KR100306047B1 - Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst - Google Patents

Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst Download PDF

Info

Publication number
KR100306047B1
KR100306047B1 KR1019990032314A KR19990032314A KR100306047B1 KR 100306047 B1 KR100306047 B1 KR 100306047B1 KR 1019990032314 A KR1019990032314 A KR 1019990032314A KR 19990032314 A KR19990032314 A KR 19990032314A KR 100306047 B1 KR100306047 B1 KR 100306047B1
Authority
KR
South Korea
Prior art keywords
catalyst
liquid
decomposition
waste
reaction
Prior art date
Application number
KR1019990032314A
Other languages
Korean (ko)
Other versions
KR20010017023A (en
Inventor
서곤
김종호
유영산
Original Assignee
서곤
박일권
주식회사 대덕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서곤, 박일권, 주식회사 대덕 filed Critical 서곤
Priority to KR1019990032314A priority Critical patent/KR100306047B1/en
Publication of KR20010017023A publication Critical patent/KR20010017023A/en
Application granted granted Critical
Publication of KR100306047B1 publication Critical patent/KR100306047B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

본 발명은 폴리에틸렌 등의 폐고분자 물질을 액상 촉매분해공정으로 가솔린에서 경유 사이 등급의 액체연료로 사용 가능한 저분자 탄화수소 혼합물로 전환시키기 위한 제올라이트 촉매 및 이를 사용하여 폐소분자 물질을 저분자 탄화수소 혼합물로 전환시키는 방법을 제공한다. 본 발명의 폐고분자 물질을 저분자 액체 탄화수소 혼합물로 전환시키는 공정에 첨가되는 제올라이트 촉매는 액체 생성물의 수율을 높이고 분해 정도를 제어할 수 있도록 Si/Al의 몰비와 입자 크기를 조절하여 제조되었으며, 탄소침적에 의한 촉매의 활성저하를 억제하기 위해 외표면 성질을 조절하여 저분자 탄화수소 혼합물의 수율과 연료로서 품질을 향상시키는 방법을 제공한다.The present invention provides a zeolite catalyst for converting waste polymer materials such as polyethylene into low molecular hydrocarbon mixtures that can be used as liquid fuels of gasoline to diesel grade in a liquid catalytic cracking process, and a method for converting waste molecular materials into low molecular hydrocarbon mixtures using the same. To provide. The zeolite catalyst added to the process of converting the waste polymer material of the present invention into a low molecular liquid hydrocarbon mixture was prepared by controlling the molar ratio and particle size of Si / Al to increase the yield of the liquid product and control the degree of decomposition. The present invention provides a method for improving the yield of a low molecular weight hydrocarbon mixture and quality as a fuel by controlling the external surface properties in order to suppress the deactivation of the catalyst.

[색인어] 폐고분자 물질의 분해, 제올라이트 촉매, 액상 촉매분해[Index] Decomposition of Waste Polymers, Zeolite Catalyst, Liquid Phase Catalysis

Description

폐고분자 물질을 저분자 탄화수소 혼합물로 전환시키기 위한 촉매 및 이를 이용한 전환 방법{CATALYST FOR DEGRADATION WASTE-POLYMERS INTO THE MIXTURE OF LOWER HYDROCARBONS AND A METHOD OF DEGRADATION WASTE-POLYMERS INTO THE MIXTURE OF LOWER HYDROCARBONS USING THE CATALYST}Catalyst for converting waste polymer material to low molecular hydrocarbon mixture and method for converting using same

본 발명은 폴리에틸렌 등의 폐플라스틱 제품을 액체연료 등급의 저분자 탄화수소 혼합물로 전환시키기 위한 촉매 및 이를 이용하여 폐플라스틱 제품을 액상 촉매분해공정을 통해 액체연료 등급의 저분자 탄화수소 혼합물로 전환시키는 방법을제공한다. 더 상세하게는 촉매로서 사용된 제올라이트의 조성비와 입자의 크기를 조절하여 분해 정도를 제어할 수 있도록 하였고, 특히 촉매의 외표면을 실리카로 처리하여 액상 촉매분해 공정에서 촉매의 활성저하를 억제함으로써, 낮은 온도에서 고효율로 폐플라스틱을 저분자 탄화수소 혼합물로 분해하는 공정을 제공하는 것이다The present invention provides a catalyst for converting waste plastic products such as polyethylene into liquid fuel grade low molecular hydrocarbon mixtures, and a method for converting waste plastic products into liquid fuel grade low molecular hydrocarbon mixtures through liquid phase catalytic cracking using the same. . More specifically, the degree of decomposition can be controlled by adjusting the composition ratio of the zeolite used as the catalyst and the size of the particles. In particular, by treating the outer surface of the catalyst with silica to suppress the deactivation of the catalyst in the liquid phase catalytic decomposition process, It provides a process for decomposing waste plastics into low molecular hydrocarbon mixtures at high temperatures and at high efficiency.

고분자 물질은 경제성, 내구성 및 가공성 등이 우수하여 다양한 형태의 생활용품 및 공업재료의 제조 원료로 넓게 이용되고 있으며, 현재는 공업 분야뿐만 아니라 농업과 어업 분야까지 거의 모든 분야에 고분자 물질이 사용되고 있다. 더욱이 다양한 기능을 갖는 고분자 물질이 잇따라 개발되면서 고분자 물질의 사용량은 더 많아졌다.Polymer materials have excellent economical efficiency, durability and processability, and are widely used as raw materials for manufacturing various types of household goods and industrial materials. Currently, polymer materials are used in almost all fields, not only industrial fields, but also agricultural and fishing fields. Moreover, as polymer materials having various functions were developed one after another, the amount of polymer materials used increased.

고분자 물질의 사용량이 많아짐에 따라 폐기되는 고분자 물질도 많아져서, 폐고분자 물질의 처리가 환경 오염으로 인해 사회적 문제로 대두되고 있다. 지금까지 폐고분자 물질은 매립하거나 소각하는 방법으로 처리하여 왔으나, 쉽게 분해되지 않기 때문에 매립지 확보가 어렵고 매립하면 토양을 오염시켜 폐기방법으로 적절하지 않고, 소각시켜 폐기하면 열을 일부 회수할 수 있으나 유독성 기체 발생으로 대기를 오염시킬 수 있다. 특히 염소가 들어있는 고분자 물질이나 염소화합물이 함유된 폐고분자 물질은 소각하면 다이옥신 등의 치명적인 독성물질이 발생되어 소각에 의한 폐기방법에 대해 우려가 커지고 있다.As the amount of the polymer material used increases, the polymer material to be discarded increases, so the treatment of the waste polymer material becomes a social problem due to environmental pollution. Until now, waste polymer materials have been treated by landfilling or incineration, but since it is not easily decomposed, it is difficult to secure landfills, and when landfilling is used, it is contaminated with soil and is not suitable as a disposal method. Gas generation can pollute the atmosphere. In particular, incineration of high-molecular substances containing chlorine or waste polymers containing chlorine compounds generates fatal toxic substances such as dioxins, which raises concerns about disposal methods by incineration.

이런 관점에서 폐고분자 물질을 분쇄하거나 용융시켜 다시 제품화하는 단순 재활용 방법은 공해발생도 적고 자원을 효과적으로 재활용한다는 측면에서 매우 바람직하나, 용도가 극히 제한되어 있으므로 대량으로 발생되는 폐고분자 물질을 재활용하는 데에는 한계가 있다.From this point of view, a simple recycling method of pulverizing, melting, and reusing waste polymer materials is highly desirable in terms of low pollution and efficient recycling of resources. However, since the use is extremely limited, it is not necessary to recycle waste polymer materials generated in large quantities. There is a limit.

대부분의 고분자 물질은 탄소와 수소로 이루어진 탄화수소이므로, 이들을 분해시켜서 저분자의 탄화수소 혼합물로 전환시킬 수 있다. 고분자 물질을 분해시키는 방법으로는 열을 가하여 높은 온도에서 분해시키는 열분해와, 촉매를 사용하여 낮은 온도에서 특정 범위의 생성물을 얻는 촉매분해가 있다. 열분해공정은 조작이 용이하나, 에너지 소요가 많고, 메탄과 에탄 등 저급 탄화수소가 많이 생성되어 생성물의 경제적 가치가 낮다. 이에 비해 촉매분해공정은 낮은 온도에서 진행되므로 에너지 소요량이 적고, 생성물 분포를 어느 정도 제어할 수 있다는 장점이 있다. 그러나 사용 중 촉매의 활성이 저하되고 공정 조작이 복잡하다는 단점이 있다.Since most polymeric materials are hydrocarbons consisting of carbon and hydrogen, they can be broken down and converted to low molecular weight hydrocarbon mixtures. Methods of decomposing the polymer material include pyrolysis which decomposes at high temperature by applying heat, and catalytic decomposition which uses a catalyst to obtain a specific range of products at low temperature. The pyrolysis process is easy to operate, but requires a lot of energy, and generates a lot of lower hydrocarbons such as methane and ethane, and thus the economic value of the product is low. On the other hand, since the catalytic decomposition process is performed at a low temperature, the energy requirement is small and the product distribution can be controlled to some extent. However, there are disadvantages in that the activity of the catalyst is lowered during use and the process operation is complicated.

촉매를 사용하는 고분자 물질의 분해공정도 기상 촉매분해공정과 액상 촉매분해공정으로 나눌 수 있다The decomposition process of the polymer material using the catalyst can be divided into gas phase catalytic decomposition process and liquid phase catalytic decomposition process.

미국 특허 제 4,584,421호 등에서는 고분자 물질을 기화시켜 기상에서 촉매와 반응시킴으로 반응조건 제어나 촉매활성의 유지 측면에서 매우 유리한 기상 촉매분해공정은 개시되었다. 그러나 고분자 물질이 기화되도록 가열해야 하기 때문에 에너지 소요가 많고, 열분해와 촉매분해가 같이 진행되므로 생성물의 성분분포 제어가 어렵다.U.S. Patent No. 4,584,421 discloses a gas phase catalytic cracking process which is very advantageous in terms of controlling reaction conditions or maintaining catalytic activity by vaporizing a polymer material and reacting with a catalyst in the gas phase. However, since the polymer material needs to be heated to vaporize, it requires a lot of energy, and pyrolysis and catalytic decomposition proceed together, making it difficult to control the component distribution of the product.

이에 비해 용융된 고분자 물질을 촉매와 반응시키는 액상 촉매분해공정은, 장치가 단순하고 낮은 온도에서 진행되므로 에너지 소요가 적다. 또 촉매에 의해서만 분해가 진행되기 때문에 촉매의 특성에 따라 생성물의 성분분포가 결정된다. 그러나 용융된 고분자 물질이 촉매 입자와 직접 접촉되기 때문에 고분자 물질의 침적에 의한 활성저하로 촉매의 수명이 짧은 것이 문제점으로 알려져 있다(일본 고분자 논문집 1993년 50권 887페이지)In contrast, the liquid phase catalytic cracking process in which the molten polymer material is reacted with a catalyst requires less energy because the apparatus is simple and proceeds at a lower temperature. In addition, since decomposition proceeds only with the catalyst, the component distribution of the product is determined by the characteristics of the catalyst. However, because molten polymer material is in direct contact with catalyst particles, it is known that the catalyst has a short life due to deactivation due to the deposition of polymer material (Japanese Polymer Society 1993, 50, 887 pages).

이러한 이유로 폐고분자 물질의 액화공정은 대부분 기상 촉매분해방법으로 조작되고 있다. 국내 출원 특1996-032202에서는 고분자 물질의 기화를 촉진시키기 위해 제올라이트 촉매를 용융조에 넣어 1차 분해를 촉진시키기도 하는 방법이 개시된 바 있으나, 이러한 기상 분해방법은 전술한 문제점이 있다.For this reason, the liquefaction process of waste polymer materials is mostly operated by gas phase catalytic decomposition. In the Korean patent application No. 1996-032202, a method of promoting primary decomposition may be disclosed by putting a zeolite catalyst in a melting tank to promote vaporization of a polymer material, but such a gas phase decomposition method has the above-described problems.

액상 촉매분해공정만으로 고분자 물질을 분해시켜 저분자 탄화수소 혼합물인 액체 연료로 전화시키는 공정은 드물다.The process of decomposing a high molecular material by liquid phase catalytic cracking and converting it into a liquid fuel, which is a low molecular hydrocarbon mixture, is rare.

에너지 소요가 적고 액상 생성물의 수율을 증대시킬 수 있는 액상 촉매분해공정의 효율은 촉매에 따라 크게 달라진다. 낮은 온도에서도 분해반응을 촉진시킬 수 있도록 활성이 높으면서도 고분자 물질의 탄소 침적에 의해 활성이 저하되지 않는 안정한 촉매가 있어야 한다. 기체 생성물보다 액체 생성물이 많이 생성되어야 경제성이 높으므로, 액체 생성물에 대한 촉매의 선택성이 높아야 한다.The efficiency of the liquid phase catalytic cracking process, which requires less energy and can increase the yield of the liquid product, depends greatly on the catalyst. In order to promote the decomposition reaction even at low temperature, there must be a stable catalyst that has high activity but does not degrade due to carbon deposition of the polymer material. Since more liquid product is produced than gaseous product, the economical efficiency is high, so the selectivity of the catalyst to the liquid product must be high.

따라서 고분자 물질의 액상 촉매분해반응에 사용하는 촉매는 낮은 온도에서 고분자 물질이 분해될 수 있도록 활성이 높고, 액체 생성물이 많아지도록 분해 단계를 조절할 수 있으며, 동시에 탄소침적에 의한 활성저하가 억제되어 적은 양의 촉매로 많은 양의 폐고분자 물질을 처리할 수 있도록 외표면 성질이 조절되어야 한다. 이를 위해서 산성이 강하고 독특한 세공구조로 분해반응의 진행 정도를 제어할 수 있으면서도 탄소침적이 적은 제올라이트 촉매가 액상 촉매분해반응에 적절하다.Therefore, the catalyst used in the liquid phase catalytic cracking reaction of the polymer material has high activity so that the polymer material can be decomposed at a low temperature, and the decomposition step can be controlled to increase the amount of the liquid product, and at the same time, the decrease in activity by carbon deposition is suppressed. External surface properties should be controlled to handle large amounts of waste polymer material with positive catalysts. For this purpose, a zeolite catalyst having a low carbon deposit while controlling the progress of the decomposition reaction with a strong acidity and a unique pore structure is suitable for the catalytic catalytic reaction.

제올라이트 촉매의 산점은 세공 안 외에 입자의 외표면에도 있기 때문에, 외표면 산점에서도 촉매반응이 진행된다. 고분자 물질의 액상 촉매분해반응에서는 크고, 긴 고분자 물질의 세공내 확산이 느리기 때문에, 확산 단계가 필요하지 않는 외표면 산점에서 분해반응이 빠를 수 있다. 반면 외표면 산점에서는 생성물의 분자 형태와 크기에 대한 세공의 제한이 없기 때문에 긴 탄화수소가 생성될 수 있어서, 이들이 입자 외표면에 고착되어 탄소로 침적되므로 세공을 막아 촉매 활성을 떨어뜨리는 문제가 발생한다.Since the acid point of the zeolite catalyst is located on the outer surface of the particles in addition to the inside of the pores, the catalytic reaction proceeds also at the outer surface acid point. In the liquid phase catalytic decomposition of the polymer material, the large and long diffusion of the polymer material in the pores is slow, so that the decomposition reaction may be rapid at the external surface acid point where the diffusion step is not necessary. On the other hand, in the outer surface acidity point, long hydrocarbons can be produced because there is no restriction on the pore size and molecular size of the product, and they adhere to the outer surface of the particle and are deposited with carbon, thereby preventing the pore and lowering the catalytic activity. .

본 발명은 상기의 문제점을 해결하기 위하여 예의 연구한 결과, 제올라이트의 Si/Al 몰비와 입자크기를 변화시킴으로 생성되는 탄화수소의 조성을 조절할 수 있으며, 또한 실리카 등으로 외표면 성질을 조절하여 촉매가 탄소 침적에 의한 활성저하를 억제할 수 있음을 발견하고, 이러한 발견에 기초로 하여 상기 문제점을 해결할 수 있음을 발견하고, 본 발명에 이르게 되었다.As a result of intensive studies to solve the above problems, the present invention can control the composition of hydrocarbons produced by changing the Si / Al molar ratio and particle size of the zeolite, and also by controlling the external surface properties with silica or the like to deposit carbon on the catalyst. The present inventors have found that it is possible to suppress the decrease in activity caused by the present invention, and that the above problems can be solved based on these findings.

즉, 본 발명은 폐고분자 물질의 액상 촉매분해방법으로 저분자 탄화수소 혼합물로 전환하는 방법에서 사용할 수 있는 입도 및 조성의 조절과 외표면을 처리한 제올라이트 촉매를 제공하는 데 있다.That is, the present invention is to provide a zeolite catalyst treated with the outer surface and the control of the particle size and composition that can be used in the method of converting the waste polymer material into a low molecular hydrocarbon mixture by the liquid phase catalytic decomposition method.

또한, 본 발명은 폐고분자 물질의 액상 촉매분해공정에서 입도 및 조성의 조절과 외표면을 처리한 제올라이트 촉매를 사용하여 낮은 온도에서 생성물의 분포가 조절되고, 고수율의 액상 저분자 탄화수소 혼합물로 전환시키는 방법을 제공하는 데 있다.In addition, the present invention is to control the distribution of the product at a low temperature by using a zeolite catalyst treated with the particle size and composition and the outer surface in the liquid phase catalytic decomposition process of the waste polymer material, it is converted into a high yield liquid phase low molecular hydrocarbon mixture To provide a way.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도 1은 폐고분자 물질의 액상 촉매분해장치를 나타내는 도이다.1 is a view showing a liquid catalytic decomposition device of the waste polymer material.

도 2는 상용 유류제품과 열분해 및 촉매분해에서 얻어진 액체 생성물의 가스크로마토그래프에 의해 분석된 결과를 나타낸다.FIG. 2 shows the results analyzed by gas chromatographs of commercial oil products and liquid products obtained from pyrolysis and catalysis.

[주요 부호의 설명][Explanation of Main Code]

1: 니들 밸브, 2: 유량계, 3: 온도계, 4: 가열 맨틀, 5: 온도 조절기,1: needle valve, 2: flow meter, 3: thermometer, 4: heating mantle, 5: thermostat,

6: 냉각수, 7: 기체 주머니, 8: 온도 조절 순환기(-3℃), 9: 응축기,6: coolant, 7: gas bag, 8: temperature controlled circulator (-3 ° C), 9: condenser,

10: 불활성 기체 실린더.10: inert gas cylinder.

본 발명은 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리스티렌(PS) 등의 폐고분자 물질을 촉매분해공정으로 액체연료 등급의 저분자 탄화수소 혼합물로 전환함에 있어서, 250∼450℃에서 용융 상태의 반응물을 제올라이트 촉매과 직접 접촉시켜 분해하므로 액체 생성물을 바로 회수하는 방법을 제공하고, 이때 사용된 제올라이트 촉매는 액체 생성물의 수율을 높이기 위해 Si/Al의 몰비를 10∼70으로 하였고, 입자의 크기는 0.01∼1.0 ㎛로 하였으며, 실리콘 화합물을 담지하거나 실란으로 처리한 후, 소성하여 실리카를 촉매 외표면에 담지시켜 외표면 산점을 차폐함으로 촉매의 수명을 향상시켰다.The present invention converts waste polymer materials such as polyethylene (PE), polypropylene (PP), and polystyrene (PS) into liquid fuel grade low molecular hydrocarbon mixtures by catalytic cracking process. Decomposition by direct contact with the zeolite catalyst provides a method of directly recovering the liquid product, wherein the used zeolite catalyst has a molar ratio of Si / Al of 10 to 70 to increase the yield of the liquid product, the particle size is 0.01 to 1.0 The thickness was set to μm, and the silicon compound was supported or treated with silane, and then calcined to support silica on the catalyst outer surface, thereby shielding the external surface acid point, thereby improving the life of the catalyst.

촉매 분해반응에서 고분자 물질은 산과 염기촉매에 의해서 탄소-탄소 결합이 깨어져 저분자 물질로 전환되지만, 일반적으로 산촉매의 분해활성이 염기 촉매에 비해 우수하다. 포화 탄화수소가 분해되면 여러 개의 올레핀이 생성되며, 이들은 분해 활성점인 산점에서 다시 중합될 수도 있다. 따라서 액상 촉매분해반응에 사용되는 촉매는 가능하다면 분해는 촉진시키면서도, 탄소침적을 유발하는 중합반응은 촉진시키지 않을수록 좋다.In the catalytic decomposition reaction, the polymer material is converted to a low molecular material by breaking the carbon-carbon bond by an acid and a base catalyst, but in general, the decomposition activity of the acid catalyst is superior to that of the base catalyst. Degradation of saturated hydrocarbons results in the production of several olefins, which may be polymerized again at the acidic point of the cracking activity. Therefore, the catalyst used for the liquid phase catalytic cracking reaction is better if possible while not promoting the polymerization reaction causing carbon deposition.

제올라이트 촉매는 Si/Al 몰비에 따라 산점수가 달라져 분해반응의 속도와 생성물 수율이 크게 달라진다. 산점수가 작은, 즉 Si/Al 몰비가 큰 촉매에서 분해반응은 느리고 수율이 낮으나, Si/Al 몰비가 작아 산점수가 많아서 촉매활성이 높으리라 예상되는 촉매에서도 탄소 침적으로 전환율이 낮아진다. 이로 인해 Si/Al몰비가 10∼30 범위이어서, 활성점인 산점이 많으면서도 탄소침적이 너무 빠르지 않은 촉매에서 활성이 높다. 또 제올라이트를 산처리하여 알루미늄을 용출시키면 Si/Al 몰비가 커진다. 산처리하면 외표면 산점이 먼저 용출되기 때문에, 탄소침적에 의한 활성저하가 느려져 전환율이 높다. 활성이 낮아지거나 확산 속도가 느린 촉매에서는 세공내 머무르는 시간이 길어져 분해반응의 진행정도가 높아지기 때문에 액체 생성물보다 기체 생성물이 많아진다.The zeolite catalyst has a different acid score depending on the Si / Al molar ratio, which greatly changes the rate and product yield of the decomposition reaction. Decomposition reactions are slow and yield is low in catalysts having a low acid score, that is, a large Si / Al molar ratio. However, the conversion rate is low for carbon deposition even in catalysts that are expected to have high catalytic activity due to a small Si / Al molar ratio. As a result, the Si / Al molar ratio is in the range of 10 to 30, and the activity is high in the catalyst having a high acid point, which is an active point, and which is not too fast in carbon deposition. The acid treatment of zeolite to elute aluminum increases the Si / Al molar ratio. The acid treatment causes the outer surface acidic point to elute first, so that the decrease in activity due to carbon deposition is slowed down and the conversion rate is high. In catalysts with low activity or slow diffusion rates, the residence time in the pores increases and the progress of the decomposition reaction increases, resulting in more gaseous products than liquid products.

이러한 사항들을 감안하면 산촉매 중에서 산성이 강해 낮은 온도에서도 분해 활성이 높으면서 세공이 구부러져서 긴 탄화수소의 생성이 억제되는 제올라이트가 액상 촉매분해반응의 촉매로서 활성이 높고 안정성이 우수하리라 예상된다.In view of these considerations, it is expected that zeolites, which have strong acidity in acid catalysts, have high decomposition activity even at low temperatures, and bend pores, thereby suppressing the formation of long hydrocarbons, have high activity and excellent stability as catalysts for liquid phase catalytic cracking reactions.

본 발명의 촉매는 제올라이트를 산처리하여 알루미늄을 용출시키고, Si/Al 몰비를 10∼70으로 하여 활성점인 산점이 많으면서도 탄소 침적이 너무 빠르지 않아 이로 인한 활성 저하가 느려지게 하였다.The catalyst of the present invention was acid-treated with zeolite to elute aluminum, and the Si / Al molar ratio was set to 10 to 70, although the acid point of the active point was many, but the carbon deposition was not too fast, resulting in slowing the activity degradation.

액상 촉매분해반응은 촉매입자와 용융된 고분자 물질이 직접 접촉하여 분해되기 때문에 입자크기에 따라서도 촉매 활성이 달라진다. 이는 입자크기가 작으면 촉매의 외표면적이 넓어지고 촉매 내에서 반응물과 생성물의 확산 길이가 짧아진다. 이로 인해 분해반응의 활성은 크게 증가하여 입자크기가 작아질수록 전환율이 높아지고, 액체 생성물 수율이 많아진다. 액체 생성물의 수율 증가는 입자내 세공을 통과하는 데 걸리는 시간이 짧아서 축차 분해 횟수가 작으므로 긴 탄화수소가 그대로 기화될 가능성이 높기 때문이다.In the liquid phase catalytic cracking reaction, the catalytic activity varies depending on the particle size because the catalytic particles and the molten polymer material are directly contacted and decomposed. This means that the smaller the particle size, the wider the outer surface area of the catalyst and the shorter the diffusion length of reactants and products in the catalyst. As a result, the activity of the decomposition reaction increases greatly, so that the smaller the particle size, the higher the conversion rate and the higher the liquid product yield. The increase in the yield of the liquid product is due to the short time it takes to pass through the pore in the particles, so that the number of successive decompositions is small, so that the long hydrocarbon is likely to vaporize as it is.

액체 생성물의 탄소수별 함량도 촉매 입자의 크기에 따라 다르다. 입자가 작은 촉매에서는 긴 탄화수소가 상대적으로 많이 생성된다. 이는 촉매 내에 머무르는 시간이 짧아 분해 횟수가 작고 외표면에서 분해되어 바로 기화되기 때문이다. 반면 입자가 크면 외표면이 작아 탄소침적으로 외표면이 차폐되면 활성이 빠르게 저하된다. 따라서 반응이 주로 세공 내에서 진행되고, 세공 내에 오래 머무르므로 분해반응의 횟수가 많아져 기체 생성물의 수율이 높아진다.The carbon number content of the liquid product also depends on the size of the catalyst particles. In small catalysts, relatively long hydrocarbons are produced. This is because the residence time in the catalyst is short, so that the number of decomposition is small, and it decomposes on the outer surface and vaporizes immediately. On the other hand, if the particles are large, the outer surface is small, and if the outer surface is shielded by carbon deposition, the activity is rapidly decreased. Therefore, since the reaction mainly proceeds in the pores and stays in the pores for a long time, the number of decomposition reactions increases, so that the yield of the gas product is increased.

또한, 액체 생성물의 조성은 촉매 사용량에 따라 달라진다. 촉매 사용량이 많아지면 C14이상의 긴 탄화수소의 함량이 상대적으로 많아진다. 외표면에서 분해반응이 많이 진행되므로, 세공 내에서 진행되는 분해반응처럼 분해횟수가 많지 않아 긴 탄화수소의 기화량이 상대적으로 많아지기 때문이다.The composition of the liquid product also depends on the amount of catalyst used. As the amount of catalyst used increases, the content of long hydrocarbons of C 14 or higher is relatively high. Since a lot of decomposition reactions are carried out on the outer surface, the number of decompositions is not as high as the decomposition reactions that are carried out in the pores, so that the amount of long hydrocarbons is relatively increased.

따라서 본 발명에 있어서의 제올라이트 촉매 입자크기는 0.01∼1.0 ㎛로 하고 그 사용량은 폐플라스틱에 대해 0.5∼20.0 중량로 하여 분해 속도가 너무 빨라지지 않도록 하였다.Therefore, the particle size of the zeolite catalyst in the present invention is 0.01 to 1.0 µm and the amount of the zeolite catalyst is 0.5 to 20.0 weight based on the waste plastic so that the decomposition rate is not too fast.

또한, 결정성 알루미노실리케이트인 제올라이트는 종류에 따라 세공구조가 다르며, 산세기가 강하다. 양이온교환이나 알루미늄 함량 조절로 산점의 세기와 농도를 조절할 수 있어 유동층 촉매분해 공정, 알킬화 공정, 이성질화 공정 등 여러 공정에 촉매로 사용된다. 세공 크기는 4∼10 Å로서 단위분자의 크기와 비슷하고, 반응물과 생성물의 크기에 따라 흡착성질이나 촉매성격이 달라져 분자체라고 부르기도 한다. 또 세공 모양에 따라 전이 상태가 제한되거나 반응물과 생성물의 분자크기와 제올라이트의 세공크기 상호관계로 형상 선택적 촉매 작용이 나타나기도 한다. 이러한 형상 선택적 촉매 작용은 긴 고분자 물질의 생성을 억제하여 촉매의 수명을 증진시키는 데에도 효과적이다.Also, zeolites, which are crystalline aluminosilicates, differ in pore structure depending on the type, and have high acid strength. The strength and concentration of acid point can be controlled by cation exchange or aluminum content control, so it is used as a catalyst in many processes such as fluidized bed catalytic cracking, alkylation, and isomerization. The pore size is 4-10 mm, similar to the size of the unit molecule, and is also called molecular sieve because the adsorptive or catalytic properties vary depending on the size of the reactants and products. In addition, depending on the pore shape, the transition state is limited, or the shape-selective catalysis may occur due to the correlation between the molecular size of the reactants and the product and the pore size of the zeolite. This shape-selective catalysis is also effective in suppressing the production of long polymeric materials and enhancing the life of the catalyst.

본 발명에서는 탄소침적을 억제시켜 촉매의 안정성을 증진시키고 액체 생성물의 품질을 향상시키기 위하여, 제올라이트 촉매의 외표면을 물유리와 실란으로 처리하였다. 외표면에 실리콘 화합물을 처리하여 담지시킨 후 소성하면 실리카가 담지되어 외표면 산점이 줄어든다. 이로 인해 분해반응은 크게 감소되지만 외표면 산점에서 탄소침적이 억제되어 촉매 안정성이 향상되고 긴 탄화수소가 생성되지 않아 액체 생성물의 성분분포가 좁아진다.In the present invention, the outer surface of the zeolite catalyst was treated with water glass and silane in order to suppress carbon deposition to improve the stability of the catalyst and to improve the quality of the liquid product. When the silicon compound is treated and supported on the outer surface and calcined, silica is supported to reduce the external surface acid point. As a result, the decomposition reaction is greatly reduced, but carbon deposition is suppressed at the external surface acid point, thereby improving catalyst stability and generating no long hydrocarbons, thereby narrowing the component distribution of the liquid product.

외표면 차폐방법Outer surface shielding method

물유리 처리: 제올라이트를 합성하여 소성하기 전, 즉 주형물질이 세공에 남아있는 상태에서, 제올라이트에 물유리 (Aldrich-SiO2, 27 중량; NaOH, 14 중량; H2O, 59 중량)를 가하여 pH 8 조건에서 24시간 숙성한 후 건조하여 외표면에 물유리가 담지된 제올라이트를 제조하였다. 담지 후 NH4NO3로 이온교환한 후 소성하여, 외표면에 실리카가 담지된 H-형 제올라이트를 만들었다. 실리카 담지량은 촉매질량 기준으로 3∼30 중량가 되도록 첨가량을 조절하였다. 실리카 담지 촉매는 S-제올라이트(x)-y로 나타내었다. x는 Si/Al 몰비를, y는 입자크기를 나타낸다.Water glass treatment: Before the zeolite is synthesized and fired, that is, with the mold material remaining in the pores, the zeolite is water-glass (Aldrich-SiO2, 27 weight; NaOH, 14 weights; H2O, 59 wt.) Was added, and aged for 24 hours at pH 8, followed by drying to prepare a zeolite bearing water glass on its outer surface. NH after loading4NO3It was calcined after ion exchange with to form an H-type zeolite having silica supported on its outer surface. The loading amount of silica was adjusted so that it might become 3-30 weight basis on the basis of the catalyst mass. The silica supported catalyst is represented by S-zeolite (x) -y. x represents Si / Al molar ratio, y represents particle size.

실란 처리: 소성한 H-형 제올라이트에 액상에서 실란을 처리하여 외표면에 실리카를 담지시켰다. 수분을 제거하기 위하여 제올라이트를 무수에탄올로 3회 세척하였고, 실리카 담지량이 3∼30 wt가 되도록 무수에탄올에 녹인 3-트리메톡시-실릴프로필 클로아이드(Tokyo Kasei)를 희석하여 10시간 동안 반응시켰다. 반응하지 않은 실란을 무수에탄올로 3회 이상 세척하여 제거하고, 100℃에서 건조한 후 550℃에서 10시간 소성하여 외표면에 실리카가 담지된 제올라이트 촉매를 제조하였다. 실란 처리로 실리카를 담지시킨 촉매는 N-제올라이트로 표기하였다.Silane Treatment: The calcined H-type zeolite was treated with silane in the liquid phase to support silica on the outer surface. To remove moisture, zeolite was washed three times with anhydrous ethanol, and 3-trimethoxy-silylpropyl chloride (Tokyo Kasei) dissolved in anhydrous ethanol was reacted for 10 hours by dissolving in an amount of 3 to 30 wt. . The unreacted silane was washed three times or more with anhydrous ethanol, dried at 100 ° C., and calcined at 550 ° C. for 10 hours to prepare a zeolite catalyst having silica supported on the outer surface thereof. The catalyst on which silica was supported by silane treatment was designated as N-zeolite.

S-제올라이트는 주형물질이 세공에 들어있는 상태에서 처리하였으므로 실리카는 세공 내로 들어갈 수 없어 외표면에만 담지된다. 실란 처리로 제조한 N-제올라이트에서도 실란의 분자크기가 제올라이트 세공보다 크기 때문에, 실리카는 외표면에만 선택적으로 담지된다.Since the S-zeolite was treated with the template material in the pores, the silica could not enter the pores so that it was only supported on the outer surface. In the N-zeolite prepared by the silane treatment, since the molecular size of the silane is larger than that of the zeolite pores, silica is selectively supported only on the outer surface.

이하 실시예에서 본 발명을 더욱 상세히 설명한다.In the following Examples the present invention will be described in more detail.

실시예 1Example 1

폐고분자 물질의 액상 촉매분해방법을 도 1에 보인 장치로 조사하였다. 도 1의, 부호 1은 니들 밸브를 나타내며, 부호 2는 유량계, 부호 3은 온도계, 부호 4는 가열 맨틀, 부호 5는 온도 조절기, 부호 6은 냉각수, 부호 7은 기체 주머니, 부호 8은 온도 조절 순환기(-3℃), 부호 9는 냉각기, 부호 10은 불활성 기체 실린더를 나타낸다.The liquid phase catalytic decomposition of the waste polymer material was investigated by the apparatus shown in FIG. In Fig. 1, 1 denotes a needle valve, 2 is a flow meter, 3 is a thermometer, 4 is a heating mantle, 5 is a thermostat, 6 is a coolant, 7 is a gas bag, and 8 is a temperature control. A circulator (-3 degreeC), 9 is a cooler, 10 is an inert gas cylinder.

촉매의 분해 성능은 C40∼C80범위의 선형 탄화수소 혼합물인 폴리에틸렌(PE) 왁스의 분해반응으로 비교하였다. 촉매 0.2 g과 PE왁스 10 g을 반응기에 넣고, 질소 실린더(10)의 밸브(1)를 조절하여 질소를 30 ml/min으로 공급하여 산소를 제거한 후, 가열 맨틀(4)을 가열하여 350℃까지 승온하였다. 온도를 높이면 분해반응이진행되어 기체와 액체 생성물이 얻어진다. 영하 3℃로 유지되는 냉각기(9)를 통과시켜 액체 생성물을 응축시켜 뷰렛에 포집하였다. 기체 생성물은 순간 유량계로 측정하고, 플라스틱 기체주머니(7)에 포집하였다. 기체와 액체 생성물은 가스크로마토그래프로 분석하였다.The cracking performance of the catalysts was compared by cracking of polyethylene (PE) waxes, which were linear hydrocarbon mixtures ranging from C 40 to C 80 . 0.2 g of catalyst and 10 g of PE wax were placed in a reactor, the valve 1 of the nitrogen cylinder 10 was adjusted to supply nitrogen at 30 ml / min to remove oxygen, and the heating mantle 4 was heated to 350 ° C. It heated up to. Increasing the temperature allows decomposition reactions to yield gas and liquid products. The liquid product was condensed and collected in the burette by passing through a cooler 9 maintained at minus 3 ° C. The gas product was measured by an instantaneous flow meter and collected in a plastic gas bag (7). Gas and liquid products were analyzed by gas chromatography.

여러 제올라이트 촉매에서 조사한 PE왁스의 액상 촉매분해반응 결과를 표 1에 정리하였다. 제올라이트 베타(BEA) 촉매에서는 15분내에 PE왁스가 모두 기체와 액체 생성물로 분해되었으며, 액체 생성물 수율은 제올라이트 BEA에서 88로 가장 높았다. HZSM-5(MFI) 촉매에서는 78이며, mordenite(MOR) 촉매에서는 14로 낮았다. 제올라이트 구조를 나타내는 코드기호 뒤 괄호안 숫자는 실리콘과 알루미늄의 조성을 나타내는 Si/Al 몰비로서, 이 값이 크면 알루미늄 함량이 적어 산점이 적다. 기체 생성물의 주성분은 부탄이며, 액체 생성물의 조성은 촉매에 따라 다르다. 표 2에 350℃에서 얻어진 액체 생성물의 탄소수별 함량을 상용 유류제품과 비교하였다.Table 1 shows the results of the liquid phase catalytic decomposition of PE waxes irradiated with various zeolite catalysts. In the zeolite beta (BEA) catalyst, all PE waxes were decomposed into gas and liquid products within 15 minutes, and the liquid product yield was the highest at 88 in zeolite BEA. It was 78 in the HZSM-5 (MFI) catalyst and as low as 14 in the mordenite (MOR) catalyst. The numbers in parentheses after the code symbols representing the zeolite structure are the Si / Al molar ratios representing the composition of silicon and aluminum. The larger the value, the lower the aluminum content and the less acid point. The main component of the gaseous product is butane and the composition of the liquid product depends on the catalyst. In Table 2, the carbon number content of the liquid product obtained at 350 ° C. was compared with that of a commercial oil product.

PE왁스의 열분해는 400℃ 보다 높아야 진행되며, 450℃가 되어야 100분해된다. 열분해에서 액체 생성물의 수율은 79정도이며, 생성물의 조성은 도 2에 보인 것처럼 아주 넓게 퍼져있어, 활용가치가 적은 긴 탄화수소도 상당량 생성된다.Pyrolysis of PE wax proceeds at a temperature higher than 400 ° C, and decomposes at a temperature of 450 ° C. The yield of the liquid product in pyrolysis is about 79, and the composition of the product is very wide as shown in Fig. 2, producing a considerable amount of long hydrocarbons of low utility value.

촉매catalyst 모양 및 크기 (㎛)Shape and size (㎛) 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid MFI(50)MFI (50) 구형/ 0.2Spherical / 0.2 100100 2222 7878 BEA(13)BEA (13) 구형/ 0.1Spherical / 0.1 100100 1212 8888 MOR(12)MOR (12) 막대형/ 0.1x2.5Rod type / 0.1x2.5 3131 1717 1414

반응온도; 350℃, 반응시간; 150분, PE왁스/촉매 = 10 g/0.2 g.Reaction temperature; 350 ° C., reaction time; 150 min, PE wax / catalyst = 10 g / 0.2 g.

촉매catalyst 탄소수별 함량 ()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 MFI(50)MFI (50) 66.766.7 21.921.9 2.32.3 5.55.5 3.53.5 0.10.1 BEA(13)BEA (13) 44.544.5 30.430.4 7.77.7 8.38.3 5.55.5 3.83.8 MOR(12)MOR (12) 36.936.9 60.660.6 1.51.5 0.90.9 0.10.1 00 휘발유* Gasoline * 39.739.7 44.744.7 15.515.5 0.10.1 00 00 등 유* Kerosene * 0.40.4 29.129.1 56.856.8 13.413.4 0.20.2 00 경 유* Via * 0.40.4 20.420.4 31.531.5 23.623.6 16.116.1 8.18.1 열분해유** Pyrolysis oil ** 8.18.1 14.914.9 17.717.7 25.525.5 14.514.5 19.219.2

반응온도; 350℃, 반응시간; 150분, PE왁스/촉매 = 10 g/0.2 g.Reaction temperature; 350 ° C., reaction time; 150 min, PE wax / catalyst = 10 g / 0.2 g.

*시중 제품의 분석 결과임. * Result of analysis of commercial products.

**반응온도; 450℃. ** reaction temperature; 450 ° C.

실시예 2Example 2

BEA(13)와 MFI(50) 제올라이트에서 반응온도를 달리하여 PE왁스의 액상 촉매분해반응을 조사하였다. 표 3에는 전환율과 기체 및 액체 생성물의 수율, 표 4에는 액체 생성물의 탄소수별 함량 분포를 정리하였다.The liquid phase catalytic decomposition of PE wax was investigated by varying the reaction temperature in BEA (13) and MFI (50) zeolites. Table 3 shows the conversion rate, yield of gas and liquid products, and Table 4 shows the distribution of carbon number content of liquid products.

촉매catalyst 반응온도(℃)Reaction temperature (℃) 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid MFI(50)MFI (50) 300300 5151 2727 2424 330330 100100 2626 7474 350350 100100 2222 7878 BEA(13)BEA (13) 270270 4444 1414 3030 300300 100100 2424 7676 350350 100100 1010 9090

반응시간; 150분, PE왁스/촉매 = 10 g/0.2 g.Reaction time; 150 min, PE wax / catalyst = 10 g / 0.2 g.

촉매catalyst 반응온도(℃)Reaction temperature (℃) 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 MFI(50)MFI (50) 330330 42.142.1 57.657.6 0.30.3 00 00 00 350350 50.950.9 20.620.6 1.61.6 11.411.4 9.59.5 6.06.0 BEA(13)BEA (13) 270270 31.731.7 66.566.5 1.81.8 00 00 00 300300 61.961.9 32.432.4 4.34.3 1.31.3 0.10.1 00

반응시간; 150분, PE왁스/촉매 = 10 g/0.2 g.Reaction time; 150 min, PE wax / catalyst = 10 g / 0.2 g.

반응온도가 높아질수록 전환율이 높아져, MFI(50) 촉매에서는 330℃에서 BEA(13) 촉매에서는 300℃에서 PE왁스가 100분해되었다. 350℃에서 액체 생성물의 수율은 MFI(50) 촉매에서 75정도로 높았으나, BEA(13) 촉매에서는 88로 아주 높았다. 반응온도가 높아질수록 액체 생성물의 수율이 높아지는 것은 분해된 생성물중 기화되는 량이 많기 때문이다. 따라서 액체 생성물의 성분분포에서 반응온도가 높아지면 탄소수가 작은 탄화수소 분율이 많아지지만, 긴 분해 생성물이 동시에 기화되어 액체로 포집되기 때문에 탄소수가 많은 탄화수소의 생성량이 많아진다. MFI(50) 촉매에서는 350℃에서 ≥C20유분 함량이 6.0로 매우 높다.As the reaction temperature was increased, the conversion was higher, and 100 PE wax was decomposed at 330 ° C. for the MFI 50 catalyst and 300 ° C. for the BEA 13 catalyst. The yield of the liquid product at 350 ° C. was as high as 75 in MFI (50) catalyst, but very high as 88 in BEA (13) catalyst. The higher the reaction temperature, the higher the yield of the liquid product is due to the larger amount of vaporization in the decomposed product. Therefore, when the reaction temperature is increased in the component distribution of the liquid product, the fraction of hydrocarbon having a small carbon number increases. However, since the long decomposition products are simultaneously vaporized and collected as a liquid, the amount of hydrocarbon having a large carbon number increases. The MFI 50 catalyst has a very high ≧ C 20 oil content of 6.0 at 350 ° C.

실시예 3Example 3

Si/Al 몰비가 다른 MOR 촉매에서 PE왁스의 액상 촉매분해반응을 조사하였다. 표 5에 전환율과 액체 및 기체 생성물의 수율을 정리하였다.Liquid phase catalytic cracking of PE wax was investigated on MOR catalysts with different Si / Al molar ratios. Table 5 summarizes the conversion and yields of liquid and gaseous products.

표 6에는 액체 생성물의 탄소수별 함량을 정리하였다. Si/Al 몰비가 12, 18, 26으로 전환율이 높은 촉매에서 C5∼C7탄화수소의 분율은 높다. 반면 활성이 낮은 촉매에서는 C8∼C10탄화수소 분율이 많아졌다. 이런 현상은 촉매 종류나 반응온도에 관계없이 반응의 진행정도에 따른 결과로, 활성이 높아 분해반응이 많이 진행되면 C5∼C7탄화수소가 상대적으로 많아진다.Table 6 summarizes the carbon number content of the liquid product. The fraction of C 5 to C 7 hydrocarbons is high in catalysts with high conversions with Si / Al molar ratios of 12, 18 and 26. On the other hand, the C 8 to C 10 hydrocarbon fraction increased in the low activity catalyst. This phenomenon is a result of the progress of the reaction irrespective of the type of catalyst or the reaction temperature, the higher the activity, the higher the decomposition reaction, the more C 5 ~ C 7 hydrocarbons.

촉매의Si/Al 몰비Si / Al molar ratio of catalyst 전환율()Conversion rate 생성물 수율 ()Product yield () 기체gas 액체Liquid 55 1313 99 44 1010 1818 99 99 1212 6565 2626 3939 1818 5858 2929 2929 2626 3737 1616 2121 6464 2828 1414 1414 120120 2020 1010 1010

반응온도; 380℃, 반응시간; 150분, PE왁스/촉매=10 g/0.2 gReaction temperature; 380 ° C., reaction time; 150 minutes, PE wax / catalyst = 10 g / 0.2 g

촉매의Si/Al 몰비Si / Al molar ratio of catalyst 탄소수별 함량 ()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 1010 20.720.7 58.958.9 17.917.9 2.92.9 0.70.7 00 1212 47.947.9 47.747.7 2.92.9 1.41.4 0.30.3 00 1818 44.244.2 52.752.7 2.92.9 0.50.5 00 00 2626 40.040.0 52.352.3 6.86.8 0.90.9 00 00 120120 20.220.2 66.366.3 13.913.9 0.40.4 00 00

반응온도; 380℃, 반응시간; 150분, PE왁스/촉매=10 g/0.2 gReaction temperature; 380 ° C., reaction time; 150 minutes, PE wax / catalyst = 10 g / 0.2 g

실시예 4Example 4

입자크기가 다른 MFI 촉매에서 PE왁스의 액상 분해반응을 조사하였다. 전환율과 기체 및 액체 생성물의 수율을 표 7에, 액체 생성물의 탄소수별 함량을 표 8에 정리하였다.The liquid phase decomposition of PE wax was investigated on MFI catalysts with different particle sizes. Conversion rates and yields of gas and liquid products are summarized in Table 7, and the carbon number content of the liquid products is summarized in Table 8.

입자크기(㎛)Particle size (㎛) 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid 0.20.2 100100 2222 7878 0.50.5 100100 2727 7373 1.01.0 9898 4141 5757 2.52.5 6262 3434 2828 5.05.0 4848 3030 1818

반응온도; 350℃, 반응시간; 150분, PE왁스/촉매=10 g/0.2 g.Reaction temperature; 350 ° C., reaction time; 150 minutes, PE wax / catalyst = 10 g / 0.2 g.

입자크기(μm)Particle size (μm) 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 0.20.2 66.766.7 21.921.9 2.32.3 5.55.5 3.53.5 0.10.1 0.50.5 76.276.2 19.519.5 1.21.2 2.52.5 0.50.5 00 1.01.0 74.174.1 23.523.5 2.32.3 0.20.2 00 00 2.52.5 69.569.5 30.130.1 0.40.4 00 00 00 5.05.0 59.359.3 40.640.6 0.10.1 00 00 00

반응온도; 350℃, 반응시간; 150분, PE왁스/촉매=10 g/0.2 g.Reaction temperature; 350 ° C., reaction time; 150 minutes, PE wax / catalyst = 10 g / 0.2 g.

실시예 5Example 5

제올라이트 BEA 촉매에서 촉매와 반응물의 공급비를 바꾸어 PE왁스의 액상 촉매분해반응을 조사하였다. BEA 촉매에서 얻어진 기체 및 액체 생성물의 수율을 표 9에, 액체 생성물의 탄소수별 함량을 표 10에 정리하였다. BEA 촉매는 활성이 높아서 촉매량을 0.05 g으로 줄여도 350℃에서 10.0 g의 PE왁스가 기체 및 액체로 모두 분해되었다. 촉매량을 줄이면 모두 전환되는데 필요한 시간이 길어진다. 즉, 촉매를 0.2 g 사용하면 15분내에 분해반응이 종결되지만, 0.05 g 사용하면 30분 정도 소요된다. 촉매 사용량이 많아지면 액체 생성물의 수율이 높아진다. 촉매량이 많아지면 외표면적이 증가되어, 분해반응은 빠르게 진행되나 바로 기화되기 때문에 분해 횟수는 상대적으로 작아진다.The catalytic cracking reaction of PE wax was investigated by changing the feed ratio of catalyst and reactant in zeolite BEA catalyst. The yields of gas and liquid products obtained from the BEA catalyst are summarized in Table 9 and the carbon number content of the liquid products in Table 10. BEA catalysts have high activity, so even at a catalyst of 0.05 g, 10.0 g of PE wax was decomposed into gas and liquid at 350 ° C. Reducing the amount of catalyst increases the time required for all conversions. In other words, if 0.2 g of the catalyst is used, the decomposition reaction is terminated within 15 minutes, but using 0.05 g takes about 30 minutes. Higher catalyst usage yields higher yields of liquid products. As the amount of catalyst increases, the outer surface area increases, so that the decomposition reaction proceeds rapidly but is vaporized immediately.

촉매 사용량(g)Catalyst usage (g) 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid 0.050.05 100100 1818 8282 0.10.1 100100 1717 8383 0.20.2 100100 1212 8888 0.30.3 100100 1010 9090

반응온도; 350℃, 반응시간; 100분.Reaction temperature; 350 ° C., reaction time; 100 minutes.

촉매사용량(g)Catalyst usage (g) 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 0.050.05 40.440.4 33.933.9 14.714.7 7.97.9 2.92.9 0.30.3 0.10.1 46.546.5 26.726.7 10.810.8 7.57.5 5.95.9 2.62.6 0.20.2 44.544.5 30.430.4 7.77.7 8.38.3 5.55.5 3.83.8 0.30.3 37.937.9 31.331.3 13.113.1 9.19.1 6.36.3 2.32.3

반응온도; 350℃, 반응시간; 100분.Reaction temperature; 350 ° C., reaction time; 100 minutes.

실시예 6.Example 6.

외표면에 실리카가 담지된 촉매의 액상 분해반응 결과를 표 11에, 액체 생성물의 탄소수별 함량을 표 12에 정리하였다.Table 11 shows the results of the liquid phase decomposition reaction of the catalyst on which the silica is supported on the outer surface, and Table 12 shows the carbon number content of the liquid product.

PE왁스의 분해반응에 활성이 높은 MFI(50)-0.2 촉매와 BEA(13) 촉매의 외표면을 실리카로 차폐하여도 분해반응의 전환율은 크게 달라지지 않았다. 그러나 외표면에 차폐되면 분해반응의 속도가 느려지고, 반응이 주로 세공내에서 진행되어 기체 생성물의 수율이 오히려 증가하였다. 반면 PE왁스 분해반응 활성이 낮은 MFI(50)-2.5 촉매와 MOR(10) 촉매에 실리카로 외표면을 차폐하면 분해반응의 전환율이 크게 증가한다. 이는 외표면에 담지된 실리카가 외표면 산점을 차폐하여 탄소침적으로 인한 활성저하를 억제하기 때문이다.The conversion rate of the decomposition reaction did not change significantly even when the outer surfaces of the MFI (50) -0.2 catalyst and the BEA (13) catalyst, which were highly active in the decomposition of PE wax, were shielded with silica. However, the shielding on the outer surface slows down the decomposition reaction, and the reaction proceeds mainly in the pores, so that the yield of the gas product is rather increased. On the other hand, shielding the outer surface of silica with MFI (50) -2.5 catalyst and MOR (10) catalyst with low PE wax decomposition activity greatly increases the conversion rate of decomposition reaction. This is because silica supported on the outer surface shields the external surface acid point and suppresses the decrease in activity due to carbon deposition.

실리카로 외표면을 차폐하면 액체 생성물의 탄소수별 함량도 달라진다. 입자가 작아 외표면 분율이 커서 C12이상의 긴 탄화수소가 많이 생성되는 MFI(50)-0.2 촉매와 BEA(13) 촉매에서 외표면 산점을 차폐시키면 C12이상의 탄화수소 함량이 현저히 줄어든다. 반면 주로 세공내에서 진행되는 2.5 ㎛ 크기의 MFI(50) 촉매와 MOR(10) 촉매에서 실리카로 외표면을 차폐하여도 전환율은 증가하지만 생성물의 성분분포는 별로 달라지지 않는다.Shielding the outer surface with silica also changes the carbon content of the liquid product. When the particles are small, the external surface fraction of shielding the external surface acid sites at the cursor C 12 or more long MFI (50) -0.2 catalyst as BEA (13) which hydrocarbons are produced many catalytic hydrocarbon content of at least 12 C is significantly reduced. On the other hand, even if the outer surface is shielded with silica in the MFI (50) and MOR (10) catalyst of 2.5 ㎛ size that proceeds mainly in the pores, the conversion is increased but the component distribution of the product is not very different.

촉매catalyst 반응온도(℃)Reaction temperature (℃) 전환율()Conversion rate 생성물 수율 ()Product yield () 기체gas 액체Liquid MFI(50)-0.2MFI (50) -0.2 350350 100100 2222 7878 S-MFI(50)-0.2S-MFI (50) -0.2 350350 100100 2828 7272 N-MFI(50)-0.2N-MFI (50) -0.2 350350 100100 2727 7373 MFI(50)-2.5MFI (50) -2.5 350350 2626 1818 88 S-MFI(50)-2.5S-MFI (50) -2.5 350350 6565 3030 3535 N-MFI(50)-2.5N-MFI (50) -2.5 350350 5858 3333 2525 MOR(10)MOR (10) 380380 2727 1414 1313 N-MOR(10)N-MOR (10) 380380 8282 2828 5454 BEA(13)BEA (13) 300300 100100 2323 7676 N-BEA(13)N-BEA (13) 300300 9797 2828 6969

반응시간; 100분, PE왁스/촉매=10 g/0.3 gReaction time; 100 minutes, PE wax / catalyst = 10 g / 0.3 g

촉 매catalyst 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 MFI(0.2)MFI (0.2) 50.950.9 20.620.6 1.61.6 11.411.4 9.59.5 5.95.9 S-MFI(0.2)S-MFI (0.2) 67.567.5 27.627.6 2.32.3 2.42.4 0.30.3 0.10.1 N-MFI(0.2)N-MFI (0.2) 61.461.4 22.922.9 4.24.2 3.93.9 2.12.1 2.02.0 MFI(2.5)MFI (2.5) 58.558.5 40.140.1 1.01.0 0.20.2 0.20.2 00 S-MFI(2.5)S-MFI (2.5) 68.668.6 30.030.0 0.50.5 0.10.1 0.20.2 0.50.5 N-MFI(2.5)N-MFI (2.5) 61.461.4 34.034.0 3.93.9 0.20.2 0.20.2 00 BEABEA 61.961.9 32.432.4 4.34.3 1.31.3 0.10.1 00 N-BEAN-BEA 61.961.9 35.135.1 2.92.9 0.20.2 00 00 MORMOR 20.520.5 58.258.2 17.717.7 2.92.9 0.60.6 0.10.1 N-MORN-MOR 60.860.8 30.730.7 3.43.4 3.93.9 0.10.1 00

반응시간; 100분, PE왁스/촉매=10 g/0.3 g.Reaction time; 100 minutes, PE wax / catalyst = 10 g / 0.3 g.

실시예 7Example 7

상용 고분자인 LDPE (Low Density Polyethylene), HDPE (High Density Polyethylene), PP (Polypropylene)의 액상 촉매분해반응을 BEA(13) 촉매에서 조사하였다. 상용 고분자는 PE왁스보다 분자량이 현저히 커서 LDPE의 분자량은 50,000이고, HDPE는 분자량이 200,000 정도이다. PP의 분자량은 알 수 없으나 분자량에 대응하는 용융지수 (Melting Index, MI)는 4이다. 표 13에 반응물에 따른 수율을 표 14에 액체 생성물의 탄화수소별 함량을 정리하였다.Liquid phase catalytic cracking of commercially available polymers, Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), and Polypropylene (PP), were investigated on BEA (13) catalyst. Commercial polymers have a significantly higher molecular weight than PE wax, so the LDPE has a molecular weight of 50,000 and HDPE has a molecular weight of about 200,000. The molecular weight of PP is unknown but the Melting Index (MI) corresponding to the molecular weight is 4. Table 13 shows the yields according to the reactants. Table 14 shows the hydrocarbon-specific contents of the liquid product.

상용 고분자의 액상 촉매분해반응의 거동은 PE왁스와 상당히 다르다. 낮은 온도에서부터 분해반응이 격렬히 진행되지만 분해반응 도달 후 분해반응 거동은 반응물에 따라 약간씩 다르다. 100진행되는 LDPE와 PP의 분해반응에서는 온도가 높아지는데 무관하게 분해반응이 꾸준히 진행된다. 반면 HDPE의 분해반응에서는 초기에는 분해반응이 격렬히 진행되지만, 어느 정도 반응이 진행되면 반응속도가 급격히 느려진다. 이처럼 분해반응이 초기에는 빠르게 진행되다가 바로 멈추어버리는 현상은, 초기에 생성된 올레핀이 중합되어 촉매의 세공을 막기 때문이다.The behavior of liquid phase catalytic cracking of commercial polymers differs significantly from that of PE wax. Degradation proceeds vigorously from low temperatures, but after reaching the decomposition reaction the decomposition reaction varies slightly depending on the reactants. Decomposition reaction of LDPE and PP proceeds steadily regardless of temperature. On the other hand, in the decomposition reaction of HDPE, the decomposition reaction proceeds vigorously at first, but when the reaction proceeds to some extent, the reaction rate is drastically slowed. The phenomenon in which the decomposition reaction proceeds rapidly at first and stops immediately is because the olefins produced at the beginning are polymerized to block the pores of the catalyst.

액체 생성물은 주로 탄소수 12 이하의 탄화수소로 이루어졌다. 긴 고분자 물질에서 분해되었지만 PP, HDPE, LDPE 모두에서 비슷한 생성물이 얻어진다. 외표면에서 분해된 1단계 생성물들은 반응온도에서 기화되지 않을 정도의 큰 분자이어서, 이들이 세공내로 확산되면서 계속 분해되기 때문에 액체 생성물의 탄소수 분포가 좁아진다. PE왁스는 탄소수가 약 40에서 80으로 비교적 작은 분자여서 외표면에서 두어번 분해되어도 기화될 수 있는 탄화수소가 생성되므로 도리어 긴 탄화수소가많이 생성된다.The liquid product consisted mainly of hydrocarbons having up to 12 carbon atoms. Although degraded in long polymeric materials, similar products are obtained in both PP, HDPE and LDPE. The first-stage products decomposed at the outer surface are large molecules that are not vaporized at the reaction temperature, so that the carbon number distribution of the liquid product is narrowed because they continue to decompose as they diffuse into the pores. PE wax is a relatively small molecule with a carbon number of about 40 to 80, so that hydrocarbons that can be vaporized even if decomposed a couple of times on the outer surface generate a lot of long hydrocarbons.

반응물Reactant 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid LDPELDPE 100100 3636 6464 HDPEHDPE 7474 2828 4646 PPPP 100100 2727 6868

반응온도; 350℃, 반응시간; 150분, 반응물/촉매=10 g/0.3 g.Reaction temperature; 350 ° C., reaction time; 150 min, reactant / catalyst = 10 g / 0.3 g.

반응물Reactant 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 LDPELDPE 34.534.5 56.856.8 8.68.6 0.10.1 00 00 HDPEHDPE 41.841.8 50.550.5 7.37.3 0.40.4 0.10.1 00 PPPP 50.850.8 42.642.6 5.95.9 0.60.6 0.10.1 00

반응온도; 350℃, 반응시간; 150분, 반응물/촉매=10 g/0.3 g.Reaction temperature; 350 ° C., reaction time; 150 min, reactant / catalyst = 10 g / 0.3 g.

실시예 8Example 8

폐고분자 물질의 액상 촉매분해반응을 BEA(13) 촉매에서 조사하였다. 농업용 폐비닐을 재처리하여 제조한 폐PE(1)는 한국자원재생공사 담양지사로부터, 농업용 폐비닐이 들어 있는 두 종류의 폐PE(2)와 폐PE(3)는 화순 신흥산업으로부터 제공받아 사용하였다. 또한 요구르트 병을 파쇄하여 폐PS의 액상 분해반응을 조사하였다. 폐고분자 물질의 액상 촉매분해반응 결과를 표 15에, 액체 생성물의 탄소수별 함량을 표 16에 정리하였다.The liquid phase catalytic cracking of the spent polymer material was investigated on BEA (13) catalyst. Waste PE (1) manufactured by reprocessing agricultural waste vinyl was supplied by Damyang branch of Korea Resources Reclamation Corporation. Two types of waste PE (2) and waste PE (3) containing agricultural waste vinyl were supplied from Hwasun Emerging Industry Used. In addition, the yogurt bottle was crushed to investigate the liquid phase decomposition of the waste PS. Table 15 shows the results of the liquid phase catalytic decomposition of the used polymer materials, and Table 16 shows the carbon number content of the liquid products.

폐고분자 물질의 액상 촉매분해반응의 거동은 상용 고분자 물질의 분해거동과 비슷하다. 반응 초기에 분해반응이 격렬히 진행되는 점은 모두 같지만, 분해온도에 도달한 후 분해반응 거동은 반응물에 따라 약간씩 다르다. 또 외표면을 차폐하여 활성저하를 억제시킨 촉매에서도 달랐다. 폐PE(1)의 분해반응에서는 어느 촉매에서나 액체 생성물의 수율이 비슷하지만, BEA 촉매와 외표면 처리 촉매의 액체 생성물 생성속도가 달랐다. 외표면 처리 촉매에서 반응 초기의 속도는 약간 늦지만, 반응온도에 도달한 후 약 10분이 지나면 오히려 더 빨라졌다. 이는 외표면이 차폐되어 탄소침적으로 인한 세공 막힘이 억제되어 분해반응의 활성이 유지되기 때문이다. 폐PE(2)의 분해반응에서는 분해온도를 높여도 전환율이 낮다. 외표면을 차폐한 촉매에서는 전환율은 크게 증가되지만, 생성물의 조성도 크고 작은 탄화수소가 혼재되어 있다. 재생 용기를 제조하기 위해 산화철을 가해 압출한 폐PE(3)는 어느 촉매에서나 쉽게 분해되지 않았으며, 외표면 차폐 촉매에서는 전환율이 약간 높았다.The behavior of liquid phase catalytic cracking of waste polymers is similar to that of commercial polymers. In the early stages of the reaction, the decomposition reactions proceed vigorously, but the decomposition reaction behavior varies slightly depending on the reactants after reaching the decomposition temperature. It was also different from the catalyst which shielded the outer surface and suppressed the deactivation. In the decomposition of the waste PE (1), the liquid product yield was similar in all catalysts, but the rate of liquid product formation was different between the BEA catalyst and the external surface treatment catalyst. The rate of initial reaction in the outer surface treatment catalyst was slightly slower, but it was faster after about 10 minutes after reaching the reaction temperature. This is because the outer surface is shielded and pore blockage due to carbon deposition is suppressed to maintain the activity of the decomposition reaction. In the decomposition reaction of waste PE (2), the conversion rate is low even if the decomposition temperature is increased. In the catalyst shielding the outer surface, the conversion rate is greatly increased, but the product composition is also large and small hydrocarbons are mixed. The waste PE (3) extruded with iron oxide to prepare the regeneration vessel was not easily decomposed in any of the catalysts, and the conversion was slightly higher in the outer surface shielding catalyst.

액체 생성물에는 탄소수 12 이하인 탄화수소가 많이 포함되어 있지만, 분해반응 온도를 380℃로 높이면 탄소수 12 이상인 탄화수소도 상당량 생성된다. PS의 분해반응 생성물에는 분해된 스타이렌 단량체가 다시 반응하여 생성된 치환된 알킬기의 종류나 개수가 다른 방향족 화합물이 서로 섞여 있다. 고리가 여러 개인 방향족 화합물도 섞여 있어 탄소수로 생성물 조성을 나타내기는 어렵지만, 액체 생성물에서 스타이렌 단량체와 이보다 낮은 온도에서 끓는 탄화수소 분율의 합은 약 77였다. 실란으로 처리한 촉매에서는 약 65인데, 세공내에서 주로 분해반응이 진행되기 때문에 생성물의 조성이 매우 복잡하다.The liquid product contains a lot of hydrocarbons having 12 or less carbon atoms, but when the decomposition reaction temperature is increased to 380 ° C, a considerable amount of hydrocarbons having 12 or more carbon atoms are also produced. In the decomposition reaction product of PS, aromatic compounds having different kinds or numbers of substituted alkyl groups formed by the reaction of the degraded styrene monomers again are mixed with each other. Although aromatic compounds with multiple rings are also mixed, it is difficult to represent the product composition by carbon number, but the sum of the styrene monomer and the boiling hydrocarbon fraction at lower temperatures in the liquid product is about 77. In the catalyst treated with silane, it is about 65. Since the decomposition reaction proceeds mainly in the pores, the composition of the product is very complicated.

촉매catalyst 반응물Reactant 전환율()Conversion rate 생성물 수율()Product yield () 기체gas 액체Liquid BEA(13)BEA (13) 폐PE(1)* Waste PE (1) * 100100 2525 7575 폐PE(2)** Waste PE (2) ** 3333 1616 1717 폐PE(3)*** Waste PE (3) *** 2727 1616 1111 N-BEA(13)N-BEA (13) 폐PE(1)* Waste PE (1) * 100100 2121 7979 폐PE(2)** Waste PE (2) ** 6767 2424 4343 폐PE(3)*** Waste PE (3) *** 3939 1616 2323 BEA(13)BEA (13) 폐PSLung PS 9090 1111 7979 N-BEA(13)N-BEA (13) 폐PSLung PS 8989 1010 7979

반응온도; 380℃, 반응시간; 150분, 반응물/촉매=10 g/0.3 g.Reaction temperature; 380 ° C., reaction time; 150 min, reactant / catalyst = 10 g / 0.3 g.

*한국자원재생공사 담양지사* Korea Resource Reclamation Corporation Damyang Branch

**화순신흥산업(black)Hwasun Emerging Industry (black)

***화순신흥산업(red)*** Hwasun Emerging Industry (red)

반응물Reactant 탄소수별 함량()Carbon content () C5∼C7 C 5- C 7 C8∼C10 C 8- C 10 C11∼C13 C 11- C 13 C14∼C16 C 14- C 16 C17∼C19 C 17- C 19 ≥C20 ≥C 20 폐PE(1)* Waste PE (1) * 36.836.8 45.245.2 14.114.1 3.23.2 0.50.5 0.10.1 폐PE(1)*(N)Waste PE (1) * (N) 30.730.7 49.949.9 15.815.8 2.92.9 0.60.6 0.10.1 폐PE(2)** Waste PE (2) ** 37.537.5 44.444.4 14.814.8 2.02.0 0.90.9 0.40.4 폐PE(2)**(N)Waste PE (2) ** (N) 31.531.5 38.538.5 16.116.1 10.410.4 2.42.4 0.90.9 폐PE(3)*** Waste PE (3) *** 28.428.4 54.854.8 15.915.9 0.70.7 0.10.1 < 0.1<0.1 폐PE(3)***(N)Waste PE (3) *** (N) 30.430.4 59.459.4 9.49.4 0.70.7 0.10.1 00

반응온도; 380℃, 반응시간; 150분, 반응물/촉매=10 g/0.3 g, (N); 실란처리 BEA.Reaction temperature; 380 ° C., reaction time; 150 min, reactant / catalyst = 10 g / 0.3 g, (N); Silane Treatment BEA.

*한국자원재생공사 담양지사 * Korea Resources Reclamation Corporation Damyang Branch

**화순신흥산업(black) ** Hwasun Emerging Industry (black)

***화순신흥산업(red) *** Hwasun Emerging Industry (red)

이상에서와 같이 본 발명에서, 입자 크기와 조성을 조절하고 외표면 처리한 제올라이트를 촉매로 사용하여 폐플라스틱을 액상 분해하였을 경우, 기존의 분해 반응에 비해 낮은 온도에서 전환율이 높고, 액체 생성물의 선택성이 개선된 효과를 얻을 수 있었다.. 특히, 실란처리로 실리카를 담지시킨 N-제올라이트를 사용하였을 경우, 외표면 처리 촉매에서 초기 반응 속도는 약간 늦어지만, 반응 온도에 도달한 후 약 10분이 지나면 오히려 더 빠르고 전환율이 높았다.As described above, in the present invention, when the waste plastic is subjected to liquid phase decomposition by controlling the particle size and composition and using an external surface treated zeolite as a catalyst, the conversion is higher at a lower temperature than the conventional decomposition reaction, and the selectivity of the liquid product An improved effect was obtained. In particular, in the case of using silica-supported N-zeolite, the initial reaction rate was slightly slower in the outer surface treatment catalyst, but after about 10 minutes after reaching the reaction temperature, It was faster and had a higher conversion rate.

Claims (5)

폐고분자 물질을 저분자 탄화수소 혼합물로 전환하는 촉매에 있어서, 제올라이트 촉매 외표면에 실리콘 화합물을 담지시키거나 실란으로 처리하고, 소성하여 실리카를 외표면에 담지시켜 외표면 산점을 차폐시키는 것을 특징으로 하는 제올라이트 촉매.A catalyst for converting a waste polymer material into a low molecular hydrocarbon mixture, wherein the zeolite catalyst is coated with a silicon compound or treated with silane and calcined to support silica to the outer surface to shield the external surface acidity. catalyst. 제 1항에 있어서, 제올라이트 촉매의 Si/Al 몰비가 10∼70 인 것을 특징으로 하는 제올라이트 촉매.The zeolite catalyst according to claim 1, wherein the Si / Al molar ratio of the zeolite catalyst is 10 to 70. 제 1항에 있어서, 제올라이트 촉매의 입자크기를 0.01∼1.0 ㎛인 제올라이트 촉매.The zeolite catalyst according to claim 1, wherein the zeolite catalyst has a particle size of 0.01 μm to 1.0 μm. 폐고분자 물질을 저분자 탄화수소 혼합물로 전환하는 방법에 있어서, 250℃∼ 450℃에서 용융된 반응물과 제 1항 기재의 제올라이트 촉매를 직접 접촉시켜 분해시켜 생성된 저분자 탄화수소 혼합물을 회수함을 특징으로 하는 액상 촉매분해방법.A method of converting a waste polymer material into a low molecular hydrocarbon mixture, wherein the molten reactant and the zeolite catalyst according to claim 1 are directly contacted with each other at 250 ° C. to 450 ° C. to recover the resulting low molecular hydrocarbon mixture. Catalytic Cracking Method. 제 4항에 있어서, 제올라이트 촉매를 폐고분자 물질에 대하여 0.5∼20 중량사용하는 것을 특징으로 액상 촉매분해방법.5. The liquid phase catalytic cracking method according to claim 4, wherein the zeolite catalyst is used in an amount of 0.5 to 20 weight based on the waste polymer material.
KR1019990032314A 1999-08-06 1999-08-06 Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst KR100306047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990032314A KR100306047B1 (en) 1999-08-06 1999-08-06 Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990032314A KR100306047B1 (en) 1999-08-06 1999-08-06 Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst

Publications (2)

Publication Number Publication Date
KR20010017023A KR20010017023A (en) 2001-03-05
KR100306047B1 true KR100306047B1 (en) 2001-09-24

Family

ID=19606407

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990032314A KR100306047B1 (en) 1999-08-06 1999-08-06 Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst

Country Status (1)

Country Link
KR (1) KR100306047B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081697A (en) * 2002-04-12 2003-10-22 주식회사 리플코리아 zeolite catalyst processing method for oil recovery
CN109305688B (en) * 2017-11-16 2021-11-05 中国石油化工股份有限公司 Method for synthesizing NaA type molecular sieve material by catalytic cracking waste catalyst

Also Published As

Publication number Publication date
KR20010017023A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
Beltrame et al. Catalytic degradation of polymers: Part II—Degradation of polyethylene
Lee et al. Degradation of polystyrene using clinoptilolite catalysts
Takuma et al. Product distribution from catalytic degradation of polyethylene over H-gallosilicate
Masuda et al. Chemical recycling of mixture of waste plastics using a new reactor system with stirred heat medium particles in steam atmosphere
CN1315929A (en) Composition for use in converting hydrocarbons, its preparation and use
KR920018195A (en) Polymer cracking
Su et al. Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst
CN1320148A (en) Process for manufacturing olefins using pentasil zeolite based catalyst
Zhou et al. Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE
CN102209767A (en) Nanocrystalline silicalite for catalytic naphtha cracking
KR100993397B1 (en) Process of catalytic cracking of hydrocarbon
JP3404047B2 (en) Controlled decomposition of hydrocarbon polymers
Pierella et al. Catalytic degradation of high density polyethylene over microporous and mesoporous materials
KR100306047B1 (en) Catalyst for degradation waste-polymers into the mixture of lower hydrocarbons and a method of degradation waste-polymers into the mixture of lower hydrocarbons using the catalyst
CN1015451B (en) Method of recovering styrene monomer by cracking waste polystyrene
Batool et al. Catalytic pyrolysis of low density polyethylene using cetyltrimethyl ammonium encapsulated monovacant keggin units and ZSM-5
US5700751A (en) Catalyst for treatment of waste plastics and method of manufacturing the same
KR20230130102A (en) Hydrodepolymerization process of polymer waste
Takuma et al. A Novel Technology for Chemical Recycling of Low-Density Polyethylene by Selective Degradation into Lower Olefins Using H-Borosilicate as a Catalyst.
KR100330929B1 (en) Catalyst for waste plastic decomposition and catalytic cracking process using the same
KR20030035638A (en) Preparation of catalysts from used fcc catalysts for the liquid-phase degradation of waste polymer, and catalytic degradation process using the same
KR100446151B1 (en) A study the Oil Recovery by Pyrolysis from Waste Pleastics (HDPE, PP) through Olivine
CN1077808C (en) Catalyst of alkyl benzene with straight chain made by alkylation from benzene and straight chain olefin and its application
CN1986502B (en) Ethylene and toluene catalytically separating process for preparing methyl ethyl benzene
CN1123554C (en) Process for preparing ethylbenzene and isopropylbenzene from low-concentration ethylene and propylene

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20040706

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee