KR0180216B1 - Complex material composition manufacturing from tier and plastic resin - Google Patents

Complex material composition manufacturing from tier and plastic resin Download PDF

Info

Publication number
KR0180216B1
KR0180216B1 KR1019940035798A KR19940035798A KR0180216B1 KR 0180216 B1 KR0180216 B1 KR 0180216B1 KR 1019940035798 A KR1019940035798 A KR 1019940035798A KR 19940035798 A KR19940035798 A KR 19940035798A KR 0180216 B1 KR0180216 B1 KR 0180216B1
Authority
KR
South Korea
Prior art keywords
gtr
upe
epdm
eva
dcp
Prior art date
Application number
KR1019940035798A
Other languages
Korean (ko)
Other versions
KR960022737A (en
Inventor
조병욱
Original Assignee
정병휴
학교법인조선대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정병휴, 학교법인조선대학교 filed Critical 정병휴
Priority to KR1019940035798A priority Critical patent/KR0180216B1/en
Publication of KR960022737A publication Critical patent/KR960022737A/en
Application granted granted Critical
Publication of KR0180216B1 publication Critical patent/KR0180216B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • C08L2207/24Recycled plastic recycling of old tyres and caoutchouc and addition of caoutchouc particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본발명은 폐타이어분말(Rubber powder)과 프라스틱수지로부터 제조된 복합재료조성물의 제조방법 및 이 조성물을 이용한 제품에 관한 것으로써, 라버파우다(Groundin tire rubber ; GTR)와 프라스틱(또는 재생수지 및 첨가제)을 블렌드하여 고온에서 라디칼화하는 큐멘히드로퍼옥사이드 및 과산화디큐밀등의 가교제를 적당한 고온에서 순간적으로 가교시켜 사출 또는 압출시켜 제조하는 발명이다.The present invention relates to a method for producing a composite composition prepared from rubber powder and plastic resin, and to a product using the composition, and includes groundin tire rubber (GTR) and plastics (or recycled resins and additives). The present invention is produced by injecting or extruding a crosslinking agent such as cumene hydroperoxide and dicumyl peroxide that are radicalized at high temperature by blending).

폐타이어를 재활용하는 통상적인 방법으로는 재생타이어나 재생고무, 분말고무, 오일추출 또는 골프장용보도블럭제 또는 충격완화제로 사용되고 있으나, 가교결합으로 인한 열경화성 때문에 완전한 재사용은 힘들었다. 또한, 골프장용 보도블럭의 경우 폴리우레탄수지를 바인더로 하여 압출성형한 것으로 옥외에 장기간 노출시 자외선 흡수 후의 화학구조변형이 생겨 내구성 및 내후성이 좋지 않고 재료의 코스트가 높아 실용성이 없었다.Conventional methods for recycling waste tires are used as recycled tires, recycled rubbers, powdered rubbers, oil extractions, or footpaths for golf courses or shock absorbers. However, it is difficult to reuse completely due to thermosetting due to crosslinking. In addition, the press block for golf course was extruded with a polyurethane resin as a binder, and when exposed to the outdoors for a long time, chemical structural deformation occurred after ultraviolet absorption, resulting in poor durability and weather resistance, and high cost of materials.

본발명은 위와 같은 점을 감안하여, 상기와 같은 방법으로 제조된 복합재료조성물은 상간접착력이 증진되거나 분산된 라버파우다의 응집을 방지하여 두 조성간의 상 안정성을 증진시켜 저렴한 원가의 보도블럭 또는 장판 바닥하지재나 철근대용 구조물등으로 활용되도록 한 유용한 발명에 관한 것이다.In view of the above, the present invention, the composite composition prepared by the above method is to promote the phase stability between the two compositions by improving the adhesion between the phases or prevent the aggregation of the dispersed rubber powder to lower the cost of the block or floorboard It relates to a useful invention to be utilized as a flooring material or a structure for rebar.

Description

타이어분말(Rubber powder)과 플라스틱수지로부터 제조된 복합재료 조성물의 제조방법 및 이 조성물을 이용하여 제조된 제품Manufacturing method of composite material composition made from rubber powder and plastic resin and product manufactured using the composition

본 발명은 페타이어를 재활용한 타이어분말과 플라스틱수지(또는 폐플라스틱수지)로부터 제조된 복합재료 조성물의 제조방법 및 이 조성물을 이용하여 제조된 제품에 관한 것으로, 즉, 발명은 이들 복합재료 조성물간의 블렌드는 약한 가교반응를 통하여 열역학적으로 상간 접착력이 우수하도록 개선시킨 복합재료의 조성물의 제조방법 및 이 조성물을 이용하여 제조된 제품에 관한 것이다.The present invention relates to a method for producing a composite material composition prepared from tire powder and plastic resin (or waste plastic resin) from which tires are recycled, and to a product produced using the composition. The blend relates to a method for preparing a composition of a composite material which is improved thermodynamically to have excellent phase-to-phase adhesion through a weak crosslinking reaction, and to a product produced using the composition.

현재까지 페타이어의 재활용에 대해서는 여러가지 방법이 시도되어 왔으며, 그 이용방법을 크게 나무면 원형그대로 이용하는 방법(재생타이어), 가공하여 이용하는 방법(재생고무, 분말고무, 오일), 열로 이용하는 방법으로 크게 나누고 있으며, 극히 일부가 골프장용 보도블럭이나 충격완화재로 사용되고 있을 분, 고부가가치를 창출할 수 있는 기술적인 이용에는 극히 제한적이다. 페타이어의 탄화수소 형태는 매우 안정하여 많은 이용이 가능할 것으로 생각되나 가교결합으로 인한 열경화성 때문에 실제의 완전한 재사용은 기대하기 어렵다. 그러나 재활용에 대한 꾸준한 연구와 관심이 모아져 왔는데 직접 고압 열분해하여 탄화수소와 탄소를 회수하는 방법과 아스팔트에 필러(filler)를 가하여 도로의 표면처리용으로 이용하는 방법 및 운동장이나 실내활동 공간에서 충격흡수용 재료로 활용하는 기술들이 주로 연구되어 그 일부는 제한적으로 사용되고 있다.(G. Magyer 등, Hung, Teljes, 11, 1988)Until now, various methods have been attempted for recycling of tires, and the method of using the tires is largely as a circular method (recycled tire), processed and used (regenerated rubber, powdered rubber, oil) and heat. It is divided into parts, and only a part of them are used as a sidewalk block or shock absorber for golf courses, and they are extremely limited in the technical use that can create high added value. Fetire's hydrocarbon form is very stable and is thought to be available in many ways, but due to the thermosetting properties of crosslinking, it is difficult to expect a complete reuse. However, steady research and attention on recycling have been gathered, such as the method of directly recovering hydrocarbons and carbon by high-pressure pyrolysis, applying the filler to asphalt, and using it for the surface treatment of roads, and shock absorbing materials in sports fields or indoor activities. Most of the techniques used in this study have been studied and some of them are of limited use (G. Magyer et al., Hung, Teljes, 11, 1988).

또 현재 일부 시판되고 있는 골프장용 보도를럭의 경우 대부분이 에폭시나 폴리우레탄수지를 바인더(binder)로 하여 압축성형시킨 것으로 이러한 바인더(binder)로 하여 압축성형시킨 것으로 이러한 바인더(binder)를 옥외에 장시간 노출시킬 경우 자외선 흡수후의 화학 구조변형으로 내구성 및 내후성이 좋지 않고, 더욱이 재료의 가격이 높아서 실용성에 문제가 있다.In addition, most of the golf course sidewalks currently on the market are compression molded using epoxy or polyurethane resin as a binder. These binders are compression molded using such a binder. When exposed for a long time, the chemical structural deformation after ultraviolet absorption is not good durability and weather resistance, and furthermore, the material is expensive, there is a problem in practicality.

최근 타이어분말(Grounding tire rubber, 이하 라버파우다 또는 GTR이라 한다.)를 필러(filler)로 하여 고밀도폴리에틸렌(HDPE)와 저밀도폴리에틸렌(LDPE)에 각각의 블렌드를 만들어 이들의 물성을 비교한 연구가 발표되었다.(P. Rajalingam and W. E. Baker, Rubber Chem. and Tech., Vo1. 65, 908, 1992)Recently, a study was conducted to compare the physical properties of each blend of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) using fillers of grounding tire rubber (hereinafter referred to as Raver powder or GTR). (P. Rajalingam and WE Baker, Rubber Chem. And Tech., Vo1.65, 908, 1992)

이들은 극저온에서 파쇄된 라버파우다(GTR)를 에틸렌-아크릴산 공중합체(EAA)로 코팅한 후 고밀도폴리에틸렌(HDPE)나 저밀도 폴리에틸렌(LDPE)와 블렌드하여 이들의 충격강도가 현저히 증가함을 보여 주었다. 그러나 에틸렌-아크릴산 공중합체(EAA)의 단가가 높을 뿐 아니라 코팅공정이 단순하지 않아 실제 응용에는 문제점이 있다.They were coated with crushed Raverpowder (GTR) with ethylene-acrylic acid copolymer (EAA) and then blended with high density polyethylene (HDPE) or low density polyethylene (LDPE) to show their increased impact strength. However, the cost of the ethylene-acrylic acid copolymer (EAA) is not only high, the coating process is not simple, there is a problem in the practical application.

상기와 같은 점을 감안하여 본 발명은 페타이어분말과 플라스틱(또는 재생수지 및 첨가제)를 블렌드하여 내충결성, 내구성이 크고 생산비가 낮은 복합재료를 만들어 유용한 건축자재 및 구조물로 쓰게하며 폐타이어 또는 폐플라스틱의 재활용 방안을 개발하도록 그 목적이 있는 것으로써, 본 발명에서는 에폭시나 폴리우레탄수지를 바인더로 하여 압축성형시킨 제품보다 값이 싸고 자외선 특성이 좋은 폴리올레핀(주로 폴리에틸렌, 폴리프로필렌, 불포화 폴리에스테르 및 이들의 재활용재료)을 라버파우다와 블렌드한 후 가공중 가교반응이 일어나게 하여 압출 또는 사출성형시키는 방법으로 재료의 상분리를 최대한 억제할 수 있고, 가공성이 좋으며 생산비가 절감될 수 있도록 한 제품을 제공하도록 함에 있다.In view of the above, the present invention is to blend the tire powder and plastics (or recycled resins and additives) to make composite materials with high impact resistance, durability and low production cost, and use them as useful building materials and structures. The object of the present invention is to develop a recycling method for plastics. In the present invention, polyolefins (primarily polyethylene, polypropylene, unsaturated polyester, These recycled materials) are blended with rubber powder and crosslinking reaction occurs during processing to extrude or injection molding to minimize the phase separation of the material, to provide a product that can be processed and reduced production costs It is in a ship.

위와 같은 의도로 창안된 본 발명은 라버파우다(GTR)와 플가스틱 수지간의 고온순간 가교결합 방법을 이용하여 상간 접착력을 증진시키거나 분산된 라버파우다의 응집을 방지하여 두 조성간의 상안정성을 증진시키는 것이다. 일반적으로 두 조성간의 가교결합은 각성분의 다중결합(또는 단일결합)부분에서 자유라디칼이 발생되어 이들 사이에 가교결합제가 끼어들거나 또는 라디칼끼리 직접 결합함으로써 이루어진다. 그외, 프라즈마, 자외선등의 에너지 조사에 의하거나 가교결합제를 사용하여 적당한 가교 온도에서 가교시키는 방법이 일반적으로 사용된다. 본 발명에서는 비교적 고온에서 라디칼화하는 큐멘히드로퍼옥사이드(Cumene hydroperoxide) 및 과산화디큐밀(dicumyl peroxide; DCP)등의 과산화물가교제를 적당한 고온에서 순간적으로 가교시키는 방법으로써, 라버파우다-플라스틱수지 또는 법이다.The present invention, which was invented as described above, improves phase adhesion between two compositions by improving adhesion between phases by preventing high temperature instantaneous crosslinking between rubber powder (GTR) and plastic resin or preventing the aggregation of dispersed rubber powder. will be. In general, crosslinking between two compositions is achieved by free radicals being generated at the multiple bond (or single bond) moiety of each component, and the crosslinking agent is interrupted therebetween or radicals are directly bonded to each other. In addition, a method of crosslinking at an appropriate crosslinking temperature by energy irradiation such as plasma, ultraviolet light or using a crosslinking agent is generally used. In the present invention, as a method of instant crosslinking of peroxide crosslinking agents such as cumene hydroperoxide and dicumyl peroxide (DCP) radically radicalized at a relatively high temperature at an appropriate high temperature, it is a Raver powder-plastic resin or a method. .

세번째 방법은 모든 성분을 일시에 혼합하여 적절한 가공조건에서 압출기에서 압출하여 펠렛(pellet)으로 만들고, 이를 압착성형(compression molding)하거나 다시 사출성형하는 방법이다.The third method is a method of mixing all the components at once and extruding them in an extruder under appropriate processing conditions into pellets, which are compression molded or injection molded again.

상기와 같은 본 발명 복합재료 조성물의 제조방법은 다음 각 실시예를 통하여 본 발명의 특정 양태를 설명하는 것이며, 특히 그 양태에 따라 제조된 제품의 용도를 지적하는 것이다. 그러나 실시예들은 본 발명을 설명하는 것이지 제한하려는 것은 아니며, 퍼센트(%)는 별도의 언급이 없는한 중량%이다.The method for producing the composite material composition of the present invention as described above describes specific embodiments of the present invention through each of the following examples, and in particular, indicates the use of a product manufactured according to the embodiment. However, the examples are illustrative of the present invention and not intended to be limiting, and percent (%) is by weight unless otherwise indicated.

[실시예 1]Example 1

라버파우다와 재생폴리에틸렌의 블렌드 및 가공Blending and Processing of Rover Powder and Recycled Polyethylene

라버파우다는 페타이어재활용을 위하여 직경 7㎜이하의 입자로서 실온에서 그라인더(grinder)에 의하여 분쇄된 것으로 스틸코드(steel cord)나 폴리에스테르(또는 나일론)코드가 모두 제거된 것으로, 이들의 평균 조성은 다음과 같다. 천연고무(30-40%), SBR(Styrene Butadiene rubber; 40-55%), BR(10-15%), 아세톤가용분(10-12%), 유황(1.7%) 그외의 무기성분.Raver powder is a particle having a diameter of 7 mm or less, which is pulverized by a grinder at room temperature for recycling of tire tires, and all steel cords or polyester (or nylon) cords are removed. Is as follows. Natural rubber (30-40%), SBR (Styrene Butadiene rubber; 40-55%), BR (10-15%), Acetone solubles (10-12%), Sulfur (1.7%) and other inorganic ingredients.

또 사용된 재생폴리에틸렌(UPE)은 LDPE와 HDPE가 혼합된 것으로 이의 물성은 다음과 같다.In addition, used recycled polyethylene (UPE) is a mixture of LDPE and HDPE, the physical properties thereof are as follows.

프라스틱수지-프라스틱수지간에[CH2CH2-]의 라디칼 짝지움에 의한 가교가 일어날 것으로 생각되며, 그 일반식은 다음과 같다.It is thought that crosslinking occurs due to radical pairing of [CH 2 CH 2- ] between the plastic resin and the plastic resin, and the general formula is as follows.

본 발명에서 사용된 방법은 다음의 세가지 방법이다.The method used in the present invention is the following three methods.

첫번째 방법은 라버파우다와 플라스틱수지를 혼합한 두 유동성 향상을 위하여 적당량의 에틸렌 비닐 아세테이트(ethylene-vinyl acetate 코폴리머; 이하 EVA라한다.)를 넣고 상용성 증진을 위하여 에틸렌 프로필렌디엔중합체(ethylene-rpropylene-diene 중합체, 이하 EPDM이라 한다.)을 넣은 후 사출성형기 또는 압출기와 적당한 위치에서 고온가교용(고온에서 라디칼화하는)가교제(큐멘히드로퍼옥사이드, 혹은 과산화디큐밀)를 0-5PHR[parts per 100 rubber]까지 투여하여 혼합이 일어나게하고 0.5 - 5분 동안에 사출 또는 압출시키는 것이다.The first method adds an appropriate amount of ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) to improve the fluidity of two mixtures of rubber powder and plastic resin, and improves compatibility with ethylene-rpropylene. -diene polymer, hereinafter referred to as EPDM), and a crosslinking agent (cumenhydroperoxide, or dicumyl peroxide) for high temperature crosslinking (radical radicalization at high temperature) at an appropriate position with an injection molding machine or an extruder. Up to 100 rubber] to allow mixing and to be injected or extruded for 0.5-5 minutes.

두번째 방법은 모든 성분을 일시에; 혼합하여 사출하거나, 압출하는 방The second method all the ingredients at once; Mixing, extruding or extruding

melt flow index : 5.4g/10minmelt flow index: 5.4g / 10min

인장강도 :188㎏/㎠Tensile Strength: 188㎏ / ㎠

신장율 : 250%Elongation rate: 250%

용융토크 : 12NmMelt Torque: 12Nm

라버파우다(GTR)와 DCP를 넣어 혼합하였다. 260℃에서 5분간 혼합한후 CSI주형기(molder)를 통하여 압출된 압출물의 조성에 따르는 물성을 조사하였다. 시편은 1cm×2.5cm×0.3cm이 몰드에서 성형된 것을 인스트론[(INSTRON(3710)]및 아이조드충결시험기(IZOD impact tester)에 의하여 인장강도 및 충격에너지가 계산되었다. 이들의 인장강도와 충격에너지를 표 1에 나타내었다.Raver powder (GTR) and DCP were added and mixed. After mixing at 260 ° C. for 5 minutes, the physical properties of the extrudate extruded through a CSI mold were investigated. Tensile strength and impact energy were calculated by the INSTRON (3710) and IZOD impact tester that the specimens were molded in a mold of 1 cm x 2.5 cm x 0.3 cm. The energy is shown in Table 1.

GTR함량이 많을수록 인장강도는 감소하여 반대로 충격에너지는 증가하게 된다. 이는 충격강도가 큰 GTR의 탄성때문으로 평가되며 블렌드의 불균일성 및 상간접착의 문제 때문에 인장강도는 감소하는 것임을 알 수 있다. 그러나 EDPM, EVA및 DCP를 넣을 경우 인장강도가 현저하게 증가하며 충격에너지는 큰 변화가 없음을 알 수 있다. 또 가교제인 DCP를 1PHR 넣을때 0.5PHR일때보다 더 큰 인장강도를 보이게 된다. 이는 UPE-UPE의 가교결합과 UPE-GTR사이의 가교결합 형성으로 상간 열안정성이 좋아졌으며 접착효과가 증진되었음을 알 수 있다. 이러한 현상은 주사전자현미경(SEM)사진그림(1-A)에서 잘 설명할 수 있는데 EPDM/EVA/DCP를 첨가할 경우의 사진 그림(1-C)가 첨가하지 않은 경우의 사진그림(1-A)보다 UPE-GTR계면의 접착이 확실히 증가되었음을 알 수 있다. 또 DCP를 0.5PHR넣은 경우 사진그림(1-B)는 사진그림(1-C)에 비하여 상간접착이 더 느슨해 있음을 알 수 있다. 따라서 GTR/UPE의 혼합비가 60/40인 경우 첨가제의 양에 따라 다소 차이는 있으나 보도블럭의 제조에 가장 적당하다. 또 GTR/UPE/EPDM/EVA/DCP의 혼합비를 60/40/5/5/0.5로 하였을 경우, 인장강도 57.6㎏/㎠로써 보도블럭으로 사용될 수 있으며, GTR/UPE/EPDM/EVA/DCP의 혼합비를 40/60/3/7/1의 조성비에서는 인장강도 94㎏/㎠인 철근대용으로 사용될 수 있으며, 씰란(silane)화합물을 연결제(coupling agent)로 사용할 경우 시멘트 콘크리트와의 젖음성이 증진될 수 있은데, 페타이어 분말(GTR)과 시멘트모르터 또는 큰크리트간의 계면에서의 부착력을 증대시키기 위한 가장 효과적인 방안은 연결제(coupling agent)에 의한 부착력 증대방안으로 우선 페타이어분말에 의한 무기재료의 젖음성을 높이는 일이다.As the GTR content increases, the tensile strength decreases and conversely, the impact energy increases. This is due to the elasticity of the GTR with high impact strength, and it can be seen that the tensile strength decreases due to the problem of blend nonuniformity and phase adhesion. However, when EDPM, EVA, and DCP are added, the tensile strength is remarkably increased and the impact energy is not significantly changed. In addition, when 1PHR of crosslinking agent DCP is added, the tensile strength is higher than that of 0.5PHR. It can be seen that the thermal stability between phases was improved and the adhesion effect was enhanced by the crosslink formation between UPE-UPE and UPE-GTR. This phenomenon can be explained well by scanning electron microscopy (SEM) picture (1-A), which is the picture when EPDM / EVA / DCP is not added (1-C). It can be seen that the adhesion of the UPE-GTR interface is increased more than that of A). In addition, when 0.5PHR is inserted in the DCP, the photographic picture (1-B) is more loose in phase bonding than the photographic picture (1-C). Therefore, when the mixing ratio of GTR / UPE is 60/40, although it is somewhat different depending on the amount of additives, it is most suitable for the preparation of the sidewalk block. In addition, when the mixing ratio of GTR / UPE / EPDM / EVA / DCP is 60/40/5/5 / 0.5, it can be used as a press block with a tensile strength of 57.6㎏ / ㎠ and the GTR / UPE / EPDM / EVA / DCP At the composition ratio of 40/60/3/7/1, it can be used for rebars with a tensile strength of 94㎏ / ㎠ and improves the wettability with cement concrete when silane compound is used as a coupling agent. The most effective way to increase the adhesion at the interface between the FeTre powder (GTR) and cement mortar or large concrete is to increase the adhesion by the coupling agent. It is to increase the wettability.

젖음성을 놓이기 위하여는 양쪽에 활성 부분을 갖는 첨가제를 사용하게 되는데 아래 그림과 같이 비닐트리크로로씰렌(vinyltrichlorosilane)을 사용하는 것이다.To set the wettability, additives with active moieties on both sides are used. As shown in the figure below, vinyltrichlorosilane is used.

즉 씰렌화합물연결제(silane oupling agent)는 물질사이에 안정한 결합을 갖게된다. 대개의 씰렌화함물연결제의 일반구조식은 다음과 같이 갖는다.In other words, the silane oupling agent has a stable bond between materials. The general structural formula of most sealant-containing linkages is as follows.

X3Si-R-YX 3 Si-RY

여기서 Y는 유기탄성체에 결합될 수 있는 기능기이고, X는 Si에 결합되어 가수분해되기 쉬운 그룹으로서 물과 반응하여 Si-OH를 형성하든지 무기물의 M-OH와 반응하여 M-O-Si결함을 형성하게 된다.Here, Y is a functional group capable of bonding to an organic elastomer, and X is a group that is easily bonded to Si to be hydrolyzed, and reacts with water to form Si-OH or with inorganic M-OH to form MO-Si defects. Done.

이때 Y그룹은 안정한 C-Si결합을 통하여 Si와 결합하게 된다.At this time, the Y group is bonded to Si through a stable C-Si bond.

씰렌화합물연결제(silane oupling agent)는 일반적으로 pH 4 정도의 수용액 상태로 사용하게 되는데 이런 조건에서는 알콕시 그룹이 쉽게 가수분해되어 RSi(OH)3용액을 만들게 된다. RSi(OH)3는 무기물과 접촉할때 OH기가 있는 표면에 먼저 수소결합을 형성하고 난후, 물이 이탈되면 M-O-Si 결합을 갖게되어 siloxane을 형성하게 된다. 따라서 해당 무기질의 표면을 RSi(OH)3와의 수소결합 형성이 용이하게 하는 것이 중요하다.The silane oupling agent is generally used in an aqueous solution of pH 4, in which the alkoxy group is easily hydrolyzed to form an RSi (OH) 3 solution. RSi (OH) 3 first forms a hydrogen bond on the surface with OH groups when it comes in contact with an inorganic substance, and when water is released, it has a MO-Si bond to form a siloxane. Therefore, it is important to easily form the hydrogen bond with RSi (OH) 3 on the surface of the inorganic material.

이와같이 씰렌화합물연결제(silane oupling agent)와의 축합반응은 적당한 촉매를 사용하거나 적당히 온도를 올려 표면을 건조시킴으로써, 반응속도를 증진시킬 수 있다. 촉매로서는 amine, 티탄산 알킬 등이 주로 사용하는 것으로 알려져 있다.As such, the condensation reaction with the silane oupling agent may increase the reaction rate by using a suitable catalyst or drying the surface by raising the temperature appropriately. It is known that amine, alkyl titanate, etc. are mainly used as a catalyst.

[실시예 2]Example 2

실시예 1과 같은 조건으로 수행되었으며 단지 DCP대신 큐멘 히드로퍼옥사이드(cumene hydroperoxide; [ C6H5C(CH3)2OOH])를 사용하였다. 주사전자 현미경(SEM)에 의한 모폴로지 및 충격에너지는 실시예1과 비슷한 양상을 보였으며 인장강도는 평균 4%정도 증가하였다.It was carried out under the same conditions as in Example 1 and only cumene hydroperoxide ([C 6 H 5 C (CH 3 ) 2 OOH]) was used instead of DCP. Morphology and impact energy by SEM were similar to those of Example 1, and the tensile strength increased by 4% on average.

GTR/UPE/EPDM/EVA/dicumylperoxide =40/60/3/7/1의 경우 인장강도는 93.9㎏/㎠로서 이는 철근 및 타일대용으로 사용될 수 있으며, 그 외의 조성은 보도블럭으로 사용할 수 있다.In the case of GTR / UPE / EPDM / EVA / dicumylperoxide = 40/60/3/7/1, the tensile strength is 93.9 kg / cm 2, which can be used for reinforcing bars and tiles, and other compositions can be used as sidewalk blocks.

[실시예 3]Example 3

혼합기(HAAKE rheomix)에 GTR과 UPE만을 넣어 혼합시키면서 용융 블렌드 하였다. 이때 블렌드 온도는 200℃혼합기 로터(rotor)의 회전수는 40rpm으로 하여 10분간 블렌드 시켰으며 이들의 토크를 측정하였다. 또 이 블렌드를 압착성형시켜 시트로 만들고 이의 기계적성질을 조사하였으며 이의 결과를 표 2에 나타내었다.In the HAAKE rheomix, only GTR and UPE were mixed and melt blended. At this time, the blend temperature was blended for 10 minutes at a rotational speed of the mixer rotor of 200 ° C at 40 rpm and the torque thereof was measured. In addition, the blend was pressed to form a sheet and its mechanical properties were investigated. The results are shown in Table 2.

GTR함량이 증가할수록 인장강도는 점차 감소하게되며 순수한 UPE의 인장강도가 187㎏/㎠인데, GTR이 60% 함유되면 54.7㎏/㎠로 약 1/3정도로 약해진다. 신장률은 GTR이 10%이상에서는 신장률의 커다란 변화는 없게 된다. 용융토크는 GTR함량이 많아짐에 따라 약간 증가하는 성향을 보인다. 이러한 블렌드는 값이 싼 보도블럭 또는 바닥재의 하지로 사용될 수 있다.As the GTR content increases, the tensile strength gradually decreases, and the tensile strength of pure UPE is 187㎏ / ㎠, and when 60% of GTR is contained, it weakens to about 1/3 by 54.7㎏ / ㎠. The elongation rate is not significantly changed when the GTR is more than 10%. Melt torque tends to increase slightly as GTR content increases. Such a blend can be used as a base for inexpensive sidewalk blocks or flooring.

[실시예 4]Example 4

GTR/UPE/EPDM/EVA를 실시예 1과 같은 비율로 섞은 후 텀블러(tumbler)혼합기에서 혼련(20-30 rpm, 10분)하고 사출성형기(GS-300)에 넣은 후 성형기의 중간부위에 DCP나 큐멘히드로퍼옥사이드(cumene hydroperoxide)를 넣는다. 사출부분의 온도를 230℃-265℃로 하여 0.5-5분만에 사출시킨다. 이렇게 하여 얻은 사출물의 물성은 실시예 1의 경우보다 평균 3-5% 향상되었으며 계면접착간은 더욱 증딘된 것을 볼 수 있었다. 사진 그림2에 GTR/UPE/EPDM/EVA/cumene hydroperoxide = 60/40/5/5/0.5 사출물에 대한 주사전자현미경(SEM)사진을 실었는데, 사진의 상부물질(UPE)과 하부물질(GTR)사의 계면이 거의 완전하게 밀착되어 가교화 되어 있음을 볼 수 있다.GTR / UPE / EPDM / EVA were mixed in the same ratio as in Example 1, kneaded in a tumbler mixer (20-30 rpm, 10 minutes), placed in an injection molding machine (GS-300), and then placed in the middle of the molding machine. Add cumene hydroperoxide. The temperature of the injection portion is 230 ° C.-265 ° C. and is injected in 0.5-5 minutes. The physical properties of the injection molded in this way was improved by 3-5% on average than in the case of Example 1, it was found that the interfacial adhesion was more attenuated. Photo Scanning electron microscope (SEM) images of GTR / UPE / EPDM / EVA / cumene hydroperoxide = 60/40/5/5 / 0.5 are shown in Figure 2. It can be seen that the interface of the yarn is almost completely in close contact with each other.

또 X-선 회절법에 의한 Bragg angle을 조사하였는데 그림 3에 GTR/UPE/EPDM/EVA/DCP의 조성비에 따른 X-선 회절도를 실었다.The Bragg angle was investigated by X-ray diffraction method. Fig. 3 shows the X-ray diffractogram according to the composition ratio of GTR / UPE / EPDM / EVA / DCP.

A : 0/100/0/0/0, B : 30/70/0/5/0.5, C : 40/60/5/5/0.5,A: 0/100/0/0/0, B: 30/70/0/5 / 0.5, C: 40/60/5/5 / 0.5,

D : 60/40/5/5/0.5, E : 0/0/100/0/0, F : 100/0/0/0/0D: 60/40/5/5 / 0.5, E: 0/0/100/0/0, F: 100/0/0/0/0

그림 3에서 완전히 비정질인 EPDM의 회절패턴(E)을 볼 수 있고 F에서는 GTR의 회절패턴을 볼 수 있다. A에 나타낸 순수 UPE의 패턴은 2θ= 22.25인데 가교된 블렌드의 회절도(B,C,D)애서는 2θ=22.33의 상당한 변화가 일률적으로 관찰된다. 이는 가교에 의하여 UPE의 결정격자크기가 달라졌음을 알게 해주며, SEM 사진과 비교하여 볼때 UPE-UPE, UPE-GRT간에 상호작용이 있었음을 말해준다.In Fig. 3, the diffraction pattern (E) of EPDM, which is completely amorphous, is shown, and the diffraction pattern of GTR, in F. The pattern of pure UPE shown in A is 2θ = 22.25, but a significant change of 2θ = 22.33 is uniformly observed in the diffractograms (B, C, D) of the crosslinked blend. This indicates that the crystal lattice size of the UPE was changed by crosslinking, and that the interaction between UPE-UPE and UPE-GRT was observed when compared with the SEM photograph.

[실시예 5]Example 5

조성을 실시예 4와 같이 하고, 피그멘트(pigment)로서 TiO2, ZnO 또는 ZnS, 착색제로서 phthalocyanine-blue, phthalocyanine-green 및 산화철을 사용하였고, 윤활제로서 스테아린산칼슘이나 스테아린산아연이 사용되었다. 물성은 일반적으로 실시예 4보다 평균 2.4% 감소되었으나, 충격에너지는 별다른 변화를 볼 수 없었다. 이 블렌드는 보도블럭, 타일, 철근대용재료로 사용될 수 있다.The composition was as in Example 4, TiO 2 , ZnO or ZnS was used as the pigment, phthalocyanine-blue, phthalocyanine-green and iron oxide were used as colorants, and calcium stearate and zinc stearate were used as lubricants. Physical properties were generally reduced by 2.4% compared to Example 4, but the impact energy did not show any change. This blend can be used as a sidewalk block, tile, and reinforcement material.

[실시예 6]Example 6

실시예 1의 조성중 GTR/UPE/EPDM/EVA/DCP의 조성이 70/30/0/5/0.5, 60/40/0/5/0.5, 50/50/0/5/0.5, 40/60/0/5/0.5 및 0/100/0/0/0에 대한 동역학적 인장 모듈러스와 인장 TANδ값을 0.1Hz에서 조사하여 그림 4에 나타냈으며 이들의 저장탄성율(E')과 손실탄성율(E)을 그림 4와 5에 나타내었다. 동역학적 성질은 Polymer Laboratories사의 DMTA를 사용하여 측정하였다.In the composition of Example 1, the composition of GTR / UPE / EPDM / EVA / DCP is 70/30/0/5 / 0.5, 60/40/0/5 / 0.5, 50/50/0/5 / 0.5, 40/60 The dynamic tensile modulus and tensile TANδ values for /0/5/0.5 and 0/100/0/0/0 were investigated at 0.1 Hz and are shown in Fig. 4, and their storage modulus (E ') and loss modulus (E) ) Are shown in Figures 4 and 5. Kinetic properties were measured using Polymer Laboratories' DMTA.

GTR/UPE/EPDM/EVA/DCPGTR / UPE / EPDM / EVA / DCP

×: 70/30/0/5/0.5 O : 60/40/0/5/0.5×: 70/30/0/5 / 0.5 O: 60/40/0/5 / 0.5

* : 50/50/0/5/0.5 △ : 40/60/0/5/0.5*: 50/50/0/5 / 0.5 △: 40/60/0/5 / 0.5

+ : 0/100/0/0/0+: 0/100/0/0/0

GTR/UPE/EPDM/EVA/DCPGTR / UPE / EPDM / EVA / DCP

×: 70/30/0/5/0.5 O : 60/40/0/5/0.5×: 70/30/0/5 / 0.5 O: 60/40/0/5 / 0.5

* : 50/50/0/5/0.5 △ : 40/60/0/5/0.5*: 50/50/0/5 / 0.5 △: 40/60/0/5 / 0.5

+ : 0/100/0/0/0+: 0/100/0/0/0

GTR함량이 증가함에 따라 E' 값은 순수한 UPE보다는 낮아지고 E값은 더 높아지는 경향을 볼 수 있는데, 이는 GTR함량의 증가가 재료의 유연성을 높여주게 되는 것임을 알 수 있게 한다. 그러나 40/60/0/5/0.5의 블렌드 조성에서는 -20℃의 E'값이 7.2MPa로서 순수한 UPE의 5.4MPa보다 1.8MPa더 높으며 40℃이상에서도 UPE보다 높은 E'값을 보여주고 있다.As the GTR content increases, the E 'value tends to be lower than that of pure UPE, and the E value tends to be higher. This indicates that the increase of the GTR content increases the material flexibility. However, in the blend composition of 40/60/0/5 / 0.5, the E 'value of -20 ° C is 7.2MPa, which is 1.8MPa higher than 5.4MPa of pure UPE, and the E' value is higher than UPE even above 40 ° C.

반대로 70/30/0/5/0.5의 조성의 경우 -20℃에서 10MPa, 98℃에서 0.65MPa로서 현저한 감소를 가져온다.On the contrary, in the case of the composition of 70/30/0/5 / 0.5, 10MPa at -20 ° C and 0.65MPa at 98 ° C resulted in a significant reduction.

[실시예 7]Example 7

실내 바닥재로 응용하기 위하여 위의 실시예의 블렌드시트를 사용하여 여러가지 조건에서 수행하였다. 현재의 폴리비닐클로리이드(poly vinyl chloride; PVC)로 만들어진 바닥재 제품들을 그림 6-A와 같이 구성되어 있는데, 여기서 가장 많은 량이 필요하고 바닥재의 효과에 많은 영향을 미치는 C면의 PVC시트 대신에 이 블렌드시트를 사용하여 그림 6-B와 같이 구성하였다.The application of the blend sheet of the above embodiment for the interior flooring was carried out under various conditions. Current flooring products made of polyvinyl chloride (PVC) are constructed as shown in Figure 6-A, where instead of the PVC sheet on the C side, which requires the highest amount and affects the flooring's effectiveness, The blend sheet was used as shown in Figure 6-B.

그림 6-B에서 현재의 바닥재공정에서 벗어나지 않기 위해 B면의 코딩PVC필름과 C면의 블렌드시트를 부착하기 위해, D면의 부착필름을 사용했는데, 부착필름으로서는 염소화폴리에틸렌(chlorinated plyenthylene; CPE)필름과 폴리에틸렌(polyethylene; PE)과 CPE혼합필름을 사용하였다.In Figure 6-B, in order not to deviate from the current flooring process, D-coated film was used to attach the B-coated PVC film and the C-sheet blend sheet. As the attached film, chlorinated plyenthylene (CPE) was used. A film, polyethylene (PE) and CPE mixed film were used.

공정에서의 온도는 70℃-130℃, 압력은 현재의 바닥재공정과 비슷한 법위내에서 수행하였다. 이 블렌드 시트로 대체함으로서 위의 실시예들의 특성들 때문에 완충작용, 유연성, 내열성 및 가격효과 측면에서 더욱 우수한 양상을 보여주고 있고 비중이 적어 운반에 유리한 장점이 있다.The temperature in the process was 70 ° C-130 ° C and the pressure was carried out within the same level as the current flooring process. By replacing with this blend sheet, the characteristics of the above embodiments show better aspects in terms of buffering, flexibility, heat resistance and cost effectiveness, and have a low specific gravity, which is advantageous for transportation.

Claims (35)

중량%비로 30%-70%의 라버파우더(GTR)와 30%-60%의 재생 폴리에틸렌(UPE)를 일정 혼합첨가하고, 유동제로 0%-10%의 에틸렌비닐아세테이트 코폴리머(EVA)를, 상용성 증진제로는 0%-10%의 에틸렌포로필렌디엔(EPDM)를 첨가하고, 가교제로 큐멘히드로퍼옥사이드(Cumene hydroperoxide) 또는 0%-8%의 과산화디큐밀(Dicumylperoxide; DCP)를 0-5PHR투입하여 혼합기로 혼련한 후 각 성분의 다중결합부분간에 [-CH2CH2-]의 라디칼 짝지움에 의한 가교반응이 일어나도록 일정 고온에서 0.5-5분동안에 순간 사출 또는 압출하여 제조함을 특징으로 하는 타이어 분말(Rubber powder)과 프라스틱 수지로부터 제조된 복합재료 조성물의 제조방법.Add 30% -70% of Raver powder (GTR) and 30% -60% of recycled polyethylene (UPE) at a weight% ratio, and add 0% -10% of ethylene vinyl acetate copolymer (EVA) as a flow agent, As a compatibility enhancer, 0% -10% of ethylene phosphopropylene diene (EPDM) was added, and as crosslinking agent, cumene hydroperoxide or 0% -8% of dicumylperoxide (DCP) was 0-. 5PHR was injected and kneaded with a mixer, and then injected or extruded at a high temperature for 0.5-5 minutes at a high temperature so as to cause crosslinking reaction by radical pairing of [-CH 2 CH 2- ] between the multiple bond portions of each component. Characterized in that the tire powder (Rubber powder) and a method for producing a composite material prepared from a plastic resin. 제1항에 있어서, 라버파우더-플라스틱수지 및 유동제와 상용성증진제와 가교제를 일시에 혼합하여 사출하거나 또는 압축시킴을 특징으로 하는 타이어 분말과 플라스틱 수지로부터 제조된 복합재료 조성물의 제조방법.The method of claim 1, wherein the rubber powder-plastic resin, a flow agent, a compatibility enhancer, and a crosslinking agent are mixed or injected at a time to compress or compress the composite material prepared from the tire powder and the plastic resin. 제2항에 있어서, 일시에 혼합하는 라버파우더-플라스틱수지 및 유동제와 상용성 증진제와 가교제를 압출기로 펄렛팅(Pelletizing)하여 이를 압착성형 하거나 사출성형함을 특징으로 하는 타이어분말과 플라스틱수지로부터 제조된 복합재료 조성물의 제조방법.The tire powder and the plastic resin according to claim 2, wherein the rubber powder and the plastic resin which are mixed at one time are pelletized by an extruder and a compatibility agent and a crosslinking agent by compression molding or injection molding. Method for producing a composite material composition prepared. 제1항에 있어서, 라버파우더(Groudingtire rubber; GTR)는 페타이어를 실온에서 그라인더(Grinder)로 분쇄한 것으로 직경 7㎜이하의 입자로서 스틸코드(Steel Cord)나 폴리에스테르(또는 나일론) 코드가 제거됨을 특징으로 하는 방법.The rubber powder (GTR) is a powder obtained by grinding a pet tire with a grinder at room temperature, and having a diameter of 7 mm or less and having a steel cord or a polyester (or nylon) cord. Removed. 제1항에 있어서, 재생폴리에틸렌(UPE)은 저밀도 폴리에틸렌(LDPE)과 고밀도 폴리에틸렌(HDPE)이 혼합된 제품을 사용함을 특징으로 하는 방법.The method of claim 1, wherein the recycled polyethylene (UPE) uses a mixture of low density polyethylene (LDPE) and high density polyethylene (HDPE). 제1항에 있어서, 다른 첨가물 없이 GTR/UPE의 혼합비를 70/30으로만 하여 압출 또는 사출 제조함을 특징으로 하는 방법.The method according to claim 1, characterized in that extrusion or injection production is carried out at a mixing ratio of GTR / UPE of only 70/30 without other additives. 제1항에 있어서, 가교제로 첨가되는 과산화디큐밀(DCP) 대신에, cumene hydroperoxide; [ C6H5C(CH3)2OOH])를 사용하여 평균 4%의 인장 강도가 증진될 수 있도록 함을 특징으로 하는 방법.The process of claim 1, wherein instead of dicumyl peroxide (DCP) added as a crosslinker, cumene hydroperoxide; [C 6 H 5 C (CH 3 ) 2 OOH]) to allow an average 4% tensile strength to be enhanced. 제1항에 있어서, GTR/UPE/EPDM/EVA를 일정비율로 섞어 텀블러 혼합기에서 20-30rpm으로 10분정도 혼련시킨후, 온도 230℃-265℃로된 사출성형기 중간부위에 DCP 또는 큐멘 히드로퍼옥사이드(cumene hydroperoxide)를 투입하여 0.5-5분만에 사출 제조함을 특징으로 하는 방법.The method of claim 1, wherein GTR / UPE / EPDM / EVA is mixed at a constant rate and kneaded for 10 minutes at 20-30 rpm in a tumbler mixer, followed by DCP or cumene hydroper at an intermediate portion of the injection molding machine having a temperature of 230 ° C-265 ° C. Method of injection molding in 0.5-5 minutes by the injection of oxide (cumene hydroperoxide). 제8항에 있어서, GTR/UPE/EPDM/EVA/cumene hydroperoxide의 혼합 조성비를 60/40/5/5/0.5 사출 제조함으로써, GTR과 UPE사이의 계면이 완전 밀착가교 시킴을 특징으로 하는 방법.The method according to claim 8, wherein the interface between the GTR and the UPE is intimately crosslinked by 60/40/5/5 / 0.5 injection preparation of a mixed composition ratio of GTR / UPE / EPDM / EVA / cumene hydroperoxide. 제8항에 있어서, GTR/UPE/EPDM/EVA/cumene hydroperoxide의 혼합조성비가 60/40/5/5/0.5로 하고 피그멘트(pigment)로서 TiO2ZnO 또는 ZnS, 착색제로서 phthalocyanine blue, phthalocyanine green 및 산화철, 윤활제로 스테아린산칼슘이나 스테아린산아연등을 첨가시켜 압출 제조됨을 특징으로 하는 건축용 타일.The composition of claim 8, wherein the mixing composition ratio of GTR / UPE / EPDM / EVA / cumene hydroperoxide is 60/40/5/5 / 0.5, TiO 2 ZnO or ZnS as a pigment, phthalocyanine blue as a colorant, phthalocyanine green And iron oxide, a building tile, which is manufactured by extrusion by adding calcium stearate or zinc stearate as a lubricant. 30%-70%GTR/30%-60%UPE/0%-10%EPDM/0%-10%EVA/cumene hydroperoxide의 혼합조성비가 60/40/5/5/0.5로 하고 피그멘트(pigment)로서 TiO2 ZnO 또는 ZnS, 착색제로써 phthalocyanine blue, phthalocyanine green 및 산화철, 윤활제로 스테아린산칼슘 이나 스테아린산아연등을 첨가시켜 압출 제조됨을 특징으로 하는 건축용 타일.30% -70% GTR / 30% -60% UPE / 0% -10% EPDM / 0% -10% The composition ratio of EVA / cumene hydroperoxide is 60/40/5/5 / 0.5 and the pigment TiO2 ZnO or ZnS as an additive, phthalocyanine blue, phthalocyanine green as a colorant and iron oxides, and the extrusion is produced by adding calcium stearate or zinc stearate as a lubricant. 30%-70%GTR/30%-60%UPE/0%-10%EPDM/0%-10%EVA/0%-8%DCP의 혼합비(중량%)를 60/40/5/5/0.5로 하여, 씰렌(Silane)화합물을 연결제(Coupling agent)로 사용해 시멘트 콘크리트와의 젖음성이 증진됨을 특징으로 하는 철근대용 제품.30% -70% GTR / 30% -60% UPE / 0% -10% EPDM / 0% -10% EVA / 0% -8% DCP 60/40/5/5/5 / 0.5 By using the sealant (Silane) compound as a coupling agent (Coupling agent) product for reinforcing bars characterized in that the wettability with cement concrete is enhanced. 제12항에 있어서, 다른 첨가물 없이 30%-70%GTR/30%-60%UPE이 50/50의 혼합비(중량%)로 하여 압출 또는 사출 제조됨을 특징으로 하는 보도블럭.The press block according to claim 12, wherein 30% -70% GTR / 30% -60% UPE is extruded or injection-molded at a mixing ratio (wt%) of 50/50 without other additives. 제12항에 있어서, 다른 첨가물 없이 30%-70%GTR/30%-60%UPE이 60/40의 혼합비(중량%)로 하여 압출 또는 사출 제조됨을 특징으로 하는 보도블럭.The press block according to claim 12, wherein 30% -70% GTR / 30% -60% UPE is extruded or injection-molded at a mixing ratio (wt%) of 60/40 without other additives. 제12항에 있어서, 30%-70%GTR/30%-60%UPE이 60/40의 혼합비(중량%)로 하고, 첨가제인 0%-10%EPDM/0%-10%EVA/0%-8%DCP를 5/5/0.5 비율로 첨가하여 압출 또는 사출 제조됨을 특징으로 하는 보도블럭.The method of claim 12, wherein 30% -70% GTR / 30% -60% UPE is 60/40, and the additive ratio is 0% -10% EPDM / 0% -10% EVA / 0%. Press block characterized in that extrusion or injection production by adding -8% DCP in a ratio of 5/5 / 0.5. 제15항에 있어서, 첨가제인 0%-10%EPDM/0%-10%EVA/0%-8%DCP이 0/5/0.5의 비율로 첨가되어 압출 또는 사출제조함을 특징으로 하는 보도블럭.16. The press block according to claim 15, wherein an additive, 0% -10% EPDM / 0% -10% EVA / 0% -8% DCP, is added at a ratio of 0/5 / 0.5 to produce extrusion or injection. . 제15항에 있어서, 첨가제인 0%-10%EPDM/0%-10%EVA/0%-8%DCP이 3/7/0.5의 비율로 첨가되어 압출, 또는 사출 제조됨을 특징으로 하는 보도블록.16. The sidewalk block according to claim 15, wherein the additive 0% -10% EPDM / 0% -10% EVA / 0% -8% DCP is added at a ratio of 3/7 / 0.5 to produce an extrusion or injection. . 제15항에 있어서, 첨가제인 0%-10%EPDM/0%-10%EVA/0%-8%DCP이 3/7/1.0의 비율로 첨가되어 압출, 또는 사출 제조됨을 특징으로 하는 보도블록.16. The sidewalk block according to claim 15, wherein the additive 0% -10% EPDM / 0% -10% EVA / 0% -8% DCP is added at a ratio of 3/7 / 1.0 to produce an extrusion or injection molding. . 30%-70%GTR/30%-60%UPE의 혼합을 100∼25/0∼75의 중량% 비율로 혼합기(Haake rheomix)에 넣고 블렌드온도는 200℃ 혼합기로터(rotor)의 회전수 40rpm으로 10분간 블렌드시켜 저가로 압착성형됨을 특징으로 하는 보도블럭, 장판하지 또는 바닥재 하지제품.The mixture of 30% -70% GTR / 30% -60% UPE is added to the mixer (Haake rheomix) at a ratio of 100 to 25/0 to 75% by weight, and the blend temperature is 40 rpm of the rotor at 200 ° C. Press block, floorboard or flooring product, characterized in that they are pressed and molded at low cost by blending for 10 minutes. 제19항에 있어서, 압착 성형되는 블랜드 시트를 장판하지 또는 바닥재 하지로 접합 사용하기 위하여는 염소화폴리에틸렌(CPE) 필름이나, 폴리에틸렌(PE)과 혼합필름을 부착 필름으로 채택하며, 70℃-130℃ 온도에서 5Kgf/㎠ - 15Kgf/㎠의 압력으로 열융착함을 특징으로 하는 방법.20. The method according to claim 19, wherein a chlorinated polyethylene (CPE) film or a polyethylene (PE) film and a mixed film are used as the adhesive film for bonding the blend sheet to be press-molded to the bottom plate or the bottom plate. Heat-sealing at a pressure of 5 Kgf / cm 2 -15 Kgf / cm 2 at a temperature. 그림 6-B에서 현재의 바닥재공정에서 벗어나지 않기 위해 B면의 코딩PVC필름과 C면의 블렌드시트를 부착하기 위해, D면의 부착필름을 사용했는데, 부착필름으로서는 염소화폴리에틸렌(chlorinated plyenthylene; CPE)필름과 폴리에틸렌(polyethylene; PE)과 CPE혼합필름을 사용하였다.In Figure 6-B, in order not to deviate from the current flooring process, D-coated film was used to attach the B-coated PVC film and the C-sheet blend sheet. As the attached film, chlorinated plyenthylene (CPE) was used. A film, polyethylene (PE) and CPE mixed film were used. 공정에서의 온도는 70℃-130℃, 압력은 현재의 바닥재공정과 비슷한 법위내에서 수행하였다. 이 블렌드 시트로 대체함으로서 위의 실시예들의 특성들 때문에 완충작용, 유열성, 내영성 및 가격효과 측면에서 더욱 우수한 양상을 보여주고 있고 비중이 적어 운반에 유리한 장점이 있다.The temperature in the process was 70 ° C-130 ° C and the pressure was carried out within the same level as the current flooring process. By replacing with the blend sheet, the characteristics of the above embodiments show better aspects in terms of buffering effect, heat resistance, resistance to magnetism and cost effect, and have a low specific gravity, which is advantageous for transportation. 혼합조성비로 30w%-70w%의 라버파우더(GTR)와 30w%-60w%의 재생 폴리에틸렌(UPE)를 일정 혼합첨가하고, 유동제로 0-10PHR의 에틸렌비닐아세테이트 코폴리머(EVA)를, 상용성 증진제로는 0-10PHR의 에틸렌포로필렌디엔(EPDM)를 첨가하고, 가교제로 큐멘히드로퍼옥사이드 (Cumene hydroperoxide)또는 0-8PHR의 과산화디큐밀(Dicumylperoxide; DCP)를 0-5PHR투입하여 혼합기로 혼련한 후 각 성분의 다중결합부분간에 [-CH2CH2-]의 라디칼 짝지움에 의한 가교반응이 일어나도록 일정 고온에서 0.5-5분동안에 순간 사출 또는 압출하여 제조함을 특징으로 하는 타이어 분말(Rubber powder)과 프라스틱 수지로부터 제조된 복합재료 조성물의 제조방법.30w% -70w% Rover Powder (GTR) and 30w% -60w% Regenerated Polyethylene (UPE) were mixed and added at a mixing composition ratio, and 0-10PHR ethylene vinyl acetate copolymer (EVA) was used as a flow agent. As an enhancer, 0-10 PHR of ethylene poropropylene diene (EPDM) is added, and as a crosslinking agent, cumene hydroperoxide (Cumene hydroperoxide) or 0-8 PHR of Dicumylperoxide (DCP) is added to 0-5 PHR and kneaded with a mixer. After the tire powder characterized in that it is produced by instant injection or extrusion at a high temperature for 0.5-5 minutes at a high temperature so that the cross-linking reaction by radical pairing of [-CH 2 CH 2- ] in the multi-bond portion of each component ( Rubber powder) and a method for producing a composite composition prepared from a plastic resin. 제21항에 있어서, 라버파우더-플라스틱수지 및 유동제와 상용성증진제와 가교제를 일시에 혼합하여 사출하거나 또는 압축시킴을 특징으로 하는 타이어 분말과 플라스틱 수지로부터 제조된 복합재료 조성물의 제조방법.22. The method of claim 21, wherein the rubber powder-plastic resin and the flow agent, the compatibility enhancer, and the crosslinking agent are mixed or injected at a time to compress or compress the composite material prepared from the tire powder and the plastic resin. 제21항에 있어서, 일시에 혼합하는 라버파우더-플라스틱수지 및 유동제와 상용성 증진제와 가교제를 압출기로 펄렛팅(Pelletizing)하여 이를 압착성형 하거나 사출성형함을 특징으로 하는 타이어분말과 플라스틱수지로부터 제조된 복합재료 조성물의 제조방법.22. The tire powder and the plastic resin according to claim 21, wherein the rubber powder and the plastic resin which are mixed at a time are mixed with the flow agent, the compatibility enhancer, and the crosslinking agent by pelletizing with an extruder and pressing or injection molding. Method for producing a composite material composition prepared. 제21항에 있어서, 라버파우더(Groudingtire rubber; GTR)는 페타이어를 실온에서 그라인더(Grinder)로 분쇄한 것으로 직경 7㎜이하의 입자로서 스틸코드(Steel Cord)나 폴리에스테르(또는 나일론) 코드가 제거됨을 특징으로 하는 방법.22. The grinder powder (GTR) is obtained by crushing a pet tire with a grinder at room temperature and having a diameter of 7 mm or less, and having a steel cord or a polyester (or nylon) cord. Removed. 제21항에 있어서, 재생폴리에틸렌(UPE)은 저밀도 폴리에틸렌(LDPE)과 고밀도 폴리에틸렌(HDPE)이 혼합된 제품을 사용함을 특징으로 하는 방법.22. The method of claim 21, wherein the recycled polyethylene (UPE) uses a mixture of low density polyethylene (LDPE) and high density polyethylene (HDPE). 제1항에 있어서, 다른 첨가물 없이 GTR/UPE의 혼합비를 70w%/30w%으로만 하여 압출 또는 사출 제조함을 특징으로 하는 방법.The method according to claim 1, wherein the extrusion or injection production is carried out using only 70 w% / 30w% of the mixing ratio of GTR / UPE without other additives. 제21항에 있어서, 가교제로 첨가되는 과산화디큐밀(DCP) 대신에, cumene hydroperoxide [ C6H5C(CH3)2OOH])를 사용하여 평균 4%의 인장 강도가 증진될 수 있도록 함을 특징으로 하는 방법.22. The tensile strength of 4% can be enhanced by using cumene hydroperoxide [C 6 H 5 C (CH 3 ) 2 OOH]) instead of dicumyl peroxide (DCP) added as a crosslinking agent. Characterized by the above. 제21항에 있어서, GTR/UPE/EPDM/EVA를 일정비율로 섞어 텀블러 혼합기에서 20-30rpm으로 10분정도 혼련시킨후, 온도 230℃-265℃로 된 사출성형기 중간부위에 DCP 또는 큐멘 히드로퍼옥사이드(cumene hydroperoxide)를 투입하여 0.5-5분만에 사출 제조함을 특징으로 하는 방법.22. The method according to claim 21, wherein GTR / UPE / EPDM / EVA is mixed at a constant rate and kneaded at 20-30 rpm for 10 minutes in a tumbler mixer, and then DCP or cumene hydroper is placed in the middle of the injection molding machine having a temperature of 230 ° C-265 ° C. Method of injection molding in 0.5-5 minutes by the injection of oxide (cumene hydroperoxide). 제28항에 있어서, GTR/UPE의 혼합 조성비를 60/40w%로 하고, 여기에 EPDM 5PHR, EVA 5PHR, cumene hydroperoxide를 0.5PHR을 넣어 사출 제조함으로써, GTR과 UPE사이의 계면이 완전 밀착 가교시킴을 특징으로 하는 방법.The GTR / UPE mixing composition ratio is 60 / 40w%, and EPDM 5PHR, EVA 5PHR, cumene hydroperoxide is injected into 0.5PHR, and the interface between GTR and UPE is completely adhered and crosslinked. Characterized by the above. 제28항에 있어서, GTR/UPE/EPDM/EVA/cumene hydroperoxide의 혼합조성비가 60w%/40w%/5PHR/0.5PHR로 하고 피그멘트(pigment)로서 TiO2ZnO 또는 ZnS 착색제로서 phthalocyanine blue, phthalocyanine green 및 산화철, 윤활제로 스테아린산칼슘이나 스테아린산아연등을 첨가시켜 압출 제조됨을 특징으로 하는 방법.29. The method of claim 28, wherein the mixing ratio of GTR / UPE / EPDM / EVA / cumene hydroperoxide is 60w% / 40w% / 5PHR / 0.5PHR and phthalocyanine blue, phthalocyanine green as TiO 2 ZnO or ZnS colorant as a pigment. And iron oxides, calcium stearate, zinc stearate, and the like. 30%-70%GTR/30%-60%UPE/0%-10%EPDM/0%-10%EVA/cumene hydroperoxide의 혼합조성비가 60w%/40w%/5PHR/0.5PHR로 하고 피그멘트(pigment)로서 TiO2ZnO 또는 ZnS 착색제로써 phthalocyanine blue, phthalocyanine green 및 산화철, 윤활제로 스테아린산칼슘이나 스테아린산아연등을 첨가시켜 압출 제조됨을 특징으로 하는 건축용 타일의 제조방법.The composition ratio of 30% -70% GTR / 30% -60% UPE / 0% -10% EPDM / 0% -10% EVA / cumene hydroperoxide is 60w% / 40w% / 5PHR / 0.5PHR. Phthalocyanine blue, phthalocyanine green, and iron oxides, and calcium stearate, zinc stearate, etc., as a lubricant, as TiO 2 ZnO or ZnS colorant. 30%-70%GTR/30%-60%UPE/0%-10%EPDM/0%-10%EVA/0%-8%DCP의 혼합조성비를 60/40/5PHR/5PHR/0.5PHR로 하여, 씰렌(Silane)화합물을 연결제(Coupling agent)로 사용해 시멘트 콘크리트와의 젖음성이 증진함을 특징으로 하는 철근대용 제품의 제조방법.The mixing composition ratio of 30% -70% GTR / 30% -60% UPE / 0% -10% EPDM / 0% -10% EVA / 0% -8% DCP is set to 60/40 / 5PHR / 5PHR / 0.5PHR. , The method of producing a product for reinforcing bars characterized in that the wettability with cement concrete is improved by using the sealant (Silane) compound as a coupling agent. 30w%-70w%GTR/302%-602%UPE이 50/50 또는 60/40 어느 한 혼합조성비 만으로, 또는 30w%-70w%GTR/302%-602%UPE이 60/40의 혼합조성비에 첨가제인 0-10PHR EPDM/0-10PHR EVA/0-8PHR DCP를 5PHR/5PHR/0.5PHR, OPHR/5PHR/0.5PHR, 3PHR/7PHR/0.5PHR 또는 3PHR/7PHR/1.0PHR의 어느 한 비율로 선택적으로 압축 또는 사출 제조함을 특징으로 하는 보도블럭의 제조방법.Additives to either 50/50 or 60/40 mix ratios of 30w% -70w% GTR / 302% -602% UPE or to 60/40 mix ratios of 30w% -70w% GTR / 302% -602% UPE 0-10PHR EPDM / 0-10PHR EVA Method for producing a press block characterized in that the compression or injection manufacturing. 30%-70%GTR/30%-60%UPE의 혼합을 100∼25/0∼75w% 비율로 혼합기(Haake rheomix)에 넣고 블렌드온도는 200℃ 혼합기로터(rotor)의 회전수 40rpm으로 10분간 블렌드시켜 저가로 압착성형함을 특징으로 하는 바닥재 하지제품의 제조방법.The mixture of 30% -70% GTR / 30% -60% UPE is added to the mixer (Haake rheomix) at a ratio of 100-25 / 0-75w% and the blend temperature is 10 minutes at a rotation speed of 40 ° C of the rotor at 200 ° C. A method for manufacturing a flooring base product, characterized by compression molding at low cost by blending. 제34항에 있어서, 압착 성형되는 블랜드 시트를 바닥재 하지로 접합 사용하기 위하여는 염소화폴리에틸렌(CPE)필름이나, 폴리에틸렌(PE)과 혼합필름을 부착 필름으로 채택하며 70℃-130℃ 온도에서 5Kgf/㎠ - 15Kgf/㎠의 압력으로 열융착함을 특징으로 하는 방법.35. The method of claim 34, wherein the fused polyethylene sheet (CPE) film or polyethylene (PE) and mixed film is used as the adhesive film for bonding the blend sheet to be press-molded to the flooring material. Heat-sealed at a pressure of 15 cm 2/15 Kgf / cm 2.
KR1019940035798A 1994-12-22 1994-12-22 Complex material composition manufacturing from tier and plastic resin KR0180216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940035798A KR0180216B1 (en) 1994-12-22 1994-12-22 Complex material composition manufacturing from tier and plastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940035798A KR0180216B1 (en) 1994-12-22 1994-12-22 Complex material composition manufacturing from tier and plastic resin

Publications (2)

Publication Number Publication Date
KR960022737A KR960022737A (en) 1996-07-18
KR0180216B1 true KR0180216B1 (en) 1999-05-15

Family

ID=19402799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940035798A KR0180216B1 (en) 1994-12-22 1994-12-22 Complex material composition manufacturing from tier and plastic resin

Country Status (1)

Country Link
KR (1) KR0180216B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354916B1 (en) * 2000-02-11 2002-10-05 (주)알엔씨 Method for manufacturing molding using used-up urethane or rubber
KR100404768B1 (en) * 2001-12-04 2003-11-07 이화케미칼 주식회사 A composition of flame retarding foams with waste materials and its preparing method
KR100481976B1 (en) * 2002-02-21 2005-04-13 박석균 Composite material of high tenacity and non-retraction grouting material which including powder of wasted tire and powder of plastic
WO2012050863A3 (en) * 2010-09-28 2012-06-14 Evans Neal A Apparatus and method for producing thermoplastic elastomer, elastomers produced thereby and articles produced from the elastomers
KR101256857B1 (en) * 2011-07-27 2013-04-22 동서대학교산학협력단 Rubber complex waterproof sheet using recycle polypropylene
KR101389517B1 (en) * 2013-12-19 2014-04-25 주식회사 유한인터텍 Mat composition and method of manufacturing mat using the composition thereof
KR20150125188A (en) * 2014-04-30 2015-11-09 안진광 Hybrid composite material for hybrid rubber and waste plastic and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398447B1 (en) * 2000-03-30 2003-09-19 김민배 Member for absorbing an impacting sound on a floor of construction and method of manufacturing the same and executng method using the same
KR100408704B1 (en) * 2001-03-05 2003-12-06 문성철 A composition of foams with waste materials and ground tire rubber and foams thereof
KR100431887B1 (en) * 2001-06-27 2004-05-17 김진국 Rubber Sidewalk Block Having Layers
KR20030078504A (en) * 2002-03-30 2003-10-08 진성큐이알 주식회사 Making process of cushion and sound absorption mat
KR100597742B1 (en) * 2004-07-20 2006-07-07 삼성전자주식회사 Washing machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354916B1 (en) * 2000-02-11 2002-10-05 (주)알엔씨 Method for manufacturing molding using used-up urethane or rubber
KR100404768B1 (en) * 2001-12-04 2003-11-07 이화케미칼 주식회사 A composition of flame retarding foams with waste materials and its preparing method
KR100481976B1 (en) * 2002-02-21 2005-04-13 박석균 Composite material of high tenacity and non-retraction grouting material which including powder of wasted tire and powder of plastic
WO2012050863A3 (en) * 2010-09-28 2012-06-14 Evans Neal A Apparatus and method for producing thermoplastic elastomer, elastomers produced thereby and articles produced from the elastomers
KR101256857B1 (en) * 2011-07-27 2013-04-22 동서대학교산학협력단 Rubber complex waterproof sheet using recycle polypropylene
KR101389517B1 (en) * 2013-12-19 2014-04-25 주식회사 유한인터텍 Mat composition and method of manufacturing mat using the composition thereof
KR20150125188A (en) * 2014-04-30 2015-11-09 안진광 Hybrid composite material for hybrid rubber and waste plastic and manufacturing method thereof

Also Published As

Publication number Publication date
KR960022737A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
KR0180216B1 (en) Complex material composition manufacturing from tier and plastic resin
US5010122A (en) Plastic-rubber composites
CN1322774A (en) Material specially for communication optical cable protecting casing and its prepn
CN101074345A (en) Color SBS modified waterproof asphalt material
EP2157139B1 (en) A method for modifying normal clay and a method for producing composite elastomer from the clay
KR102058674B1 (en) Modified-Asphalt Concrete Composition and Constructing Methods Using Thereof
KR102589186B1 (en) Modified-Asphalt Concrete Composition with Improved Plastic Deformation Resistance and Constructing Methods Using Thereof
US6558773B2 (en) Waterproof, durable products made from recycled rubber products
JP2011524441A (en) Composite material roof structure
WO1995000456A1 (en) Thermoplastic cement composition and process for producing cement molding
CN104910539A (en) High-impact while household electrical appliance ABS composite material and preparation method therefor
CN108948541A (en) A kind of wear-resisting anti-aging rubber for door and window sealing strip preparation
CN110408340B (en) Reaction bonding wet-laid high-polymer waterproof roll and preparation method thereof
US6703440B2 (en) Waterproof, durable products made from recycled rubber products
CN104672703B (en) A kind of organic RE polymeric U crosslinking exposed conveying appliance waterproof roll and preparation method
CN109721314A (en) Adhesive polymer penetrant crystalline waterproof adhesive powder and preparation method thereof
DE102010063563A1 (en) Composition with improved weathering stability of the color of building materials and process for their preparation
KR100542273B1 (en) Inner-liner Rubber Compound for Tire Comprising Polymer Nano-Composite
CN113801600B (en) Anti-glare waterproof coiled material and preparation method thereof
CN1176145C (en) Process for preparing waste rubber powder/poly olefine resin blend
CN106317671A (en) Production method of antistatic insulating high-molecular polymer waterproof composite coiled material
CN111907180B (en) Spraying auxiliary coiled material, preparation method thereof and waterproof structure adopting coiled material
CN112238667B (en) Flexible high-molecular waterproof coiled material and preparation method thereof
CN212400545U (en) Anti-aging polymer waterproofing membrane convenient to construction
KR101918651B1 (en) Synthetic Wood Article Having Enhanced Durability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 17

EXPY Expiration of term