KR0153154B1 - Process for preparing sintered hard cubic boron nitride - Google Patents

Process for preparing sintered hard cubic boron nitride

Info

Publication number
KR0153154B1
KR0153154B1 KR1019960019037A KR19960019037A KR0153154B1 KR 0153154 B1 KR0153154 B1 KR 0153154B1 KR 1019960019037 A KR1019960019037 A KR 1019960019037A KR 19960019037 A KR19960019037 A KR 19960019037A KR 0153154 B1 KR0153154 B1 KR 0153154B1
Authority
KR
South Korea
Prior art keywords
boron nitride
cubic boron
powder
titanium
sintering
Prior art date
Application number
KR1019960019037A
Other languages
Korean (ko)
Other versions
KR970074723A (en
Inventor
박종구
Original Assignee
박원훈
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박원훈, 한국과학기술연구원 filed Critical 박원훈
Priority to KR1019960019037A priority Critical patent/KR0153154B1/en
Publication of KR970074723A publication Critical patent/KR970074723A/en
Application granted granted Critical
Publication of KR0153154B1 publication Critical patent/KR0153154B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Abstract

본 발명은 경질 입방정 질화붕소 소결체의 제조에 있어서, 소결 조제로서 탄화티타늄, 질화티타늄, 탄질회티타늄 및 붕화티타늄으로 구성된 군으로부터 선택된 1종의 티타늄 화합물과 니켈, 몰리브데늄 또는 탄화몰리브데늄 및 질화알루미늄의 혼합물을 혼합 중량비 (85-15%):(10-50%):(5-30%):(0-10%)로 사용하는 방법에 관한 것이다.In the production of a lightly cubic boron nitride sintered body, the present invention relates to a method for producing a hard cobalt boron nitride sintered body, which comprises using as a sintering aid a titanium compound selected from the group consisting of titanium carbide, titanium nitride, carbonitride titanium and titanium boride and nickel, molybdenum or molybdenum carbide and (85 to 15%): (10 to 50%) :( 5-30%) :( 0 to 10%).

Description

경질 입방정 질화붕소 소결체의 제조 방법Method for producing hard cubic boron nitride sintered body

본 발명은 경질 입방정 질화붕소 소결체의 제조 방법에 관한 것이다. 더욱 상세히 말하자면, 본 발명은 입방정 질화붕소 분말에 소결 조제를 가하고 이를 소결하여 경질 입방정 질화붕소 소결체를 제조함에 있어서, 소결 조제로서 탄화티타늄, 질화티타늄, 탄질화티타늄 및 붕화티타늄으로 구성된 군으로부터 선택된 1종의 티타늄 화합물과 니켈, 올리브데늄 또는 탄화몰리브데늄 및 질화알루미늄의 혼합물을 사용하는 방법에 관한 것이다.The present invention relates to a method of producing a lightly cubic boron nitride sintered body. More specifically, the present invention relates to a method for preparing a hard cubic boron nitride sintered body by adding a sintering auxiliary agent to a cubic boron nitride powder and sintering the sintered auxiliary material to prepare a sintered alumina sintered body, wherein the sintering aid is selected from the group consisting of titanium carbide, titanium nitride, titanium carbonitride and titanium boride A titanium compound of the species and a mixture of nickel, olivodenium or molybdenum carbide and aluminum nitride.

입방정 질화붕소는 질화붕소의 동소체 중 고압하에서도 안정한 결정 형태이다. 이러한 입방정 질화붕소는 그 물리적 특성에 있어서 다이아몬드 다음으로 높은 경도 및 열전도율을 가지므로, 연마재, 절단 공구 및 절삭 공구의 재료로 이용되고 있다 [참조: 초연마재 공구 응용 기술 세미나(논문 및 자료집), GE 초연마재 사업부, 한국 응용 기술 개발 센타(KADE) (1990)]. 입방정 질화붕소는 다이아몬드 합성과 유사한 공정인 고온 고압 공정에 의해 육방정 질화붕소로부터 합성되는 완전히 인공적인 물질이다[참조: Wentorf, J. Chem. Phys., 26, 956(1957): C. F. Cardinier, Ceramic Bull., 67, 1006(1988)]. 그러나, 그 물리적 측면에 있어서는 탄소인 다이아몬드에 비해 내열성이 강하며, 화학적 측면에 있어서는 다이아몬드와 달리 철족 원소(철, 니켈, 코발트)와의 촉매 반응이 없는 특성이 있으므로, 공업적으로는 다이아몬드보다 폭 넓은 응용 범위를 갖고 있는 물질이다.Cubic boron nitride is a crystalline form of boron nitride which is stable even under high pressure. Such cubic boron nitride has been used as a material for abrasives, cutting tools and cutting tools since it has the second highest hardness and thermal conductivity in the physical properties of diamond (refer to: Applied Technology Seminar on Superabrasive Tools and Materials, GE Superabrasive Division, Korea Applied Technology Development Center (KADE) (1990)]. Cubic boron nitride is a completely synthetic material synthesized from hexavalent boron nitride by a high temperature and high pressure process, a process similar to diamond synthesis (Wentorf, J. Chem. Phys., 26, 956 (1957): C. F. Cardinier, Ceramic Bull., 67, 1006 (1988)]. However, in terms of its physical aspect, it is more resistant to heat than diamond, which is carbon, and unlike diamonds in terms of chemistry, there is no catalytic reaction with iron elements (iron, nickel, cobalt) It is a substance with application range.

그러나, 입방정 질화붕소를 절삭 공구로 활용하기 위해서는 이의 분말 또는 분립체로부터 소결체를 제조하여야 한다[참조: R. E. Hanneman and L. E. Hibbs, Technical Information Series Report No.73CRD182, General Electric (1973)]. 입방정 질화붕소는 고압 안정상(高壓安定相)이므로 이의 분말 혹은 분립체를 소결함에 있어서도 역시 고압이 필요하다. 또한, 입방정 질화붕소는 전형적 공유 결합성 물질로서 다른 공유 결합성 물질과 마찬가지로 난소결성(難燒結性) 재료이다. 입방정 질화붕소의 소결에는 고온이 요구되지만 상압(1기압) 및 고온에서 입방정 질화붕소는 불안정하므로, 보다 안정한 결정 형태인 육방정 질화붕소로 변환되어 버리는 경향이 있다. 따라서, 입방정 질화붕소의 소결체를 제조하기 위해서는 고온과 고압을 동시에 작용시켜야 하며, 또한 소결을 촉진하기 위하여 적절한 소결조제를 첨가하여야 한다.However, in order to utilize cubic boron nitride as a cutting tool, a sintered body must be prepared from the powder or the powder thereof (see R. E. Hanneman and L. E. Hibbs, Technical Information Series Report No. 73 CRD182, General Electric (1973)). Since cubic boron nitride is a high-pressure stable phase, high pressure is also required in sintering the powder or powder. In addition, cubic boron nitride is a typical covalent bonding material and is an ovoid-forming material like other covalent bonding materials. Although sintering of cubic boron nitride requires a high temperature, cubic boron nitride is unstable at normal pressure (1 atm) and at high temperature, so that it tends to be converted into hexagonal boron nitride which is in a more stable crystal form. Therefore, in order to produce a sintered body of cubic boron nitride, a high temperature and a high pressure must be simultaneously applied, and an appropriate sintering auxiliary agent should be added to promote sintering.

입방정 질화붕소의 소결에는 통상적으로 최대 50 부피% 까지의 소결 조제가 첨가되고 있으며, 소결 조제의 함량에 따라 소결체의 기계적 성질이 크게 달라지는 것으로 알려져 있다 [참조: 福長脩, 세라믹스 데이터 북 (日本工業技術企協編), 431(1985)]. 니켈, 코발트, 알루미늄, 티타늄 등의 금속의 단체 혹은 합금, 탄화규소 또는 탄화티타늄 등의 탄화물, 질화티타늄, 질화규소 또는 질화알루미늄 등의 질화물, 알루미나 혹은 이산화티타늄 등의 산화물, 탄질화티타늄, 시알론(sialon)등 다양한 금속 및 금속 화합물이 소결 조제로 사용되고 있다[참조: 伊藤秀章, 私平恒昭, 淺也英樹, 井上克也, 中重治, 分體 및 分末治金, 35, 125(1988): 笑律修示, New Diamond, 5(1), 30(1989): 平野眞一, 洪秀明, 中重治, 材料, 33, 1355(1984): H. Itoh, T. Matsudaira, K. Inoue and S. Naka, J. Mater. Sci., 25, 203(1990): 고또오 미쯔히로, 대한민국 특허공보(B1), 공고번호 93-3642(1993)]In the sintering of cubic boron nitride, up to 50% by volume of a sintering auxiliary agent is usually added, and it is known that the mechanical properties of the sintered body vary greatly depending on the content of the sintering auxiliary agent (refer to Fukushin, Technical Cooperation, Vol. 431 (1985)]. A single substance or an alloy of a metal such as nickel, cobalt, aluminum or titanium, a carbide such as silicon carbide or titanium carbide, a nitride such as titanium nitride, silicon nitride or aluminum nitride, an oxide such as alumina or titanium dioxide, titanium carbonitride, sialon, etc.) have been used as sintering additives [refer to: Ito Hidekazu, T. Hirata, Y. Eiji, Inoue Katsuya, (1984): H. Itoh, T. Matsudaira, K. Inoue and S. Naka, Intersection of the magnetic field and the magnetic field, J. Mater. Sci., 25, 203 (1990): Kotoo Mitsuhiro, Korean Patent Publication (B1), Publication No. 93-3642 (1993)

소결 조제는 우선 소결에 필요한 물질 이동을 가능케하여야 하고 입방정 질화붕소와의 반응이 심하지 않으면서도 입방정 질화붕소와의 결합력이 강해야 한다. 또한 입방정 질화붕소의 물성을 크게 손상시키지 않을 정도의 강도 및 내열성을 가져야 한다. 질화티타늄을 제외하고는 단일 재료가 소결 조제로 사용된 경우는 드물며, 두 가지 이상의 재료를 혼합하여 사용하는 경우가 대부분이었다. 기존의 소결 조제들은 소결 조제 자체의 소결성에 대해서는 큰 고려없이 사용되는 것들이었다. 즉, 단순한 액상 금속을 이용하거나 고상의 소결 조제를 이용하는 것이었다.The sintering aid should first allow the transfer of the material necessary for the sintering, and the bonding strength with the cubic boron nitride should be strong while the reaction with the cubic boron nitride is not severe. Further, it should have strength and heat resistance enough to not significantly impair the physical properties of cubic boron nitride. Except for titanium nitride, a single material is rarely used as a sintering aid, and most of the materials are mixed with two or more materials. Existing sintering aids were those which were used without consideration of the sinterability of the sintering aids themselves. That is, a simple liquid metal was used or a solid phase sintering auxiliary agent was used.

본 발명자들은 소결 조제의 함량이 부피비로 최대 15%인 경질 입방정 질화붕소 소결체의 제조를 위하여 소결 조제로서 여러 가지 재료를 혼합하여 실험한 결과, 탄화티타늄(TiC), 질화티타늄(TiN), 탄질화티타늄(Ti(C,N) 및 붕화티타늄(TiB2)으로 구성된 군으로부터 선택된 1종의 티타늄 화합물에 니켈(Ni), 몰리브데늄(Mo) 또는 탄화몰리브데늄(Mo2C) 및 질화알루미늄(AlN)이 첨가된 소결 조제가 경질 입방정 질화붕소 소결체의 제조에 매우 효과적임을 확인하고 본 발명을 완성하기에 이르렀다.The present inventors have experimented with various materials as sintering aids for the production of hard cubic boron nitride sintered bodies having a sintering aid content of up to 15% by volume, and found that titanium carbide (TiC), titanium nitride (TiN) (Ni), molybdenum (Mo) or molybdenum carbide (Mo 2 C) and aluminum nitride (Al 2 O 3 ) are added to one kind of titanium compound selected from the group consisting of titanium (Ti (C, N) (AlN) -based sintering aids were found to be very effective for the production of hard cubic boron nitride sintered bodies, and the present invention has been accomplished.

따라서, 본 발명은 입방정 질화붕소 분말을 소결 조제와 혼합하고, 이 혼합물을 분쇄 및 탈기 처리한 후 소결시켜 경질 입방정 질화붕소 소결체를 제조함에 있어서, 소결 조제로서 탄화티타늄(TiC), 질화티타늄(TiN), 탄질화티타늄(Ti(C,N) 및 붕화티타늄(TiB2)으로 구성된 군으로부터 선택된 1종의 티타늄 화합물과 니켈(Ni), 몰리브데늄(Mo) 또는 탄화몰리브데늄(Mo2C) 및 질화알루미늄(AlN)의 혼합물을 사용하는 방법을 제공하기 위한 것이다.Accordingly, the present invention relates to a method of producing a hard cubic boron nitride sintered body by mixing a cubic boron nitride powder with a sintering auxiliary agent, and subjecting the mixture to pulverization and deaeration treatment and then sintering to produce a sintered boron nitride material, wherein titanium sulphide (TiC) ), carbo-nitride of titanium (Ti (C, N) and a boride of titanium (TiB 2) 1 species of the titanium compound and the nickel (Ni), molybdenum (Mo) or carbide molybdenum (Mo 2 C is selected from the group consisting of ) And aluminum nitride (AlN).

본 발명에 따른 소결 조제는 다음과 같이 제조된다. 우선, 탄화티타늄, 질화티타늄, 탄질화티타늄 및 붕화티타늄으로 구성된 군으로부터 선택된 1종의 티타늄 화합물 분말에 니켈분말, 몰리브데늄 또는 탄화몰리브데늄 분말 및 질화알루미늄 분말을, 바람직하게는 TiX:Ni:Mo 또는 Mo2C:AlN(여기서 X는 C,N, C 및 N, 또는 B2이다)의 중량비가 (85-15)%:(10-50%):(5-30%):(0-10%)가 되도록 가한다. 이 혼합물을 초경 합금구와 함께 스테인레스 통에 장입하여 분쇄한다. 분쇄는 알콜, 아세톤 또는 헥산 등을 가하여 습식으로 행할 수 있다. 분쇄가 끝난 분말의 슬러리를 오븐에서 건조시킨 후 다시 분쇄하여 미세 균질 혼합물을 얻는다.The sintering auxiliary agent according to the present invention is prepared as follows. First, nickel powder, molybdenum or molybdenum disulfide powder and aluminum nitride powder are added to one kind of titanium compound powder selected from the group consisting of titanium carbide, titanium nitride, titanium carbonitride and titanium boride, preferably TiX: Ni : Mo or Mo 2 C: AlN wherein X is C, N, C and N or B 2 is in the range of (85-15)% :( 10-50%) :( 5-30%) :( 0-10%). The mixture is charged into a stainless steel bar together with a cemented carbide ball and pulverized. The pulverization can be carried out wet by adding alcohol, acetone or hexane. The pulverized powder slurry is dried in an oven and then pulverized again to obtain a fine homogeneous mixture.

위와같이 제조된 소결 조제 혼합 분말에 입방정 질화붕소 분말을 소결 제조 혼합 분말과 입방정 질화붕소 분말을 기초로하여 약 85~98 부피%가 되도록 혼합한다. 혼합된 분말을 상기와 같은 방법으로 습식 분쇄한 후 건조시킨다. 건조된 분말을 질소 분위기 또는 진공하에 탈기처리한다. 탈기 처리된 분말은 처리 후 곧바로 사용하거나 질소 분위기 하에 보관하여 사용할 수 있다.Cubic boron nitride powder is mixed with the sintering aid mixed powder prepared as described above at a ratio of about 85 to 98% by volume based on sintered mixed powder and cubic boron nitride powder. The mixed powder is wet pulverized in the same manner as described above and then dried. The dried powder is degassed under nitrogen atmosphere or vacuum. Degassed powders can be used immediately after treatment or stored in a nitrogen atmosphere.

상기 소결 조제 분말과 입방정 질화붕소 분말의 혼합물을 적절한 압력하에 바람직하게는 원판 디스크형으로 성형하여 고온고압 발생장치에 장입한다. 이 때 분말 성형체가 압력 전달 매체와 직접 닿는 것을 피하기 위하여 분말 성형체를 지르코늄박, 몰리브데늄박, 텅스텐박 또는 탄탈륨박으로 둘러싼다. 장입된 시료를 바람직하게는 4.5~6.5㎬, 1400~1550℃에서 1~2시간 동안 유지하여 소결한다. 분말 성형체는 완전히 치밀화되며 입자간에 강한 결합이 형성된 경질 입방정 질화붕소 소결체가 얻어진다. 본 발명에 따른 소결체는 4000㎏/㎜2의 경도를 가지며 매우 균일한 미세 조직을 갖고 있다.The mixture of the sintering assistant powder and the cubic boron nitride powder is molded into a disc disc shape preferably under a suitable pressure and charged into a high-temperature high-pressure generator. In order to avoid direct contact of the powder compact with the pressure transmission medium, the powder compact is surrounded by zirconium foil, molybdenum foil, tungsten foil or tantalum foil. The charged sample is preferably sintered by keeping it at 4.5 to 6.5 ㎬ and at 1400 to 1550 캜 for 1 to 2 hours. The powder compact is completely densified and a hard cubic boron nitride sintered body having strong bonding between particles is obtained. The sintered body according to the present invention has a hardness of 4000 kg / mm < 2 > and has a very uniform microstructure.

다음의 실시예는 본 발명을 더욱 상세하게 설명하고자 제공되는 것으로, 이로써 본 발명의 범위를 한정하고자 하는 것이 아니다.The following examples are provided to further illustrate the present invention and are not intended to limit the scope of the present invention thereby.

[실시예 1][Example 1]

소결 조제의 제조Preparation of sintering aids

평균 입도가 1.5㎛ 탄화티타늄 분말을 평균 입도가 2.4㎛인 니켈 분말, 평균 입도가 2.2㎛인 몰리브데늄 분말 및 질화알루미늄 분말을 중량비가 55:20:20:5가 되도록 혼합하였다. 이 혼합물을 200g을 초경 합금구와 함께 스테인레스 통에 장입하고, 알콜을 첨가하여 72시간 동안 습식 분쇄하였다. 분쇄가 끝난 분말의 슬러리를 진공 오븐중 40℃에서 건조시킨 후 다시 분쇄(과립화)하였다. 분쇄된 분말은 균일하게 혼합되어 있었으며 미세화되어 있었다.Nickel powder having an average particle size of 2.4 占 퐉, molybdenum powder having an average particle size of 2.2 占 퐉, and aluminum nitride powder were mixed in a weight ratio of 55: 20: 20: 5. 200 g of this mixture was charged into a stainless steel bar together with a cemented carbide ball, and alcohol was added thereto, followed by wet grinding for 72 hours. The pulverized powder slurry was dried in a vacuum oven at 40 DEG C and then pulverized (granulated). The pulverized powders were uniformly mixed and finely divided.

[실시예 2][Example 2]

소결용 혼합 분말의 제조Manufacture of mixed powders for sintering

실시예 1에서 제조된 분말에 입도가 1~2㎛인 입방정 질화봉소 분말을 90부피%의 비율로 혼합하였다. 혼합된 분말을 실시예 1과 같은 방법으로 24시간 동안 습식 분쇄한 후 건조시켰다. 건조된 분말을 진공하에 900℃에서 5시간 동안 탈기 처리하였다. 탈기 처리된 분말을 사용시까지 질소 분위기하에 보관하였다.Cubic nitric bromide powders having particle sizes of 1 to 2 占 퐉 were mixed into the powders prepared in Example 1 at a ratio of 90% by volume. The mixed powder was wet pulverized in the same manner as in Example 1 for 24 hours and then dried. The dried powder was degassed under vacuum at 900 < 0 > C for 5 hours. The degassed powder was stored under a nitrogen atmosphere until use.

[실시예 3][Example 3]

소결체의 제조Preparation of sintered body

실시예 2에서 제조된 혼합 분말 0.5g을 약 150㎫의 압력하에 직경 7㎜, 높이 1.0㎜의 원판 디스크 형태로 성형하였다. 이분말 성형체를 미리 제조된 초경합금제 디스크 위에 얹은 채로 고온·고압 발생 장치에 장입하였다. 이 때, 분말성형체/초경 합금판이 압력 전달 매체와 직접 닿는 것을 피하기 위하여 분말 성형체/초경 합금판을 지르코늄박으로 둘러쌌다. 장입된 시료를 6.5 ㎬, 1550℃에서 1시간 동안 유지하여 소결하였다. 분말 성형체는 완전히 치밀화되었으며 입방정 질화붕소 입자간에 강한 결합이 형성되었다.0.5 g of the mixed powder prepared in Example 2 was molded into a disc shape having a diameter of 7 mm and a height of 1.0 mm under a pressure of about 150 MPa. This powder compact was placed in a high-temperature and high-pressure generating apparatus while being placed on a previously prepared cemented carbide disk. At this time, the powder compact / cemented alloy plate was enclosed with a zirconium foil in order to prevent the powder compact / cemented carbide plate from directly contacting with the pressure transmission medium. The charged samples were sintered at 6.5 ㎬ and 1550 ℃ for 1 hour. The powder compact was completely densified and strong bonds were formed between the cubic boron nitride particles.

Claims (5)

입방정 질화붕소 분말을 소결 조제와 혼합하고 이 혼합물을 분쇄 및 탈기 처리한 후 소결시켜 경질 입방정 질화붕소 소결체를 제조함에 있어서, 소결 조제로서 탄화티타늄(TiC), 질화티타늄(TiN), 탄질화티타늄(Ti(C,N)) 및 붕화티타늄(TiB2)으로 구성된 군으로부터 선택된 1종의 티타늄 화합물과 니켈(Ni), 몰리브데늄(Mo) 또는 탄화몰리브데늄(Mo2C) 및 질화알루미늄(AlN)의 혼합물을 사용함을 특징으로 하는 방법.Titanium carbide (TiC), titanium nitride (TiN), titanium carbonitride (TiC) and the like as sintering aids in preparing a hard cubic boron nitride sintered body by mixing the cubic boron nitride powder with the sintering auxiliary agent, (Ni), molybdenum (Mo) or molybdenum carbide (Mo 2 C), and aluminum nitride (Ti 2 O 3 ) selected from the group consisting of titanium (Ti) AlN). ≪ / RTI > 제1항에 있어서, 소결 조제는 TiX:Ni:Mo 또는 Mo2C:AlN(여기서 X는 C,N, C 및 N, 또는 B2이다)의 혼합 중량비가 (85-15)%:(10-50%):(5-30%):(10%이하)인 것인 방법.The method according to claim 1, wherein the sintering aid is a mixture of Ti: Ni: Mo or Mo 2 C: AlN (wherein X is C, N, C and N or B 2 ) -50%) :( 5-30%) :( 10% or less). 제1항에 있어서, 소결 조제는 소결 조제 혼합 분말과 입방정 질화붕소 분말을 기준으로 하여 약 2내지 15부피%로 혼합되는 것인 방법.The method according to claim 1, wherein the sintering aid is mixed at about 2 to 15% by volume based on the sintering aid mixed powder and the cubic boron nitride powder. 제1항에 있어서, 소결 조제는 먼저 습식 분쇄된 다음 건조 분말에 입방정 질화붕소 분말을 투입하고 이를 다시 분쇄하는 것인 방법.The method of claim 1, wherein the sintering aid is wet milled first, then cubic boron nitride powder is added to the dry powder and the powder is pulverized again. 제1항에 있어서, 분쇄된 입방정 질화붕소/소결 조제의 분말은 질소 분위기 또는 진공하에 탈기처리되는 것인 방법.The method of claim 1 wherein the powder of the ground cubic boron nitride / sintering aid is degassed under a nitrogen atmosphere or under vacuum.
KR1019960019037A 1996-05-31 1996-05-31 Process for preparing sintered hard cubic boron nitride KR0153154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960019037A KR0153154B1 (en) 1996-05-31 1996-05-31 Process for preparing sintered hard cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960019037A KR0153154B1 (en) 1996-05-31 1996-05-31 Process for preparing sintered hard cubic boron nitride

Publications (2)

Publication Number Publication Date
KR970074723A KR970074723A (en) 1997-12-10
KR0153154B1 true KR0153154B1 (en) 1998-11-16

Family

ID=19460339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960019037A KR0153154B1 (en) 1996-05-31 1996-05-31 Process for preparing sintered hard cubic boron nitride

Country Status (1)

Country Link
KR (1) KR0153154B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340563B1 (en) * 2012-05-16 2013-12-11 차인선 Method of manufacturing titanium compound based substrate for synthesizing polycrystalline cubic boron nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340563B1 (en) * 2012-05-16 2013-12-11 차인선 Method of manufacturing titanium compound based substrate for synthesizing polycrystalline cubic boron nitride

Also Published As

Publication number Publication date
KR970074723A (en) 1997-12-10

Similar Documents

Publication Publication Date Title
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
EP0531310B1 (en) Abrasive compact of cubic boron nitride and method of making same
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
KR970009987B1 (en) Process for preparing polycrystalline cubic born nitride ceramic masses and resulting product
KR20040002685A (en) Sintered compact for use in machining chemically reactive materials
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPS5856018B2 (en) High-density phase boron nitride composite sintered body for cutting tools and its manufacturing method
JPH05105560A (en) Multigranular abrasive particle
FI81561B (en) FOERFARANDE FOER FRAMSTAELLNING AV KARBID-BORID-PRODUKTER OCH GENOM DETTA FOERFARANDE FRAMSTAELLT FORMSTYCKE.
US4342595A (en) Cubic boron nitride and metal carbide tool bit
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
Gordeev et al. Low-pressure fabrication of diamond–SiC–Si composites
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
KR0153154B1 (en) Process for preparing sintered hard cubic boron nitride
JPS5823459B2 (en) High-density phase boron nitride-containing sintered body for cutting tools
Jaworska Diamond composites with TiC, SiC and Ti 3 SiC 2 bonding phase
Singh Characterization of cubic boron nitride compacts
KR0137676B1 (en) Process for preparing sintered cubic boron
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
Itoh et al. Effects of added c-BN seed crystals on the reaction sintering of c-BN accompanied by a conversion from h-BN to c-BN
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JPH11335174A (en) Cubic boron nitride sintered compact
JPS5950075A (en) Manufacture of cubic boron nitride sintered body
Agarwala et al. Synthesis and characterization of polycrystalline sintered compacts of cubic boron nitride
JPH0269354A (en) Sintered diamond body and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080630

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee