin film is grown by controlling the monoatomic layer thickness, and after 360 seconds, all the valves are opened again to show that the AlGaAs compound thin film is growing.

처음 0초에서 180초 사이에 크게 변하는 신호는 성장하는 박막과 기판 물질 사이의 반사율 차이에서 비롯되는 데 바로 이러한 신호를 두께로 정량화할 수 있는 다충 구조모델 계산을 통하여 현재 성장하고 있는 박막의 두께를 계산한다.Significantly varying signals between the first 0 and 180 seconds are due to the difference in reflectance between the growing film and the substrate material, and the thickness of the growing film can be determined by calculating a multi-layered structural model that can quantify these signals by thickness. Calculate

이렇게 계산된 수치를 프로그램된 두께와 비교하여 원료 가스의 공급을 PC가 지시하게 됨으로써 원하는 두께의 박막을 얻을 수 있게 된다.By comparing the calculated value with the programmed thickness, the PC instructs the supply of source gas, thereby obtaining a thin film having a desired thickness.

또한, 3종 화합물, 예를 들면 AlxGa1-xAs 반도체의 경우, 조성비 X에 따라 박막의 전기적 광학적 성질이 큰 차이를 보인다.In addition, in the case of three compounds, for example, Al x Ga 1-x As semiconductors, the electrical and optical properties of the thin film show a large difference according to the composition ratio X.

이 경우 반사도가 달라 표면 광반사기의 신호에 변동을 가져오게 되는데 이 차이를 이용하면 조성비 X를 원하는 수치에 고정되도록 PC가 각각의 밸브를 이용하여 Al원료와 Ga원료 가스량을 조절할 수 있게 된다.In this case, the reflectivity is different, which causes variation in the signal of the surface light reflector. By using this difference, the PC can control the amount of Al and Ga raw materials by using respective valves so that the composition ratio X is fixed at a desired value.

이상에서 살펴본 바와 같이 본 발명은 PC로 입력된 광산출 수치를 목표 수치와 비교하여 작을 경우에는 밸브를 열어 가스의 공급을 늘리도록 하고, 클 경우에는 밸브를 닫아 가스 공급을 줄이도록 하는 과정을 피드백함으로써 성장하고 있는 박막의 두께나 조성비를 실시간으로 측정하고 컨트롤함으로써 박막 성장에 필요한 원료 가스를 적정량 공급하여 안정된 반도체를 생산할 수 있도록 한 것이다.As described above, the present invention compares the light extraction value inputted to the PC with a target value to open the valve to increase the gas supply when it is small, and to close the valve to reduce the gas supply when it is large. By measuring and controlling the thickness and composition ratio of the growing thin film in real time, an appropriate amount of raw material gas necessary for growing the thin film can be supplied to produce a stable semiconductor.

Claims (1)

발광기(7)로부터 반응 챔버(2)의 웨이퍼(5)로 광이 발광하는 단계와;Emitting light from the light emitter 7 to the wafer 5 of the reaction chamber 2; 발광되는 각과 동일한 각으로 반사되는 반사광을 광검출기(11)를 이용하여 광의 세기를 검출하는 단계와;Detecting the intensity of light using the photodetector 11 for the reflected light reflected at the same angle as the emitted light; 광검출기(11)에서 검출된 신호 수치를 비교기로 인가하여 초퍼의 진동수와 같은 광신호 수치를 산출하고 이를 PC(12)로 입력하는 단계와;Applying a signal value detected by the photodetector 11 to a comparator to calculate an optical signal value such as the frequency of the chopper and input it to the PC 12; PC(12)로 입력된 광신호 수치를 목표 수치와 비교하여 작을 경우에는 밸브(4) (4a)(4b)를 열어 가스 공급을 늘리도록 하고, 클 경우에는 밸브를 닫아 가스 공급을 줄이도록 하는 단계로 이루어져 성장하고 있는 박막의 두께 및 조성비를 실시간으로 컨트롤하고 동시에 성장에 필요한 원료 가스를 적정량 공급함으로써 반도체의 안정성을 높인 것을 특징으로 하는 표면 광반사기를 이용한 박막 두께 및 조성비 조절법.When the value of the optical signal input to the PC 12 is smaller than the target value, the valve 4, 4a, 4b is opened to increase the gas supply, and when large, the valve is closed to reduce the gas supply. A method of controlling the thickness and composition ratio of a thin film using a surface light reflector, characterized in that the stability of the semiconductor is enhanced by controlling the thickness and composition ratio of the growing thin film in real time and supplying an appropriate amount of source gas necessary for growth.
KR10-2000-0039293A 2000-07-10 2000-07-10 film thickness and composition control method using surface photoabsorption KR100381538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0039293A KR100381538B1 (en) 2000-07-10 2000-07-10 film thickness and composition control method using surface photoabsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0039293A KR100381538B1 (en) 2000-07-10 2000-07-10 film thickness and composition control method using surface photoabsorption

Publications (2)

Publication Number Publication Date
KR20020005839A KR20020005839A (en) 2002-01-18
KR100381538B1 true KR100381538B1 (en) 2003-05-22

Family

ID=19677122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0039293A KR100381538B1 (en) 2000-07-10 2000-07-10 film thickness and composition control method using surface photoabsorption

Country Status (1)

Country Link
KR (1) KR100381538B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153362B2 (en) * 2002-04-30 2006-12-26 Samsung Electronics Co., Ltd. System and method for real time deposition process control based on resulting product detection
TWI460418B (en) * 2005-11-29 2014-11-11 Horiba Ltd Manufacturing method and manufacturing equipment of organic el element
KR102595155B1 (en) * 2021-06-01 2023-10-30 한국생산기술연구원 Real time monitoring method and monitoring system for thin film composition ratio depositied on substrates
KR20240047842A (en) * 2022-10-05 2024-04-12 서울대학교산학협력단 Automated thin film deposition system and thin film deposition method to which machine learning is applied

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253913A (en) * 1988-04-01 1989-10-11 Nec Corp Semiconductor wafer heat treatment system
JPH0382017A (en) * 1989-08-24 1991-04-08 Nec Corp Manufacture apparatus for semiconductor device
JPH0677301A (en) * 1992-08-27 1994-03-18 Kawasaki Steel Corp Surface treatment apparatus
US5364492A (en) * 1992-09-17 1994-11-15 Varian Associates, Inc. Method of deposing by molecular beam epitaxy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253913A (en) * 1988-04-01 1989-10-11 Nec Corp Semiconductor wafer heat treatment system
JPH0382017A (en) * 1989-08-24 1991-04-08 Nec Corp Manufacture apparatus for semiconductor device
JPH0677301A (en) * 1992-08-27 1994-03-18 Kawasaki Steel Corp Surface treatment apparatus
US5364492A (en) * 1992-09-17 1994-11-15 Varian Associates, Inc. Method of deposing by molecular beam epitaxy

Also Published As

Publication number Publication date
KR20020005839A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US5254207A (en) Method of epitaxially growing semiconductor crystal using light as a detector
US5724145A (en) Optical film thickness measurement method, film formation method, and semiconductor laser fabrication method
US10892147B2 (en) Method and apparatus for calibrating optical path degradation useful for decoupled plasma nitridation chambers
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
Aspnes Real-time optical diagnostics for epitaxial growth
US7813895B2 (en) Methods for plasma matching between different chambers and plasma stability monitoring and control
US8431419B2 (en) UV absorption based monitor and control of chloride gas stream
KR20100106608A (en) Closed loop mocvd deposition control
EP1132504A1 (en) Thin film depositing process and device, ftir gas analyzer used in the thin film depositing process, and mixed gas supplying device used in the thin film depositing process
JP2004091917A (en) Film deposition apparatus and source supplying apparatus therefor and gas concentration measuring method
Hebner et al. In situ measurement of the metalorganic and hydride partial pressures in a MOCVD reactor using ultraviolet absorption spectroscopy
US5463977A (en) Method of and apparatus for epitaxially growing chemical compound crystal
JPWO2010073358A1 (en) Temperature measuring method and temperature measuring apparatus during semiconductor film formation
KR100381538B1 (en) film thickness and composition control method using surface photoabsorption
JPH10190153A (en) Manufacture of bragg reflection film
JPH06216041A (en) Vapor growth device and method
KR0152369B1 (en) Thin-film formation device and method
JP2907111B2 (en) Vapor phase growth method and apparatus
US8435803B2 (en) Method for depositing microcrystalline silicon and monitor device of plasma enhanced deposition
JP2016108579A (en) Vapor deposition apparatus, and vapor deposition method
Bonanni et al. Virtual interface approximation model applied to spectroscopic ellipsometry for on-line composition determination of metalorganic chemical vapor deposition grown ternary nitrides
Aspnes Real-Time Surface and Near-Surface Optical Diagnostics for Epitaxial Growth
Azoulay et al. In situ control of the growth of GaAs/GaAlAs structures in a metalorganic vapour phase epitaxy reactor by laser reflectometry
Schmidt et al. A compact VCE growth system for in situ studies of epitaxy
ASPNES REAL-TIME SURFACE AND NEAR-SURFACE OPTICAL DIAGNOSTICS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
N231 Notification of change of applicant
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee