KR100227189B1 - Method of forming an element isolation region in a semiconductor device - Google Patents

Method of forming an element isolation region in a semiconductor device Download PDF

Info

Publication number
KR100227189B1
KR100227189B1 KR1019960041579A KR19960041579A KR100227189B1 KR 100227189 B1 KR100227189 B1 KR 100227189B1 KR 1019960041579 A KR1019960041579 A KR 1019960041579A KR 19960041579 A KR19960041579 A KR 19960041579A KR 100227189 B1 KR100227189 B1 KR 100227189B1
Authority
KR
South Korea
Prior art keywords
oxide film
semiconductor substrate
ion implantation
field
region
Prior art date
Application number
KR1019960041579A
Other languages
Korean (ko)
Other versions
KR19980022421A (en
Inventor
박건식
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019960041579A priority Critical patent/KR100227189B1/en
Publication of KR19980022421A publication Critical patent/KR19980022421A/en
Application granted granted Critical
Publication of KR100227189B1 publication Critical patent/KR100227189B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76221Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO with a plurality of successive local oxidation steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

본 발명은 반도체장치의 소자분리방법에 관한 것으로서 반도체기판 상에 패드산화막과 질화막을 순차적으로 형성하고 패터닝하여 필드 영역을 한정하는 공정과, 상기 필드 영역 내의 상기 반도체기판에 산소 이온을 주입하여 이온주입영역을 형성하는 공정과, 상기 패드산화막의 노출된 부분을 산화시키면서 상기 이온주입영역내의 산소 이온을 확산 및 상기 반도체기판과 반응시켜 필드산화막을 형성하는 공정과, 상기 질화막과 패드산화막을 습식 식각 방법으로 제거하는 공정을 구비한다. 따라서, 필드산화막을 저온에서 짧은 시간 동안 열산화하여 형성할 수 있으며 수평방향으로 성장되어 필드 영역이 증가되는 것을 억제할 뿐만 아니라 버즈 비크의 생성을 억제할 수 있으며, 또한, 이온주입영역의 산소 이온(O2-)에 의해 반도체기판내부가 산화되는 것에 의해 패드산화막을 산화하는 표면으로 부터의 산화가 감소되어 필드산화막과 활성영역의 반도체기판의 단차를 감소시킬 수 있는 잇점이 있다.The present invention relates to a device isolation method of a semiconductor device, comprising: forming and patterning a pad oxide film and a nitride film on a semiconductor substrate sequentially to define a field region; and implanting ion by implanting oxygen ions into the semiconductor substrate in the field region. Forming a field; forming a field oxide film by diffusing and reacting oxygen ions in the ion implantation region with the semiconductor substrate while oxidizing an exposed portion of the pad oxide film; and wet etching the nitride film and the pad oxide film. It is equipped with the process of removing. Therefore, the field oxide film can be formed by thermal oxidation at a low temperature for a short time and can be grown in the horizontal direction to suppress the increase of the field region, and also to suppress the formation of the buzz beak, and also to suppress the oxygen ions in the ion implantation region. Oxidation from the surface oxidizing the pad oxide film is reduced by oxidizing the inside of the semiconductor substrate by (O 2- ), which has the advantage of reducing the step difference between the field oxide film and the semiconductor substrate in the active region.

Description

반도체장치의 소자분리방법Device Separation Method of Semiconductor Device

제1도(a) 내지 (c)는 종래 기술에 따른 반도체장치의 소자분리방법을 도시하는 공정도1 (a) to (c) are process drawings showing a device isolation method of a semiconductor device according to the prior art.

제2도(a) 내지 (c)는 본 발명에 따른 반도체장치의 소자분리방법을 도시하는 공정도2 (a) to 2 (c) are process drawings showing the device isolation method of the semiconductor device according to the present invention.

* 도면의 주요부분에 대한 대한 부호의 간단한 설명* Brief description of symbols for the main parts of the drawings

21 : 반도체기판 23 : 패드산화막21 semiconductor substrate 23 pad oxide film

25 : 질화막 27 : 감광막25 nitride film 27 photosensitive film

29 : 이온주입영역 31 : 필드산화막29 ion implantation region 31 field oxide film

본 발명은 반도체장치의 소자분리방법에 관한 것으로서, 특히, 필드산화막을 저온에서 짧은 시간 동안 형성하여 버즈 비크(bird's beak)의 생성을 방지하고 활성영역과 단차를 감소할 수 있는 반도체장치의 소자분리방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device isolation method of a semiconductor device. In particular, device isolation of a semiconductor device capable of forming a field oxide film at a low temperature for a short time to prevent the generation of bird's beak and to reduce the active area and the step difference It is about a method.

반도체장치에 있어서 소자들 사이의 전기적인 분리는 각 소자의 동작과 집적회로의 고집적화에 많은 영향을 끼친다. 그러므로, 반도체장치는 소자들 사이에 소자를 분리하는 두꺼운 필드산화막을 선택산화방법인 LOCOS(Local Oxidation of Silicon)방법에 의해 형성하여 소자들을 전기적으로 분리하는 하는 방법이 개발되었다.Electrical separation between devices in semiconductor devices has a great influence on the operation of each device and the high integration of integrated circuits. Therefore, in the semiconductor device, a method of electrically separating devices by forming a thick field oxide film that separates devices between devices by a local oxidation of silicon (LOCOS) method, which is a selective oxidation method, has been developed.

제1도(a) 내지 (c)는 종래 기술에 따른 반도체장치의 소자분리방법을 도시하는공정도이다.1 (a) to (c) are process diagrams showing a device isolation method of a semiconductor device according to the prior art.

제1도(a)를 참조하면, 반도체기판(11)의 표면에 패드산화막(13)과 질화막(15)을 순차적으로 형성한다. 그리고, 질화막(15)의 상부에 감광물질을 회전 도포한 후 노광 및 현상에 의해 이 질화막(15)의 소정 부분을 노출시키는 감광막(17)을 형성한다.Referring to FIG. 1A, the pad oxide film 13 and the nitride film 15 are sequentially formed on the surface of the semiconductor substrate 11. Then, the photosensitive material is rotated and applied to the upper portion of the nitride film 15 to form a photosensitive film 17 exposing a predetermined portion of the nitride film 15 by exposure and development.

제1도(b)를 참조하면, 상기 감광막(17)을 마스크로 사용하여 질화막(15)의 노출된 부분을 패드산화막(13)이 노출되도록 식각하나. 이 때, 질화막(15)을 패드산화막(13)이 소정 두께 제거되도록 과도 식각(overetch)한다. 그리고, 질화막(15)상의 감광막(17)을 제거한다.Referring to FIG. 1B, the pad oxide layer 13 is etched by exposing the exposed portion of the nitride layer 15 using the photoresist layer 17 as a mask. At this time, the nitride film 15 is overetched to remove the pad oxide film 13 by a predetermined thickness. Then, the photosensitive film 17 on the nitride film 15 is removed.

제1도(c)를 참조하면, 패드산화막(13)의 노출된 부분을 고온에서 장시간 산화하여 소자의 활성영역을 한정하는 필드산화막(19)을 형성한다. 이 때, 질화막(15)상에는 산화막이 형성되지 않는다. 그리고, 질화막(15)과 패드산화막(13)을 습식 식각으로 제거하여 반도체기판(11)의 소자의 활성영역을 노출시킨다.Referring to FIG. 1C, the exposed portion of the pad oxide film 13 is oxidized for a long time at a high temperature to form a field oxide film 19 defining an active region of the device. At this time, no oxide film is formed on the nitride film 15. The nitride film 15 and the pad oxide film 13 are removed by wet etching to expose the active region of the device of the semiconductor substrate 11.

그러나, 상술한 종래의 소자분리방법은 필드산화막을 형성하기 위한 열산화시 공정 온도가 높고 공정 시간이 긴 문제점이 있었다. 또한, 산화시 산소가 필드산화막이 수작 방향 뿐만 아니라 질화막과 패드산화막 사이의 계면을 따라 수평 방향으로도 확산되어 버즈 비크가 형성되므로 필드산화막이 한정된 필드영역 보다 크게 형성되는 문제점이 있었다. 그리고, 반도체기판의 표면이 내부 보다 산화 속도가 빠르므로 필드산화막의 표면이 상부 표면과 반도체기판의 활성영역의 단차가 크게 되는 문제점이 있었다.However, the above-described conventional device isolation method has a problem of high process temperature and long process time during thermal oxidation to form a field oxide film. In addition, since oxygen is diffused in the horizontal direction along the interface between the nitride film and the pad oxide film as well as the operation direction, the field oxide film has a problem in that the field oxide film is formed larger than the limited field region. In addition, since the surface of the semiconductor substrate has a faster oxidation rate than the inside, there is a problem in that the surface of the field oxide film has a large step between the upper surface and the active region of the semiconductor substrate.

따라서, 본 발명의 목적은 낮은 온도에서 짧은 시간 동안 열산화하여 필드산화막을 형성할 수 있는 반도체장치의 소자분리방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a device isolation method of a semiconductor device capable of forming a field oxide film by thermal oxidation at a low temperature for a short time.

본 발명의 다른 목적은 수평 방향으로 산화되는 것을 억제하여 버즈 비크의 생성을 감소시키므로 필드산화막의 크기가 증가되는 것을 억제할 수 있는 반도체장치의 소자분리방법을 제공함에 있다.Another object of the present invention is to provide a device isolation method of a semiconductor device capable of suppressing an increase in the size of a field oxide film since it suppresses oxidation in the horizontal direction and reduces the production of a buzz beak.

본 발명의 또 다른 목적은 필드산화막의 상부 표면과 반도체기판의 활성영역의 단차를 감소시킬 수 있는 반도체장치의 소자분리방법을 제공함에 있다.It is still another object of the present invention to provide a device isolation method of a semiconductor device capable of reducing a step difference between an upper surface of a field oxide film and an active region of a semiconductor substrate.

상기 목적들을 달성하기 위한 본 발명에 따른 반도체장치의 소자분리방법은 반도체기판 상에 패드산화막과 질화막을 순차적으로 형성하고 패터닝하여 필드 영역을 한정하는 공정과, 상기 필드 영역 내의 상기 반도체기판에 산소 이온을 주입하여 이온주입영역을 형성하는 공정과, 상기 패드산화막의 노출된 부분을 산화시키면서 상기 이온주입영역 내의 산소 이온을 확산 및 상기 반도체기판과 반응시켜 필드산화막을 형성하는 공정과, 상기 질화막과 패드산화막을 습식 식각 방법으로 제거하는 공정을구비한다.A device isolation method of a semiconductor device according to the present invention for achieving the above objects is a step of defining a field region by sequentially forming and patterning a pad oxide film and a nitride film on a semiconductor substrate, and oxygen ions on the semiconductor substrate in the field region Forming an ion implantation region by injecting ions, diffusing and reacting oxygen ions in the ion implantation region with the semiconductor substrate while oxidizing an exposed portion of the pad oxide layer, and forming a field oxide layer; A process of removing the oxide film by wet etching is provided.

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제2도(a) 내지 (c)는 본 발명에 따른 반도체장치의 소자분리방법을 도시하는 제조공정도다.2 (a) to 2 (c) are manufacturing process diagrams showing the device isolation method of the semiconductor device according to the present invention.

제2도(a)를 참조하면, 반도체기판(21) 상에 열산화 방법으로 패드산화막(23)을형성하고, 이 패드산화막(23) 상에 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 질화막(25)을 형성한다. 그리고, 질화막(25)의 상부에 감광물질을 회전 도포한 후 노광 및 현상에 의해 이 질화막(25)의 소정 부분을 노출시키는 감광막(27)을 형성한다.Referring to FIG. 2A, a pad oxide film 23 is formed on a semiconductor substrate 21 by a thermal oxidation method, and chemical vapor deposition (hereinafter referred to as CVD) is performed on the pad oxide film 23. The nitride film 25 is formed by the method. Then, the photosensitive material is rotated and coated on the nitride film 25, and then a photosensitive film 27 is formed to expose a predetermined portion of the nitride film 25 by exposure and development.

제2도(b)를 참조하면, 상기 감광막(27)을 마스크로 사용하여 질화막(25)의 노출된 부분을 패드산화막(23)이 노출되도록 식각하여 필드 영역을 한정한다. 이 때, 질화막(25)을 패드산화막(23)이 소정 두께 제거되도록 과도 식각한다. 그리고, 반도체기판(21)의 필드 영역 내에 산소 이온(O2-)을 주입하여 이온주입영역(29)을 형성한다. 이 때, 반도체기판(21)의 필드 영역 내에 주입되는 산소 이온(O2-)은 이 반도체기판(21) 내부의 격자를 손상시킨다. 상기에서 이온주입영역(29)은 산소 이온(O2-)을 한번 주입하거나, 또는, 이온 주입 에너지를 변화시켜 다수 번 주입하여 형성한다.Referring to FIG. 2B, the field region is defined by etching the exposed portion of the nitride layer 25 to expose the pad oxide layer 23 by using the photosensitive layer 27 as a mask. At this time, the nitride film 25 is excessively etched to remove the pad oxide film 23 by a predetermined thickness. The ion implantation region 29 is formed by implanting oxygen ions O 2- into the field region of the semiconductor substrate 21. At this time, oxygen ions O 2- implanted in the field region of the semiconductor substrate 21 damage the lattice inside the semiconductor substrate 21. In the above, the ion implantation region 29 is formed by implanting oxygen ions (O 2- ) once or by implanting a plurality of times by changing the ion implantation energy.

제2도(c)를 참조하면, 질화막(25) 상에 잔류하는 감광막(27)을 제거한 후 열산화하여 필드 영역에 필드산화막(31)을 형성한다. 이 때, 필드산화막(31)은 반도체기판(21)의 노출된 필드영역이 산화될 뿐만 아니라 이온주입영역(29) 내에 주입된 산소 이온(O2-)이 확산되면서 반도체기판(21)을 이루는 실리콘과 반응에 의해 산화되면서 형성된다. 즉, 필드산화막(31)은 반도체기판(31)의 외부 및 내부에서 동시에 산화 반응이 일어나 산화실리콘이 형성되되, 이 산화실리콘이 합쳐 서로 한몸체를 이루도록 형성한다.Referring to FIG. 2C, the photoresist layer 27 remaining on the nitride layer 25 is removed and thermally oxidized to form the field oxide layer 31 in the field region. At this time, the field oxide film 31 forms the semiconductor substrate 21 by not only oxidizing the exposed field region of the semiconductor substrate 21, but also oxygen ions O 2- implanted in the ion implantation region 29. It is formed by oxidation with silicon. That is, the field oxide film 31 is formed so that an oxidation reaction occurs simultaneously at the outside and the inside of the semiconductor substrate 31 to form silicon oxide, and the silicon oxide is combined to form one body with each other.

상기에서, 필드 영역 내의 반도체기판(21)은 주입되는 산소 이온(O2-)에 의해 내부 격자가 손상되었으므로 열산화시 표면으로부터 산소의 확산 뿐만 아니라 이온주입영역(29) 내의 산소 이온(O2-)의 확산이 용이하므로 필드산화막(31)을 저온에서 짧은 시간 동안 열산화하여 수평 방향으로 성장되는 것을 억제하면서 수직 방향으로 두껍게 형성할 수 있으며, 또한, 버즈 비크의 생성을 억제할 수 있다. 그리고, 필드산화막(31)은 이온주입영역(29)의 산소 이온(O2-)이 확산 및 산화에 의해 반도체기판(31) 내부에 형성되는 것에 의해 질화막(25)이 형성되지 않은 부분의 패드산화막(23)을 산화하는 표면으로 부터의 산화가 감소되므로 소자의 활성영역의 반도체기판(21)과 단차가 감소된다.The semiconductor substrate 21 in the above, the field area is the oxygen ions in the lattice because the interior is damaged by the oxygen ions (O 2-) which is injected as well as the diffusion of oxygen from the surface upon the thermal oxidation ion implantation area (29) (O 2 Since diffusion of-) is facilitated, the field oxide film 31 can be thermally oxidized at a low temperature for a short time and can be thickly formed in the vertical direction while suppressing the growth in the horizontal direction, and also suppress the generation of the buzz beak. The field oxide film 31 is formed by padding the portion where the nitride film 25 is not formed because oxygen ions O 2- in the ion implantation region 29 are formed inside the semiconductor substrate 31 by diffusion and oxidation. Since the oxidation from the surface oxidizing the oxide film 23 is reduced, the step with the semiconductor substrate 21 in the active region of the device is reduced.

그리고, 이온주입영역(29)을 이온 주입 에너지를 변화시켜 다수 번 이온 주입하여 형성하면 산소 이온(O2-)이 고르게 확산되어 필드산화막(31)이 균일하게 형성된다.In addition, when the ion implantation region 29 is formed by varying ion implantation energy and ion implantation a plurality of times, oxygen ions O 2- are uniformly diffused to uniformly form the field oxide layer 31.

그 다음, 질화막(25)과 패드산화막(23)을 습식 식각 방법으로 제거한다.Next, the nitride film 25 and the pad oxide film 23 are removed by a wet etching method.

상술한 바와 같이 본 발명에 따른 소자분리방법은 반도체기판 상에 패드산화막과 이 패드산화막 상에 소정 부분이 노출된 질화막을 순차적으로 형성하고 이 반도체기판의 필드 영역 내에 내부의 격자가 손상되도록 산소 이온(O2-)을 한번 주입하거나, 또는, 이온 주입 에너지를 변화시켜 다수 번 주입하여 형성한 후 저온에서 짧은 시간동안 열산화하여 패드산화막의 산화에 의한 표면으로 부터의 산화와 이온주입영역 내의 산소 이온 (O2-)이 확산에 의한 반도체기판으로 부터의 산화에 의해 필드산화막을 형성한다.As described above, the device isolation method according to the present invention sequentially forms a pad oxide film on the semiconductor substrate and a nitride film having a predetermined portion exposed on the pad oxide film, and oxygen ions so that the internal lattice is damaged in the field region of the semiconductor substrate. Oxygen in the ion implantation region and oxidation from the surface by the oxidation of the pad oxide film by thermal oxidation at low temperature for a short time after (O 2- ) is injected or formed by changing the ion implantation energy and injected many times Ion (O 2- ) forms a field oxide film by oxidation from a semiconductor substrate by diffusion.

따라서, 본 발명은 필드산화막을 저온에서 짧은 시간 동안 열산화하여 형성할 수 있으며 수평 방향으로 성장되어 버즈 비크의 생성을 억제할 수 있으므로 필드영역이 증가되는 것을 억제할 수 있는 잇점이 있다. 또한, 이온주입영역의 산소 이온(O2-)에 의해 반도체기판 내부가 산화되는 것에 의해 패드산화막을 산화하는 표면으로부터의 산화가 감소되어 필드산화막과 활성영역의 반도체기판의 단차를 감소시킬 수 있는 잇점이 있다.Therefore, the present invention can be formed by thermally oxidizing a field oxide film at a low temperature for a short time, and is grown in the horizontal direction, thereby suppressing the production of a buzz beak, and thus has an advantage of suppressing an increase in the field region. In addition, since the inside of the semiconductor substrate is oxidized by oxygen ions (O 2- ) in the ion implantation region, oxidation from the surface oxidizing the pad oxide film is reduced, thereby reducing the step difference between the field oxide film and the semiconductor substrate in the active region. There is an advantage.

Claims (5)

반도체기판 상에 패드산화막과 질화막을 순차적으로 형성하고 패터닝하여 필드 영역을 한정하는 공정과, 상기 필드 영역 내의 상기 반도체기판에 산소 이온을 주입하여 이온주입영역을 형성하는 공정과, 상기 패드산화막의 노출된 부분을 산화시키면서 상기 이온주입영역 내의 산소 이온을 확산 및 상기 반도체기판과 반응시켜 필드산화막을 형성하는 공정과, 상기 질화막과 패드산화막을 습식 식각 방법으로 제거하는 공정을 구비하는 반도체장치의 소자분리방법.Forming a pad oxide film and a nitride film sequentially on the semiconductor substrate and patterning to define a field region, implanting oxygen ions into the semiconductor substrate in the field region to form an ion implantation region, and exposing the pad oxide film Forming a field oxide film by diffusing and reacting oxygen ions in the ion implantation region with the semiconductor substrate while oxidizing the portion; and removing the nitride film and the pad oxide film by a wet etching method. Way. 제1항에 있어서, 상기 이온주입영역을 한 번 이온주입하여 형성하는 반도체장치의 소자분리방법.The method of claim 1, wherein the ion implantation region is formed by ion implantation once. 제1항에 있어서, 상기 이온주입영역을 다수 번 이온주입하여 형성하는 반도체장치의 소자분리방법.The method of claim 1, wherein the ion implantation region is formed by ion implantation a plurality of times. 제3항에 있어서, 상기 이온주입영역을 이온 주입 에너지를 변화시켜 형성하는 반도체장치의 소자분리방법.4. The method of claim 3, wherein the ion implantation region is formed by varying ion implantation energy. 제1항에 있어서, 상기 필드산화막을 상기 패드산화막의 노출된 부분이 산화되어 형성된 것과 상기 이온주입영역의 산소 이온이 확산 및 산화되어 형성된 것이 한 몸체를 이루도록 열산화하여 형성하는 반도체장치의 소자분리방법.The device of claim 1, wherein the field oxide film is thermally oxidized to form a body formed by oxidizing an exposed portion of the pad oxide film and by diffusion and oxidation of oxygen ions in the ion implantation region. Way.
KR1019960041579A 1996-09-23 1996-09-23 Method of forming an element isolation region in a semiconductor device KR100227189B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960041579A KR100227189B1 (en) 1996-09-23 1996-09-23 Method of forming an element isolation region in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960041579A KR100227189B1 (en) 1996-09-23 1996-09-23 Method of forming an element isolation region in a semiconductor device

Publications (2)

Publication Number Publication Date
KR19980022421A KR19980022421A (en) 1998-07-06
KR100227189B1 true KR100227189B1 (en) 1999-10-15

Family

ID=19474819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960041579A KR100227189B1 (en) 1996-09-23 1996-09-23 Method of forming an element isolation region in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100227189B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004252B1 (en) * 1990-12-26 1994-05-19 재단법인 한국전자통신연구소 Isolation method with local polyoxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004252B1 (en) * 1990-12-26 1994-05-19 재단법인 한국전자통신연구소 Isolation method with local polyoxide

Also Published As

Publication number Publication date
KR19980022421A (en) 1998-07-06

Similar Documents

Publication Publication Date Title
US4398964A (en) Method of forming ion implants self-aligned with a cut
US5563098A (en) Buried contact oxide etch with poly mask procedure
US5773336A (en) Methods of forming semiconductor active regions having channel-stop isolation regions therein
KR100227189B1 (en) Method of forming an element isolation region in a semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
KR100419872B1 (en) method for isolating semiconductor device
KR19980022422A (en) Device Separation Method of Semiconductor Device
KR0167600B1 (en) Element isolation method of semiconductor apparatus
KR0166500B1 (en) Process for forming field isolation
KR0161727B1 (en) Element isolation method of semiconductor device
KR0166835B1 (en) Method for forming isolation on a semiconductor device
KR100422960B1 (en) Method for forming isolation layer of semiconductor device
KR100579973B1 (en) Method for fabricating semiconductor device
KR0148297B1 (en) Method for isolating semiconductor devices
KR100328707B1 (en) A method of semiconductor device isolation
KR0148611B1 (en) Formation method of element isolation layer for semiconductor devices
KR0143579B1 (en) Forming method element isolation film on the semiconductor device
KR19990031358A (en) Device isolation method of semiconductor device
KR100223278B1 (en) Manufacture of semiconductor device
KR100418300B1 (en) Method for forming isolation layer of semiconductor device
JPH0250430A (en) Manufacture of semiconductor device
KR19990026599A (en) Method of manufacturing device isolation film for semiconductor memory device
KR19980053673A (en) Device Separator Formation Method of Semiconductor Device
KR20000002273A (en) Separation structure forming of semiconductor device
KR19980021206A (en) Method of forming device isolation film in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070622

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee