JPS61117107A - Amorphous boron niride powder and its preparation - Google Patents

Amorphous boron niride powder and its preparation

Info

Publication number
JPS61117107A
JPS61117107A JP59238550A JP23855084A JPS61117107A JP S61117107 A JPS61117107 A JP S61117107A JP 59238550 A JP59238550 A JP 59238550A JP 23855084 A JP23855084 A JP 23855084A JP S61117107 A JPS61117107 A JP S61117107A
Authority
JP
Japan
Prior art keywords
powder
boron nitride
spherical
nitride powder
amorphous boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59238550A
Other languages
Japanese (ja)
Other versions
JPH0510282B2 (en
Inventor
Shinichi Hirano
真一 平野
Shigeharu Naka
中 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP59238550A priority Critical patent/JPS61117107A/en
Publication of JPS61117107A publication Critical patent/JPS61117107A/en
Publication of JPH0510282B2 publication Critical patent/JPH0510282B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare fine spherical amorphous boron nitride powder cong. hydrogen being useful as a material for electronic parts and cutting tool, etc. by decomposing thermally a compd. selected from boranizne or boranzine derivs. under pressure and specified conditions. CONSTITUTION:A least one compd. selected from boranzine expressed by the formula (I) and boranzine derivs [e.g. borazo naphthalene expessed by the formula (II)] is decomposed thermally at 200-350 deg.C, under 10-100MPa for 5-30min. Thus, amorphous boron nitride powder contg. H and comprising spherical fine particles is obtd. The particle size of the spherical amorphous boron nitride powder is usually so fine as 1-4mum.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、粒子がW1#1球状である非晶質窒化ホウ素
(以下、a−BNという)粉末とその製造方法に関し、
更に詳しくは、この粉末を用いて焼結体を製造したとき
、その焼結体が空孔の少ない緻密構造体になり1組織も
均一になる球状a−BNとその製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to amorphous boron nitride (hereinafter referred to as a-BN) powder whose particles are W1#1 spherical and a method for producing the same.
More specifically, the present invention relates to spherical a-BN in which when a sintered body is manufactured using this powder, the sintered body becomes a dense structure with few pores and has a uniform structure, and a method for manufacturing the same.

[発明の技術的背景とその問題点] 窒化ホウ素の焼結体は、ファインセラミックスの1つと
して最近とみに注目を集めている。これらの焼結体とし
ては、立方晶窒化ホウ素(以下、c−BNという)焼結
体、ウルツ型窒化ホウ素(以下、w−BNという)の各
焼結体があり、他に大方晶窒化ホウ素(以下、h−BN
という)焼結体が知られている。これらのうちとくに、
C−BHの焼結体は高硬度、耐摩耗性に優れた素材とし
て脚光を浴び工具用材料の用途分野への展望が開けてい
る。また、これは一方では極めて高い熱伝導性と電気抵
抗を兼ね備えているため、高密度集積回路におけるヒー
トシンク材料として大きな期待がもたれている。
[Technical background of the invention and its problems] Sintered bodies of boron nitride have recently attracted a lot of attention as a type of fine ceramics. These sintered bodies include cubic boron nitride (hereinafter referred to as c-BN) sintered bodies, wurtzian boron nitride (hereinafter referred to as w-BN) sintered bodies, and large cubic boron nitride (hereinafter referred to as w-BN) sintered bodies. (Hereinafter, h-BN
) sintered bodies are known. Among these, especially
C-BH sintered bodies are attracting attention as a material with high hardness and excellent wear resistance, and are opening up prospects for application as materials for tools. Furthermore, since it has both extremely high thermal conductivity and electrical resistance, it holds great promise as a heat sink material for high-density integrated circuits.

このc−BN焼結体は大別して次の2つの方法で製造さ
れている。その第1の方法は、C−BNの粉末を耐圧、
耐熱性の型内に充填して超高圧・高温下(例えば、 5
GPa以上、I200℃以上)で焼結したり、又は、c
−BNの粉末と Ti。
This c-BN sintered body is manufactured by the following two methods. The first method is to apply C-BN powder to a pressure-resistant
It is filled into a heat-resistant mold and placed under ultra-high pressure and high temperature (for example, 5
GPa or higher, I200℃ or higher), or c
- BN powder and Ti.

Si、  An、  AINなどの触媒若しくはこの触
媒とTiN、 An 203を主体とする結合材とを混
合し、この混合粉末を同じく耐圧、耐熱性の型内に充填
して超高圧・高温下で焼結したりする。いわゆるC−B
N粉末を原料とする方法である。第2の方法は、c−B
N以外の窒化ホウ素の粉末、すなわち前述したh−BN
又はa7BNの粉末を出発原料とし、これを上記したよ
うな結合材と混合したのち、超高圧・高温下で処理して
、窒化ホウ素なc−BNに転換すると同時に全体を焼結
するという方法である。
A catalyst such as Si, An, AIN, or this catalyst is mixed with a binder mainly composed of TiN or An 203, and this mixed powder is filled into a pressure-resistant and heat-resistant mold and sintered under ultra-high pressure and high temperature. or tie a knot. So-called C-B
This method uses N powder as a raw material. The second method is c-B
Boron nitride powder other than N, i.e. the above-mentioned h-BN
Alternatively, a7BN powder is used as a starting material, mixed with the above-mentioned binder, and then treated under ultra-high pressure and high temperature to convert it into c-BN, which is boron nitride, and simultaneously sinter the entire product. be.

これら2つの方法のうち、後者の方法の場合には、窒化
ホウ素からc−BNへの転換率が100%ではなく、未
転換の窒化ホウ素が残留し、得られた焼結体の特性を著
しく低下せしめるという問題が避けられない。
Of these two methods, in the latter method, the conversion rate from boron nitride to c-BN is not 100%, and unconverted boron nitride remains, significantly affecting the properties of the obtained sintered body. The problem of deterioration is unavoidable.

そのため、実際には前者の方法で主としてC−BN焼結
体は製造されている。
Therefore, in reality, C-BN sintered bodies are mainly produced by the former method.

この前者の方法にあっては、出発原料はC−BNである
。したがって、前提問題としてC−BNの合成が重要な
ファクターとなる。
In the former method, the starting material is C-BN. Therefore, the synthesis of C-BN becomes an important factor as a prerequisite problem.

現在のところ、c−BNの合成に関しては、主に、h−
BNを超高圧Φ高温下で処理してC−BNに転換すると
いう方法が採られている。
At present, regarding the synthesis of c-BN, mainly h-
A method has been adopted in which BN is converted to C-BN by treating it at ultra-high pressure Φ and high temperature.

しかしながら、その転換率は一般に低い、それは、h−
BNに物理的φ化学的に吸着している酸素又は化学的に
結合している酸素成分の影響に起因するためであること
が明らかとなっている。
However, the conversion rate is generally low, as h-
It has been revealed that this is due to the influence of oxygen chemically adsorbed to BN or chemically bonded oxygen components.

h−BNからc−BNの転換率を高めるために1種々の
研究が重ねられているが1本発明者らは、h−BNから
c−BNを合成する際に合成触媒としての窒化アルミニ
ウムを介在せしめるとその転換率が向上するとの事実を
見出しこれを既に発表した(粉体粉末冶金協会、昭和5
7年度秋季大会講演概要集、 100〜101頁参照)
Although various studies have been conducted to increase the conversion rate of c-BN from h-BN, the present inventors have investigated the use of aluminum nitride as a synthesis catalyst when synthesizing c-BN from h-BN. We have already announced the fact that the conversion rate improves when it is interposed (Powder Metallurgy Association, 1930).
(See 7th Autumn Conference Lecture Summary Collection, pages 100-101)
.

更に研究を進め、h−BNの結晶性と転換率との関係に
つき研究を重ねた結果、h−BNの結晶化度が小さいも
のほどc−BNへの転換率が高くなることを確認し、そ
れを既に発表した(粉体粉末冶金協会、昭和58年度春
季大会講演概要集、86頁〜87頁参照)。
As a result of further research on the relationship between h-BN crystallinity and conversion rate, we confirmed that the lower the crystallinity of h-BN, the higher the conversion rate to c-BN. This has already been announced (see Powder and Powder Metallurgy Association, 1985 Spring Conference Lecture Abstracts, pages 86-87).

このようなことから、c−BNの合成に関しては、結晶
化度の小さいh−BNを出発原料として用いてもよいが
、そのこと以上に、出発原料がa−BNである場合には
、更に高い転換率でC−BNを合成できることが明らか
となった。
For this reason, in the synthesis of c-BN, h-BN with a low degree of crystallinity may be used as a starting material, but moreover, when the starting material is a-BN, It has become clear that C-BN can be synthesized at a high conversion rate.

以上の知見の上に立って1本発明者らはa−BNの原料
になり得る化合物を追究したところ。
Based on the above knowledge, the present inventors have investigated compounds that can be used as raw materials for a-BN.

ボラジン又はボラジン誘導体を加圧子熱分解するとc−
BNへの転換率の高いa−BNを得ることができるとの
事実を見出し、その方法を既に特願昭51−10088
2号として出願した。
When borazine or borazine derivatives are pyrolyzed with an indenter, c-
It was discovered that it was possible to obtain a-BN with a high conversion rate to BN, and the method was already published in patent application No. 51-10088.
I applied as No. 2.

ところで、a−BNをc−BNに転換し、得られたc−
BNを用いてその焼結体を製造する際には、このc−F
IN粉末を所定の型内に充填して焼結する。このとき、
得られる焼結体が空孔のない緻密質のものになるか否か
又は偏析がなく均一な組織構造になるか否かという問題
には、適用する焼結条件と合わせてc−BN粉末の特性
又は形状も重要な因子として作用する。
By the way, the c-BN obtained by converting a-BN to c-BN
When manufacturing the sintered body using BN, this c-F
IN powder is filled into a predetermined mold and sintered. At this time,
The question of whether or not the obtained sintered body will be dense without pores, or whether it will have a uniform structure without segregation, depends on the c-BN powder, together with the sintering conditions to be applied. Characteristics or shape also act as an important factor.

また、a−BN粉末を直接型の中に充填し、高圧e高温
下において、a−BNをc−BNに転換しながら焼結す
る場合にも、上記したと同様の理由によって、用いるa
−BN粉末は個々の粒子が微細な球状体であることが好
ましい。
Also, when a-BN powder is directly filled into a mold and sintered under high pressure and high temperature while converting a-BN to c-BN, the a-BN powder used is
- It is preferable that each particle of the BN powder is a fine spherical body.

一方、h−BN焼結体は軟質ではあるが、しかし軟質で
あるがゆえに機械加工性、潤滑性が優れ、そしてまた化
学安定性、高熱伝導性、高電気絶縁性という特性を備え
ている。従来、h−BN焼結体は、h−BN粉末を出発
原料とし潤滑剤及び焼結助剤と共に焼結して製造されて
いるが、このような焼結体は高密度ではなく、せいぜい
理論密度の80〜85%程度のものでしかない。
On the other hand, the h-BN sintered body is soft, but because it is soft, it has excellent machinability and lubricity, and also has properties such as chemical stability, high thermal conductivity, and high electrical insulation. Conventionally, h-BN sintered bodies have been manufactured by using h-BN powder as a starting material and sintering it together with lubricants and sintering aids, but such sintered bodies do not have high density and are at most theoretically sintered. It is only about 80-85% of the density.

h−BN焼結体の製造時にあっ°ても、上記したc−B
N焼結体の製造の場合と同様に、その原料粉末は微細で
かつ球状であることが好ましい。
Even if the h-BN sintered body is manufactured, the above-mentioned c-B
As in the case of manufacturing the N sintered body, the raw material powder is preferably fine and spherical.

しかしながら、現在までのところそのような機側球状の
a−BN粉末は開示されていないし、また、その製造方
法も知られていない。
However, to date, such machine-side spherical a-BN powder has not been disclosed, nor is a method for producing the same known.

[発明の目的] 本発明は、木発明者らが開発した前記特願昭59−10
0882号の方法を基礎にして製造される窒化ホウ素の
粒子が微細で球状のa−BN粉末とその製造方法の提供
を目的とする。
[Object of the Invention] The present invention is based on the aforementioned patent application developed by the inventors of Wood
The present invention aims to provide a-BN powder having fine and spherical boron nitride particles produced based on the method of No. 0882, and a method for producing the same.

[発明の概要コ 本発明のa−BN粉末は粉末粒子の形状が球状であるこ
とを特徴とし、例えばその球状のa −BNは、ボラジ
ン又はボラジン誘導体の群から選ばれる少なくとも1種
の化合物を、圧力lO〜100MPa、温度200−3
50℃2時間5〜30分の条件で加圧子熱分解すること
によって得ることができる。
[Summary of the Invention] The a-BN powder of the present invention is characterized in that the shape of the powder particles is spherical. For example, the spherical a-BN contains at least one compound selected from the group of borazine or borazine derivatives. , pressure lO~100MPa, temperature 200-3
It can be obtained by thermally decomposing an indenter at 50° C. for 2 hours and 5 to 30 minutes.

本発明のa−BN粉末は粒子形状が球状である。その粒
径は、通常l〜4pmと微細である。
The a-BN powder of the present invention has a spherical particle shape. The particle size is usually as fine as 1 to 4 pm.

したがって、流動性に富むため焼結体の製造時には型内
への充填性が優れ、他の添加物との混合性も良好なので
作業性も良好である。また焼結時にあっては、微細で水
素を含有しているのでそれ自体が焼結の促進効果を備え
ていて1wk密で均一な組織の焼結体となり得る。
Therefore, since it has high fluidity, it has excellent filling properties into a mold during production of a sintered body, and also has good mixability with other additives, resulting in good workability. Further, during sintering, since it is fine and contains hydrogen, it itself has the effect of promoting sintering, and can become a sintered body with a 1wk dense and uniform structure.

このa−BN粉末は次のようにして製造することができ
る。
This a-BN powder can be manufactured as follows.

まず、原料は1次式: で示されるボラジン若しくは後述のボラジン誘導体の1
種又はこれらを2種以上適宜に混合して成る混合物であ
る。これらのうち、 ボラジン誘導体としては、例えば1次式:で示されるボ
ラシナフタリン、次式: で示されるボラノビ2エニル5次式: で示される2、4−ジアミノボラ0ジンをあげることが
できる。好ましい原料はボラジンである。
First, the raw material is borazine represented by the linear formula: or one of the borazine derivatives described below.
It is a species or a mixture formed by appropriately mixing two or more of these. Among these, examples of the borazine derivatives include boracinaphthalene represented by the linear formula: and boranobi-2enyl represented by the following formula: 2,4-diaminoborozine represented by the quintic formula: A preferred raw material is borazine.

これらの原料は、酸素、炭素を含有していないことが重
要である。なぜならば酸素は前述したようにc−BNへ
の転換率を低下せしめる因子として作用するからであり
、また、炭素は後述の条件下で熱分解処理を施したとき
にa−BH内に残留するからである。このような炭素を
含有するa−BNを原料として高圧・高温下でc−BN
を合成した場合、この炭素が黒鉛に転換してc−BH内
に残留し、モしてc−BN焼結体の特性低下をもたらす
からである。
It is important that these raw materials do not contain oxygen or carbon. This is because, as mentioned above, oxygen acts as a factor that reduces the conversion rate to c-BN, and carbon remains in a-BH when thermal decomposition is performed under the conditions described below. It is from. Using a-BN containing such carbon as a raw material, c-BN is produced under high pressure and high temperature.
This is because when synthesized, this carbon converts to graphite and remains in c-BH, resulting in deterioration of the properties of the c-BN sintered body.

本発明方法にあっては、上記した原料を密閉式の圧力容
器の中にいれ、加圧子熱分解を施す、このときの加圧子
熱分解反応は、まずその初期段階において原料のボテジ
ン環の開am合厘応が気相と液相の共存下で進行しつつ
水素含有量の多い球状のa−BNを生成する。その後1
時間の経過とともに更に水素が放出されていき、水゛素
含有量の少ない球状のa−BHに転化していく。
In the method of the present invention, the above-mentioned raw material is placed in a closed pressure vessel and subjected to indenter thermal decomposition. In the initial stage of the indenter thermal decomposition reaction, the botegin ring of the raw material is opened. The am synthesis reaction proceeds in the coexistence of a gas phase and a liquid phase, producing spherical a-BN with a high hydrogen content. then 1
As time passes, more hydrogen is released, and it is converted into spherical a-BH with a low hydrogen content.

このように本発明の加圧子熱分解反応は、熱分解時の圧
力、温度1時間が基本的な制御因子であり、これら因子
によって、得られるa−BN粉末の状態が左右される。
As described above, in the presser pyrolysis reaction of the present invention, the pressure and temperature 1 hour during pyrolysis are the basic control factors, and these factors influence the state of the a-BN powder obtained.

まず、圧力は10〜loOMPaの範囲に設定される。First, the pressure is set in the range of 10 to loOMPa.

この圧力が1 、’OM P aより低い場合には、原
料が熱分解処理中に放出する水素を押え込む圧力として
は不充分であり、a−BNの収率は低くなる。また、圧
力が100>IPaより高い場合には、得られたa−B
Nが相互に融合してしまい球状粒子にはならず、この合
体球が帯状に広がった塊状の白色固体となってしまう、
圧力の好ましい範囲は25〜100MPaテある。
If this pressure is lower than 1,'OM Pa, the pressure is insufficient to suppress the hydrogen released by the raw material during the thermal decomposition treatment, and the yield of a-BN will be low. Moreover, when the pressure is higher than 100>IPa, the obtained a-B
N fuses with each other and does not form spherical particles, but the fused spheres become a lumpy white solid that spreads out in a band-like shape.
The preferred range of pressure is 25 to 100 MPa.

温度は200〜350℃の範囲に設定される。一般に、
熱分解温度が高くなるにつれて得られたa−BNの水素
含有量は減少していくが、この残存水素の多少がa−B
Nからc−BNへの転換率の大小に1ll=Jiな影響
を及ぼすことからして、C−BNへの転換率を高位に維
持するためには熱分解温度を 350℃以下にする。し
かし、熱分解温度が 200℃よりも低くなると、得ら
れたa−BNの活性が高くなりすぎて、全体の取扱いを
N2又は不活性ガス雰囲気中で行なうことが必要になる
ので200℃未満とする。好ましくは、250〜350
℃である。
The temperature is set in the range of 200-350°C. in general,
As the thermal decomposition temperature increases, the hydrogen content of the obtained a-BN decreases, but some of this residual hydrogen
Considering that 1 liter = Ji influences the magnitude of the conversion rate from N to c-BN, the thermal decomposition temperature is set to 350° C. or lower in order to maintain the conversion rate to C-BN at a high level. However, if the thermal decomposition temperature is lower than 200°C, the activity of the obtained a-BN will be too high, making it necessary to carry out the entire handling in an N2 or inert gas atmosphere. do. Preferably 250-350
It is ℃.

時間は5〜30分の範囲に設定される。上記した2因子
の設定範囲内にあっては、加圧子熱分解の時間が30分
を超えると、a−BNにおける水素含有量が非常に減少
してしまい、c−BNへの転換率も低下する。逆に時間
が5分より短い場合には、残存する水素量が多すぎてa
−BNの活性は高くなりすぎ、加水分解を起しやすくな
るというような不都合な問題を生ずる。
The time is set in the range of 5 to 30 minutes. Within the setting range of the above two factors, if the indenter pyrolysis time exceeds 30 minutes, the hydrogen content in a-BN will decrease significantly and the conversion rate to c-BN will also decrease. do. On the other hand, if the time is shorter than 5 minutes, the amount of remaining hydrogen is too large.
-The activity of BN becomes too high, leading to disadvantageous problems such as easy hydrolysis.

このようにして、粒a!1〜4)inで球状のa −B
N粉末が得られる。この粉末を例えば真空中又は非酸化
性雰囲気中、高温下で処理すれば、高純度のh−BN粉
末を得ることができ、また、ホットプレスすればh−B
N焼結体が得られる。更に例えば5.0〜B、5GPa
の超高圧、 1100〜1850℃の高温下で処理すれ
ばc−BN焼結体を得ることができる。
In this way, grain a! 1-4) Spherical a-B in
N powder is obtained. High purity h-BN powder can be obtained by processing this powder at high temperatures in a vacuum or non-oxidizing atmosphere, and h-BN powder can be obtained by hot pressing.
A N sintered body is obtained. Furthermore, for example, 5.0~B, 5GPa
A c-BN sintered body can be obtained by processing at an ultra-high pressure of 1,100 to 1,850°C.

[発明の実施例] 実施例1 (+)a−BNの調製 β−トリクロロボラジンを還元してボラジンを製造した
。このボテジン(液体)を金カプセルの中に封入し、カ
プセルをコーン密閉式圧力容器内にセットした。
[Examples of the Invention] Example 1 Preparation of (+)a-BN Borazine was produced by reducing β-trichloroborazine. This botedine (liquid) was sealed in a gold capsule, and the capsule was set in a cone-tight pressure vessel.

容器内圧力、温度、処理時間を表に示したように変化さ
せて加圧下熱分解処理を施した。いずれの場合も白色固
体が得られた。これらや固体につさ粉末X線回折法によ
り結晶構造を観察したところ、いずれも非晶質であるこ
とが確認された。
Pyrolysis treatment under pressure was performed while changing the pressure, temperature, and treatment time in the container as shown in the table. A white solid was obtained in each case. When the crystal structures of these and solids were observed by powder X-ray diffraction, it was confirmed that they were all amorphous.

また、これら白色固体につき赤外吸収(!R)スペクト
ル分析を行なったところ、 3400cm−’の位置に
N−H伸縮による吸収、2520 c m−’の位置に
B−H伸縮による吸収、1400c■4の位置にB−N
伸縮による吸収が認められた。
In addition, when infrared absorption (!R) spectrum analysis was performed on these white solids, absorption due to N-H stretching at the position of 3400 cm-', absorption due to B-H stretching at the position of 2520 cm-', and absorption due to B-H stretching at 1400 cm-'. B-N in position 4
Absorption due to expansion and contraction was observed.

各場合につき、B−H及びB−Nの各伸縮振動に基づく
吸収強度の比を算出し、その値を表に併記した。また、
各白色固体を顕微鏡観察し、その形状等も併記した。更
に、得られた各a−BNの粉末に窒化アルミニウム20
モル%添加して混合し、コノ混合粉末を、圧力8.5G
Pa、温度1200℃の条件下で10分間処理して焼結
した。
For each case, the ratio of absorption intensities based on each stretching vibration of BH and BN was calculated, and the values are also listed in the table. Also,
Each white solid was observed under a microscope, and its shape etc. were also recorded. Furthermore, 20% of aluminum nitride was added to each of the obtained a-BN powders.
Add mol% and mix, and mix the Kono mixed powder at a pressure of 8.5G.
It was sintered by processing for 10 minutes under conditions of Pa and temperature of 1200°C.

得られた各焼結体につき、X線回折法でそのC−BHの
存在割合を測定し、各a−BNの転換率を算出した。そ
の結果も表に併記した。
For each of the obtained sintered bodies, the abundance ratio of C-BH was measured by an X-ray diffraction method, and the conversion rate of each a-BN was calculated. The results are also listed in the table.

実施例2 粒径的l終mの本発明a−BN粉末aol量%。Example 2 Amount % of a-BN powder aol of the present invention with particle size end m.

5i02粉末5重量%、A文粉末51fU量%を混合し
、得られた混合粉末を真空雰囲気中において、1800
℃、40分、 10MPaの条件下でホットプレスした
5i02 powder (5% by weight) and A-text powder (51fU) were mixed, and the resulting mixed powder was heated to 1800% by weight in a vacuum atmosphere.
Hot pressing was carried out at 10 MPa for 40 minutes at ℃.

得られた焼結体はh−BN焼結体であり、その密度は理
論密度の85%であった。
The obtained sintered body was an h-BN sintered body, and its density was 85% of the theoretical density.

比較のために、粒径的1gmの市販h−BN粉末30重
量%、 5i02粉末5重量%、A交粉末5重量%の混
合粉末につき、同様の条件下でホットプレスして焼結体
を得た。このh−BN焼結体の密度は理論密度の80%
であった。
For comparison, a mixed powder of 30% by weight of commercially available h-BN powder, 5% by weight of 5i02 powder, and 5% by weight of A-cross powder with a grain size of 1 gm was hot pressed under the same conditions to obtain a sintered body. Ta. The density of this h-BN sintered body is 80% of the theoretical density.
Met.

[発明の効果〕 以丘の説明で明らかなように1本発明の球状a−BN粉
末は微細で水素を含有し、しかもC−BNへの転換率が
高いことがらc−BN焼結体の原料として使用すると緻
密で均一組織のc−BN焼結体になり、高硬度、高熱伝
導性、高電気絶縁性が一層優れ、切削用工具、耐摩耗用
工具、ヒートシンクをはじめとする電気部品として応用
でき、また、c−BN粉末にするとそれは砥石又は砥粒
として研削工具又は研摩材料として応用できる。
[Effects of the Invention] As is clear from the above explanation, the spherical a-BN powder of the present invention is fine and contains hydrogen, and has a high conversion rate to C-BN, which makes it suitable for c-BN sintered bodies. When used as a raw material, it becomes a c-BN sintered body with a dense and uniform structure, which has excellent hardness, high thermal conductivity, and high electrical insulation properties, making it suitable for use as cutting tools, wear-resistant tools, heat sinks, and other electrical components. Also, when made into c-BN powder, it can be applied as a grinding wheel or abrasive grain as a grinding tool or abrasive material.

更に1本発明の球状のa−BN粉末は微細で活性がある
ためにh−BN焼結体の原料として使用すると、緻密で
均一組織のh−BN焼結体になり、化学安定性、耐食性
9機械加工性、高熱伝導性、高電気絶縁性が一層優れ、
機械加工性もよいので溶融金属若しくは薬品用の容器、
高温域での潤滑材料、74気部品材料として応用できる
産業上有用な材料である。
Furthermore, since the spherical a-BN powder of the present invention is fine and active, when used as a raw material for h-BN sintered bodies, it becomes h-BN sintered bodies with a dense and uniform structure, and has good chemical stability and corrosion resistance. 9 Excellent machinability, high thermal conductivity, and high electrical insulation properties.
It has good machinability, so it can be used for containers for molten metal or chemicals,
It is an industrially useful material that can be applied as a lubricating material in high temperature ranges and as a material for 74 gas parts.

Claims (1)

【特許請求の範囲】 1、窒化ホウ素粉末粒子の形状が球状であることを特徴
とする非晶質窒化ホウ素粉末。 2、前記窒化ホウ素が水素を含有している特許請求の範
囲第1項記載の非晶質窒化ホウ素粉末。 3、ボランジン又はボラジン誘導体の群から選ばれる少
なくとも1種の化合物を、圧力10〜100MPa、温
度200〜350℃、時間5〜30分の条件で加圧下熱
分解することを特徴とする非晶質窒化ホウ素粉末の製造
方法。
[Claims] 1. An amorphous boron nitride powder characterized in that the boron nitride powder particles have a spherical shape. 2. The amorphous boron nitride powder according to claim 1, wherein the boron nitride contains hydrogen. 3. An amorphous material characterized by thermally decomposing at least one compound selected from the group of borandine or borazine derivatives under pressure at a pressure of 10 to 100 MPa, a temperature of 200 to 350°C, and a time of 5 to 30 minutes. Method for producing boron nitride powder.
JP59238550A 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation Granted JPS61117107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238550A JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238550A JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Publications (2)

Publication Number Publication Date
JPS61117107A true JPS61117107A (en) 1986-06-04
JPH0510282B2 JPH0510282B2 (en) 1993-02-09

Family

ID=17031907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238550A Granted JPS61117107A (en) 1984-11-14 1984-11-14 Amorphous boron niride powder and its preparation

Country Status (1)

Country Link
JP (1) JPS61117107A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000934A1 (en) * 1986-08-07 1988-02-11 Kabushiki Kaisha Kouransha Boron nitride sinter and process for its production
JPS6345178A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Boron nitride sintering raw material powder
EP0314807A1 (en) * 1987-05-12 1989-05-10 Kabushiki Kaisha Kouransha Molten metal container
JPH02296706A (en) * 1989-05-02 1990-12-07 Rhone Poulenc Chim Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
US5230873A (en) * 1988-09-10 1993-07-27 Firna Siegfried Golz Process for producing amorphous boron nitride of high hardness
WO1999061391A1 (en) * 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Cubic system boron nitride sintered body cutting tool
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
CN107161960A (en) * 2017-06-06 2017-09-15 哈尔滨工业大学深圳研究生院 A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181707A (en) * 1982-04-15 1983-10-24 Natl Inst For Res In Inorg Mater Manufacture of boron nitride
JPS60155508A (en) * 1984-08-02 1985-08-15 Res Dev Corp Of Japan Noncrystalline boron nitride having improved stability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181707A (en) * 1982-04-15 1983-10-24 Natl Inst For Res In Inorg Mater Manufacture of boron nitride
JPS60155508A (en) * 1984-08-02 1985-08-15 Res Dev Corp Of Japan Noncrystalline boron nitride having improved stability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000934A1 (en) * 1986-08-07 1988-02-11 Kabushiki Kaisha Kouransha Boron nitride sinter and process for its production
JPS6345178A (en) * 1986-08-07 1988-02-26 株式会社 香蘭社 Boron nitride sintering raw material powder
EP0314807A1 (en) * 1987-05-12 1989-05-10 Kabushiki Kaisha Kouransha Molten metal container
US5308044A (en) * 1987-05-12 1994-05-03 Kabushiki Kaisha Kouransha Boron nitride ceramics and molten metal container provided with members made of the same ceramics
US5230873A (en) * 1988-09-10 1993-07-27 Firna Siegfried Golz Process for producing amorphous boron nitride of high hardness
JPH02296706A (en) * 1989-05-02 1990-12-07 Rhone Poulenc Chim Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
WO1999061391A1 (en) * 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Cubic system boron nitride sintered body cutting tool
US6737377B1 (en) 1998-05-22 2004-05-18 Sumitomo Electric Industries, Ltd. Cutting tool of a cubic boron nitride sintered compact
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
US8617503B2 (en) 2009-08-20 2013-12-31 Kaneka Corporation Process for production of spheroidized boron nitride
JP5673539B2 (en) * 2009-08-20 2015-02-18 株式会社カネカ Method for producing spheroidized boron nitride
CN107161960A (en) * 2017-06-06 2017-09-15 哈尔滨工业大学深圳研究生院 A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder

Also Published As

Publication number Publication date
JPH0510282B2 (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5271749A (en) Synthesis of polycrystalline cubic boron nitride
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
US5942455A (en) Synthesis of 312 phases and composites thereof
JPH07242466A (en) Production of polycrystalline cubic boron nitride
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
WO2006106873A1 (en) Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
JPH0472792B2 (en)
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
EP0698447B1 (en) Abrasive body
US5720910A (en) Process for the production of dense boron carbide and transition metal carbides
US5773733A (en) Alumina-aluminum nitride-nickel composites
JPS61117107A (en) Amorphous boron niride powder and its preparation
JPS6131358A (en) Silicon nitride sintered body for cutting tool and manufacture
CN100354199C (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using same
JP2005089252A (en) Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same
JPH08198681A (en) Production of boron nitride composite
JPH05509073A (en) Production of nitridable silicon-containing materials, resulting materials
JPH044966B2 (en)
JPH0372940A (en) Preparation of cubic boron nitride
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPH0455142B2 (en)
CN110526715B (en) Ternary tungsten ruthenium boride ceramic material and preparation method and application thereof
JP2628668B2 (en) Cubic boron nitride sintered body
JPH11335175A (en) Cubic boron nitride sintered compact