KR100277503B1 - Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst - Google Patents

Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst Download PDF

Info

Publication number
KR100277503B1
KR100277503B1 KR1019980021919A KR19980021919A KR100277503B1 KR 100277503 B1 KR100277503 B1 KR 100277503B1 KR 1019980021919 A KR1019980021919 A KR 1019980021919A KR 19980021919 A KR19980021919 A KR 19980021919A KR 100277503 B1 KR100277503 B1 KR 100277503B1
Authority
KR
South Korea
Prior art keywords
nickel
vanadium
molybdenum
roasting
recovering
Prior art date
Application number
KR1019980021919A
Other languages
Korean (ko)
Other versions
KR20000001579A (en
Inventor
김준수
장희동
이후인
박형규
Original Assignee
곽영훈
한국자원연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 곽영훈, 한국자원연구소 filed Critical 곽영훈
Priority to KR1019980021919A priority Critical patent/KR100277503B1/en
Publication of KR20000001579A publication Critical patent/KR20000001579A/en
Application granted granted Critical
Publication of KR100277503B1 publication Critical patent/KR100277503B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

본 발명은 석유탈황(Vacuum Residue Desulfurization, VRDS) 폐촉매를 저온산화배소 및 황산암모늄을 침출한 용액 중에서 니켈성분을 NiSO4형태로 분리, 회수하고 상기의 니켈성분을 회수한 폐촉매 잔사를 다시 고온 산화배소, 수침출 및 침전시켜 V2O5와 CaMoO4형태로 분리, 회수하는 방법에 관한 것이다.The present invention relates to a process for separating and recovering a nickel component in the form of NiSO 4 in a solution of a low temperature oxidation rosin and an ammonium sulfate leached from an exhaust catalyst of a Vacuum Residue Desulfurization (VRDS), recovering the nickel component, Oxidative roasting, water leaching and sedimentation to form V 2 O 5 and CaMoO 4 .

이러한 본 발명의 방법은 석유탈황 폐촉매를 고온 소다배소하면 불용성 알루미늄 니켈 화합물이 생성되어 니켈성분을 분리, 회수할 수 없으므로, 먼저 저온 산화배소하여 니켈성분만 효과적으로 회수하는 것과, 그리고 잔사 형태로 얻어지는 폐촉매 중에 함유된 바나디움 및 몰리브덴 성분을 고온 소다배소, 수침출, 침전생성 등의 재처리 과정을 거쳐서 분리, 회수하는 것을 제공한다.In the method of the present invention, since the insoluble aluminum nickel compound is generated by roasting the petroleum desulfurization spent catalyst at a high temperature, it is impossible to separate and recover the nickel component, so that only the nickel component is effectively recovered by low temperature oxidation roasting, The vanadium and molybdenum components contained in the waste catalyst are separated and recovered through a reprocessing process such as high-temperature soda roasting, water leaching, precipitation production, and the like.

이러한 본 발명의 특징은 폐촉매 중에 함유된 니켈, 바나디움 및 몰리브덴 성분을 연속적으로 분리, 회수할 수 있을 뿐만 아니라, 얻어진 V2O5및 CaMoO4화합물의 순도가 종래의 단순한 소다배소 처리 공정에 의해 제조된 화합물보다 횔씬 양호하여 산업상 유용하게 적용할 수 있다는 점이다.This feature of the present invention is not only capable of continuously separating and recovering the nickel, vanadium and molybdenum components contained in the spent catalyst, but also achieving the purity of the obtained V 2 O 5 and CaMoO 4 compounds by a simple simple soda roasting process Which is much better than the prepared compound, and is industrially useful.

Description

석유탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

본 발명은 석유탈황 폐촉매 중에 함유된 유가금속 중 니켈성분을 저온 산화 배소, 황산암모늄 침출, 용매추출 및 결정화 공정을 통해서 분리, 회수한 후 상기 니켈 회수 후의 폐촉매 잔사중에 함유된 바나디움 및 몰리브덴 성분을 고온소다배소, 수침출, 선택적 침전 및 하소 공정을 통해서 효과적으로 분리, 회수하여 회수된 NiSO4는 도금액으로 사용되고, V2O5및 CaMoO4는 훼로바나디움과 훼로몰리브덴 제조시 첨가원료로 이용할 수 있는 산업상 이용가능성을 극대화할 수 있는 석유화학폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법에 관한 것이다.The present invention relates to a process for separating and recovering a nickel component in a valuable metal contained in an oil desulfurization spent catalyst by a low temperature oxidation rosin, an ammonium sulfate leaching, a solvent extraction and a crystallization process and then recovering the vanadium and molybdenum component Is effectively separated and recovered by hot soda roasting, water leaching, selective precipitation and calcination process. The recovered NiSO 4 is used as a plating solution. V 2 O 5 and CaMoO 4 can be used as a raw material for the preparation of ferrovanadium and ferromolybdenum And a method for separating and recovering nickel, vanadium and molybdenum from waste petrochemical catalysts that can maximize industrial applicability.

일반적으로 석유 탈황 폐촉매 중에 함유된 유가금속 중 바나디움과 몰리브덴 성분은 저온배소 하지 않고 직접 고온 소다배소를 한 다음, 수침출, 선택적 침전 및 하소 공정을 거쳐서 V2O5및 CaMoO4혹은 H2MoO4형태로 회수하고, 불용성니켈 성분은 잔사에 남겨 니켈 제련 공장에 보내거나 폐기처분하는 방법을 이용하고 있다.In general, the vanadium and molybdenum components of the valuable metals contained in the petroleum desulfurization spent catalyst are directly roasted at high temperature without roasting at low temperature and then subjected to water leaching, selective precipitation and calcination to produce V 2 O 5 and CaMoO 4 or H 2 MoO 4 form, and the insoluble nickel component is left in the residue and sent to a nickel smelter or is disposed of.

예를들면 미국 AMAX Co.는 석유화학 탈황 폐촉매를 고온 소다배소 한 다음 수침출 한 용액으로부터 몰리브덴 성분은 MoS3화합물로, 바나디움은 V2O5화합물로 회수하고, 1차 침출잔사를 다시 가압 증기솥에서 반응시켜 알루미나 성분은 Al(OH)3으로 제조하였고 최종 남은 잔사에는 니켈성분이 함유되어 있으므로 재처리를 위해서 니켈 제련소로 보내는 공정을 이용하고 있다.For example, AMAX Co., USA, recovered molybdenum component as MoS 3 compound and vanadium as V 2 O 5 compound from a solution leached from hot soda roasting of petrochemical desulfurization spent catalyst, and the first leach residue was pressurized again The alumina components were reacted in a steam kettle and Al (OH) 3 was prepared. The final residues contained nickel components, so they were sent to the nickel smelter for reprocessing.

그리고 일본의 Taiyoukoukou Co.와 대만의 Full-Yield Co.는 전술한 방법에 의해서 바나디움과 몰리브덴 성분만 분리, 회수한 다음, 잔사 중에 함유된 니켈성분은 Nickel concentrate 형태로 만드는 공정을 이용하고 있다.Taiyoukoukou Co. in Japan and Full-Yield Co. in Taiwan use a process to separate and recover only vanadium and molybdenum components by the above-mentioned method, and then to make the nickel component contained in the residue into nickel concentrate form.

또한 일본의 CCIT Co.는 폐촉매를 산화배소한 다음, 배소 산물 전체를 황산으로 용해시켜 용액중에 함유된 전성분을 다단계 용매추출법으로 분리 정제시키고, 얻어진 용액으로부터 침전법에 의해 원소별로 제조하는 방법을 이용하고 있으나, 전술한 기존의 처리방법들은 니켈을 직접 회수할 수 없을 뿐만 아니라, 2차적으로 회수한 니켈 화합물의 순도가 낮고 경제성에 있어서 문제점이 있다.CCIT Co. of Japan also manufactures a method of separating and purifying all the components contained in a solution by dissolving the whole roasted product in sulfuric acid, separating and purifying the waste catalyst by a multistage solvent extraction method, However, the above-mentioned conventional treatment methods are not only capable of directly recovering nickel, but also have low purity of nickel compounds recovered secondarily and have a problem in economical efficiency.

본 발명은 전술한 바와같이 종래의 고온 소다배소법에 의해 바나디움과 몰리브덴만 분리, 회수할 수 있는 방법에서 벗어나 니켈 성분까지도 효과적으로 회수하기 위해 연구개발된 것이다.As described above, the present invention has been researched in order to effectively recover nickel components from the method of separating and recovering only vanadium and molybdenum by the conventional hot soda flotation method.

특히 본 발명은 석유탈황(Vacuum Residue Desulfurization, VRDS) 폐촉매의 저온 산화배소, 니켈 성분의 선택적인 황산암모늄 침출, LIX84에 의한 용매추출 및 결정화 공정을 거쳐서 고순도 NiSO4제조와 니켈 회수 후의 폐촉매 잔사로부터 V2O5와 CaMoO4화합물을 기존의 방법보다 더욱 고순도로 제조하는 방법을 제공하는데 그 목적이 있다.Particularly, the present invention relates to a process for producing high purity NiSO 4 and recovering spent catalyst residues after recovery of nickel by subjecting low-temperature oxidation roasting of a waste catalyst of a vacuum residue desulfurization (VRDS), ammonium leaching of a nickel component selectively, solvent extraction by LIX84, And a method for producing the V 2 O 5 and CaMoO 4 compound from a higher purity than the conventional method.

상기한 목적을 달성하기 위하여 본 발명에서는 석유탈황 폐촉매를 저온 산화 배소시켜 고온 소다배소시 생성되는 불용성 니켈 알루미네이트(NiA12O4)화합물의 생성을 억제함으로써 니켈성분을 효과적으로 침출시킨 다음, 니켈 침출용액으로부터 분리, 회수 공정을 거쳐서 황산니켈을 제조하는 방법을 제공하는 것이다.In order to achieve the above-mentioned object, the present invention provides a method for producing a nickel sulfide-containing catalyst, which comprises subjecting a petroleum desulfurization spent catalyst to low-temperature oxidation roasting to effectively inhibit the formation of insoluble nickel aluminate (NiAl 2 O 4 ) And separating from the leaching solution and recovering the nickel sulfate.

또한 유황성분이 제거된 니켈 회수 후의 폐촉매잔사를 다시 고온 소다배소하여 바나디움과 몰리브덴 성분을 분리, 회수하면, 기존의 방법보다 순도가 훨씬 양호한 V2O5와 CaMoO4를 제조할수 있는 부수적인 효과도 얻을 수 분리방법을 제공함에 있다.In addition, after recovering the nickel component from which the sulfur component has been removed, the spent catalyst residue is roasted again at a high temperature to separate and recover the vanadium and molybdenum components. As a result, it is possible to produce V 2 O 5 and CaMoO 4 , But also provides a separation method which can be obtained.

제1도는 본 발명의 처리 공정도.FIG. 1 is a process diagram of the present invention. FIG.

이하, 본 발명에 대하여 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

즉, 본 발명에서는 석유탈황 폐촉매를 로드밀(rod mill)로 분쇄하여 200mesh 이하의 입자 크기로 만든후, 폐촉매중에 함유된 수분 및 황성분을 350℃의 저온배소를 통하여 제거하는 공정을 취하였다.That is, in the present invention, the petroleum desulfurization spent catalyst is pulverized with a rod mill to a particle size of 200mesh or less, and then water and sulfur components contained in the spent catalyst are removed through low-temperature roasting at 350 ° C .

이와같이 저온배소하여 얻어진 폐촉매를 황산암모늄으로 니켈성분을 침출하였고, 침출액중의 니켈성분을 유기용매 LIX84로 추출하여 황산니켈 형태로 회수하였다. 그리고 니켈이 추출된 폐촉매 잔사중의 바나디움 및 몰리브덴 성분을 900℃의 소다배소, 80℃의 수침출, 염화암모늄 첨가에 의한 암모늄 바나데이트(NH4VO3)침전법과 염화칼슘 첨가에 의한 칼슘몰리브데이트(CaMoO4) 침전법을 통해 분리, 회수하였다.The nickel catalyst was extracted with ammonium sulfate and the nickel component in the leached solution was extracted with organic solvent LIX84 and recovered in the form of nickel sulfate. The vanadium and molybdenum components of the spent catalyst residue from which nickel was extracted were soda roasted at 900 ° C, water leached at 80 ° C, ammonium vanadate (NH 4 VO 3 ) precipitation by addition of ammonium chloride, and calcium molybdate (CaMoO 4 ) precipitation method.

상기의 소다배소시 사용된 소다염으로는 Na2SO4나 NaOH보다 침출효과가 좋은 Na2CO3를 사용하였는데, 니켈이 회수된 폐촉매는 Na2CO3와 혼합 후 Na2CO3융점인 850℃이상으로 가열하여 Na2CO3가 폐촉매 중의 바나디움 및 몰리브덴과 식(1),(2)와 같이 반응하여 수용성인 NaVO3와 Na2MoO4가 잘 생성되도록 하였다.As the sodium salt used in the soda roasting is Na 2 SO were 4 or leaching effect is to use a good Na 2 CO 3 than NaOH, the nickel is recovered spent catalyst is Na 2 CO 3 and then mixing the Na 2 CO 3 Melting point heated above 850 ℃ was allowed to Na 2 CO 3 the spent catalyst vanadium and molybdenum and (1), (2) reacts as in the generation of an aqueous NaVO 3 and Na 2 MoO 4 in the well.

식(1),(2)와 같이 생성된 NaVO3와 Na2MoO4는 수침출에 의해 추출하였다.NaVO 3 and Na 2 MoO 4 were extracted by water leaching as shown in equations (1) and (2).

침출 여액중의 바나디움은 다음 식(3)과 같이 암모니아와 반응하여 NH4VO3침전으로 석출시켜 회수하였다. 바나디움을 회수한 여액 중에 존재하는 몰리브덴 성분은 식(4)와 같이 CaC12를 첨가하여 칼슘몰리브데이트(CaMoO4)로 회수하였다.The vanadium in the leached filtrate was recovered by precipitation with NH 4 VO 3 by reacting with ammonia as shown in the following formula (3). A molybdenum component present in the recovered vanadium filtrate was returned to the formula (4), calcium molybdate by the addition of CaC1 2 as shown in (CaMoO 4).

이러한 공정으로 분리 회수된 NiSO4는 니켈 도금용으로 이용되고, NH4VO3를 500℃에서 하소하여 얻어진 V2O5및 CaMoO4는 합금강 첨가 소재인 훼로바나디움(FeV)와 훼로몰리브덴(FeMe)의 제조에 유용하게 이용된다.In this process, NiSO 4 is used for nickel plating, V 2 O 5 and CaMoO 4 obtained by calcining NH 4 VO 3 at 500 ° C. are mixed with ferrovanadium (FeV) and ferro molybdenum (FeMe) . ≪ / RTI >

다음은 전술한 바와같은 본 발명을 보다 구체화 하고자 행한 여러 실험 례 및 제조 예를 나타낸 것으로, 이에 의하여 본 발명을 구체적으로 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

(1) 석유탈황 폐촉매에 대한 저온배소 실험 례(1) Low temperature roasting experiment for petroleum desulfurization spent catalyst

폐촉매로부터 유가금속을 효과적으로 회수하기 위해서는 탄소 및 황 성분을 산화 배소에 의하여 제거하여야 한다. 배소온도가 증가할수록 탄소 및 황 성분의 제거율이 높겠지만, 높은 온도에서는 NiO가 A12O3와 반응하여 spinel 구조를 갖는 불용성 NiA12O4화합물이 생성되어 고온과 고압의 침출 조건외에는 니켈의 침출이 어렵다고 알려져 있다. 이에 본 발명에서는 NiA12O3화합물이 생성되지 않는 조건에서 니켈을 침출시키기 위해 저온 배소 실험을 수행하였다.In order to effectively recover the valuable metal from the spent catalyst, carbon and sulfur components must be removed by roasting. As the roasting temperature increases, the removal rate of carbon and sulfur components will be higher. However, at higher temperatures, the NiO reacts with Al 2 O 3 to form an insoluble NiAl 2 O 4 compound having a spinel structure. In addition to leaching conditions of high temperature and high pressure, This is known to be difficult. Therefore, in the present invention, a low-temperature roasting experiment was conducted in order to leach nickel under the condition that no NiA1 2 O 3 compound was produced.

저온 배소 실험은 파분쇄한 -200mesh 폐촉매 시료를 전기 가열형 회전 배소로(rotary kiln)에서 분당 45g을 공급하면서 300-500℃ 온도 범위에서 1시간 동안 실시하였다. 이때 회전 배소로의 회전수는 4rpm, 경사각은 1.5°이었다.In the low temperature roasting experiment, the pulverized -200 mesh waste catalyst samples were heated at 300-500 ℃ for 1 hour in an electric heating rotary kiln while feeding 45 g / min. At this time, the number of revolutions of the rotary roaster was 4 rpm and the inclination angle was 1.5 degrees.

하기의 표 1은 시료인 석유탈황 폐촉매의 화학조성을 나타낸 것이다.The following Table 1 shows the chemical composition of the petroleum-desulfurized spent catalyst as a sample.

상기 표 1에서 보는 바와같이 폐촉매중에는 제거하여야 할 많은 양의 황 및 탄소성분이 함유되어 있고, 또한 바나디움 및 니켈 등 유가금속도 다량 포함되어 있다.As shown in Table 1, the waste catalyst contains a large amount of sulfur and carbon components to be removed, and also contains a large amount of valuable metals such as vanadium and nickel.

하기의 표 2는 시료인 폐촉매를 회전 배소로에서 온도를 변화시키면서 저온 산화 배소한 산물의 화학조성을 나타낸 것이다.Table 2 below shows the chemical composition of the product obtained by low-temperature oxidation roasting of the waste catalyst as a sample while changing the temperature in a rotary kiln.

상기 표 2에서 보는 바와 같이 배소온도가 증가됨에 따라 탄소 및 황 성분은 점점 제거되는데, 그에 반하여 기타 유가성분들은 배소시 무게 감량 때문에 증가되는 경향을 보이고 있다. 온도 350℃ 부근에서 저온 산화배소시 잔류 황 성분은 5.0%이었고 탄소 성분은 2.0%로 많은 양이 제거되었음을 알 수 있다.As shown in Table 2, as the roasting temperature is increased, carbon and sulfur components are gradually removed, while other oil components tend to increase due to weight loss during roasting. The residual sulfur content in the low temperature oxidation roasted at about 350 ℃ was 5.0%, and the carbon content was 2.0%, which indicates that a large amount of sulfur was removed.

(2) 저온배소 산물중에 함유된 니켈 성분의 황산암모늄 침출 실험 례(2) Experimental Example of Leaching of Ammonium Sulfate in Nickel Components Contained in Low Temperature Roasting Products

강산(HCl, H2SO4) 혹은 강알카리 용액은 저온 배소한 폐촉매중에 함유된 여러 가지 유가금속 원소들을 동시에 용해시키기 때문에, 분리·정제 공정을 거쳐서 고순도 유가금속 화합물을 제조하기가 어렵다. 그러므로 본 발명에서는 폐촉매 중의 니켈 성분만을 선택적으로 침출시키기에 적합한 황산암모늄 용액을 사용하여 침출시킨 다음, 침출용액중의 니켈을 용매추출법으로 분리 및 결정화시켜 황산화 니켈을 얻고자 하였다. 이때 사용한 침출조는 5ℓ 용량의 pyrex 반응기로서 교반 및 온도조절 장치가 부착된 장치를 사용하였고, 침출제 농도 400g/ℓ, 침출시간 1시간 및 광액농도는 10%로 고정하였다.It is difficult to produce high purity, expensive metal compounds through separation and purification processes because strong acid (HCl, H 2 SO 4 ) or strong alkaline solutions simultaneously dissolve various valuable metal elements contained in the waste catalyst which is roasted at low temperatures. Therefore, in the present invention, leaching is carried out using an ammonium sulfate solution suitable for selectively leaching only nickel components in the spent catalyst, and nickel in the leaching solution is separated and crystallized by solvent extraction to obtain nickel sulfate. The leaching tank used was a 5 L pyrex reactor equipped with a stirrer and a temperature controller. The concentration of the precipitant was 400 g / l, the leaching time was 1 hour, and the concentration of the liquid was fixed at 10%.

하기의 표 3은 전술한 장치와 같은 조건하에서 저온 배소한 폐촉매를 황산암모늄 용액으로 반응온도 80℃에서 니켈성분을 침출시킬 때, 저온 배소 온도가 침출율에 미치는 영향을 나타낸 것이다.Table 3 below shows the influence of the low temperature roasting temperature on the leaching rate when the nickel component is leached out at a reaction temperature of 80 占 폚 with an ammonium sulfate solution at the low temperature roasting catalyst under the same conditions as the apparatus described above.

상기의 표 3에서 보는 바와같이 배소 온도가 300℃에서 350℃로 증가됨에 따라 니켈의 침출율이 급격히 증가하다가, 그 이상의 온도에서는 다시 급격히 감소하는 경향을 보이고 있는데 배소온도 350℃에서 침출율 80%로 최대치를 나타내고 있다.As shown in Table 3, the leaching rate of nickel is rapidly increased as the roasting temperature is increased from 300 ° C. to 350 ° C., and the leaching rate is rapidly decreased again at a temperature higher than 300 ° C. The leaching rate is 80% As shown in Fig.

이와같이 니켈 침출율이 350℃에서 최대치를 보이다가 그 이상의 온도에서 다시 급격히 감소하는 것은 전술한 바와같이 니켈성분이 폐촉매 중의 알루미나와 화합하여 NiA12O4의 불용성 물질을 생성시키기 때문이다.As described above, the nickel leaching rate shows a maximum value at 350 ° C, and then rapidly decreases again at a higher temperature because the nickel component is combined with the alumina in the spent catalyst to generate an insoluble material of NiAl 2 O 4 .

하기의 표 4는 전술한 장치와 같은 조건하에 350℃에서 저온 배소한 폐촉매를 황산암모늄용액으로 니켈성분을 침출시킬 때, 침출온도가 침출율에 미치는 영향을 나타낸 것이다.Table 4 below shows the influence of the leaching temperature on the leaching rate when the nickel component is leached from the spent catalyst calcined at 350 DEG C under the same conditions as the above apparatus with ammonium sulfate solution.

상기 표 4에서 보는 바와 같이 침출온도가 상승됨에 따라 니켈의 침출율이 계속 증가되다가 80℃에서 최대치를 나타내고 그 이상의 온도에서는 큰 변화가 없었다. 이와같은 침출율의 결과는 침출온도에 따른 일반적인 침출 거동과 큰 차이가 없었다.As shown in Table 4, as the leaching temperature was increased, the leaching rate of nickel was continuously increased, and the maximum value at 80 ° C was not observed. The results of this leaching rate showed no significant difference from the leaching behavior.

하기의 표 5는 전술한 장치와 조건하에서 저온 배소한 폐촉매 중의 니켈 성분을 침출시킨 후 얻어진 침출용액의 조성을 나타낸 것이다.The following Table 5 shows the compositions of the leach solution obtained after leaching nickel components in the spent catalyst roasted under the above-mentioned apparatus and conditions.

상기 표 5에서 보는 바와같이 니켈 침출 후 얻어진 침출 원액의 pH는 3.5이었고, 니켈의 함량은 810ppm이었으며, 알루미늄의 함량은 700ppm이었다. 그러나 침출원액에 암모니아수를 가하여 용매추출에 적합한 pH 8.5로 조절하면, 용매추출시 문제가 되는 알루미늄 성분이 대부분 침전물(수산화물) 형태로 제거되었으며, 목적 성분인 니켈 성분은 니켈암모늄 착화물을 형성하므로 큰 변화가 없었다.As shown in Table 5, the pH of the stock solution obtained after nickel leaching was 3.5, the content of nickel was 810 ppm, and the content of aluminum was 700 ppm. However, when ammonia water was added to the leached solution and adjusted to a pH of 8.5 suitable for solvent extraction, the aluminum component, which was a problem in the extraction of the solvent, was mostly removed in the form of precipitate (hydroxide), and nickel component as the target component formed nickel ammonium complex There was no change.

(3) 용매추출법에 의한 고순도 황산니켈 제조 실험 례(3) Experimental Example of Preparation of High Purity Sulfuric Acid Nickel by Solvent Extraction Method

하기의 표 6은 니켈 침출원액에 암모니아수를 가하여 침출용액의 산도(pH)를 조절한 다음 생성된 불순물 침전을 제거한 후 얻어진 용액을 용매추출제인 10% LIX 84로 용매추출하였을 때, 용액의 pH변화가 니켈 성분의 분리에 미치는 영향을 나타낸 것이다. 용매추출시 유기용매와 수용액의 부피비(O/A)는 1로 하였다.Table 6 below shows the results of the pH change of the solution when the pH of the leaching solution was adjusted by adding ammonia water to the nickel leaching solution and then removing the resulting impurity precipitate by solvent extraction with 10% LIX 84, On the separation of the nickel component. The volume ratio (O / A) of the organic solvent and the aqueous solution was set to 1 during the solvent extraction.

상기 표 6에서 보는 바와같이 용매추출 응액의 pH가 9.5일 경우 니켈 성분의 추출율이 가장 높을 뿐만 아니라 선택성도 가장 양호하였다. 또한 용매추출 용액중의 바나디움, 몰리브덴 및 알루미늄 성분의 함량이 니켈성분에 비하여 매우 적으므로 다단계 추출, 세정, 역추출과 세척의 용매추출 시험 단계를 거치면 효과적으로 고순도 니켈 화합물을 얻을 수 있을 것으로 판단된다.As shown in Table 6, when the pH of the solvent extraction solution was 9.5, the nickel extraction ratio was the highest and the selectivity was the best. In addition, since the content of vanadium, molybdenum and aluminum components in the solvent extraction solution is much smaller than that of the nickel component, it is considered that high-purity nickel compounds can be effectively obtained by performing the step of multi-step extraction, washing, back extraction and solvent extraction.

이상의 결과를 활용하여 bench scale 규모의 mixer-settler(추출 3단, 세정 2단, 역추출 2단 및 세척 1단으로 구성) 용매추출기로 분리·정제한 다음, 1N H3SO4로 역추출하여 얻어진 농축 황산니켈 용액을 결정화시켜서 99% 이상의 황산니켈 화합물(NiSO47H2O)을 제조할 수 있었다.Using the above results, a mixer-settler (consisting of 3 steps of extraction, 2 steps of washing, 2 steps of reverse extraction and 1 step of washing) was separated and purified by a solvent extractor on a bench scale scale and then back extracted with 1N H 3 SO 4 The obtained concentrated nickel sulfate solution was crystallized to produce a 99% or more nickel sulfate compound (NiSO 4 7H 2 O).

하기의 표 7은 전술한 mixer-settler 용매추출장치로 침출 용액중의 니켈 성분을 분리정제하여 얻어진 황산니켈 용액의 조성을 나타낸 것이다.Table 7 below shows the composition of the nickel sulfate solution obtained by separating and purifying the nickel component in the leaching solution with the above-described mixer-settler solvent extraction apparatus.

상기 표 7에서 보는 바와같이 침출용액의 용매추출 시험 결과 얻어진 황산니켈 용액을 결정화시키면, 바나디움, 몰리브덴 및 알루미늄 성분이 미량 함유된 99% 이상의 황산니켈 화합물(NiSO47H2O)을 제조할 수 있다.As shown in Table 7, when the nickel sulfate solution obtained as a result of solvent extraction test of the leach solution is crystallized, more than 99% of nickel sulfate compound (NiSO 4 7H 2 O) containing a small amount of vanadium, molybdenum and aluminum components can be produced .

(4) 니켈 회수후 폐촉매 잔사로부터 바나디움 성분의 회수 실험 례(4) Recovery of vanadium from spent catalyst after nickel recovery

본 발명에서는 니켈 회수 후 폐촉매 잔사에 4당량의 탄산나트륨을 가하여 900℃에서 2시간동안 소다배소한 후, 소다배소 산물을 80℃에서 10% 광액농도의 조건하에서 1시간 동안 수침출하면, 바나디움 및 몰리브덴 성분이 88%정도 침출되었다. 그리고 바나디움 및 몰리브덴 침출용액의 산도를 pH 8.0으로 조절한 후, 침출용액에 염화암모늄 3당량을 가하여 30분동안 반응시키면, 바나디움 성분을 암모늄 바나데이트(NH4VO3)형태로 얻을 수 있었다. 이러한 실험조건에서의 바나듐 회수율은 98%였다. 이와같이 얻어진 암모늄바나데이트 침전물을 건조 및 하소하여 순도 99% 이상의 바나디움 산화물(V2O5)을 제조할 수 있었다.In the present invention, 4 equivalents of sodium carbonate are added to the spent catalyst residue after nickel recovery, soda-roasted at 900 ° C for 2 hours, and then the soda-roasted product is leached at 80 ° C for 1 hour under the condition of 10% The molybdenum component was leached by about 88%. The pH of the leaching solution was adjusted to pH 8.0, and 3 equivalents of ammonium chloride was added to the leaching solution for 30 minutes. The vanadium component was obtained in the form of ammonium vanadate (NH 4 VO 3 ). The recovery of vanadium under these experimental conditions was 98%. The obtained ammonium vanadate precipitate was dried and calcined to produce a vanadium oxide (V 2 O 5 ) having a purity of 99% or more.

한편, 저온 산화배소 하지않고 같은 실험조건에서 바로 탄산소다 배소한 후 얻어진 바나디움 산화물에는 상당량의 불순물이 함유되어 순도가 99% 미만이었다.On the other hand, the vanadium oxide obtained after roasting carbonate soda immediately under the same experimental conditions without low-temperature oxidation roasting contained a considerable amount of impurities, and the purity was less than 99%.

즉, 저온 산화배소하여 니켈성분을 회수한 후 얻어진 폐촉매 잔사로부터 회수한 바나디움 순도가 저온 산화배소하지 않고 바로 탄산소다 배소하여 회수한 바나디움의 순도보다 높다는 것을 알 수 있다.That is, it can be seen that the purity of vanadium recovered from the spent catalyst residue obtained after the nickel component was recovered by low-temperature oxidation roasting was higher than the purity of vanadium recovered immediately after soda carbonate roasting without low-temperature oxidation roasting.

(5) 바나디움 회수 후 여액으로부터 몰리브덴 성분의 회수 실험 례(5) Recovery experiment of molybdenum component from filtrate after vanadium recovery

본 발명에서는 바나디움 회수 후 여액의 산도를 pH 6.0으로 조절한 다음, 이 여액에 염화칼슘 30당량을 가하여 30분동안 반응시키면, 몰리브덴 성분을 칼슘몰리브데이트(CaMoO4)형태로 회수율 80%의 조건하에서 얻을 수 있었다. 이와같이 얻어진 칼슘몰리브데이트 침전물을 건조하면 품위 95%정도의 칼슘몰리브데이트를 제조할 수 있었다. 또한 석유 탈황 폐촉매를 저온 산화배소한 경우와 저온 산화배소하지 않고 바로 탄산소다 배소한 후 얻어진 CaMoO4의 품위를 상호 비교하면, 저온 산화배소하지 않고 바로 탄산소다 배소한 후 얻어진 칼슘몰리브데이트에는 많은 양의 황산칼슘(CaSO4)불순물이 함유되어 품위가 80% 미만이었다.In the present invention, after the recovery of vanadium, the acidity of the filtrate is adjusted to pH 6.0, and 30 equivalents of calcium chloride is added to the filtrate. When the reaction is carried out for 30 minutes, the molybdenum component is recovered in the form of calcium molybdate (CaMoO 4 ) . The dried calcium molybdate precipitate thus obtained was able to produce about 95% of calcium molybdate. In addition, when the petroleum desulfurization scavenging catalyst is calcined at low temperature, and when the quality of CaMoO 4 obtained immediately after soda carbonate roasting without calcining at low temperature is compared with each other, calcium molybdate obtained after soda carbonate roasting immediately without low- A large amount of calcium sulfate (CaSO 4 ) impurities were contained and the quality was less than 80%.

이와같이 저온 산화배소하지 않은 경우에 칼슘몰리브데이트의 품위가 낮은 이유는 폐촉매중에 함유된 황 성분이 충분히 제거되지않아 침출액중에 S04 -2이온 형태로 존재하므로 염화칼슘을 가하여 칼슘몰리브데이트 침전물 생성시 황산칼슘이 공침되어 칼슘몰리브데이트 침전물속에 함유되기 때문이다.Thus why the low quality of the calcium molybdate when no low temperature roasting is the oxidizing the sulfur content does not sufficiently remove S0 4 -2 present in ionic form so produced calcium molybdate was added to precipitate the salt date leachate contained in the spent catalyst Calcium persulfate is co-precipitated and contained in the calcium molybdate precipitate.

즉, 폐촉매를 저온 산화배소 및 탄산소다 배소한 후 얻어진 침출용액으로 몰리브덴 성분을 회수하면, 저온 산화배소하지 않은 경우에 비하여 칼슘몰리브데이트의 품위가 높은 것으로 보아 효과적인 방법으로 생각된다.That is, when the molybdenum component is recovered from the leached solution obtained by low-temperature oxidation roasting and soda-carbonate roasting of the spent catalyst, calcium molybdate is considered to be an effective method as compared with the case where the low-temperature oxidation roasting is not performed.

이상에서 살펴본 바와같은 본 발명은 석유 탈황 폐촉매(VRDS)를 저온 산화배소 및 황산암모늄 침출한 용액중에서 니켈 성분을 도금용 NiSO4형태로 분리, 회수하고 니켈 성분을 회수한 폐촉매 잔사를 다시 고온 소다배소, 수침출 및 침전시켜 합금 첨가용 V2O5와 CaMoO4형태로서 효과적으로 분리, 회수할 수 있다.In the present invention as described above, the nickel component is separated and recovered in the form of NiSO 4 for plating in the solution of the petroleum desulfurization scavenging catalyst (VRDS) by low temperature oxidation roasting and ammonium sulfate leaching, and the spent catalyst residue, Soda roasting, water leaching, and precipitation can be effectively separated and recovered in the form of V 2 O 5 and CaMoO 4 for alloy addition.

이러한 본 발명의 방법은 폐촉매 중에 함유된 니켈, 바나디움 및 몰리브덴 성분을 연속적으로 분리, 회수할 뿐만 아니라, 얻어진 V2O5및 CaMoO4화합물의 순도가 종래의 단순한 소다배소 처리 공정에 의해 제조된 화합물보다 훨씬 양호한 결과를 얻을 수 있는 여러 장점을 갖는다.This method of the present invention not only continuously separates and recovers the nickel, vanadium and molybdenum components contained in the spent catalyst, but also allows the purity of the obtained V 2 O 5 and CaMoO 4 compounds to be produced by a simple simple soda roasting process Have many advantages that can yield much better results than compounds.

Claims (4)

석유탈황 폐촉매 중에 함유된 니켈, 바나디움 및 몰리브덴을 분리, 회수하는 공정은, (1) 니켈 성분을 저온 산화배소시키고, 황산암모늄 침출, 용매추출 및 결정화 공정을 순차적으로 수행함으로 NiSO4형태로 분리, 회수하는 단계; (2) 상기의 니켈 성분의 회수 후 폐촉매 잔사 중에 함유된 바나디움 및 몰리브덴 성분을 고온 소다배소, 수침출, 선택적 침전 및 하소 공정을 통해서 V2O5및 CaMoO4형태로 분리, 회수하는 단계; 를 포함하여 이루어지게 됨을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.A step of separation and recovery of nickel, vanadium and molybdenum contained in a petroleum desulfurization waste catalyst comprises: (1) calcining the low-temperature oxidation of the nickel component and ammonium sulfate leaching, separated by NiSO 4 form by performing solvent extraction and crystallization process in order , ≪ / RTI > (2) separating and recovering the vanadium and molybdenum components contained in the spent catalyst residue after the recovery of the nickel component in the form of V 2 O 5 and CaMoO 4 through hot soda roasting, water leaching, selective precipitation and calcination; And separating and recovering nickel, vanadium and molybdenum from the petroleum deasphalted waste catalyst. 청구항 1에 있어서, 상기 석유 탈황 폐촉매의 저온 산화배소 시간은 1시간으로 하고, 저온 산화배소 산물의 침출온도는 80℃, 침출시간은 1시간, 침출제 농도는 400g/ℓ로 하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The method according to claim 1, wherein the low temperature oxidation roasting time of the petroleum desulfurization spent catalyst is 1 hour, the low temperature oxidizing roasting product has a leaching temperature of 80 캜, a leaching time of 1 hour, and a precipitating agent concentration of 400 g / A method for separating and recovering nickel, vanadium and molybdenum from an oil desulfurization spent catalyst. 제1항에 있어서, 상기 용매추출 공정은 상기 황산암모늄 침출 용액의 산도를 pH 9.5로 조절하고 10% LIX84 용매추출제를 사용하여 mixer-settler 용매추출기에서 니켈 성분만을 선택적으로 추출한 다음, 1N H2SO4용액으로 역추출 함으로써 황산니켈로 회수하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The method of claim 1, wherein the solvent extraction process only selective extraction with a nickel component in a mixer-settler solvent extraction by adjusting the pH of the ammonium sulfate leach solution at a pH 9.5 using a 10% LIX84 solvent extractant, and then, 1N H 2 And recovering the nickel sulfate as nickel sulfate by back extraction with an SO 4 solution. 제1항에 있어서, 상기 니켈 회수 후 얻어진 석유 탈황 폐촉매의 잔사를 900℃ 고온 소다배소, 80℃ 수침출, 수침출 용액중에 3당량의 염화암모늄 첨가에 의한 바나디움에 분리, 회수와 바나디움 회수후 산도 pH 8.0 여액중에 30당량의 염화칼슘 첨가에 의한 몰리브덴을 분리, 회수하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The method according to claim 1, wherein the residue of the petroleum desulfurization spent catalyst obtained after nickel recovery is separated into vanadium by adding 3 equivalents of ammonium chloride to 900 DEG C hot soda, And separating and recovering molybdenum by the addition of 30 equivalents of calcium chloride in pH 8.0 solution of acidity, and separating and recovering nickel, vanadium and molybdenum from the petroleum desulfurization waste catalyst.
KR1019980021919A 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst KR100277503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Publications (2)

Publication Number Publication Date
KR20000001579A KR20000001579A (en) 2000-01-15
KR100277503B1 true KR100277503B1 (en) 2001-01-15

Family

ID=19539175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Country Status (1)

Country Link
KR (1) KR100277503B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843953B1 (en) 2006-09-20 2008-07-03 박재호 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
KR100978999B1 (en) 2008-06-20 2010-08-30 박재호 Separation, recovery V2O5, MoO3 and NiO from waste catalyst of desulfurization with vanadium, molybdenum and nickel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674438B1 (en) * 2005-12-09 2007-01-25 서안켐텍 주식회사 A process for separating vanadium and molybdenum from desulfurization waste catalyst
KR101469814B1 (en) * 2007-06-08 2014-12-05 문상우 Method for manufacture catalyst material from desulfurization waste catalyst of an oil refinery
KR101041378B1 (en) * 2009-08-28 2011-06-15 한국지질자원연구원 Recovery method of valuable metals and sulfur from spent petroleum catalyst
US9168506B2 (en) 2010-01-21 2015-10-27 Intevep, S.A. Additive for hydroconversion process and method for making and using same
US8636967B2 (en) 2010-01-21 2014-01-28 Intevep, S.A. Metal recovery from hydroconverted heavy effluent
CN116162803A (en) * 2022-12-09 2023-05-26 成都虹波钼业有限责任公司 Process for extracting valuable metals from alloy powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554138A (en) * 1984-10-30 1985-11-19 Chevron Research Company Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
JPH05156375A (en) * 1991-12-05 1993-06-22 Taiyo Koukou Kk Method for leaching valuable metal from waste catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554138A (en) * 1984-10-30 1985-11-19 Chevron Research Company Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
JPH05156375A (en) * 1991-12-05 1993-06-22 Taiyo Koukou Kk Method for leaching valuable metal from waste catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843953B1 (en) 2006-09-20 2008-07-03 박재호 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
KR100978999B1 (en) 2008-06-20 2010-08-30 박재호 Separation, recovery V2O5, MoO3 and NiO from waste catalyst of desulfurization with vanadium, molybdenum and nickel

Also Published As

Publication number Publication date
KR20000001579A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
US9963762B2 (en) Scandium recovery method
JP5652503B2 (en) Scandium recovery method
JP6583445B2 (en) Method for producing high purity scandium oxide
JP6004023B2 (en) Scandium recovery method
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
CN111485106A (en) Method for recovering titanium, vanadium and tungsten in waste denitration catalyst
JP6439530B2 (en) Scandium recovery method
JP6798078B2 (en) Ion exchange treatment method, scandium recovery method
JP6090394B2 (en) Method for producing scandium oxide
KR100277503B1 (en) Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
WO2017104629A1 (en) Method for recovering scandium
AU2017320813B9 (en) Method for producing scandium compound, and scandium compound
WO2018043704A1 (en) Method for producing high-purity scandium oxide
WO2020138137A1 (en) Method for purifying vanadium oxide
WO2017130692A1 (en) Method for recovering scandium
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP7347084B2 (en) Manufacturing method of high purity scandium oxide
JP6206358B2 (en) Scandium recovery method
JP3613443B2 (en) Method for dissolving and extracting tantalum and / or niobium-containing alloys
JP7338179B2 (en) Method for producing high-purity scandium oxide
JP7347085B2 (en) Manufacturing method of high purity scandium oxide
JP6128166B2 (en) Method for producing scandium oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120816

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130905

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee