KR100291200B1 - Method for manufacturing gallium nitride thin film by chemical vapor deposition method - Google Patents

Method for manufacturing gallium nitride thin film by chemical vapor deposition method Download PDF

Info

Publication number
KR100291200B1
KR100291200B1 KR1019980005072A KR19980005072A KR100291200B1 KR 100291200 B1 KR100291200 B1 KR 100291200B1 KR 1019980005072 A KR1019980005072 A KR 1019980005072A KR 19980005072 A KR19980005072 A KR 19980005072A KR 100291200 B1 KR100291200 B1 KR 100291200B1
Authority
KR
South Korea
Prior art keywords
thin film
gallium nitride
vapor deposition
chemical vapor
silicon
Prior art date
Application number
KR1019980005072A
Other languages
Korean (ko)
Other versions
KR19990070310A (en
Inventor
박준택
김윤수
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019980005072A priority Critical patent/KR100291200B1/en
Publication of KR19990070310A publication Critical patent/KR19990070310A/en
Application granted granted Critical
Publication of KR100291200B1 publication Critical patent/KR100291200B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides

Abstract

PURPOSE: A fabrication method of a gallium thin film is provided to reduce a cost of a hexagonal gallium nitride by using a silicon '111' orientation substrate of a low price instead of a sapphire substrate of a high price. CONSTITUTION: A gallium nitride layer is formed by depositing an organic gallium compound of a single precursor on a silicon '111' orientation wafer using a chemical vapor deposition method. The silicon '100' orientation and a sapphire are used as the substrate. The precursor material is Me2(N3)Ga:N3 as solid state having a volatility at a room temperature and a Et2(N3)Ga:NH3 as a liquid state, where Me is CH3(methyl), Et is S2H5(ethyl), nPr is C3H7(n-prophyl), iPr is C3H7(isopropyl), and tBu is C4H9(t-butyl).

Description

화학증착법에 의한 질화갈륨박막의 제조방법Method for producing gallium nitride thin film by chemical vapor deposition

본 발명은 전자 및 광학소재의 절연막으로 사용되는 질화갈륨 박막의 제조방법에 관한 것이다.The present invention relates to a method for producing a gallium nitride thin film used as an insulating film of electronic and optical materials.

육방형 질화갈륨 (GaN) 은 Ⅲ-Ⅴ족 화합물 반도체의 하나로서 3.4 eV 의 넓은 직접 띠 간격을 가지며, 높은 온도에서도 화학적으로 매우 안정하고 높은 경도를 가진다. 현재 질화갈륨의 선행기술에 대한 연구는 주로 질화인듐 (InN) 과 혼합물을 형성하여 청색 영역에서부터 자외선까지 응용성을 가지는 광학 소자에 대한 것이다.Hexagonal gallium nitride (GaN) is one of the III-V compound semiconductors and has a wide direct band spacing of 3.4 eV, and is chemically very stable even at high temperatures and has high hardness. Currently, research on the prior art of gallium nitride is mainly for optical devices having a mixture with indium nitride (InN) to be applied from the blue region to the ultraviolet.

존슨(Johnson) 등에 의해 질화갈륨의 합성이 처음으로 보고된 이래 [W. C. Johnson, J. B. Parsons, M. C. Crew, J. Phys. Chem., 36, 2651 (1932)] 양질의 질화갈륨 박막을 얻기 위한 노력이 경주되었으며 스퍼터링법, 기상 이동 화학 증착법, 분자살 적층 성장법 (MBE), 유기금속 화학 증착법 (OMCVD) 등 여러 기술이 응용되어 왔다.Since the synthesis of gallium nitride was first reported by Johnson et al. [W. C. Johnson, J. B. Parsons, M. C. Crew, J. Phys. Chem., 36, 2651 (1932)] Efforts have been made to obtain high quality gallium nitride thin films, and various techniques such as sputtering, vapor phase chemical vapor deposition, molecular mass deposition growth (MBE), and organometallic chemical vapor deposition (OMCVD) have been developed. Has been applied.

그러나 기존의 방법으로 양질의 질화갈륨 박막을 얻는 데는 몇 가지 어려움이 있는 것으로 알려져 있다. 첫째는 박막 증착시 트리메틸갈륨(GaMe3) 과 암모니아를 사용하는 데 암모니아의 높은 열적 안정성 때문에 900℃ 이상의 높은 기질 온도를 필요로 한다. 높은 온도에서는 낮은 질소 함량을 초래하게 되고 이로 인해 n형 운반체의 농도가 높게 된다 [S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10, 1237 (1992)]. 또한 다층 박막 성장에서는 층간의 확산 현상이 더욱 활발하게 일어나게 되고 열적 안정성이 낮은 박막을 같은 기질 위에 적층시킬 수 없다는 단점이 있다. 둘째는 증기압이 다른 두 가지 이상의 선구물질을 사용하기 때문에 박막의 성분비를 정량적으로 조절하기 어렵다는 점이다. 셋째는 박막의 선구물질로 사용하는 트리메틸갈륨과 암모니아의 반응성 및 독성이 매우 강하기 때문에 취급이 용이하지 않고 장기간 연구하는 동안 증기압이 감소하거나 선구물질이 분해되어 박막의 질에 문제를 가져오게 된다. 이를 해결하기 위하여 최근에는 갈륨과 질소가 정량적으로 포함되어 있는 유기금속 화합물을 단일선구물질로 사용하는 연구가 활발히 진행되고 있다. 단일선구물질은 분자 내에 박막을 만드는 데 필요한 원소들을 화학양론적으로 포함하고 있기 때문에 정확한 조성을 가진 박막을 얻기에 용이하며, 박막을 이루는 원소들 간의 화학결합이 이미 이루어져 있어 기질 표면에서 박막 원소들 간의 화학결합을 이루기 위한 표면 확산 및 화학결합을 위한 활성화 에너지가 크게 요구되지 않는 장점을 가지고 있다. 단일선구물질은 반응성이나 독성이 크게 낮아져 다루기도 용이하며, 재결정이나 승화법으로 쉽게 정제할 수 있다.However, it is known that there are some difficulties in obtaining a high quality gallium nitride thin film by the conventional method. First, the use of trimethylgallium (GaMe 3 ) and ammonia in thin film deposition requires a high substrate temperature of 900 ° C. or higher due to the high thermal stability of ammonia. Higher temperatures result in lower nitrogen content, which leads to higher concentrations of n-type carriers [S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 10, 1237 (1992). In addition, in the multi-layer thin film growth, diffusion between layers occurs more actively, and a thin film having low thermal stability cannot be laminated on the same substrate. Second, since two or more precursors with different vapor pressures are used, it is difficult to quantitatively control the composition ratio of the thin film. Third, since the reactivity and toxicity of trimethylgallium and ammonia, which are used as precursors of thin films, are very strong, they are not easy to handle, and the vapor pressure decreases or the precursors decompose during long-term studies, causing problems in the quality of thin films. In order to solve this problem, researches using an organometallic compound containing quantitatively gallium and nitrogen as a single precursor have been actively conducted. Since single precursors contain stoichiometric elements necessary to make a thin film in a molecule, it is easy to obtain a thin film with an accurate composition, and chemical bonds between the elements forming the thin film have already been formed. Surface diffusion to achieve chemical bonding and activation energy for chemical bonding does not require much. Single precursors are significantly less reactive and toxic, which makes them easier to handle and can be easily purified by recrystallization or sublimation.

박막의 증착 온도도 많이 낮아지는 것으로 보고되어 있으므로 고온에서 불안정한 물질을 기질로 사용할 수 있고 박막간의 상호 확산도 방지할 수 있다. 낮은 온도에서의 박막 제조는 단일선구물질의 큰 장점이며 박막 제조 기술 분야에서 가장 중요한 선결되어야 할 과제이다.Since the deposition temperature of the thin film is reported to be much lowered, it is possible to use a material that is unstable at a high temperature as a substrate and to prevent mutual diffusion between the thin films. Thin film fabrication at low temperatures is a major advantage of single precursors and is the most important challenge in thin film fabrication technology.

코우리(Cowley) 등은 [(Me2N)(N3)Ga(-μ-NMe2)]2을 단일선구물질로 합성하여 580℃ 에서 질화갈륨 박막을 성장시킬 수 있었다고 보고[D. A. Neumayer, A. H. Cowley, A. Decken, R. A. Jones, V. Lakhotia, J. G. Ekerdt, J. Am. Chem. Soc., 117, 5893 (1995)]하였고, 피셔(Fischer) 등은 [(N3)2Ga(CH2CH2CH2NMe2)] 을 합성하여 750℃ 에서 질화갈륨 박막을 성장시킬 수 있었다고 보고[R. A. Fischer, A. Miehr, O. Ambacher, T. Metzger, E. Born, J. Cryst. Growth, 170, 139 (1997)]하였다. 또한 본 발명자들은 [Et2Ga(-μ-Nh2)]3을 합성하여, 이를 단일선구물질로 사용하고 500℃에서 질화갈륨 박막을 성장시켰다[Y. Kim, C. G. Kim, K.-W. Lee, K.-S. Yu, J. T. Park, Y. Kim, Mater. Res. Soc. Symp. Proc., 449, 367 (1997)].Kowley et al. Reported that [(Me 2 N) (N 3 ) Ga (-μ-NMe 2 )] 2 was synthesized as a single precursor to grow gallium nitride films at 580 ° C [DA Neumayer, AH Cowley, A. Decken, RA Jones, V. Lakhotia, JG Ekerdt, J. Am. Chem. Soc., 117, 5893 (1995)], and Fischer et al. Synthesized [(N 3 ) 2 Ga (CH 2 CH 2 CH 2 NMe 2 )] to grow gallium nitride films at 750 ° C. Report by RA Fischer, A. Miehr, O. Ambacher, T. Metzger, E. Born, J. Cryst. Growth, 170, 139 (1997). The inventors also synthesized [Et 2 Ga (−μ−Nh 2 )] 3 , using it as a single precursor, and growing a gallium nitride thin film at 500 ° C. [Y. Kim, CG Kim, K.-W. Lee, K.-S. Yu, JT Park, Y. Kim, Mater. Res. Soc. Symp. Proc., 449, 367 (1997).

일반적으로 적층 성장시킨 박막의 결정 구조는 사용하는 기질의 종류와 배향에 크게 의존함이 알려져 있는데, 육방형 질화갈륨 박막을 얻기 위해서 사파이어, 특히 c-면의 결정이 기질로 흔히 사용되어 왔다. 이는 사파이어가 고온에서 안정하며, 육각 대칭을 갖고, 전처리가 비교적 간단하기 때문이다. 그러나 규소 기질 위에 질화갈륨 박막을 성장시킨 예는 보고된 경우가 많지 않다. 소자로서의 응용을 위해서는 대면적의 박막을 쉽게 만들 수 있는 화학 증착법이 유리하며, 사파이어 보다는 쉽게 금속 전극을 만들 수 있고 기존의 규소 공정을 응용할 수 있는 규소 기질을 이용하는 것이 바람직하다. 또한 주로 사용되는 규소 (001) 면은 사중(fourfold) 대칭을 가지기 때문에 그 위에 육방형 질화갈륨을 성장시키는 것은 어렵다고 알려져 있다. 마우스타카스(Moustakas)의 보고에 의하면 규소 (111) 면에는 육방형 질화갈륨이 적층 성장한다고[T. D. Moustakas, T. Lei, R. J. Molnar, Physica B, 185, 36 (1993)]발표하였다.In general, it is known that the crystal structure of a thin film grown by lamination depends greatly on the type and orientation of the substrate to be used. Sapphire, in particular, c-plane crystal, has been commonly used as a substrate to obtain a hexagonal gallium nitride thin film. This is because sapphire is stable at high temperatures, has hexagonal symmetry, and pretreatment is relatively simple. However, examples of growing gallium nitride thin films on silicon substrates are rarely reported. For application as a device, a chemical vapor deposition method that can easily make a large area thin film is advantageous, and it is preferable to use a silicon substrate that can easily make a metal electrode and to apply a conventional silicon process than sapphire. It is also known that it is difficult to grow hexagonal gallium nitride thereon because the mainly used silicon (001) plane has fourfold symmetry. According to the report of Moutakas, hexagonal gallium nitride is grown on the silicon (111) plane [T. D. Moustakas, T. Lei, R. J. Molnar, Physica B, 185, 36 (1993).

본 발명의 기술적과제는 단일 선구 물질을 사용하여 질화갈륨 규소(111)면에 육방형으로 성장시키기 위해서는 유기갈륨 화합물의 성질이 중요하다. 따라서 규소(111) 웨이퍼 기질 위에 유기갈륨 화합물인 Me2(N3)Ga:NH3와 Et2(N3)Ga:NH3를 사용하여 화학 증착법에 의해 질화갈륨 박막을 형성시키는 것이다.The technical problem of the present invention is that the properties of the organic gallium compound is important in order to grow hexagonally on the gallium silicon nitride (111) surface using a single precursor material. Therefore, a gallium nitride thin film is formed on the silicon (111) wafer substrate by chemical vapor deposition using Me 2 (N 3 ) Ga: NH 3 and Et 2 (N 3 ) Ga: NH 3 as organogallium compounds.

본 발명에서 화학 증착법에 의해 질화갈륨 박막을 제조하는데 사용된 단일선구 물질들은 상온에서 휘발성이 있는 고체인 Me2(N3)Ga:NH3와 액체인 Et2(N3)Ga:NH3로서, Me는 CH3(메틸), Et는 C2H5(메틸),nPr는 C3H7(n-프로필),iPr는 C3H7(이소프로필),tBu는 C4H9(t-부틸)이고, 이 화합물들은 증기압이 높아 화학 증착의 원료로는 아주 좋은 성질을 가지고 있다. 본 발명은 규소 (111) 기질 위에 이 시료를 400℃∼900℃ 의 온도 범위에서 저항 가열하고 Me2(N3)Ga:NH3및 Et2(N3)Ga:NH3를 사용하는 화학 증착법에 의하여 질화갈륨 박막을 제조하였다.In the present invention, the single precursor materials used to prepare the gallium nitride thin film by chemical vapor deposition are volatile solids Me 2 (N 3 ) Ga: NH 3 and liquid Et 2 (N 3 ) Ga: NH 3 . , Me is CH 3 (methyl), Et is C 2 H 5 (methyl), n Pr is C 3 H 7 (n-propyl), i Pr is C 3 H 7 (isopropyl), t Bu is C 4 H 9 (t-butyl), these compounds have high vapor pressures and are very good for chemical vapor deposition. The present invention provides a chemical vapor deposition method using a Me 2 (N 3 ) Ga: NH 3 and Et 2 (N 3 ) Ga: NH 3 with resistance heating of a sample on a silicon (111) substrate in a temperature range of 400 ° C. to 900 ° C. The gallium nitride thin film was prepared by.

본 발명에 있어서 질화갈륨을 화학 증착하는 데 사용된 장치는 오일 확산 펌프가 장착된 고진공 (10-7Torr) 화학 증착 장치이다. 스테인레스 강관으로 된 플랜지 (flange)를 사용하여 구리 가스켓을 쓰는 형태로 접합시킨 찬 벽 (cold wall) 형태이며, 시료관의 진공 및 선구물질의 증기 압력을 조절할 수 있는 고진공용 밸브들이 연결되어 있다. 기질의 온도는 광학 온도계로 측정하였고, 한편으로는 규소 기질을 통과하는 전류와 온도의 상관 관계의 보정 도표를 만들어 전류량으로 부터 계산하였다.The apparatus used to chemically deposit gallium nitride in the present invention is a high vacuum (10 -7 Torr) chemical vapor deposition apparatus equipped with an oil diffusion pump. It is a cold wall type that is joined by using a copper gasket using a flange made of stainless steel pipe, and high vacuum valves for controlling vacuum and precursor vapor pressure of a sample pipe are connected. The temperature of the substrate was measured with an optical thermometer, while on the other hand it was calculated from the amount of current by making a calibration chart of the correlation between the temperature passing through the silicon substrate and the temperature.

이하 합성예와 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 단, 본 발명의 범위가 하기 실시예만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Synthesis Examples and Examples. However, the scope of the present invention is not limited only to the following Examples.

[합성예 1] Me2(N3)Ga:NH3의 합성Synthesis Example 1 Synthesis of Me 2 (N 3 ) Ga: NH 3

[Me2Ga(-μ-NH2)]30.39 g 을 Et2O 에 녹이고 아지드산 (NH3) 0.14 g 을 -60℃에서 적가하면서 교반한 후 반응 온도를 실온까지 올려 2 시간 동안 교반하였다. 반응이 끝난 후 진공하에서 용매를 제거하고 횐색 고체 0.36 g 을 얻었다. 이 고체를 승화법으로 정제한 다음 X-선 결정구조 연구,1H NMR,13C NMR 로부터 Me2(N3)Ga:NH3가 합성되었음을 확인하였다.[Me 2 Ga (-μ-NH 2 )] 3 0.39 g was dissolved in Et 2 O, and 0.14 g of azide acid (NH 3 ) was added dropwise at -60 ° C., and the reaction temperature was raised to room temperature, followed by stirring for 2 hours. It was. After the reaction was completed, the solvent was removed in vacuo to give 0.36 g of a white solid. This solid was purified by sublimation and then confirmed to synthesize Me 2 (N 3 ) Ga: NH 3 from X-ray crystal structure studies, 1 H NMR and 13 C NMR.

mp 66℃;1H NMR (CDCl3, 20℃) δ -0.21 (s, Ga-Me), 2.88 (br, N-H);13C NMR (CDCl3, 20℃) δ -7.60 (Ga-Me); MS (70 eV) m/z 126 (M+-[Me+NH3]); IR υ (N3) 2097, 2259 cm-1.mp 66 ° C .; 1 H NMR (CDCl 3 , 20 ° C.) δ −0.21 (s, Ga-Me), 2.88 (br, NH); 13 C NMR (CDCl 3 , 20 ° C.) δ −7.60 (Ga-Me); MS (70 eV) m / z 126 (M + -[Me + NH 3 ]); IR υ (N 3 ) 2097, 2259 cm -1 .

[합성예 2] Et2(N3)Ga:NH3의 합성Synthesis Example 2 Synthesis of Et 2 (N 3 ) Ga: NH 3

[Et2Ga(-μ-NH2)]30.88 g 을 Et2O 에 녹이고 아지드산 0.26 g 을 -60℃에서 적가하면서 교반한 후 반응 온도를 실온까지 올려 2 시간 동안 교반하였다. 반응이 끝난 후 진공 하에서 용매를 제거하고 무색 액체 0.91 g 을 얻었다. 이 액체를 증류법으로 정제한 다음1H NMR,13C NMR 로부터 Et2(N3)Ga:NH3가 합성되었음을 확인하였다.[Et 2 Ga (-μ-NH 2 )] 3 0.88 g was dissolved in Et 2 O, and 0.26 g of azide acid was added dropwise at -60 ° C, followed by stirring. The reaction temperature was raised to room temperature and stirred for 2 hours. After the reaction was completed, the solvent was removed under vacuum to obtain 0.91 g of a colorless liquid. This liquid was purified by distillation and then confirmed to be Et 2 (N 3 ) Ga: NH 3 synthesized from 1 H NMR and 13 C NMR.

mp -10℃;1H NMR (CDCl3, 20℃) δ 0.56 (q, Ga-CH2CH3), 1.12 (t, Ga-CH2CH3), 3.05 (s, N-H);13C NMR (CDCl3, 20℃) δ 2.80 (Ga-CH2CH3), 9.24 (Ga-CH2CH3); MS (70 eV) m/z 140 (M+-[Et+NH3]); IR υ (N3) 2073, 2254 cm-1.mp-10 ° C .; 1 H NMR (CDCl 3 , 20 ° C.) δ 0.56 (q, Ga—CH 2 CH 3 ), 1.12 (t, Ga—CH 2 CH 3 ), 3.05 (s, NH); 13 C NMR (CDCl 3 , 20 ° C.) δ 2.80 (Ga—CH 2 CH 3 ), 9.24 (Ga—CH 2 CH 3 ); MS (70 eV) m / z 140 (M + -[Et + NH 3 ]); IR υ (N 3 ) 2073, 2254 cm -1 .

[합성예 3] Me2(N3)Ga:NH2 tBu 의 합성Synthesis Example 3 Synthesis of Me 2 (N 3 ) Ga: NH 2 t Bu

Me2(N3)Ga:NH30.33 g 을 CH2Cl2에 녹이고tBuNH20.31 g 을 0℃에서 적가하면서 교반한 후 반응 온도를 실온까지 올려 1 시간 동안 교반하였다. 반응이 끝난후 진공 하에서 용매를 제거하고 흰색 고체 0.41 g 을 얻었다. 이 고체를 승화법으로 정제한 다음 X-선 결정구조 연구,1H NMR,13C NMR 로부터 Me2(N3)Ga:NH2 tBu 가 합성되었음을 확인하였다.0.33 g of Me 2 (N 3 ) Ga: NH 3 was dissolved in CH 2 Cl 2 , and 0.31 g of t BuNH 2 was added dropwise at 0 ° C., and the reaction temperature was raised to room temperature, followed by stirring for 1 hour. After the reaction was completed, the solvent was removed in vacuo to give 0.41 g of a white solid. This solid was purified by sublimation and then confirmed to synthesize Me 2 (N 3 ) Ga: NH 2 t Bu from X-ray crystal structure studies, 1 H NMR and 13 C NMR.

mp 126℃;1H NMR (CDCl3, 20℃) δ -0.22 (s, Ga-Me), 1.28 (s,tBu), 3.13 (br, N-H);13C NMR (CDCl3, 20℃) δ -6.45 (Ga-Me), 30.54 (tBu), 51.72 (N-C); MS (70 eV) m/z 126 (M+-[Me+NH2 tBu]); IR υ (N3) 2088, 2254 cm-1.mp 126 ° C .; 1 H NMR (CDCl 3 , 20 ° C.) δ −0.22 (s, Ga-Me), 1.28 (s, t Bu), 3.13 (br, NH); 13 C NMR (CDCl 3 , 20 ° C.) δ −6.45 (Ga-Me), 30.54 ( t Bu), 51.72 (NC); MS (70 eV) m / z 126 (M + -[Me + NH 2 t Bu]); IR υ (N 3 ) 2088, 2254 cm -1 .

[합성예 4] Et2(N3)Ga:NH2 tBu 의 합성Synthesis Example 4 Synthesis of Et 2 (N 3 ) Ga: NH 2 t Bu

Et2(N3)Ga:NH30.39 g 을 CH2Cl2에 녹이고tBuNH20.31 g 을 0℃에서 적가하면서 교반한 후 반응 온도를 실온까지 올려 1 시간 동안 교반하였다. 반응이 끝난후 진공 하에서 용매를 제거하고 흰색 고체 0.45 g 을 얻었다. 이 고체를 승화법으로 정제한 다음1H NMR,13C NMR 로부터 Et2(N3)Ga:NH2 tBu 가 합성되었음을 확인하였다.0.39 g of Et 2 (N 3 ) Ga: NH 3 was dissolved in CH 2 Cl 2 , and 0.31 g of t BuNH 2 was added dropwise at 0 ° C., and the reaction temperature was raised to room temperature, followed by stirring for 1 hour. After the reaction was completed, the solvent was removed in vacuo to give 0.45 g of a white solid. This solid was purified by sublimation and then confirmed to synthesize Et 2 (N 3 ) Ga: NH 2 t Bu from 1 H NMR and 13 C NMR.

mp 108℃;1H NMR (CDCl3, 20℃) δ 0.48 (q, Ga-CH2CH3), 1.11 (t, Ga-CH2CH3), 1.29 (s,tBu), 3.16 (s, N-H);13C NMR (CDCl3, 20℃) δ 4.30 (Ga-CH2CH3), 9.60(Ga-CH2CH3), 30.50 (tBu), 51.61 (N-C); MS (70 eV) m/z 140 (M+-[Et+NH2 tBu]); IR υ (N3) 2084, 2254 cm-1.mp 108 ° C .; 1 H NMR (CDCl 3 , 20 ° C.) δ 0.48 (q, Ga—CH 2 CH 3 ), 1.11 (t, Ga—CH 2 CH 3 ), 1.29 (s, t Bu), 3.16 (s, NH); 13 C NMR (CDCl 3 , 20 ° C.) δ 4.30 (Ga—CH 2 CH 3 ), 9.60 (Ga—CH 2 CH 3 ), 30.50 ( t Bu), 51.61 (NC); MS (70 eV) m / z 140 (M + − [Et + NH 2 t Bu]); IR υ (N 3 ) 2084, 2254 cm -1 .

[실시예 1]Example 1

Me2(N3)Ga:NH30.1 g 을 용기에 넣고 5.0 × 10-7Torr 의 초기 압력에서 규소(111) 웨이퍼를 500℃ 로 가열하면서 Me2(N3)Ga:NH3의 증기압을 밸브로 조절하여 전체 압력을 1.0 ∼ 2.0 × 10-5Torr 로 맞추고 21 시간 동안 화학 증착을 수행하였다. 증착된 질화갈륨 박막은 검은색이었으며 그 두께는 SEM 파단면 사진으로 부터 1.0 ㎛ 임이 확인되었다. 형성된 박막을 X선 광전자 분광법으로 분석하여 갈륨과 질소가 1 : 1 의 조성비로 구성되었음을 확인하였다. 이 박막을 X선 회절법으로 2θ 를 20°∼ 80°범위에서 변화시켜 측정한 결과 34.4°에서 질화갈륨의 (0002) 봉우리를 관찰하였다. 또한 극점도 분석으로 박막이 육방형으로 잘 성장하였음을 확인하였다. 이는 질화갈륨 박막이 (0002) 방향으로 우선배향성을 가지고 성장하였음을 보여주는 것이다.0.1 g of Me 2 (N 3 ) Ga: NH 3 was placed in a vessel, and the vapor pressure of Me 2 (N 3 ) Ga: NH 3 was decreased while heating the silicon (111) wafer to 500 ° C. at an initial pressure of 5.0 × 10 −7 Torr. The valve was adjusted to adjust the total pressure to 1.0-2.0 × 10 −5 Torr and chemical vapor deposition was performed for 21 hours. The deposited gallium nitride thin film was black and the thickness was found to be 1.0 μm from the SEM fracture photograph. The formed thin film was analyzed by X-ray photoelectron spectroscopy to confirm that gallium and nitrogen had a composition ratio of 1: 1. The thin film was measured by varying 2θ in the range of 20 ° to 80 ° by X-ray diffraction and observed (0002) peaks of gallium nitride at 34.4 °. In addition, it was confirmed that the thin film grew well in a hexagonal shape by the pole figure analysis. This shows that the gallium nitride thin film was grown with preferential orientation in the (0002) direction.

[실시예 2]Example 2

Me2(N3)Ga:NH30.1 g 을 용기에 넣고 5.0 × 10-7Torr 의 초기 압력에서 규소(111) 웨이퍼를 550℃ 로 가열하면서 Me2(N3)Ga:NH3의 증기압을 밸브로 조절하여 전체 압력을 1.0 ∼ 2.0 × 10-5Torr 로 맞추고 21 시간 동안 화학 증착을 수행하였다. 증착된 질화갈륨 박막은 검은색이었으며 그 두께는 SEM 파단면 사진으로 부터 2.5 ㎛ 임이 확인되었다. 증착된 질화갈륨 박막의 특성은 실시예 1과 거의 같았다.0.1 g of Me 2 (N 3 ) Ga: NH 3 was placed in a vessel, and the vapor pressure of Me 2 (N 3 ) Ga: NH 3 was decreased while heating the silicon (111) wafer to 550 ° C. at an initial pressure of 5.0 × 10 −7 Torr. The valve was adjusted to adjust the total pressure to 1.0-2.0 × 10 −5 Torr and chemical vapor deposition was performed for 21 hours. The deposited gallium nitride thin film was black and the thickness was found to be 2.5 μm from the SEM fracture photograph. The deposited gallium nitride thin film had the same characteristics as in Example 1.

[실시예 3]Example 3

Et2(N3)Ga:NH30.1 g 을 용기에 넣고 1.0 ∼ 2.0 × 10-6Torr 의 초기 압력에서 규소(111) 웨이퍼를 450℃ 로 가열하면서 Et2(N3)Ga:NH3의 증기압을 밸브로 조절하여 전체 압력을 2.0 ∼ 5.0 × 10-5Torr 로 맞추고 31 시간 동안 화학 증착을 수행하였다. 증착된 질화갈륨 박막은 검은색이었으며 그 두께는 SEM 파단면 사진으로 부터 1.5 ㎛ 임이 확인되었다. 형성된 박막을 X선 광전자 분광법으로 분석하여 갈륨과 질소가 1 : 1 의 조성비로 구성되었음을 확인하였다. 이 박막을 X선 회절법으로 2θ 를 20°∼ 80°범위에서 변화시켜 측정한 결과 34.5°에서 질화갈륨의 (0002) 봉우리를 관찰하였다. 또한 극점도 분석으로 박막이 육방형으로 잘 성장하였음을 확인하였다. 이는 질화갈륨 박막이 (0002) 방향으로 우선배향성을 가지고 성장하였음을 보여주는 것이다.The NH 3: Et 2 (N 3 ) Ga: Et 2 into the NH 3 0.1 g into a container and from 1.0 to heat the silicon (111) wafers at an initial pressure of 2.0 × 10 -6 Torr to 450 ℃ (N 3) Ga The vapor pressure was controlled by a valve to adjust the total pressure to 2.0 to 5.0 × 10 −5 Torr and chemical vapor deposition was performed for 31 hours. The deposited gallium nitride thin film was black and the thickness was confirmed to be 1.5 ㎛ from the SEM fracture surface photograph. The formed thin film was analyzed by X-ray photoelectron spectroscopy to confirm that gallium and nitrogen had a composition ratio of 1: 1. The thin film was measured by varying 2θ in the range of 20 ° to 80 ° by X-ray diffraction and observed peaks of gallium nitride at 34.5 °. In addition, it was confirmed that the thin film grew well in a hexagonal shape by the pole figure analysis. This shows that the gallium nitride thin film was grown with preferential orientation in the (0002) direction.

[실시예 4]Example 4

Et2(N3)Ga:NH30.1 g 을 용기에 넣고 1.0 ∼ 2.0 × 10-6Torr 의 초기 압력에서 규소(100) 웨이퍼를 450℃ 로 가열하면서 Et2(N3)Ga:NH3의 증기압을 밸브로 조절하여 전체 압력을 8.0 × 10-6Torr 로 맞추고 13 시간 동안 화학 증착을 수행하였다. 증착된 질화갈륨 박막은 검은색이었으며 그 두께는 SEM 파단면 사진으로부터 3.9m 임이 확인되었다. 증착된 질화갈륨 박막의 특성은 실시예 3과 유사하였다.The NH 3: Et 2 (N 3 ) Ga: Et 2 into the NH 3 0.1 g into a container and from 1.0 to heat the silicon (100) wafers at an initial pressure of 2.0 × 10 -6 Torr to 450 ℃ (N 3) Ga The vapor pressure was adjusted with a valve to bring the total pressure to 8.0 × 10 −6 Torr and chemical vapor deposition was carried out for 13 hours. The deposited gallium nitride thin film was black and the thickness was confirmed to be 3.9 m from the SEM fracture photograph. The properties of the deposited gallium nitride thin film were similar to those of Example 3.

[실시예 5]Example 5

Et2(N3)Ga:NH30.1 g 을 용기에 넣고 1.0 ∼ 2.0 × 10-6Torr 의 초기 압력에서 사파이어(0001) 웨이퍼를 450℃ 로 가열하면서 Et2(N3)Ga:NH3의 증기압을 밸브로 조절하여 전체 압력을 5.0 × 10-6Torr 로 맞추고 25 시간 동안 화학 증착을 수행하였다. 증착된 질화갈륨 박막은 검은색이었다. 증착된 질화갈륨 박막의 특성은 실시예 3과 유사하였다.The NH 3: Et 2 (N 3 ) Ga: Et 2 into the NH 3 0.1 g into a container and from 1.0 to heat the sapphire (0001) wafers at an initial pressure of 2.0 × 10 -6 Torr to 450 ℃ (N 3) Ga The vapor pressure was controlled with a valve to bring the total pressure to 5.0 × 10 −6 Torr and chemical vapor deposition was performed for 25 hours. The deposited gallium nitride thin film was black. The properties of the deposited gallium nitride thin film were similar to those of Example 3.

본 발명은 고가의 사파이어 기질 대신에 저가의 규소 (111) 기질을 사용하여, 비교적 낮은 증착 온도인 450℃∼550℃에서 육방형 질화갈륨을 경제적으로 제조할 수 있고 대면적의 박막 증착이 가능하다.The present invention uses an inexpensive silicon (111) substrate instead of an expensive sapphire substrate to economically produce hexagonal gallium nitride at a relatively low deposition temperature of 450 ° C. to 550 ° C., and enables large-area thin film deposition. .

기존의 방법으로 박막 제조시 선구물질이 매우 유독하고 공기에 민감하여 기술적으로 난점이 많으나 비교적 안정한 화합물인 단일선구물질을 사용하는 새로운 방법은 박막 제조 장치가 매우 간단하고 독성에 대한 보호장비 비용이 절감되므로 신소재의 개발이나 다층 박막의 제조에 대단히 유리하다. 또한 가열하지 않고 실온에서 증기를 얻을 수 있는 단일선구물질인 Me2(N3)Ga:NH3와 Et2(N3)Ga:NH3를 합성하여 처음으로 화학 증착에 사용하여 우수한 박막 제조가 가능하므로 수입대체 효과가 있을 것이다.The new method of using a single precursor, which is a technically difficult compound but a relatively stable compound because the precursor is very toxic and sensitive to air when manufacturing the thin film by the conventional method, the thin film manufacturing device is very simple and the cost of protection equipment against toxicity is reduced. Therefore, it is very advantageous for the development of new materials or the manufacture of multilayer thin films. In addition, it is possible to synthesize Me 2 (N 3 ) Ga: NH 3 and Et 2 (N 3 ) Ga: NH 3 , which are single precursors that can obtain steam at room temperature without heating, and use them for the first time in chemical vapor deposition. As possible, there will be a substitution effect.

Claims (3)

화학증착법에 의한 규소(111)웨이퍼 위에 단일선구물질인 유기갈륨 화합물을 화학증착하여 질화갈륨막을 형성하는 것을 특징으로 하는 화학증착법에 의한 질화갈륨박막의 제조방법.A method for producing a gallium nitride thin film by the chemical vapor deposition method, characterized in that the gallium nitride film is formed by chemically depositing an organic gallium compound as a single precursor on the silicon (111) wafer by the chemical vapor deposition method. 제 1항에 있어서, 규소(100)와 사파이어를 기질로 사용하는 것을 특징으로 하는 화학증착법에 의한 질화갈륨박막의 제조방법.The method for producing a gallium nitride thin film by chemical vapor deposition according to claim 1, wherein silicon (100) and sapphire are used as a substrate. 제 1항에 있어서, 상기 단일선구물질은 일반식[l]로 표시되는 유기갈륨화합물인 것을 특징으로 하는 화학증착법에 의한 질화갈륨박막의 제조방법.The method of manufacturing a gallium nitride thin film according to claim 1, wherein the single precursor is an organic gallium compound represented by the general formula [l]. R2(N3)Gs:D [l]R 2 (N 3 ) Gs: D [l] R = Me, Et,nPr,iPr,tBu, Cl, Br,R = Me, Et, n Pr, i Pr, t Bu, Cl, Br, D = NH2R, NHR2, NR3 D = NH 2 R, NHR 2 , NR 3
KR1019980005072A 1998-02-19 1998-02-19 Method for manufacturing gallium nitride thin film by chemical vapor deposition method KR100291200B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980005072A KR100291200B1 (en) 1998-02-19 1998-02-19 Method for manufacturing gallium nitride thin film by chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980005072A KR100291200B1 (en) 1998-02-19 1998-02-19 Method for manufacturing gallium nitride thin film by chemical vapor deposition method

Publications (2)

Publication Number Publication Date
KR19990070310A KR19990070310A (en) 1999-09-15
KR100291200B1 true KR100291200B1 (en) 2001-10-25

Family

ID=37525989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980005072A KR100291200B1 (en) 1998-02-19 1998-02-19 Method for manufacturing gallium nitride thin film by chemical vapor deposition method

Country Status (1)

Country Link
KR (1) KR100291200B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010075977A (en) * 2000-01-21 2001-08-11 윤덕용 Method for Growth of Hexagonal MN Thin Films Using Single-Source Precursors
KR100454650B1 (en) * 2001-07-31 2004-11-05 한국과학기술원 Single-Source Precursors for 13 Group-Nitride Quantum Dot, Process for Preparing Them and Process for Preparing 13 Group-Nitride Quantum Dot Employing Them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077347A (en) * 1996-05-01 1997-12-12 강박광 A method of forming a gallium nitride film on a silicon substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077347A (en) * 1996-05-01 1997-12-12 강박광 A method of forming a gallium nitride film on a silicon substrate

Also Published As

Publication number Publication date
KR19990070310A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
JP3836724B2 (en) Method for producing metal nitride thin film using amine adduct single source precursor
Neumayer et al. Growth of group III nitrides. A review of precursors and techniques
Knauf et al. Comparison of ethyldimethylindium (EDMIn) and trimethylindium (TMIn) for GaInAs and InP growth by LP-MOVPE
KR100291200B1 (en) Method for manufacturing gallium nitride thin film by chemical vapor deposition method
Jones et al. Deposition of aluminum nitride thin films by MOCVD from the trimethylaluminum–ammonia adduct
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
Jenkins et al. Growth of solid solutions of aluminum nitride and silicon carbide by metalorganic chemical vapor deposition
KR100319389B1 (en) Organogallium compound, process for the preparation thereof and preparation of gallium nitride film using same
US11208723B2 (en) Organometallic precursor compound for vapor deposition for forming oxide thin film and method for manufacturing same
KR100191737B1 (en) Process for the preparation of gallium nitride film on silicon substrate
US6808743B2 (en) Growth of ZnO film using single source CVD
US10752992B2 (en) Atomic layer deposition method of metal-containing thin film
JPH0654764B2 (en) Method for forming semi-insulating gallium arsenide
KR100291204B1 (en) Dialkyl indium azide compound and method for forming indium nitride film using the same
KR100254529B1 (en) Preparation of aluminum nitride film on (111) substrate using an organoaluminum compound
Hess et al. Growth and characterization of Ga 1− x In x As by low pressure metalorganic chemical vapor deposition
JPS6115150B2 (en)
US20230160051A1 (en) Method for manufacturing crystalline gallium nitride thin film
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
US6409830B1 (en) Process for preparing a limo2 type heterometallic oxide film
KR20230050655A (en) Halogen-free tungsten compounds, preparation method thereof and process for the formation of thin films using the same
Seifert et al. Organometallic vapour phase epitaxy of galliumarsenide using Ga (CH3) 3· N (CH3) 3‐adduct as precursor
JPH01286326A (en) New ai-c-o singlecrystal film and its manufacturing method
JPH02102522A (en) Manufacture of arsenic containing crystalline thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070228

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee