KR0159288B1 - PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY - Google Patents

PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY Download PDF

Info

Publication number
KR0159288B1
KR0159288B1 KR1019910001191A KR910001191A KR0159288B1 KR 0159288 B1 KR0159288 B1 KR 0159288B1 KR 1019910001191 A KR1019910001191 A KR 1019910001191A KR 910001191 A KR910001191 A KR 910001191A KR 0159288 B1 KR0159288 B1 KR 0159288B1
Authority
KR
South Korea
Prior art keywords
fluorine
polyimide adhesive
diamine compound
siloxane
adhesive composition
Prior art date
Application number
KR1019910001191A
Other languages
Korean (ko)
Other versions
KR920014912A (en
Inventor
박재근
노창호
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019910001191A priority Critical patent/KR0159288B1/en
Publication of KR920014912A publication Critical patent/KR920014912A/en
Application granted granted Critical
Publication of KR0159288B1 publication Critical patent/KR0159288B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

본 발명은 알파선 차폐용 폴리이미드계 접착제 조성물을 제공하는 것으로, 방향족 디아민 화합물 및 산이무수물에 하기 일반식의 실록산 디아민화합물을 사용하는 것을 특징으로 한다.This invention provides the polyimide adhesive composition for alpha ray shielding, It is characterized by using the siloxane diamine compound of the following general formula for an aromatic diamine compound and an acid dianhydride.

Figure kpo00001
Figure kpo00001

(식중 n은 1이상의 정수, R은 불소치환된 탄화수소기 이다.)(Wherein n is an integer of 1 or more and R is a fluorine-substituted hydrocarbon group)

Description

알파선 차폐용 폴리이미드계 접착 조성물의 제조방법Manufacturing method of polyimide adhesive composition for alpha ray shielding

본 발명은 반도체 소자 보호용으로서 매우 유용한 알파선 차폐용 폴리이미드(polyimide)계 접착 조성물의 제조방법에 관한것으로서, 특히, 분자쇄중에 불소 원소로 치환된 실록산디아민 화합물이 함유됨으로 인해 실리콘 웨이퍼와의 우수한 접착성과 불소 원소에서 기인된 뛰어난 내습성, 내부식성을 갖는 폴리이미드계 접착조성물의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a polyimide adhesive composition for shielding alpha rays, which is very useful for protecting semiconductor devices. In particular, the present invention provides excellent adhesion to silicon wafers due to the inclusion of siloxanediamine compounds substituted with fluorine in the molecular chain. The present invention relates to a method for producing a polyimide adhesive composition having excellent moisture resistance and corrosion resistance attributable to fluorine elements.

일방적으로 반도체 소자를 보호하기 위하여, 반도체 소자를 에폭시 수지로 몰딩하거나 유리, 세라믹등 무기재료로 만들어진 케이스(case)안에 소자를 집어 넣어 외부 환경으로부터 소자를 보호하여 신뢰성을 높이도록한다. 이러한 재료중에는 수 ppm정도의 우라늄, 토륨등의 방사성 동위원소 불순물 들이 함유되어 있어서 이들 불순물들에 의해 알파선이 발출되어 소위 소프트-에러(soft-error)를 유발시켜 소자의 오동작을 발생시키는 원인이 된다. 최근에 이러한 소프트-에러를 방지하기 위해서 알파선 차페 효과를 갖는 동시에 내열성이나 전기적 절연 특성이 우수한 폴리이미드 수지로 반도체 소자를 피복하여 보호하고 여기에 상기 봉지래로 봉지하는 방법이 채택되어 사용되고 잇다. 이러한 반도체소자 피복용 폴리이미드 수지는 유기용매에 용해되지 않기 때문에 일반적으로 폴리아믹산이라는 중간체를 만들어 이것을 유기용매에 녹이고, 이를 반도체 소자위에 도포시킨다음 가열경화하여 폴리이미드로 변환시킴으로써 알파선 차폐효과를 발휘하도록 하는 것이다.In order to protect the semiconductor device unilaterally, the semiconductor device is molded with an epoxy resin, or the device is put in a case made of an inorganic material such as glass or ceramic to protect the device from an external environment to increase reliability. These materials contain a few ppm of radioactive isotopes such as uranium and thorium, and alpha-rays are emitted by these impurities, causing so-called soft-errors to cause device malfunction. . Recently, in order to prevent such soft-errors, a method of covering and protecting a semiconductor device with a polyimide resin having an alpha ray shielding effect and having excellent heat resistance and electrical insulation properties and sealing it with the encapsulation is adopted. Since the polyimide resin for coating a semiconductor device is not dissolved in an organic solvent, an intermediate called polyamic acid is generally made, dissolved in an organic solvent, and then applied to a semiconductor device, and then cured by heating to convert to polyimide, thereby exhibiting an alpha ray shielding effect. To do that.

그러나, 폴리아믹산을 폴리이미드로 변환시키기 위하여는 가열처리가 필요하고 동시에 매우 높은 온도에서 장시간 방치해야 하는 단점이 있다. 따라서 폴리아믹산 용액을 도포할 때 수지농도를 상당히 낮게 하거나 웨이퍼전체를 스핀 코팅시키는등 적절한 방법을 사용하여 매우 얇게 박막화를 하지 않는다면 막중에 핀홀이 형성되는 등 보호막 형성을 위한 작업이 매우 힘들뿐만 아니라, 막형성 작업이 불충분한 경우 반도체 소자와의 밀착성 저하와 고온 고습하에서의 부식성이 문제가 되었다. 본 발명자들은 상기의 같은 문제점을 해결하기 위하여 예의 연구한 결과 피막특성이 우수하고 내열성이 뛰어나며 특히 웨이퍼와의 밀착성과 내습특성을 현저히 향상시킨 폴리이미드계 접착제 조성물의 신규한 제조방법을 완성하게 되었다. 즉, 본 발명은 불소 원소를 갖는 실록산 디아민 화합물을 폴리이미드에 도입하는 것을 주내용으로 한 것으로, 이하 본 발명을 상세히 설명하명 다음과 같다.However, in order to convert the polyamic acid to polyimide, there is a disadvantage that heat treatment is required and at the same time it is left for a long time at a very high temperature. Therefore, when the polyamic acid solution is applied, it is not only difficult to form a protective film such as pinholes in the film unless the film is very thin by appropriately reducing the resin concentration or spin coating the entire wafer. Insufficient film-forming operations cause problems of poor adhesion with semiconductor elements and corrosion at high temperature and high humidity. The inventors of the present invention have completed the novel manufacturing method of the polyimide adhesive composition having excellent coating properties and excellent heat resistance, and in particular, the adhesiveness and moisture resistance of the wafer have been significantly improved. That is, this invention mainly makes the introduction of the siloxane diamine compound which has a fluorine element into a polyimide, and demonstrates this invention in detail as follows.

본 발명은 하기 일반식 (1) 및 (2)The present invention is the following general formula (1) and (2)

Figure kpo00002
Figure kpo00002

Figure kpo00003
Figure kpo00003

(상기 식에서, Ar은 방향족기를 나타내며, X0는 실록산기를 나타낸다)(Wherein Ar represents an aromatic group and X 0 represents a siloxane group)

로서 표시되는 방향족 및 실록산디아민 화합물의 혼합물에 산이무수물을 반응시켜 실록산계 폴리아믹산 중간체를 수득하고, 이를 가열탈수시켜 폴리이미드화하는 것을 특징으로한 폴리이미드계 접착제의 제조방법이다.An acid dianhydride is reacted with a mixture of an aromatic and siloxanediamine compound represented as a to obtain a siloxane polyamic acid intermediate, which is heated and dehydrated to produce a polyimide adhesive.

본 발명에 사용되는 방향족 디아민화합물의 구체적 예로서는 다음의 것을 들수 있다.The following are mentioned as a specific example of the aromatic diamine compound used for this invention.

Figure kpo00004
Figure kpo00004

Figure kpo00005
Figure kpo00005

Figure kpo00006
Figure kpo00006

(상기 식에서, X는 H,C1,Br,CH3를 나타내고, Y는 O,CH2,SO2,CO,S등을 나타내며, 디아민은 3 3',4 ',3 4'위치에 결합될수 있다.) 또한 본 발명에 사용되는 실록산 디아민 화합물의 구체예로서는 다음의 것을 들수 있다.Wherein X represents H, C1, Br, CH 3 , Y represents O, CH 2 , SO 2 , CO, S, etc., and diamine may be bonded at the 3 3 ′, 4 ′, 3 4 ′ position. In addition, the following are mentioned as a specific example of the siloxane diamine compound used for this invention.

Figure kpo00007
Figure kpo00007

(상기식에서,R은 불소치환 탄화수소기 이다.)(Wherein R is a fluorine-substituted hydrocarbon group)

상기한 일반식의 실록산디아민의 보다 구체적인 사용예로서 다음의 화합물을 들수 있다.The following compound is mentioned as a more specific use example of the said siloxane diamine of the said general formula.

Figure kpo00008
Figure kpo00008

Figure kpo00009
Figure kpo00009

Figure kpo00010
Figure kpo00010

Figure kpo00011
Figure kpo00011

Figure kpo00012
Figure kpo00012

Figure kpo00013
Figure kpo00013

(상기 식에서, X는 H,F이며, 실리콘에 결합된 방향족환은 불소로 치환될수 있다)(Wherein X is H and F, and the aromatic ring bonded to silicon may be substituted with fluorine)

본 발명은 또한 전술한 일반식(2)의 실록산디아민의 바람직한 사용예로써 단량체가 아닌 하기 일반식의 올리고머형의 실록산디아민을 들수 있다.The present invention also includes oligomer diamines of the following general formula which are not monomers as preferred examples of the siloxane diamines of the general formula (2) described above.

Figure kpo00014
Figure kpo00014

(상기 식에서, n은 2이상의 정수, R은 불소 탄화수소기 이다.)(Wherein n is an integer of 2 or more and R is a fluorine hydrocarbon group.)

본 발명에 사용되는 바람직한 산이무수물로는 3,3',4,4'-벤초페논테트라카르복실산 이무수물(이하 BTDA), 피로 메리트산이무수물(이하 PMDA) 및 3,3',4,4'-비페닐 테트라 카르복실산이무수물(이하 BPTA)을 들수 있다.Preferred acid dianhydrides used in the present invention include 3,3 ', 4,4'-benchophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA), pyromellitic dianhydride (hereinafter referred to as PMDA) and 3,3', 4,4 '-Biphenyl tetracarboxylic dianhydride (hereinafter BPTA) is mentioned.

본 발명에 있어서, 상기의 실록산화합물 및 방향족디아민의 총 반응몰수는 산이무수물의 총 몰수와 같으며, 실록산디아민의 함량은 전체 고형 성분중 0.1 내지 10중량%,좋게는 2중량%로 사용한다. 본 발명에서 사용되는 용매는 극성 불활성용매가 사용되며 상기의 단량체 모두를 용해할수 있는 용매가 바람직하다. 특히 바람직한 것은 반응결과 생성되는 폴리아믹산 중간체를 용해시키는 용매가 좋으며, 예를들어 N-메틸-2피롤리디논(이하 NMP),N,N-디메틸포름아미드(이하 DMF) 및 N,N-디메틸 아세트아미드(이하 DMAc)등이 바람직하다.In the present invention, the total moles of siloxane compound and aromatic diamine are the same as the total moles of acid dianhydride, and the content of siloxane diamine is used in an amount of 0.1 to 10% by weight, preferably 2% by weight of the total solid components. As the solvent used in the present invention, a polar inert solvent is used, and a solvent capable of dissolving all the above monomers is preferable. Particularly preferred is a solvent which dissolves the polyamic acid intermediate produced as a result of the reaction, for example N-methyl-2pyrrolidinone (hereinafter referred to as NMP), N, N-dimethylformamide (hereinafter referred to as DMF) and N, N-dimethyl Acetamide (hereinafter DMAc) and the like are preferable.

본 발명에 따라 반응을 수행함에 있어서, 먼저 방향족디아민과 실록산 디아민을 상기한 불활성용매에 용해시키고 이 반응계에 산이무수물을 소향씩 1시간에 걸쳐서 첨가하며, 이때 반응온도는 5 내지 80°C를 유지 시킨다.In carrying out the reaction according to the present invention, first, aromatic diamine and siloxane diamine are dissolved in the above inert solvent, and acid dianhydride is added to the reaction system over one hour by fragrance, wherein the reaction temperature is maintained at 5 to 80 ° C. Let's do it.

이렇게 반응생성된 중간체를 100내지 350°C에서 30분 내지 30시간에 걸쳐 가열처리하고 탈수시켜 실록산 폴리이미드를 얻는다. 이와 같이 제조되는 폴리이미드는, 반도체 웨이퍼에 사용시 웨이퍼와의 밀팍성과 내습특성이 향상되며, 또한 내충격성이 우수하여 봉지재에 전달되는 스트레스의 완충효과도 동시에 지니게 된다.This reaction-produced intermediate was heated and dehydrated at 100 to 350 ° C. over 30 minutes to 30 hours to obtain siloxane polyimide. The polyimide prepared as described above improves the tightness and moisture resistance of the wafer when used in a semiconductor wafer, and also has excellent impact resistance, thereby simultaneously having a buffering effect of stress transferred to the encapsulant.

이하 본 발명을 실시예를 들어 보다 상세히 설명하나, 본 발명의 내용이 이 실시예에 한정되는 것이 아님은 물론이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the contents of the present invention are not limited to these Examples.

실시예 1Example 1

온도계,교반계 및 염화칼슘관을 갖춘 1L의 4구 플라스크에 4,4'-디아미노디페닐에르(이하 ODA) 43.403g, 불소치환 실록산디아민(Mn=676.2)2.204g 및 NMP 451g을 넣고 10°C에서 교반 시킨다. 여기에 BTDA 31.910g,PMDA 26.40g을 서서히 1시간에 걸쳐서 첨가 한다. 첨가 완료후 2시간 정도 경과후 반응온도를 80℃로 급상승 시켜 점도를 저하시키면서 약 24시간 교반시켜 점도 12500cps의 폴리아믹산을 얻은후 5℃로 낮추어 반응을 종료한다. 폴리아믹산을 유리판위에 50μm 두께로 코팅시켜 80℃의 고진공하에서 NMP를 제거한후 100℃에서 1시간, 200℃에서 1시간, 35℃에서 1시간 각각 경화시킨다. 경화후 유리판을 PCT쿠킹 챔버(cooking chamber)에 넣어서 121℃,100%습도, 2기압에서 30분간 방치후 꺼내어 경화된 폴리이미드 필름을 벗겨낸다. 경화된 폴리이미드 필름의 인장강도와 신율을 인스트롱으로 측정하며, 열분석장치를 갖고 열분해 개시온도를 측정하여 표1 에 나타 내었다. 밀착성을 평가하기 위하여 유리판위에 경화된 폴리이미드를 PCT×24시간(121℃, 2기압, 100%습도)방치후 평가하였으며, 내부식성 평가는 알루미늄 배선을 갖는 내부식성 시험용 모델소자위에 상기 폴리아믹산을 도포경화시켜 이위에 에폭시수지로 16핀 딥(DIP)형을 몰드하여, 이것을 PCT(상기 조건과 동일)에 500시간을 방치 한후 알류미늄 부식에 의한 오픈(open)불량을 조사하여 표2에 나타내었다.In a 1 L four-necked flask equipped with a thermometer, agitator and calcium chloride tube, add 43.403 g of 4,4'-diaminodiphenylerol (ODA), 2.204 g of fluorine-substituted siloxanediamine (Mn = 676.2) and 451 g of NMP, and then 10 °. Stir at C. Add BTDA 31.910g and PMDA 26.40g slowly over 1 hour. After 2 hours after the completion of the addition, the reaction temperature was rapidly increased to 80 ° C. and the mixture was stirred for about 24 hours while lowering the viscosity to obtain a polyamic acid having a viscosity of 12500 cps, and then lowered to 5 ° C. to terminate the reaction. The polyamic acid was coated on a glass plate with a thickness of 50 μm, and the NMP was removed under high vacuum at 80 ° C., and then cured at 100 ° C. for 1 hour, 200 ° C. for 1 hour, and 35 ° C. for 1 hour. After curing, the glass plate is placed in a PCT cooking chamber, left for 30 minutes at 121 ° C, 100% humidity, and 2 atmospheres, and taken out to remove the cured polyimide film. Tensile strength and elongation of the cured polyimide film were measured by Instron, and the pyrolysis initiation temperature was measured using a thermal analyzer. In order to evaluate the adhesion, the polyimide cured on the glass plate was evaluated after PCT × 24 hours (121 ° C., 2 atm, 100% humidity), and the corrosion resistance evaluation was performed on the polyamic acid on the corrosion resistance test model device having aluminum wiring. After coating curing, a 16-pin dip (DIP) mold was molded on the epoxy resin, which was allowed to stand for 500 hours in PCT (same as the above conditions), and the open defects due to aluminum corrosion were investigated. .

[비교예 1]Comparative Example 1

실시예 1과 같은 방법으로 합성하며, 사용하는 단량체를 ODA 42.362g, 실록산다이민(Mn=248.5g) 2.102g을 각각 사용하였으며 그 물성을 표1 및 2에 나타내었다.Synthesis was carried out in the same manner as in Example 1, and monomers used were 42.362 g of ODA and 2.102 g of siloxane dimine (Mn = 248.5 g), respectively, and the physical properties thereof are shown in Tables 1 and 2.

[실시예 2]Example 2

온도계, 교반계 및 염화칼슘관을 갖춘 1L의 4구 플라스크에 NMP 200g에 ODA 43.889g을 녹여서 첨가하고, THF 50ml에 불소치환 실록산디아민(Mn=2500)2.075g을 녹여서 플라스크에 첨가한다. 반응기를 15℃로 유지하면서 BTDA 31.910g과 PMDA 26.4g을 NMP 250g과 함께 약 1시간에 걸쳐 서서히 첨가하면서 교반시킨다. 첨가완료후 2시간을 반응시킨후 온도를 80℃로 급상승시켜서 반응혼합물의 점도를 저하시킨다. 점도가 12500cps에 도달하면 반응을 종료하고 반응물의 온도를 상온으로 급히 떨어뜨린다. 얻어진 폴리아믹산의 필름물성은 실시예 1과 같은 방법으로 측정하여 표-1 및 표-2에 나타내었다.In a 1 L four-necked flask equipped with a thermometer, agitation system, and calcium chloride tube, 43.889 g of ODA was dissolved in 200 g of NMP, and 2.075 g of fluorine-substituted siloxanediamine (Mn = 2500) was added to the flask in 50 ml of THF. While maintaining the reactor at 15 ° C., 31.910 g of BTDA and 26.4 g of PMDA were stirred with slowly adding NMP 250 g over about 1 hour. After the addition was completed, the reaction mixture was allowed to react for 2 hours and then the temperature was rapidly increased to 80 ° C. to lower the viscosity of the reaction mixture. When the viscosity reaches 12500 cps, the reaction is terminated and the temperature of the reactant is rapidly dropped to room temperature. Film properties of the obtained polyamic acid were measured in the same manner as in Example 1 and shown in Table-1 and Table-2.

[ 비교예 2]Comparative Example 2

실시예 2와 유사한 방법으로 합성하며, 사용하는 단량체로는 ODA 43.584g, 분자량 900의 실록산디아민 2.07g을 각각 사용하고 그 물성을 표-1 및 표-2에 나타내었다.Synthesis was carried out in a similar manner to Example 2, and the monomers used were O. 43.584 g and 2.07 g of siloxanediamine having a molecular weight of 900, respectively, and the physical properties thereof are shown in Tables 1 and 2.

[ 실시예 3]Example 3

실시예 1과 같은 방법으로 합성하며, 사용하는 단량체로는 ODA 43.964g, 불소치환 실록산디아민(Mn=5000)2.1g을 각각 사용한다.Synthesis was carried out in the same manner as in Example 1, and 43.964 g of ODA and 2.1 g of fluorine-substituted siloxane diamine (Mn = 5000) were used as monomers.

Figure kpo00015
Figure kpo00015

Figure kpo00016
Figure kpo00016

위의 표-2로 알수 있듯이 불소치환 실록산디아민을 사용한 경우가 비교예의 수소치환 실록산디아민을 사용한 경우보다 내습성 및 밀착성이 월등히 우수함을 알수 있다.As can be seen from Table 2 above, it can be seen that the use of fluorine-substituted siloxane diamine is much better in moisture resistance and adhesion than the case of using hydrogen-substituted siloxane diamine of Comparative Example.

Claims (2)

하기 일반식으로 표시되는 실록산디아민 화합물과The siloxane diamine compound represented by the following general formula
Figure kpo00017
Figure kpo00017
(상기식에서, n은 1이상의 정수, R은 불소 치환된 탄산수소기 이다.) 하기식으로 표시되는 방향족 디아민 화합물을(Wherein n is an integer of 1 or more and R is a fluorine-substituted hydrogen carbonate group.) An aromatic diamine compound represented by the following formula
Figure kpo00018
Figure kpo00018
(상기 식에서, 방향족환은 수소 또는 불소원소 치환된 화합물이며, Y는 CH2,O,CO,SO2,S를 나타내며, 디아민은 환의 33',44',34' 위치에 결합될수 있다.)(In the above formula, the aromatic ring is hydrogen or a fluorine-substituted compound, Y represents CH 2 , O, CO, SO 2 , S, and diamine may be bonded at the 33 ', 44', 34 'position of the ring.) 반응용매에 용해한 다음, 여기 산이무수물을 반응시켜 폴리아믹산을 제조하고, 이를 가열경화 시키는 것을 특징으로 하는 알파선 차폐용 폴리이미드계 접착조성물의 제조방법.After dissolving in a reaction solvent, the acid dianhydride is reacted to produce a polyamic acid, and heat-curing the method for producing a polyimide adhesive composition for alpha-ray shielding.
제 1 항에 있어서, 실록산디아민화합물은 전체 고형 성분중 0.1 내지 10중량%로 함유되는 것을 특징으로하는 알파선 차폐용 폴리이미드계 접착조성물의 제조방법.The method for producing an alpha ray shielding polyimide adhesive composition according to claim 1, wherein the siloxane diamine compound is contained in an amount of 0.1 to 10% by weight based on the total solid components.
KR1019910001191A 1991-01-24 1991-01-24 PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY KR0159288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910001191A KR0159288B1 (en) 1991-01-24 1991-01-24 PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910001191A KR0159288B1 (en) 1991-01-24 1991-01-24 PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY

Publications (2)

Publication Number Publication Date
KR920014912A KR920014912A (en) 1992-08-25
KR0159288B1 true KR0159288B1 (en) 1999-01-15

Family

ID=19310246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910001191A KR0159288B1 (en) 1991-01-24 1991-01-24 PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY

Country Status (1)

Country Link
KR (1) KR0159288B1 (en)

Also Published As

Publication number Publication date
KR920014912A (en) 1992-08-25

Similar Documents

Publication Publication Date Title
US4511705A (en) Composition for protective coating material
US5773561A (en) Polymer sealants/adhesives and use thereof in electronic package assembly
JP4535245B2 (en) Partially-blocked polyimide-polysiloxane copolymer, process for producing the same, and resin composition containing the copolymer
JP2991786B2 (en) Silicone resin composition
EP0349010A1 (en) Polyimide copolymers
US4497922A (en) Compositions of materials for forming protective film in semiconductor device
KR100241843B1 (en) Curable resin, process for making and electronic part protective coating
KR0159288B1 (en) PROCESS FOR PREPARING POLYIMIDE ADHESIVE COMPOSITIONS FOR SHIELDING Ñß-RAY
JPS6335626A (en) Production of heat-resistant resin
CA2016645A1 (en) Resin composition for sealing semiconductors
JPS58152018A (en) Coating composition for protecting semiconductor device
JPH0211631A (en) Resin for semiconductor protection and semiconductor
JP2713051B2 (en) Polyamic acid and polyimide resin, their production method, and semiconductor device protection material
JP2513096B2 (en) Curable compound, method for producing the same, insulating protective film forming agent, and protective agent for electronic parts
JPS6076533A (en) Production of polyimide precursor
KR920002639B1 (en) Composition of protective film for semiconductor element
JP2885340B2 (en) Polyamic acid, polyimide resin and method for producing polyimide resin
JPH02222473A (en) Coating composition and resin-sealed semiconductor device
JP2825572B2 (en) Resin composition for semiconductor encapsulation
JPS5956453A (en) Composition for protecting semiconductor element
JPH02135227A (en) Heat-resistant resin composition
JPH05194746A (en) Curable resin, solution thereof, production thereof and protective film for electronic part
CA2016626A1 (en) Resin composition for sealing semiconductors
JPH0491130A (en) Curable resin solution composition, production thereof and protecting film for electronic part
JPS5956454A (en) Composition for protecting semiconductor element

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080708

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee