KR0131834B1 - Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool - Google Patents

Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool

Info

Publication number
KR0131834B1
KR0131834B1 KR1019950019420A KR19950019420A KR0131834B1 KR 0131834 B1 KR0131834 B1 KR 0131834B1 KR 1019950019420 A KR1019950019420 A KR 1019950019420A KR 19950019420 A KR19950019420 A KR 19950019420A KR 0131834 B1 KR0131834 B1 KR 0131834B1
Authority
KR
South Korea
Prior art keywords
sintered body
cutting tool
coating layer
tio
powder
Prior art date
Application number
KR1019950019420A
Other languages
Korean (ko)
Other versions
KR970006230A (en
Inventor
유영혁
한규호
Original Assignee
우덕창
쌍용양회공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우덕창, 쌍용양회공업주식회사 filed Critical 우덕창
Priority to KR1019950019420A priority Critical patent/KR0131834B1/en
Publication of KR970006230A publication Critical patent/KR970006230A/en
Application granted granted Critical
Publication of KR0131834B1 publication Critical patent/KR0131834B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material

Abstract

ATCN based cutting tool sintered body having an improved mechanical strength was manufactured by forming TiO2 coating layer on the surfaces of raw material particles. A mixture of 78-18 wt.% of Al2O3, 20-80 wt.% of TiCN, and 0.1-2 wt.% of Y2O3 was sprayed with a mixed gas of TiCl4, H2, H2O at 150-250 deg.C for 0.2-2 hours, wherein the coating layer was in the range of 0.1-0.5um thick and the weight of the layer was up to 5% of the total weight. The coated mixture powder was molded by press, and sintered at 1,500-1,800 deg.C for 0.5-1 hour in the presence of argon gas to give the Al2O3-TiCxN1-x(x is more than 0.2 and less than 0.8) based cutting tool sintered body.

Description

Al2O3- TiCxN1-X계 절삭공구 소결체의 제조방법Manufacturing method of Al2O3-TiCxN1-X cutting tool sintered body

본 발명은 Al2O3-TiCxN1-X계(이하,ATCN계라함) 절삭공구 소결체의 제조방법에 관한 것으로, 더욱 상세하게는 소결체 제조 도중에 생기는 주원료인 Al2O3와 TiCxN1-X계 간의 반응을 줄이기 위해서 원료분말의 입자표면에 TiO2피복층을 형성시켜 제조함으로써 소결촉진 효과 및 내산화성, 내마모성, 내열충격성 및 열전도성 등의 기계적 강도가 향상된 ATCN계 절삭공구 소결체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a sintered body of Al 2 O 3 -TiCxN 1-X (hereinafter referred to as ATCN) cutting tool, and more particularly, Al 2 O 3 and TiCxN 1-X system, which are the main raw materials produced during the production of the sintered body. A method for producing an ATCN-based cutting tool sintered body having a TiO 2 coating layer formed on the surface of a raw material powder to reduce the reaction between the sintered catalysts and improving mechanical strength such as oxidation resistance, abrasion resistance, thermal shock resistance and thermal conductivity. will be.

일반적으로, 세라믹 절삭공구는 초경 절삭공구에 비해 내마모성이 우수하나, 취약성 때문에 공구로써 사용 신뢰성이 적지만 전세계적으로 가공기의 자동화 추세에 따라 점차 그 시장 점유율이 높아지고 있다.In general, ceramic cutting tools have better wear resistance than carbide cutting tools, but are less reliable as tools due to their weakness, but their market share is gradually increasing due to the automation trend of machines worldwide.

이에 따라 종래의 Al2O3-TiC계(이하,AT계라 함) 절삭공구가 점차적으로 인성 및 신뢰성의 향상을 꾀하는 방향으로 개발되고 있으나, AT계 절삭공구 소결체에는 난(難) 소결성으로 인한 제조단가의 상승, 열 압축 등에 의한 제조공정의 복잡성, 원가상승 및 양산화 등의 문제점이 있다.As a result, the conventional Al 2 O 3 -TiC-based cutting tools (hereinafter referred to as AT-based cutting tools) have been gradually developed to improve toughness and reliability. However, AT-based cutting tool sintered bodies are manufactured due to poor sintering properties. There are problems such as the increase in unit cost, the complexity of the manufacturing process due to thermal compression, the cost increase and the mass production.

상기한 바와 같은 문제는 소결과정에서 소결체의 주성분인 Al2O3와 TiC의 계면 반응에 의해 O2와 CO등의 기체 발생으로 인한 난소결성 때문으로,이로 인하여 최종 소결체에 잔류 기공이 형성된다.The problem as described above is due to the poor sinterability due to the generation of gas such as O 2 and CO by the interfacial reaction of Al 2 O 3 and TiC, the main component of the sintered body during the sintering process, thereby forming residual pores in the final sintered body.

일반적으로 알려진 AT계의 계면반응은 다음과 같다 ;Commonly known AT-based interfacial reactions are as follows;

Al2O3(s) +2C(s) → Al2O(g) +2CO(g)Al 2 O 3 (s) + 2C (s) → Al 2 O (g) + 2CO (g)

Al2O3(s) +TiC(s) → Al2O(g) +TiO(s) +CO(g)Al 2 O 3 (s) + TiC (s) → Al 2 O (g) + TiO (s) + CO (g)

Al2O3(s) +2/3 TiC(s) → Al2O(g) +2/3 TiO2(s) +2/3CO(g)Al 2 O 3 (s) +2/3 TiC (s) → Al 2 O (g) +2/3 TiO 2 (s) + 2 / 3CO (g)

Al2O3(s) +C(s) → Al2O2(g) +CO(g)Al 2 O 3 (s) + C (s) → Al 2 O 2 (g) + CO (g)

Al2O3(s) +C(S) → 2Al(g) +CO(g)Al 2 O 3 (s) + C (S) → 2Al (g) + CO (g)

상기에서, s는 고상(Solid Phase)이고, g는 기상(Gas Phase)이다.In the above, s is a solid phase and g is a gas phase.

AT계의 또 다른 문제점은 TiC의 높은 취약성과, 실제 가공현장에서 경험되는 피삭체와의 강한 화학적 반응성 또는 산화력이다.Another problem with the AT system is the high fragility of TiC and the strong chemical reactivity or oxidative power of the workpieces experienced in actual work sites.

상기 단점들을 극복하기 위해서, 일반적으로 열 압축(Hot-Pressing)방법, 소결/HIP(Hot Isostatic Pressing After Sintering), 1800℃이상으로 급승온시키는 방법 또는 Y2O3등의 소결 조제를 첨가하는 방법등의 사용되고 있다.In order to overcome the above disadvantages, in general, a hot-pressing method, a hot isostatic pressing after sintering (HIP), a method of rapidly increasing the temperature above 1800 ℃ or a method of adding a sintering aid such as Y 2 O 3 Etc. are used.

최근에는 TiCN이 TiC 보다 산화저항성이 높고, TiC의 질화에 따른 열전도도의 상승으로 강절삭시 절삭공구에 전달되는 열축적을 줄임으로써 열연화(Softening) 억제에 의한 절삭공구의 내마모 향상을 꾀할 수 있기때문에 AT계 절삭공구(특히 시멘트 절삭공구)제작시 TiC보다 TiCN계를 사용하는 것이 새로운 절삭공구의 제조방법으로 부각되고 있다.In recent years, TiCN has higher oxidation resistance than TiC, and the thermal conductivity due to the nitriding of TiC increases, thereby reducing the heat accumulation transmitted to the cutting tool during steel cutting, thereby improving the wear resistance of the cutting tool by suppressing softening. In order to manufacture AT-based cutting tools (particularly cement cutting tools), the use of TiCN rather than TiC is emerging as a method for manufacturing a new cutting tool.

그러나, TiC를 TiCN 으로 대체한 경우에 Al2O3와 TiCN 의 계면 반응성은 TiC의 경우 보다 더욱 심화되리라 예상되는데, 이는 TiC와 Al2O3와의 계면 반응과 유사한 반응으로 NO또는 NO2기체가 형성될 수있기때문이다.However, when replacing the TiC as TiCN in the Al 2 O interfacial reactivity of the 3 and TiCN is there is expected shall be compounded than in the case of TiC, which is a NO or NO 2 gas to the reaction similar to the interfacial reaction of TiC and Al 2 O 3 Because it can be formed.

Al2O3와 TiCN의 계면 반응에 의해 NO의 NO2기체를 형성하는 반응식은 다음과 같다.The reaction formula for forming NO 2 gas of NO by the interfacial reaction between Al 2 O 3 and TiCN is as follows.

Al2O3+TiCN → Al-Ti-O-C+NO(또는 NO2)(g)Al 2 O 3 + TiCN → Al-Ti-O-C + NO (or NO 2 ) (g)

상기에서, g는 기상(Gas Phase)이다.In the above, g is a gas phase.

이에, 본 발명자들은 Al2O3-TiCxN1-X(0.2x0.8)계 주성분들의 계면 반응성으로 인한 난소 결성을 해결하여 ATCN계 절삭공구 소결체의 내산화성, 내마모성, 내열충격성 및 열전도성 등의 기계적 강도를 향상하기 위해 예의 연구한 결과 본 발명에 이르게 되었다.Accordingly, the present inventors solved the ovarian formation due to the interfacial reactivity of the Al 2 O 3 -TiCxN 1-X (0.2x0.8) -based main components, such as oxidation resistance, abrasion resistance, thermal shock resistance and thermal conductivity of the sintered ATCN-based cutting tool The result of intensive studies to improve the mechanical strength has led to the present invention.

본 발명의 목적은 Al2O3, TiCN 및 Y2O3의 원료혼합물 또는 혼합되지 않은 각각의 분말의에 TiO2층을 가장 간단하고 고르게 피복시킴으로써 소결시 피복층에 의하여 Al2O3, TiCN의 계면반응이 현저하게 감소된 ATCN계 절삭공구의 제조방법을 제공하는 것이다.An object of the present invention, Al 2 O 3, TiCN, and Y 2 O 3 in the starting material mixture or the most simple and evenly coat the TiO 2 layer to that of each of the powders are not mixed by by the coating layer during sintering Al 2 O 3, TiCN It is to provide a method for producing an ATCN-based cutting tool with a significantly reduced interfacial reaction.

또한, 본 발명의 목적은 내산화성, 내마모성, 내열충격성 및 열전도성 등의 기계적 강도 특성이 우수한 ATCN계절삭공구를 제공하는 것이다.It is also an object of the present invention to provide an ATCN-based cutting tool having excellent mechanical strength properties such as oxidation resistance, abrasion resistance, thermal shock resistance and thermal conductivity.

이하, 본발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 Al2O3, TiCN Y2O3혼합된 미분쇄분말 또는 혼합되지 않은 각각의 미분쇄 분말을 반응기 안에넣고, 150 내지 250℃에서 TiCl4와 H2의 혼합기체 및 H2O 와 N2의 혼합기체를 거의 동시에 상기한 원료 분말위에 기체 분무하여 TiO2피복층을 형성시키고, 성형한 후 소결처리하는 것을 특징으로 하는 ATCN계 절삭공구 소결체의 제조방법에 관한 것이다.In the present invention, Al 2 O 3 , TiCN Y 2 O 3 mixed finely ground powder or each unpulverized finely ground powder is placed in a reactor, and mixed gas of TiCl 4 and H 2 and H 2 O at 150 to 250 ° C. The present invention relates to a method for producing a sintered ATCN cutting tool, characterized in that the mixed gas of N 2 is gas sprayed onto the above-described raw powder at about the same time to form a TiO 2 coating layer, and then molded and sintered.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르면, ATCN 계절삭공구 소결체를 제조하기 위하여는 먼저, Al2O378내지 18 중량%,TiCN 20내지 80 중량% 및 Y2O30.1 내지 2중량%를 혼합 및 분쇄한다.According to the present invention, in order to manufacture the sintered ATCN seasonal cutting tool, first, 78 to 18% by weight of Al 2 O 3 , 20 to 80% by weight of TiCN and 0.1 to 2% by weight of Y 2 O 3 are mixed and ground.

원료혼합물의 조성비에 있어서, 78 중량% 이상의 Al2O3를 사용할 경우,즉 20 중량% 이상의 TiCN을 사용할 경우에는 소결체의 인성 및 경도가 저하되는 문제점이 발생한다.In the composition ratio of the raw material mixture, when using 78 wt% or more of Al 2 O 3 , that is, when using 20 wt% or more of TiCN, there is a problem that the toughness and hardness of the sintered body is lowered.

또한, 18 중량%이하의 Al2O3를 사용할 경우, 즉 80중량%이하의 TiCN을 사용할 경우에는 소결온도가 급격히 상승하는 문제점이 발생하게 된다.In addition, when using Al 2 O 3 of less than 18% by weight, that is, when using less than 80% by weight of TiCN, there is a problem that the sintering temperature rises sharply.

각 물질을 혼합한 다음, 혼합된 원료물질을 건조 및 재미분한 후, 반응기 안에 넣고, 캐리어 기체로서 TiCl4와 H2의 혼합기체 및 H2O 와 N2의 혼합기체를 거의 동시에 미분쇄되어 흘러가는 상기 혼합분말 위에 0.2내지 2시간 동안 기체 분무하여 TiO2피복층을 형성시켜 피복분말을 제조한다.After mixing each material, the mixed raw materials were dried and funneled, and then placed in a reactor, and the mixed gas of TiCl 4 and H 2 and the mixed gas of H 2 O and N 2 were simultaneously pulverized as a carrier gas. The coating powder is prepared by gas spraying the mixed powder flowing for 0.2 to 2 hours to form a TiO 2 coating layer.

피복층 제조에 있어서, 반응온도는 150내지 250℃, 반응시간은 0.2내지 2시간이 바람직한데, 만일 150℃ 이하이거나 0.2시간 이하일 경우에는 TiO2피복층의 형성이 불충분하게 되고, 250℃이상이거나 2시간 이상일 경우에는 TiO2피복층이 과다하게 형성되는 문제점이 발생한다.In preparing the coating layer, the reaction temperature is preferably 150 to 250 ° C. and the reaction time is 0.2 to 2 hours. If the temperature is 150 ° C. or less or 0.2 hour or less, the formation of the TiO 2 coating layer is insufficient, and the temperature is 250 ° C. or more or 2 hours. In the case of the above problem, excessive TiO 2 coating layer is formed.

TiO2피복층 제조에 사용되는 캐리어 기체, 즉 TiCl4와 H2의 혼합기체 및 H2O와 N2의 혼합기체는 바람직하게는 약 170℃로 가열된것을 사용한다.The carrier gas used for preparing the TiO 2 coating layer, that is, the mixed gas of TiCl 4 and H 2 and the mixed gas of H 2 O and N 2 , is preferably used heated to about 170 ° C.

상기한 방법으로 피복된 혼합분말을 프레스를 사용하여 일정모양으로 성형한 후, 아르곤 분위기 하에서 1500 내지 1800℃의 온도로 0.5 내지 1시간 동안 소결하여 ATCN계 절삭공구 소결체를 제조한다.The mixed powder coated by the above method is molded into a shape using a press, and then sintered at an temperature of 1500 to 1800 ° C. for 0.5 to 1 hour under an argon atmosphere to prepare an ATCN-based cutting tool sintered body.

소결조건에 있어서, 소결온도가 1500℃이하이거나, 소결시간이 0.5시간 이하일 경우에는 미소결로 소결체의 강도가 저하되며, 소결온도가 1800℃이상이거나 소결시간이 1시간 이상일 경우에는 과소결로 소결체의 강도가 저하되는 문제점이 발생하게된다.In the sintering condition, the strength of the sintered compact is reduced when the sintering temperature is less than or equal to 1500 ° C or when the sintering time is 0.5 hours or less, and when the sintering temperature is 1800 ° C or more or the sintering time is more than 1 hour, the strength of the sintered compact is The problem is that it is degraded.

상기한 과정에서 피복된 TiO2피복층은 전체 중량의 5중량% 이하가 바람직하고, 피복층의 두께는 원료물질의 조성비에 따라서 다소 차이가 있지만 0.1내지 0.5 m가 바람직하다.The TiO 2 coating layer coated in the above process is preferably 5% by weight or less of the total weight, the thickness of the coating layer is slightly different depending on the composition ratio of the raw material, but 0.1 to 0.5 m is preferred.

만일 피복층의 두께가 0.1m이하인 경우에는 TiO2피복층의 형성이 불충분하게 되고, 0.5m이상인 경우에는 TiO2피복층이 과다하게 생성되어 소결체 형성이 어렵게 되는 문제점이 발생한다.If the thickness of the coating layer is 0.1 m or less, the formation of the TiO 2 coating layer becomes insufficient, and when the thickness of the coating layer is 0.5 m or more, the TiO 2 coating layer is excessively generated, making it difficult to form the sintered body.

본 발명에 따른 다른 구현예에 있어서, ATCN계 절삭공구 소결체를 제조하는 방법은 다음과 같다.In another embodiment according to the present invention, a method of manufacturing the ATCN-based cutting tool sintered body is as follows.

먼저, Al2O378 내지 18 중량%, TiCN 20내지 80중량% 및 Y2O30.1 내지 2중량%를 각각 분쇄하고, 분쇄된 원료분말을 각각 건조 및 재미분한다.First, 78 to 18% by weight of Al 2 O 3 , 20 to 80% by weight of TiCN and 0.1 to 2% by weight of Y 2 O 3 are respectively pulverized, and the pulverized raw powder is dried and funneled, respectively.

그런 다음, 상기한 분말들을 각각 반응기 안에 넣고, 150 내지 250℃ 에서 약 170℃로 가열된 TiCl4와 H2의 혼합기체 및 H2O와 N2의 혼합기체를 거의 동시에 미분쇄되어 흘러가는 각각의 분말 위에 0.2 내지 2시간 동안 기체 분무하여원료 분말 위에 TiO2피복층을 형성시켜 피복분말을 제조한다.Then, each of the powders described above was put into a reactor, and the mixed gas of TiCl 4 and H 2 and the mixed gas of H 2 O and N 2 which were heated from 150 to 250 ° C. to about 170 ° C. were flowed at about the same time. Gas sprayed on a powder of 0.2 to 2 hours to form a TiO 2 coating layer on the raw material powder to prepare a coating powder.

그리고 나서, 피복층이 형성된 각각의 원료분말을 보울밀로 혼합한 후 , 혼합된 피복분말을 프레스로 일정모양으로 성형하고, 아르곤 분위기하에서 1500 내지 1800℃로 소결한다.Then, after mixing each raw material powder in which the coating layer was formed with a bowl mill, the mixed coating powder is shape | molded by the press at constant shape, and it sinters at 1500-1800 degreeC under argon atmosphere.

상기한 과정에서의 TiO2피복층의 형성 반응은 다음과 같다.The formation reaction of the TiO 2 coating layer in the above process is as follows.

상기 반응식에서 형성된 TiO2피복층은 ATCN계 성형체 소결시 Al2O3와 TiCN 두 물질간의 반응에 의해 생성되는 기체 발생을 방지하게 된다.The TiO 2 coating layer formed in the above scheme prevents gas generation generated by the reaction between Al 2 O 3 and TiCN two materials during sintering of the ATCN-based molded body.

또한, 입자사이에 0.1 내지 0.5μm로 매우 균일하게 코팅되는 TiO2층은 소결체 내에서도 매우 균일한 계면을 형성함으로써 소결촉진 효과와 더불어 비정상적인 결정입자의 입성장을 억제하고, 절삭공구의 내산화성, 내열충격성, 내마모성 및 열전도성 등의 기계적 강도특성이 우수한 ATCN계 절삭공구를 제조하는데 기여할 수 있다.In addition, the TiO 2 layer, which is very uniformly coated between particles at 0.1 to 0.5 μm, forms a very uniform interface even in the sintered body, thereby inhibiting sintering promoting effect, abnormal grain growth of crystal grains, oxidation resistance and heat resistance of the cutting tool. It can contribute to the manufacture of ATCN-based cutting tools excellent in mechanical strength characteristics such as impact resistance, wear resistance and thermal conductivity.

소결성 향상과 소결체 강도 향상을 위한 TiO2의 역할은 대한민국 특허 제 058864호, 제 058865호 및 일본 특허 공고 소53-14568호 등에 잘나타나 있다.The role of TiO 2 for improving the sinterability and strength of the sintered body is well illustrated in Korean Patent Nos. 058864, 058865, and Japanese Patent Publication No. 53-14568.

또한, 본 발명의 방법은 일본 특허공고 소51-569호 및 소64-1430호 등에 기재된 방법인 TiO2분말을 독립적으로 첨가하는 것보다 혼합효과가 크고,또한 Al2O3와 TiCN계 간의 결합강도를 향상시킴으로 절삭공구의 내마모성 증진과 수명을 향상시켜 준다.Further, the coupling between the method of the present invention, Japanese Patent Publication No. 51-569 cows and cow mixing effect greater than the independent addition of a TiO 2 powder in the method disclosed No. 64-1430 or the like, and Al 2 O 3 and TiCN-based Increasing the strength improves the wear resistance and the life of the cutting tool.

이하, 본 발명을 실시예에 의거 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예1 내지 3][Examples 1 to 3]

하기 표1에 기재되어 있는 양의 Al2O3,TiCN 및 Y2O3의 원료분말을 알코올을 혼합용매로 사용하여 WC단지 (Jar)에서 혼합 및 분쇄하였다.The raw material powders of Al 2 O 3 , TiCN and Y 2 O 3 in the amounts shown in Table 1 were mixed and ground in a WC jar (Jar) using alcohol as a mixed solvent.

혼합된 슬러리를 충분히 건조시킨 후, 재미분시켜 반응기안에 넣고, TiCl4와 H2(TiCl4: 0.01 내지0.2 부피%)의 혼합기체와 H2O 와 N2의 혼합기체를 거의 동시에 피복 반응기안으로 분무하였다.After the mixed slurry was sufficiently dried, the mixture was mixed in a funnel, and the mixed gas of TiCl 4 and H 2 (TiCl 4 : 0.01 to 0.2% by volume) and the mixed gas of H 2 O and N 2 were simultaneously introduced into the coating reactor. Sprayed.

이때 반응기의 온도는 150℃, 반응시간은 0.5시간으로 하였다.At this time, the temperature of the reactor was 150 ° C., and the reaction time was 0.5 hour.

반응 후 영성된 TiO2의 중량은 전체 혼합분말의 중량에 대하여 5중량% 이하로 하였다.The weight of the TiO 2 formed after the reaction was 5% by weight or less based on the total weight of the mixed powder.

TiO2피복층을 형성시키는 최적조건은 기체의 유입량 및 반응 시간에 따라 달라지지만, 전체 분말무게에 대하여 5중량% 정도의 중량증가가 되도록 피복하였을때 가장 최적의 소결체 특성을 나타내었다.The optimum conditions for forming the TiO 2 coating layer depend on the gas flow rate and reaction time, but showed the most optimal sintered body properties when coated to increase the weight by about 5% by weight based on the total powder weight.

이때 혼합기체의 유량은 0.1 내지 0.3 ℓ/분으로 하였다.At this time, the flow rate of the mixed gas was 0.1 to 0.3 l / min.

상기와 같이 피복된 분말은 성형공정(일축가압 건조성형)을 거쳐 일정모양을 만든 후, 아르곤 분위기 하에서 약 1500 내지 1800℃에서 0.5내지 1시간동안 소결을 실시하였다.The powder coated as described above was formed through a molding process (uniaxial pressure drying molding), and then sintered under an argon atmosphere at about 1500 to 1800 ° C. for 0.5 to 1 hour.

일반적으로 세라믹 절삭공구는 소결체의 입자크기에 따라 절삭가공시 인성이 달라짐으로써 절삭능력에 큰 영향을 미친다.In general, the ceramic cutting tool has a great influence on the cutting ability by changing the toughness during cutting depending on the particle size of the sintered body.

즉, 소결온도가 높아서 소결체 입자가 크면 절삭수명을 낮추게 되기 때문에, 이를 방지하기 위하여 소결체의 입자크기가 가능한 미립화된 상태(가능한 저온소결)에서 일정 소결밀도를 얻은 후(94 내지 96%참밀도),HIP(Hot Isostatic Prerv)를 실시하여 치밀화시켰다.In other words, if the sintered body particles are large due to the high sintering temperature, the cutting life is lowered. Therefore, in order to prevent this, after obtaining a certain sintered density in an atomized state (possible low temperature sintering) where the particle size of the sintered body is possible (94 to 96% true density) HIP (Hot Isostatic Prerv) was performed and densified.

HIP는 아르곤 분위기에서 1450 내지 1650℃의 온도로 0.5 내지 1시간 정도 실시하였다.HIP was carried out in an argon atmosphere at a temperature of 1450 to 1650 ° C. for about 0.5 to 1 hour.

소결체의 상은 XRD와 XRF로 분석하였으며, 미세구조는 SEM,EDAX를 통해 관찰하였다.The phase of the sintered body was analyzed by XRD and XRF, and the microstructure was observed by SEM and EDAX.

제조된 소결체의 기계적 특성은 실제 절삭 테스트전에 빅커스 인덴터(Vicker's Indenter)를 통해 Hv와 KIC 를 추정하였고,절삭마모량을 측정하여 그 결과를 표1에 기재하였다.The mechanical properties of the prepared sintered body were estimated by Hicker and VIC before the actual cutting test (Vicker's Indenter), the amount of cutting wear was measured and the results are shown in Table 1.

[비교예 I -1 내지 I-2][Comparative Example I-1 to I-2]

하기표1에 기재되어 있는 양의 Al2O3, TiC 및 Y2O3원료분말을 사용하여 대한민국 특허 제 058865호에 기재된 방법으로 AT계 절삭공구 소결체를 제조하였다.The AT-based cutting tool sintered body was prepared by the method described in Korean Patent No. 058865 using Al 2 O 3 , TiC and Y 2 O 3 raw powders in the amounts described in Table 1 below.

제조된 소결체의 기계적 특성을 실시예 1의 방법에 따라 측정하여 그 결과를 표1에 기재하였다.The mechanical properties of the prepared sintered compact were measured according to the method of Example 1, and the results are shown in Table 1.

[비교예 II -1 내지 II -2]Comparative Example II -1 to II -2

하기표1에 기재되어 있는 양의 Al2O3,TiCN 및 Y2O3원료분말을 사용하여 TiO2피복층을 형성시키지 않는 것을 제외하고는 실시예 1과 동일한 방법으로 ATCN계 절삭공구 소결체를 제조하였다.ATCN-based cutting tool sintered body was prepared in the same manner as in Example 1 except that the TiO 2 coating layer was not formed using the Al 2 O 3 , TiCN and Y 2 O 3 raw powder in the amounts shown in Table 1 below. It was.

제조된 소결체의 기계적 특성을 실시예 1의 방법에 따라 측정하여 그 결과를 표 1에 기재하였다.The mechanical properties of the prepared sintered body were measured according to the method of Example 1, and the results are shown in Table 1.

본 발명에 의해 제조된 ATCN계 절삭공구 소결체는 AT계에 비해 3내지 4배 정도, 피복층을 사용하지 않는 일반적인 ATCN계 절삭 공구에 비해 1.5 내지 2배 정도의 절삭성능이 향상되었으며, 절삭파괴 현상에 있어서도 놀라울 정도의 파괴 신뢰성을 보여 주었다.ATCN-based cutting tool sintered body produced by the present invention has improved cutting performance of about 3 to 4 times compared to AT-based, and 1.5 to 2 times compared to general ATCN-based cutting tools without a coating layer. It also showed surprising breakdown reliability.

이는 본 발명에 따른 피복분말로 이루어진 원료혼합물은 소결체를 소결하는데 있어서 소결 치밀화가 용이하고, 약 0.1 내지 1 μm의 입경을 갖는 매우 균일한 미세구조를 형성하기 때문으로 추측된다.This is presumably because the raw material mixture made of the coated powder according to the present invention is easy to densify in sintering the sintered compact and forms a very uniform microstructure having a particle diameter of about 0.1 to 1 탆.

Claims (2)

Al2O3,TiCN 및 Y2O3의 혼합된 미분쇄 분말 또는 혼합되지 않은 각각의 미분쇄 분말을 반응기 안에 넣고, 150 내지 250℃에서 TiCl4와 H2의 혼합기체 및 H2O 와 N2의 혼합기체를 거의 동시에 상기한 원료분말 위에 기체 분무하여 TiO2피복층을 형성시키고, 성형한 후 소결처리하는 것을 특징으로 하는 Al2O3-TiCxN1-X(0.2x0.8)계 절삭공구 소결체의 제조방법.Mix the mixed or pulverized powder of Al 2 O 3 , TiCN and Y 2 O 3 , or each of the unpulverized pulverized powder, into the reactor, and mix gas of TiCl 4 and H 2 and H 2 O and N at 150-250 ℃ Al 2 O 3 -TiCxN 1-X (0.2x0.8) -based cutting tool, characterized in that the mixed gas of 2 is gas-sprayed on the above-mentioned raw powder at about the same time to form a TiO 2 coating layer, and then molded and sintered. Method for producing sintered body. 제 1항에 있어서, TiO2피복층은 전체 혼합분말 중량의 5중량%이하인 것을 특징으로 하는 Al2O3-TiCxN1-X(0.2x0.8)계 절삭공구 소결체의 제조방법.The method for manufacturing a sintered body of Al 2 O 3 -TiCxN 1-X (0.2x0.8) -based cutting tool according to claim 1, wherein the TiO 2 coating layer is 5% by weight or less of the total weight of the mixed powder.
KR1019950019420A 1995-07-04 1995-07-04 Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool KR0131834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950019420A KR0131834B1 (en) 1995-07-04 1995-07-04 Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950019420A KR0131834B1 (en) 1995-07-04 1995-07-04 Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool

Publications (2)

Publication Number Publication Date
KR970006230A KR970006230A (en) 1997-02-19
KR0131834B1 true KR0131834B1 (en) 1998-04-13

Family

ID=19419689

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950019420A KR0131834B1 (en) 1995-07-04 1995-07-04 Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool

Country Status (1)

Country Link
KR (1) KR0131834B1 (en)

Also Published As

Publication number Publication date
KR970006230A (en) 1997-02-19

Similar Documents

Publication Publication Date Title
CN100509693C (en) Method for preparing micro-nano composite ceramic die material
KR100882924B1 (en) Ti3alc2 composite materials with high strength and manufacturing process of the same
KR20040002685A (en) Sintered compact for use in machining chemically reactive materials
US4406669A (en) Carbonitride coated composite modified silicon aluminum oxynitride cutting tools
KR870000309B1 (en) Sintered material of silicon nitride for cutting tools and process therefor
CA2052977A1 (en) High hardness, wear resistant materials
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
KR0131834B1 (en) Method for manufacturing al2o3-ticxni-x system sintered body for cutting tool
JP6283985B2 (en) Sintered body
US4900700A (en) Silicon nitride-titanium nitride based ceramic composites and methods of preparing the same
CN101758442A (en) Formula of diamond ultrathin blade for cutting QFN baseplate and manufacturing technique thereof
KR920006807B1 (en) Preparation method of calcined body made by al2o3-ticx
CN110590376B (en) PCBN cutter material and preparation method thereof
JPS61117107A (en) Amorphous boron niride powder and its preparation
JPH0135041B2 (en)
JPH1179839A (en) Tungsten carbide-based cemented carbide material and its production
CN112341993B (en) Production process of composite non-oxide grinding material with cross crystal structure
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
CN101758213A (en) Formula of diamond ultrathin blade for cutting PCB baseplate and manufacturing technique thereof
KR960012315B1 (en) Method for manufacturing a cutting tool of si3n4 with improved resistant-wear property
JPH04297507A (en) Manufacture of cutting tool made of hard layer-coated tungsten carbide base-sintered hard alloy
KR19990066754A (en) Silicon nitride sintered body, manufacturing method of silicon nitride sintered body and cutting tool made of silicon nitride sintered body
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JP2016084245A (en) Sintered body

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 18

EXPY Expiration of term