KR100286652B1 - Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid - Google Patents

Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid Download PDF

Info

Publication number
KR100286652B1
KR100286652B1 KR1019960065667A KR19960065667A KR100286652B1 KR 100286652 B1 KR100286652 B1 KR 100286652B1 KR 1019960065667 A KR1019960065667 A KR 1019960065667A KR 19960065667 A KR19960065667 A KR 19960065667A KR 100286652 B1 KR100286652 B1 KR 100286652B1
Authority
KR
South Korea
Prior art keywords
carbon tetrachloride
dichloromethane
chloroform
catalyst
hydrogenation
Prior art date
Application number
KR1019960065667A
Other languages
Korean (ko)
Other versions
KR19980047208A (en
Inventor
최현철
이경희
류영수
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019960065667A priority Critical patent/KR100286652B1/en
Publication of KR19980047208A publication Critical patent/KR19980047208A/en
Application granted granted Critical
Publication of KR100286652B1 publication Critical patent/KR100286652B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • C07C19/03Chloromethanes
    • C07C19/04Chloroform

Abstract

PURPOSE: Provided is a method for preparing chloroform and dichloromethane simultaneously by hydrogenation of carbon tetrachloride in liquid, which enhances a conversion of carbon tetrachloride into chloroform and dichloromethane. CONSTITUTION: The method comprises dissolving carbon tetrachloride in methanol, and reacting the carbon tetrachloride and methanol at the hydrogen pressure of 0-14 atm and the temperature of 65-140deg.C in the presence of catalyst. The catalyst is montmorillonite supported on palladium and montmorillonite supported on platinum. The method can prepare chloroform and dichloromethane simultaneously by hydrogenation of carbon tetrachloride in liquid, and enhance a conversion of carbon tetrachloride into chloroform and dichloromethane.

Description

사염화탄소의 액상수소화반응에 의한 클로로포름과 다이클로로 메탄의 제조방법Method for preparing chloroform and dichloromethane by liquid hydrogenation of carbon tetrachloride

본 발명은 사염화탄소(CCl4)의 액상수소화반응에 의해 클로로포름(CHCl3) 및 다이클로로메탄(CH2Cl2)을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing chloroform (CHCl 3 ) and dichloromethane (CH 2 Cl 2 ) by the liquid phase hydrogenation of carbon tetrachloride (CCl 4 ).

사염화탄소는 상온 상압하에서 독특한 냄새를 가진 무색의 액체로 CFC의 원료물질 및 세정제, 용매 등에 이용되어 왔지만, 그 자체의 독성 때문에 1970년부터 미국에서는 일상생활용품에의 사용을 금하였으며, 오존층 파괴물질로 규정되어 코펜하겐 의정서에 의해 선진국에서는 1996년부터 사용을 금지하도록 하고 있다.Carbon tetrachloride is a colorless liquid with a characteristic odor at room temperature and atmospheric pressure. It has been used in raw materials, cleaners, and solvents for CFCs.However, since 1970, the use of carbon tetrachloride has been prohibited in daily use in the United States. The Copenhagen Protocol stipulates that developed countries ban use since 1996.

따라서, 사염화탄소를 유용한 물질로 전환하는 연구가 분해하는 반응보다는 바람직하여 주로 백금(Pt)촉매를 이용한 사염화탄소의 기상 수소화반응을 통해 크로로포롬의 제조 연구가 진행되고 있다.Therefore, researches for converting carbon tetrachloride to useful materials are more preferable than decomposition reactions, and thus research into the production of chromophorum is mainly conducted through gas phase hydrogenation of carbon tetrachloride using a platinum (Pt) catalyst.

다우 케미칼(Dow Chemical)사의 유럽특허 제 479,116호에서는 Pt, Pd, Rh, Ru, Ir등의 백금계 귀금속을 활성성분으로한 촉매를 제조하여, 염소처리 한 후 사염화 탄소를 수소화 반응시킴으로써 클로로포름의 선택도를 높이고 촉매의 비활성화를 억제하는 방법이 개시되어 있다. 국제특허공개 제 91-09827호에서는 Pd, Rh, Ru 또는 Pt를 활성탄, 알루미나 혹은 실리카에 담지시킨 촉매를 사용하여 기상 혹은 액상 반응의 기본공정으로 사염화탄소를 클로로포름으로 전환시키는 방법이 보고된 바 있다.Dow Chemical's European Patent No. 479,116 prepares a catalyst containing platinum-based noble metals such as Pt, Pd, Rh, Ru, Ir as active ingredients, and selects chloroform by hydrogenating carbon tetrachloride after chlorination. A method of increasing the degree and suppressing deactivation of the catalyst is disclosed. International Patent Publication No. 91-09827 has reported a method of converting carbon tetrachloride to chloroform as a basic process of gas phase or liquid phase reaction using a catalyst having Pd, Rh, Ru or Pt supported on activated carbon, alumina or silica.

상기한 바와 같이, 사염화탄소의 액상수소화반응 및 기상수소화 반응을 통하여 클로로포름이 주로 생성되지만 다이클로로메탄은 거의 생성되지 않는 것이다.As described above, chloroform is mainly produced through liquid hydrogenation and gas phase hydrogenation of carbon tetrachloride, but little dichloromethane is produced.

이에 본 발명의 목적은 사염화탄소의 액상수소화반응에 의하여 클로로포름과 다이클로로메탄을 동시에 수득할 수 있는 개선된 사염화탄소의 액상수소화 반응방법을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide an improved method for liquid-phase hydrogenation of carbon tetrachloride that can simultaneously obtain chloroform and dichloromethane by liquid-phase hydrogenation of carbon tetrachloride.

제1도는 용매로 각각 메탄올(실시예 3)과 n-운데칸(비교예1)을 사용하는 경우 사염화탄소의 전환율, 클로로포름의 선택도 및 다이클로로포름의 선택도를 나타내는 그래프이다.1 is a graph showing the conversion rate of carbon tetrachloride, the selectivity of chloroform and the selectivity of dichloroform when methanol (Example 3) and n-undecane (Comparative Example 1) are used as solvents, respectively.

본 발명에 의하면, 사염화탄소를 메탄올에 용해시키고 촉매존재하에 0~14atm 수소압력 및 65~140℃ 온도로 사염화탄소와 메탄올을 반응시키는 사염화탄소의 액상수소화 반응에 의한 클로로포름과 다이클로로메탄의 제조방법이 제공된다.According to the present invention, there is provided a method for preparing chloroform and dichloromethane by liquid hydrogenation of carbon tetrachloride by dissolving carbon tetrachloride in methanol and reacting carbon tetrachloride and methanol at a hydrogen pressure of 0 to 14 atm and a temperature of 65 to 140 ° C. in the presence of a catalyst. .

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 사염화탄소의 액상수소화반응을 통해 종래 생성된 클로로포름 뿐만 아니라 유기용제등으로 유용한 다이클로로메탄을 동시에 높은 수율로 수득하기 위한 것으로, 시험 및 연구에 의해 사염화탄소를 메탄올에 용해시킨 후 수소화반응을 행함으로써 클로로포름 뿐만 아니라 다이클로로메탄을 수득하게 된다.The present invention is to obtain dichloromethane useful in organic solvents as well as conventionally produced chloroform through liquid phase hydrogenation of carbon tetrachloride at the same time in high yield. This yields not only chloroform but also dichloromethane.

이때 상기 메탄올은 사염화탄소에 대한 용매로써 또한 수소화반응시 반응물로 반응에 관여한다.The methanol is then involved in the reaction as a solvent for carbon tetrachloride and as a reactant in the hydrogenation reaction.

액상수소화반응에 메탄올을 사용함으로써 투입된 사염화탄소에 비하여 클로로포름과 다이클로로메탄이 현저하게 생성되는 것과 반응후 메탄올의 감소를 고려할 때 반응에 사용되는 메탄올이 용매 및 반응물로 사용되는 것으로 사료된다.It is considered that methanol is used as a solvent and reactant in consideration of the significant production of chloroform and dichloromethane and the reduction of methanol after the reaction.

또한 클로로포름 및 다이클로로메탄에 대한 높은 선택도를 나타내도록 하기 위해서는 최적의 반응조건을 설정하여 반응되도록 하여야 한다.In addition, in order to exhibit high selectivity for chloroform and dichloromethane, it is necessary to set the optimum reaction conditions to react.

즉, Oatm이하의 수소반응 압력에서는 수소화반응이 진행되기 어려우며14atm이상에서는 전환율과 선택도가 거의 일정함으로 압력증대에 따른 효과를 기대할 수 없다.That is, the hydrogenation reaction is difficult to proceed at the hydrogen reaction pressure below Oatm, and the conversion and selectivity are almost constant above 14 atm, so the effect of pressure increase cannot be expected.

또한, 65℃이하의 반응온도에서는 전환율이 낮고 140℃이상에서는 전환율과 선택도가 거의 변화되지 않음으로 압력과 마찬가지로, 온도상승에 따른 효과를 기대할 수 없는 것이다.In addition, the conversion rate is lower at the reaction temperature of less than 65 ℃, and the conversion and selectivity is hardly changed at 140 ℃ or more, like the pressure, the effect of the temperature rise can not be expected.

따라서, 액상 수소반응시 0~50atm의 수소압력 그리고 65~140℃의 반응온도에서 반응을 행하는 것이 바람직하다.Therefore, it is preferable to carry out the reaction at a hydrogen pressure of 0 to 50 atm and a reaction temperature of 65 to 140 ° C during the liquid phase hydrogen reaction.

촉매로는 수소화반응에 일반적으로 사용되는 모든 촉매가 사용될수 있으나, 본 발명에서는 몬트모릴로나이트에 사일렌 리간드를 이온교환시킨후 활성성분으로 Pd 또는 Pt 등이 담지된 촉매를 사용하는 것이 바람직하다.As the catalyst, all catalysts generally used in the hydrogenation reaction may be used, but in the present invention, it is preferable to use a catalyst in which Pd or Pt is supported as an active component after ion exchange of a styrene ligand to montmorillonite. .

이하, 실시예를 통하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

하기 실시예에서, 상압반응기로 플라스크와 고압반응기로 오토클레이브를 사용하여 반응을 행하였으며, 용매로는 본원발명에 의한 극성용매로 메탄올과 무극성 용매인 n-운데칸을 사용하여 반응을 행하였다.In the following examples, the reaction was performed using an autoclave as a flask and a high pressure reactor as an atmospheric pressure reactor, and the reaction was carried out using methanol as a polar solvent according to the present invention and n-undecane as a nonpolar solvent.

1. 촉매의 제조1. Preparation of Catalyst

(1)팔라듐이 담지된 몬모릴로나이트 촉매의 제조(1) Preparation of palladium-supported montmorillonite catalyst

지지체로 상업용 몬모릴로타이트 10g을 0.1N HCl 500ml에 담지함으로써 산처리하여 H-몬모릴로나이트를 만들고, 사일렌리간드로 3-아미노프로필에톡시실란을 사용하고 활성성분으로 염화비스(벤조니트릴)팔라듐(H)를 사용하여 촉매를 제조하였다.As a support, 10 g of commercial montmorillonite was supported in 500 ml of 0.1 N HCl, followed by acid treatment to form H-montmorillonite, using 3-aminopropylethoxysilane as a silylene ligand, and bis (benzonitrile) palladium chloride (H) as an active ingredient. ) To prepare the catalyst.

(2)백금이 담지된 몬모릴로나이트 촉매의 제조(2) Preparation of Montmorillonite Catalyst Supported with Platinum

지지체로 상업용 몬모릴로나이트 10g을 0.1N HCl 50ml에 담지함으로써 산처리하여 H-몬모릴로나이트를 만들고, 사이렐리간드로 3-아미노프로필에톡시실란을 사용하고, 활성성분으로 염화 시스-비스(벤조니트릴)팔라듐(H)를 사용하여 촉매를 제조하였다.As a support, 10 g of commercial montmorillonite was supported in 50 ml of 0.1 N HCl, followed by acid treatment to form H-montmorillonite, using 3-aminopropylethoxysilane as cyclelligane, and cis-bis (benzonitrile) palladium chloride as an active ingredient. The catalyst was prepared using H).

2. 사염화탄소의 액상수소반응2. Liquid Hydrogen Reaction of Carbon Tetrachloride

[실시예 1]Example 1

고압반응기(autoclave)에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 140℃, 수소압력은 0atm로하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst to which the palladium was fixed was charged in an autoclave, the reaction temperature was 140 ° C., the hydrogen pressure was 0 atm, and 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 2]Example 2

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 140℃, 수소압력은 3.6atm로 하고 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 140 ° C., the hydrogen pressure was 3.6 atm, and 10 ml of carbon tetrachloride as a reactant was added thereto, and 100 ml of methanol was used as a solvent.

[실시예 3]Example 3

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 140℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 140 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 4]Example 4

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 140℃, 수소압력은 30atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst to which the palladium was fixed was charged, the reaction temperature was 140 ° C., the hydrogen pressure was 30 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 5]Example 5

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 65℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst to which the palladium was fixed was charged, the reaction temperature was 65 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 6]Example 6

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 100℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 100 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 7]Example 7

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 120℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 120 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 8]Example 8

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 160℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 160 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of methanol was used as a solvent.

[실시예 9]Example 9

액상반응기(4-구 플라스크)에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 62℃, 수소유량은 80-90cc/min으로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 메탄올 200ml를 사용하였다.Charge 0.5 g of the montmorillonite catalyst to which the palladium is fixed in a liquid phase reactor (4-necked flask), the reaction temperature is 62 ° C., the hydrogen flow rate is 80-90 cc / min, and 10 ml of carbon tetrachloride as a reactant is added. 200 ml was used.

[비교예 1]Comparative Example 1

고압반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 140℃, 수소압력은 14.4atm로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 n-운데칸 100ml를 사용하였다.0.5 g of the montmorillonite catalyst having the palladium-fixed montmorillonite catalyst was charged, the reaction temperature was 140 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride as a reactant was added, and 100 ml of n-undecane was used as a solvent.

[비교예 2]Comparative Example 2

액상반응기에 상기 팔라듐이 고정된 몬모릴로나이트 촉매 0.5g을 장입하고, 반응온도를 62℃, 수소유량은 80-90cc/min로 하고, 반응물인 사염화탄소 10ml를 넣고, 용매로는 n-운데칸 200ml를 사용하였다.Charge 0.5 g of the montmorillonite catalyst to which the palladium is fixed in a liquid phase reactor, the reaction temperature is 62 ° C., the hydrogen flow rate is 80-90 cc / min, 10 ml of carbon tetrachloride as a reactant, and 200 ml of n-undecane are used as a solvent. It was.

[비교예 3]Comparative Example 3

고압반응기에 상업용 촉매 1% Pd/C(Aldrich Co.) 0.5g을 장입하고, 반응온도를 120℃, 수소압력은 14.4atm으로 하고, 사염화탄소는 10ml를 넣고, 용매로는 메탄올 100ml를 사용하였다.0.5 g of a commercial catalyst 1% Pd / C (Aldrich Co.) was charged in a high pressure reactor, the reaction temperature was 120 ° C., the hydrogen pressure was 14.4 atm, 10 ml of carbon tetrachloride was added, and 100 ml of methanol was used as a solvent.

실시예 1~9 및 비교예 1~3의 반응조건으로 사염화탄소의 액상수소화반응을 행한후, 각 조건에서 사염화탄소의 전환율, 클로로포름 및 다이클로로메탄의 선택도를 비교하여 하기 표 1~4에 나타내었다.After performing liquid-phase hydrogenation of carbon tetrachloride under the reaction conditions of Examples 1 to 9 and Comparative Examples 1 to 3, the conversion rate of carbon tetrachloride, the selectivity of chloroform and dichloromethane under each condition are compared and shown in Tables 1 to 4 below. .

a: 반응1 시간후a: after 1 hour of reaction

b: 클로로포름b: chloroform

c: 다이클로로메탄c: dichloromethane

a: 반응 11 시간후a: after 11 hours of reaction

b: 클로로포름b: chloroform

c: 다이클로로메탄c: dichloromethane

상기 표 1에서 실시예 1~4에서는 용매로 메탄올을 그리고 비교예 1에서는 n-운데칸을 사용하고 있으며, 용매로 n-운데칸을 사용하는 경우에는 다이클로로메탄이 생성되지 않았다. 또한 수소압력 변화에 따른 전환율 및 선택도에서는 14atm 이상에서 더 이상 전환율 및 선택도가 증가하지 않고 일정한 결과를 나타냄을 알 수 있다.In Examples 1 to 4 in Table 1, methanol was used as a solvent, and n-undecane was used in Comparative Example 1, and dichloromethane was not produced when n-undecane was used as the solvent. In addition, it can be seen that the conversion rate and the selectivity according to the hydrogen pressure change do not increase the conversion rate and the selectivity any more than 14 atm.

표 2는 수소압력을 가하지 않고 수소를 상압으로 사염화탄소와 용매의 혼합용액에 유입하여 반응시키는 경우를 나타낸 것으로 수소압력이 가해진 경우에 비하여 전환율 및 선택도가 모두 감소되며, 용매로 n-운데칸을 사용하는 경우 역시, 다이클로로메탄이 생성되지 않는다.Table 2 shows a case where hydrogen is introduced into a mixed solution of carbon tetrachloride and a solvent at atmospheric pressure without applying hydrogen pressure, and both conversion and selectivity are reduced as compared with the case where hydrogen pressure is applied, and n-undecane is used as a solvent. If used, too, no dichloromethane is produced.

a: 반응1 시간후a: after 1 hour of reaction

b: 클로로포름b: chloroform

c: 다이클로로메탄c: dichloromethane

상기 표3에는 액상수소화반응의 반응온도를 65- 140℃로 변화시켜가면서 반응온도 변화에 따른 액상수소화 반응시의 전환율 및 선택도를 관찰한 것으로 65℃에서는 사염화탄소의 전환율이 낮고, 140℃ 이상에서는 거의 변화를 관찰할 수 없을 정도로 반응이 빠르게 일어났으며, 전환율 및 선택도가 더 이상 증대되지 않았다.Table 3 shows the conversion and selectivity of the liquid hydrogenation reaction according to the change of the reaction temperature while changing the reaction temperature of the liquid hydrogenation reaction to 65-140 ° C. The conversion rate of carbon tetrachloride is low at 65 ° C. and above 140 ° C. The reaction occurred so quickly that almost no change was observed, and the conversion and selectivity no longer increased.

a: 반응 시간후a: after reaction time

b: 클로로포름b: chloroform

c: 다이클로로메탄c: dichloromethane

상기 표4는 다른 촉매를 사용하는 경우 수소화반응의 전환율 및 선택도를 나타내는 것으로 본발명에서 제조된 팔라듐이 담지된 몬모릴로나이트 촉매를 사용하는 경우 상업용 촉매인 1% Pd/C(Aldrich Co)에 비하여 사염화탄소의 전환율이 높고 다이클로로메탄에 대한 선택도도 높음을 알 수 있다.Table 4 shows the conversion and selectivity of the hydrogenation reaction when other catalysts are used, and carbon tetrachloride compared to the commercial catalyst 1% Pd / C (Aldrich Co) when palladium-containing montmorillonite catalysts prepared in the present invention are used. It can be seen that the conversion rate is high and the selectivity to dichloromethane is high.

상기한 바와같이 사염화탄소의 액상 수소화반응에 메탄올을 용매로 사용함으로써 또한 본 발명에 의한 반응조건하에서 액상 수소화반응을 행함으로써, 사염화탄소의 전환율, 클로로포름 및 다이클로로메탄으로의 선택도가 모두 증대되는 것이다.As mentioned above, by using methanol as a solvent in the liquid hydrogenation reaction of carbon tetrachloride and performing liquid phase hydrogenation under the reaction conditions according to the present invention, the conversion of carbon tetrachloride, selectivity to chloroform and dichloromethane are all increased.

Claims (2)

사염화탄소를 메탄올에 용해시키고 촉매존재하에서 0~14atm 수소압력 및 65~140℃온도로 사염화탄소와 메탄올을 반응시키는 사염화탄소의 액상수소화 반응에 의한 클로로포름과 다이클로로메탄의 제조방법.A process for producing chloroform and dichloromethane by dissolving carbon tetrachloride in methanol and reacting carbon tetrachloride with methanol at a temperature of 0 to 14 atm hydrogen pressure and 65 to 140 ° C. in the presence of a catalyst. 제1항에 있어서, 상기 촉매는 팔라듐이 담지된 몬모릴로나이트 및 백금이 담지된 몬모릴로나이트 촉매임을 특징으로 하는 방법.The method of claim 1, wherein the catalyst is a palladium-supported montmorillonite and platinum-supported montmorillonite catalyst.
KR1019960065667A 1996-12-14 1996-12-14 Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid KR100286652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960065667A KR100286652B1 (en) 1996-12-14 1996-12-14 Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960065667A KR100286652B1 (en) 1996-12-14 1996-12-14 Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid

Publications (2)

Publication Number Publication Date
KR19980047208A KR19980047208A (en) 1998-09-15
KR100286652B1 true KR100286652B1 (en) 2001-04-16

Family

ID=37514811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960065667A KR100286652B1 (en) 1996-12-14 1996-12-14 Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid

Country Status (1)

Country Link
KR (1) KR100286652B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395208B1 (en) * 2000-11-06 2003-08-21 학교법인 포항공과대학교 method for treating tetrachloromethane using disproportionation reaction
KR100484508B1 (en) * 2002-09-27 2005-04-20 학교법인 포항공과대학교 Method for disposing of carbontetrachloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395208B1 (en) * 2000-11-06 2003-08-21 학교법인 포항공과대학교 method for treating tetrachloromethane using disproportionation reaction
KR100484508B1 (en) * 2002-09-27 2005-04-20 학교법인 포항공과대학교 Method for disposing of carbontetrachloride

Also Published As

Publication number Publication date
KR19980047208A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
CN101965325B (en) Method for isomerizing olefinically unsaturated alcohols
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JP2011529780A5 (en)
US4996007A (en) Process for the oxidation of alcohols to aldehydes/acids/esters
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
KR100286652B1 (en) Method for preparing chloroform and dichloromethane by hydrogenation of carbon tetrachloride in liquid
TW593130B (en) Direct synthesis of hydrogen peroxide in a new multicomponent solvent system
US6306359B1 (en) Hydrogenation catalysts, method for making same and use thereof for preparing hydrogen peroxide
EP1164117A2 (en) Process for producing adamantane
JP5130957B2 (en) Platinum fixed carbon catalyst for catalytic hydrogenation of aliphatic ketones and process for producing aliphatic secondary alcohols from aliphatic ketones using the same
JPS58208240A (en) Synthesis of olefins from synthetic gas
FR2694286A1 (en) Process for the production of aromatic alcohol by selective hydrogenation of aromatic ketone
JP4256078B2 (en) Method for producing 4-aminodiphenylamine
JPS61204147A (en) Method of hydrogenating aromatic ketone
JP3961938B2 (en) Production of tetrahydrogeraniol
JP2002186854A (en) Selective hydrogenation catalyst and method for selective hydrogenation using the same
JP2010207688A (en) Method for preparing catalyst for manufacturing phenol, catalyst prepared by the preparing method and method for manufacturing phenol
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
JP3819560B2 (en) Method for producing halogenated phenylpropionic acid compound
Wu et al. Divergent functionalization of terminal alkynes enabled alkynylative [5+ 1] benzannulation of 3-acetoxy-1, 4-enynes
JPS62252736A (en) Production of trifluoroethylene
JP2012051839A (en) Defluorination method of fluorine-containing compound
JP3881288B2 (en) Process for producing 5-arylpentanol
JP2836706B2 (en) Method for producing ethylbenzene from 4-vinylcyclohexene
CZ2003209A3 (en) Continuous process for preparing optically pure (S)-beta-hydroxy-gamma-butyrolactone

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040105

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee