JPWO2020095837A1 - Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition - Google Patents

Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition Download PDF

Info

Publication number
JPWO2020095837A1
JPWO2020095837A1 JP2020556042A JP2020556042A JPWO2020095837A1 JP WO2020095837 A1 JPWO2020095837 A1 JP WO2020095837A1 JP 2020556042 A JP2020556042 A JP 2020556042A JP 2020556042 A JP2020556042 A JP 2020556042A JP WO2020095837 A1 JPWO2020095837 A1 JP WO2020095837A1
Authority
JP
Japan
Prior art keywords
zwp
particles
modified
thermal expansion
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556042A
Other languages
Japanese (ja)
Other versions
JP7239608B2 (en
Inventor
純也 深沢
純也 深沢
畠 透
透 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Publication of JPWO2020095837A1 publication Critical patent/JPWO2020095837A1/en
Application granted granted Critical
Publication of JP7239608B2 publication Critical patent/JP7239608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、粒子からのイオンの溶出を抑制し、負熱膨張材としての優れた性能を発現するとともに、低熱膨張性材料を製造可能な改質リン酸タングステン酸ジルコニウムを提供すること。本発明の改質リン酸タングステン酸ジルコニウムは、リン酸タングステン酸ジルコニウム粒子の表面が、脂肪酸又はその誘導体で被覆されている。改質リン酸タングステン酸ジルコニウムは、シラン化合物で被覆されていることも好適である。本発明は、改質リン酸タングステン酸ジルコニウムからなる負熱膨張フィラーも提供する。また本発明は、前記負熱膨張フィラーと、高分子化合物とを含有する高分子組成物も提供する。An object of the present invention is to provide a modified zirconium tungate phosphate capable of suppressing the elution of ions from particles, exhibiting excellent performance as a negative thermal expansion material, and producing a low thermal expansion material. In the modified zirconium tungstate phosphate of the present invention, the surface of the zirconium tungate phosphate particles is coated with a fatty acid or a derivative thereof. It is also preferable that the modified zirconium tungstate phosphate is coated with a silane compound. The present invention also provides a negative thermal expansion filler made of modified zirconium tungate phosphate. The present invention also provides a polymer composition containing the negative thermal expansion filler and a polymer compound.

Description

本発明は、改質リン酸タングステン酸ジルコニウム、それを用いた負熱膨張フィラー及び高分子組成物に関するものである。 The present invention relates to modified zirconium tungate phosphate, a negative thermal expansion filler using the same, and a polymer composition.

一般的に、物質は、温度が上昇すると、熱膨張によって長さや体積が増大する性質を有する。一方で、熱の付与によって逆に体積が小さくなる性質を有する負の熱膨張を示す材料(以下、「負熱膨張材」ということもある。)が知られている。負の熱膨張を示す材料は、例えば他の材料とともに用いて、温度変化による材料の熱膨張による体積変化を抑制するために用いられる。 In general, a substance has the property that its length and volume increase due to thermal expansion as the temperature rises. On the other hand, there are known materials that exhibit negative thermal expansion (hereinafter, also referred to as "negative thermal expansion materials"), which have the property of reducing the volume by applying heat. A material exhibiting a negative thermal expansion is used, for example, together with other materials to suppress a volume change due to thermal expansion of the material due to a temperature change.

負の熱膨張を示す材料としては、例えば、β−ユークリプタイト、タングステン酸ジルコニウム(ZrW)、リン酸タングステン酸ジルコニウム(ZrWO(PO)、ZnCd1−x(CN)、マンガン窒化物、ビスマス・ニッケル・鉄酸化物等が知られている。Materials showing negative thermal expansion include, for example, β-eucryptite, zirconium tungate (ZrW 2 O 8 ), zirconium tungate phosphate (Zr 2 WO 4 (PO 4 ) 2 ), Zn x Cd 1-. x (CN) 2 , manganese nitride, bismuth, nickel, iron oxide, etc. are known.

リン酸タングステン酸ジルコニウム粒子の線膨張係数は、0〜400℃の温度範囲で−3.4〜−3.0ppm/℃であり、負熱膨張性が大きいことが知られている。このリン酸タングステン酸ジルコニウム粒子と、正の熱膨張を示す材料(以下「正熱膨張材」ということもある。)とを併用することで、低熱膨張の材料を製造することができる(特許文献1〜3参照)。また、正熱膨張材である樹脂等の高分子化合物と負熱膨張材とを併用することも提案されている(特許文献4〜5)。 The linear expansion coefficient of zirconium tungate phosphate particles is -3.4 to −3.0 ppm / ° C. in the temperature range of 0 to 400 ° C., and it is known that the particles have a large negative thermal expansion property. By using these zirconium tungate phosphate particles in combination with a material exhibiting positive thermal expansion (hereinafter, also referred to as "positive thermal expansion material"), a material having low thermal expansion can be produced (Patent Documents). See 1-3). It has also been proposed to use a polymer compound such as a resin which is a positive thermal expansion material in combination with a negative thermal expansion material (Patent Documents 4 to 5).

特開2005−35840号公報Japanese Unexamined Patent Publication No. 2005-355840 特開2015−10006号公報Japanese Unexamined Patent Publication No. 2015-10006 国際公開第2017/61403号パンフレットInternational Publication No. 2017/6143 Pamphlet 特開2015−38197号公報JP-A-2015-38197 特開2016−113608号公報Japanese Unexamined Patent Publication No. 2016-11360

しかし、リン酸タングステン酸ジルコニウムは、水に接触すると、構造中のジルコニウム、タングステン及びリンがイオンとして溶出してしまい、これに起因して負熱膨張材としての性能が低下したり、樹脂等の材料と混合した場合に成形品の性能が劣化したりする問題がある。 However, when zirconium tungstate phosphate comes into contact with water, zirconium, tungsten and phosphorus in the structure are eluted as ions, which reduces the performance as a negative thermal expansion material and causes the resin and the like to deteriorate. There is a problem that the performance of the molded product deteriorates when mixed with the material.

また、前記問題に加えて、リン酸タングステン酸ジルコニウムは、樹脂等の疎水性の高分子化合物との親和性が低いので、高分子化合物中に均一に分散させることが困難であり、その結果、所望の低熱膨張性材料を得ることが困難であった。 Further, in addition to the above problem, zirconium tungate phosphate has a low affinity with a hydrophobic polymer compound such as a resin, so that it is difficult to uniformly disperse it in the polymer compound. It was difficult to obtain the desired low thermal expansion material.

従って、本発明の目的は、リン酸タングステン酸ジルコニウム中のジルコニウムイオン、タングステンイオン及びリンイオンの水への溶出を抑制し、高分子化合物に含有させた負熱膨張フィラーとして好適に使用することができる改質リン酸タングステン酸ジルコニウム、それを用いた負熱膨張フィラー及び高分子組成物を提供することにある。 Therefore, an object of the present invention is to suppress the elution of zirconium ion, tungsten ion and phosphate in zirconium tungate phosphate into water, and it can be suitably used as a negative thermal expansion filler contained in a polymer compound. It is an object of the present invention to provide modified zirconium tungstate phosphate, a negative thermal expansion filler using the same, and a polymer composition.

本発明者らは、前記課題に鑑み鋭意研究を重ねた結果、リン酸タングステン酸ジルコニウム粒子の表面を、脂肪酸又はその誘導体で被覆して改質することによって、水に接触した場合においても、ジルコニウムイオン、タングステンイオン及びリンイオンの溶出を効果的に抑制できることを見出した。また、改質したリン酸タングステン酸ジルコニウムは、樹脂等の高分子化合物中に均一に分散させて、負熱膨張フィラーを含む低熱膨張性材料を製造できることを見出し、本発明を完成するに至った。 As a result of diligent research in view of the above problems, the present inventors have modified the surface of zirconium tungstate phosphate particles by coating them with a fatty acid or a derivative thereof, so that zirconium may come into contact with water. It has been found that the elution of ions, tungsten ions and phosphorus ions can be effectively suppressed. Further, they have found that the modified zirconium tungate phosphate can be uniformly dispersed in a polymer compound such as a resin to produce a low thermal expansion material containing a negative thermal expansion filler, and have completed the present invention. ..

即ち、本発明が提供する第1の発明は、リン酸タングステン酸ジルコニウム粒子の粒子表面が、脂肪酸又はその誘導体で被覆されている改質リン酸タングステン酸ジルコニウムである。 That is, the first invention provided by the present invention is modified zirconium tungate phosphate in which the particle surface of the zirconium tungate phosphate particles is coated with a fatty acid or a derivative thereof.

また、本発明が提供する第2の発明は、第1の発明の改質リン酸タングステン酸ジルコニウムからなる負熱膨張フィラーである。 Further, the second invention provided by the present invention is a negative thermal expansion filler made of the modified zirconium tungstate phosphate of the first invention.

また、本発明が提供する第3の発明は、第2の発明の負熱膨張フィラーと、高分子化合物とを含有することを特徴とする高分子組成物である。 Further, the third invention provided by the present invention is a polymer composition characterized by containing the negative thermal expansion filler of the second invention and a polymer compound.

本発明の改質リン酸タングステン酸ジルコニウムによれば、水に接触した場合においても、ジルコニウムイオン、タングステンイオン及びリンイオンの溶出を効果的に抑制し、負熱膨張材としての優れた性能を発現させることができる。また、本発明の改質リン酸タングステン酸ジルコニウムは、樹脂等の高分子化合物に均一に分散させることができ、負熱膨張フィラーを含む低熱膨張性材料を首尾よく製造することができる。 According to the modified zirconium tungstate phosphate of the present invention, even when it comes into contact with water, the elution of zirconium ions, tungsten ions and phosphorus ions is effectively suppressed, and excellent performance as a negative thermal expansion material is exhibited. be able to. In addition, the modified zirconium tungstate phosphate of the present invention can be uniformly dispersed in a polymer compound such as a resin, and a low thermal expansion material containing a negative thermal expansion filler can be successfully produced.

図1は、リン酸タングステン酸ジルコニウム粒子試料1の形状を示す走査型電子顕微鏡の写真である。FIG. 1 is a photograph of a scanning electron microscope showing the shape of zirconium tungate phosphate particle sample 1. 図2は、リン酸タングステン酸ジルコニウム粒子試料2の形状を示す走査型電子顕微鏡の写真である。FIG. 2 is a photograph of a scanning electron microscope showing the shape of the zirconium tungate phosphate particle sample 2.

以下、本発明を好ましい実施形態に基づいて説明する。本発明の改質リン酸タングステン酸ジルコニウム(以下、これを「改質ZWP」ともいう。)は、リン酸タングステン酸ジルコニウム粒子(以下、これを「ZWP粒子」ともいう。)の表面が、脂肪酸又はその誘導体で被覆されているものである。つまり、本発明の改質リン酸タングステン酸ジルコニウムは、リン酸タングステン酸ジルコニウム粒子を芯材として、該粒子の表面に脂肪酸又はその誘導体からなる層が形成されている粒子からなる。以下の説明では、「L〜M」(L及びMはそれぞれ任意の数字)と記載した場合、特に断らない限り「L以上M以下」を意味する。 Hereinafter, the present invention will be described based on preferred embodiments. In the modified zirconium tungstate phosphate of the present invention (hereinafter, also referred to as “modified ZWP”), the surface of the zirconium tungate phosphate particles (hereinafter, also referred to as “ZWP particles”) is a fatty acid. Or it is coated with a derivative thereof. That is, the modified zirconium tungstate phosphate of the present invention is composed of particles in which zirconium tungate phosphate particles are used as a core material and a layer made of a fatty acid or a derivative thereof is formed on the surface of the particles. In the following description, when "LM" (L and M are arbitrary numbers) is described, it means "L or more and M or less" unless otherwise specified.

改質ZWPに含まれる脂肪酸又はその誘導体は、ZWP粒子の表面全体を満遍なく連続して被覆していてもよく、或いは該粒子表面の一部のみを被覆していてもよい。前者の場合、改質ZWPは、ZWP粒子の表面全域が脂肪酸又はその誘導体によって完全に被覆されて、該粒子の表面が露出していない状態になっている。後者の場合、改質ZWPは、その表面が下地であるリン酸タングステン酸ジルコニウムからなる部位と、脂肪酸又はその誘導体からなる部位とから構成される。脂肪酸又はその誘導体がZWP粒子の表面の一部のみを被覆している場合、被覆部位が連続していてもよく、海島状に不連続に被覆していてもよく、又はこれらの組み合わせであってもよい。 The fatty acid or a derivative thereof contained in the modified ZWP may cover the entire surface of the ZWP particles evenly and continuously, or may cover only a part of the surface of the particles. In the former case, in the modified ZWP, the entire surface of the ZWP particles is completely covered with the fatty acid or a derivative thereof, and the surface of the particles is not exposed. In the latter case, the modified ZWP is composed of a moiety made of zirconium tungate phosphate whose surface is a base and a moiety made of a fatty acid or a derivative thereof. When the fatty acid or a derivative thereof covers only a part of the surface of the ZWP particles, the coating sites may be continuous, may be discontinuously coated in a sea-island shape, or a combination thereof. May be good.

本発明に用いられる原料のリン酸タングステン酸ジルコニウムは、下記一般式(1)で表されるものである。
Zr(WO4(PO・・・(1)
(式中、xは、1.7≦x≦2.3、好ましくは1.8≦x≦2.2であり、yは、0.85≦y≦1.15、好ましくは0.90≦y≦1.10であり、zは、1.7≦z≦2.3、好ましくは1.8≦z≦2.2である。)
The raw material zirconium tungstate phosphate used in the present invention is represented by the following general formula (1).
Zr x (WO 4 ) y (PO 4 ) z ... (1)
(In the formula, x is 1.7 ≦ x ≦ 2.3, preferably 1.8 ≦ x ≦ 2.2, and y is 0.85 ≦ y ≦ 1.15, preferably 0.90 ≦. y ≦ 1.10, and z is 1.7 ≦ z ≦ 2.3, preferably 1.8 ≦ z ≦ 2.2.)

本発明に用いられる脂肪酸は、飽和又は不飽和の直鎖又は分枝鎖のモノ又はポリカルボン酸であることが好ましく、飽和又は不飽和の直鎖又は分枝鎖のモノカルボン酸であることが更に好ましく、飽和又は不飽和の直鎖モノカルボン酸であることが一層好ましい。脂肪酸は、その炭素数が好ましくは7以上である。また、誘導体とは、前記脂肪酸の塩又はアミドを指す。 The fatty acid used in the present invention is preferably a saturated or unsaturated linear or branched mono or polycarboxylic acid, and preferably a saturated or unsaturated linear or branched monocarboxylic acid. More preferably, it is a saturated or unsaturated linear monocarboxylic acid. The fatty acid preferably has 7 or more carbon atoms. The derivative refers to a salt or amide of the fatty acid.

本発明に用いられる脂肪酸又はその誘導体は、脂肪酸の炭素数が好ましくは7〜23であり、更に好ましくは10〜20である。このような脂肪酸又はその誘導体としては、例えばカプリン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸、又はこれらの金属塩若しくはアミド等が挙げられる。脂肪酸の金属塩としては、アルカリ金属、アルカリ土類金属、Zr、Cr、Mn、Fe、Co、Ni、Cu、Ag等の遷移金属、及びAl、Zn等の遷移金属以外の他の金属の塩が挙げられ、好ましくはAl、Zn、W、V等の多価金属塩である。脂肪酸金属塩は、金属の価数に応じて、モノ体、ジ体、トリ体、テトラ体等であり得る。脂肪酸金属塩は、これらの任意の組み合わせであってもよい。このような構成となっていることによって、水へのイオンの溶出を抑制して負熱膨張材としての性能を高めることができるとともに、樹脂等の正熱膨張材中に均一に分散させやすくすることができる。 The fatty acid or its derivative used in the present invention preferably has 7 to 23 carbon atoms, and more preferably 10 to 20 carbon atoms. Examples of such fatty acids or derivatives thereof include saturated fatty acids such as capric acid, lauric acid, myristic acid, palmitic acid and stearic acid, unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid and arachidonic acid, or these. Examples thereof include metal salts and amides. Metal salts of fatty acids include alkali metals, alkaline earth metals, transition metals such as Zr, Cr, Mn, Fe, Co, Ni, Cu, and Ag, and salts of metals other than transition metals such as Al and Zn. , And preferably a polyvalent metal salt such as Al, Zn, W, V or the like. The fatty acid metal salt can be a mono-form, a di-form, a tri-form, a tetra-form, or the like, depending on the valence of the metal. The fatty acid metal salt may be any combination thereof. With such a configuration, it is possible to suppress the elution of ions into water and improve the performance as a negative thermal expansion material, and it is easy to uniformly disperse the ions in a positive thermal expansion material such as resin. be able to.

本発明の改質ZWPは、前記脂肪酸又はその誘導体の被覆量(存在量)が、ZWP粒子に対し、好ましくは0.05質量%〜30質量%、より好ましくは0.1質量%〜10質量%、更に好ましくは0.2質量%〜5.0質量%である。被覆量がこのような範囲であることによって、改質ZWPからのジルコニウムイオン、タングステンイオン及びリンイオンの溶出を効果的に抑制し、負熱膨張材としての性能を高めることができる。また、改質ZWPの疎水性が高くなり、負熱膨張フィラーとして用いたときに、樹脂等の正熱膨張材への分散性が良好となる。 In the modified ZWP of the present invention, the coating amount (absence amount) of the fatty acid or its derivative is preferably 0.05% by mass to 30% by mass, more preferably 0.1% by mass to 10% by mass with respect to the ZWP particles. %, More preferably 0.2% by mass to 5.0% by mass. When the coating amount is in such a range, elution of zirconium ions, tungsten ions and phosphorus ions from the modified ZWP can be effectively suppressed, and the performance as a negative thermal expansion material can be enhanced. Further, the hydrophobicity of the modified ZWP becomes high, and when it is used as a negative thermal expansion filler, the dispersibility in a positive thermal expansion material such as a resin becomes good.

正熱膨張材に対する分散性や充填特性を向上させる観点から、原料となるZWP粒子には、前記一般式(1)に含まれる元素であるP、W、Zr及びO以外の元素(以下、これを「副成分元素」ともいう。)が含有されていることが好ましい。 From the viewpoint of improving the dispersibility and filling characteristics of the positive thermal expansion material, the ZWP particles used as a raw material include elements other than the elements P, W, Zr and O contained in the general formula (1) (hereinafter, this). Is also referred to as “sub-component element”).

副成分元素としては、例えば、Li、Na、K等のアルカリ金属元素、Mg、Ca、Sr、Ba等のアルカリ土類金属元素、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Nb、Mo、Ag、Hf、Ta等の遷移金属元素、La、Ce、Nd、Sm、Eu、Tb、Dy、Ho、Yb等の希土類元素、Al、Zn、Ga、Cd、In、Sn、Pb、Bi等の遷移金属以外の他の金属元素、B、Si、Ge、Sb、Te等の半金属元素、S等の非金属元素、F、Cl、Br、I等のハロゲン元素等が挙げられる。これらの元素は、前記粒子中に1種又は2種以上含まれていてもよい。これらのうち、正熱膨張材に対する分散性や充填特性を一層向上させる観点から、前記粒子は、Mg、Al及びVの少なくとも一種の副成分元素を含むことが好ましく、これに加えて、正熱膨張材の熱膨張係数を抑制しやすくする観点から、副成分元素としてMg及びAlの双方が含まれていることが更に好ましい。 Examples of the subcomponent elements include alkali metal elements such as Li, Na and K, alkaline earth metal elements such as Mg, Ca, Sr and Ba, Ti, V, Cr, Mn, Fe, Co, Ni and Cu, Transition metal elements such as Y, Nb, Mo, Ag, Hf, Ta, rare earth elements such as La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Al, Zn, Ga, Cd, In, Sn , Pb, Bi and other metal elements other than transition metals, semi-metal elements such as B, Si, Ge, Sb and Te, non-metal elements such as S, halogen elements such as F, Cl, Br and I, etc. Can be mentioned. These elements may be contained alone or in combination of two or more in the particles. Of these, from the viewpoint of further improving the dispersibility and filling characteristics with respect to the positive thermal expansion material, the particles preferably contain at least one subcomponent element of Mg, Al and V, and in addition to this, positive heat. From the viewpoint of facilitating the suppression of the coefficient of thermal expansion of the expanding material, it is more preferable that both Mg and Al are contained as subcomponent elements.

優れた負熱膨張性を有し、且つ正熱膨張材への分散性及び充填特性に優れたものとする観点から、ZWP粒子における副成分元素の含有量は、ZWP粒子に対して、好ましくは0.1質量%〜3質量%であり、更に好ましくは0.2質量%〜2質量%である。副成分元素が2種類以上含まれる場合は、副成分元素の含有量は、副成分元素の合計質量に基づいて算出する。また、改質ZWPにおける副成分元素の含有量は、上述と同様の範囲とすることができる。副成分元素の含有量は、例えば蛍光X線分析装置等の測定装置を用いて、粉末プレス法、溶融ガラスビード法等の方法で測定することができる。 The content of the subcomponent element in the ZWP particles is preferably higher than that of the ZWP particles from the viewpoint of having excellent negative thermal expansion properties and excellent dispersibility in the positive thermal expansion material and filling characteristics. It is 0.1% by mass to 3% by mass, more preferably 0.2% by mass to 2% by mass. When two or more kinds of sub-component elements are contained, the content of the sub-component elements is calculated based on the total mass of the sub-component elements. Further, the content of the subcomponent element in the modified ZWP can be in the same range as described above. The content of the subcomponent element can be measured by a method such as a powder press method or a molten glass bead method using a measuring device such as a fluorescent X-ray analyzer.

負熱膨張性、並びに正熱膨張材への分散性及び充填特性を一層優れたものとする観点から、副成分元素としてMg及びAlの双方を含む場合、ZWP粒子中のAl元素の含有量は、好ましくは100ppm〜6000ppm、更に好ましくは1000ppm〜5000ppmである。また、実用的な線膨張係数を有し、更に分散性及び充填特性に優れたものになる観点から、Mg元素の含有量は、ZWP粒子に対して、好ましくは0.1質量%〜3質量%、更に好ましくは0.22質量%〜2質量%である。 From the viewpoint of further improving the negative thermal expansion property, the dispersibility in the positive thermal expansion material, and the filling characteristics, when both Mg and Al are contained as subcomponent elements, the content of the Al element in the ZWP particles is high. It is preferably 100 ppm to 6000 ppm, more preferably 1000 ppm to 5000 ppm. Further, from the viewpoint of having a practical linear expansion coefficient and further being excellent in dispersibility and filling characteristics, the content of Mg element is preferably 0.1% by mass to 3% by mass with respect to the ZWP particles. %, More preferably 0.22% by mass to 2% by mass.

改質ZWPの粒子形状は、特に制限されるものではなく、例えば、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状、1若しくは2以上の稜線を有する不規則な砕石状(以下、これを「破砕状」ともいう。)、又はこれらの組み合わせであってもよい。 The particle shape of the modified ZWP is not particularly limited, and is, for example, spherical, granular, plate-like, scaly, whisker-like, rod-like, filament-like, and irregular crushed stone-like with one or more ridges ( Hereinafter, this may also be referred to as “crushed”), or a combination thereof.

本発明の改質ZWPは、これを樹脂等の正熱膨張材と混合させる場合、改質ZWPと正熱膨張材との密着性を向上させる目的で、後述するシランカップリング剤で更に被覆処理されることが好ましい。すなわち、本発明の改質ZWPは、前記脂肪酸又はその誘導体に加えて、シラン化合物で被覆されていることが好ましい。シラン化合物は、Siの原子に直接結合したアルキル基又はアミノ基を有する有機シランの化合物であり、有機シランを含むシランカップリング剤の加水分解生成物や脱水縮合生成物等が含まれる。前記脂肪酸又はその誘導体に加えて、シラン化合物で被覆されていることによって、疎水性がより高く、且つ緻密な被覆層をZWP粒子の表面に形成することができる。その結果、改質ZWPからのイオンの溶出が一層低減されるとともに、改質ZWPを樹脂等の正熱膨張材に効果的且つ均一に分散させることができる。 When the modified ZWP of the present invention is mixed with a positive thermal expansion material such as a resin, the modified ZWP is further coated with a silane coupling agent described later for the purpose of improving the adhesion between the modified ZWP and the positive thermal expansion material. It is preferable to be done. That is, the modified ZWP of the present invention is preferably coated with a silane compound in addition to the fatty acid or its derivative. The silane compound is a compound of an organic silane having an alkyl group or an amino group directly bonded to an Si atom, and includes a hydrolysis product of a silane coupling agent containing an organic silane, a dehydration condensation product, and the like. By coating with a silane compound in addition to the fatty acid or a derivative thereof, a highly hydrophobic and dense coating layer can be formed on the surface of ZWP particles. As a result, the elution of ions from the modified ZWP can be further reduced, and the modified ZWP can be effectively and uniformly dispersed in a positive thermal expansion material such as a resin.

改質ZWPのシラン化合物による被覆形態は、例えば、(a)ZWP粒子の表面全体を満遍なく被覆した前記脂肪酸若しくはその誘導体の層上に、該層の表面全体を満遍なく被覆したシラン化合物の層が存在する形態、(b)ZWP粒子の表面全体を満遍なく被覆した前記脂肪酸若しくはその誘導体の層上に、該層の表面の一部のみを被覆したシラン化合物の層が存在する形態、(c)ZWP粒子の表面の一部のみを被覆した前記脂肪酸若しくはその誘導体の層上に、該層を含むZWP粒子の表面全体を満遍なく被覆したシラン化合物の層が存在する形態、(d)ZWP粒子の表面の一部のみを被覆した前記脂肪酸若しくはその誘導体の層と、該粒子の表面の一部のみを被覆したシラン化合物の層がZWP粒子の表面にそれぞれ存在する形態、(e)前記脂肪酸若しくはその誘導体及びシラン化合物の混合物からなる層がZWP粒子の表面全体を満遍なく被覆する形態、又は(f)前記脂肪酸若しくはその誘導体及びシラン化合物の混合物からなる層がZWP粒子の表面の一部のみを被覆する形態が挙げられる。 In the coating form of the modified ZWP with the silane compound, for example, (a) a layer of the silane compound that evenly covers the entire surface of the layer is present on the layer of the fatty acid or its derivative that evenly covers the entire surface of the ZWP particles. (B) A form in which a layer of a silane compound covering only a part of the surface of the layer is present on a layer of the fatty acid or a derivative thereof that evenly covers the entire surface of the ZWP particles, (c) ZWP particles. A form in which a layer of a silane compound that evenly covers the entire surface of the ZWP particles containing the layer exists on the layer of the fatty acid or its derivative that covers only a part of the surface of the ZWP particles, (d) one of the surfaces of the ZWP particles. A form in which a layer of the fatty acid or its derivative coated only with a portion and a layer of a silane compound covering only a part of the surface of the particle are present on the surface of the ZWP particle, (e) the fatty acid or its derivative and silane. Examples thereof include a form in which a layer composed of a mixture of compounds evenly covers the entire surface of ZWP particles, or (f) a form in which a layer composed of a mixture of the fatty acid or a derivative thereof and a silane compound covers only a part of the surface of ZWP particles. Be done.

詳細には、前記形態(a)及び(c)の場合、改質ZWPは、ZWP粒子の表面全域がシラン化合物によって完全に被覆されて、該粒子の表面及び前記脂肪酸又はその誘導体の層の表面が露出していない状態になっている。前記形態(b)の場合、改質ZWPは、その表面が前記脂肪酸又はその誘導体からなる部位と、シラン化合物からなる部位とから構成される。前記形態(d)の場合、改質ZWPの表面が、前記脂肪酸又はその誘導体からなる部位及びシラン化合物からなる部位とから構成されており、これらの構成態様によっては、更に下地であるリン酸タングステン酸ジルコニウムからなる部位が存在する。前記形態(e)の場合、改質ZWPは、ZWP粒子の表面全域が前記脂肪酸又はその誘導体及びシラン化合物の混合物によって完全に被覆されて、該粒子の表面が露出していない状態になっている。前記形態(f)の場合、改質ZWPは、その表面が下地であるリン酸タングステン酸ジルコニウムからなる部位と、前記脂肪酸又はその誘導体及びシラン化合物の混合物からなる部位とから構成される。シラン化合物がZWP粒子又は脂肪酸層の表面の一部のみを被覆している場合、被覆部位が連続していてもよく、海島状に不連続に被覆していてもよく、又はこれらの組み合わせであってもよい。 Specifically, in the case of the forms (a) and (c), in the modified ZWP, the entire surface of the ZWP particles is completely covered with the silane compound, and the surface of the particles and the surface of the layer of the fatty acid or its derivative thereof. Is not exposed. In the case of the form (b), the modified ZWP is composed of a moiety whose surface is composed of the fatty acid or a derivative thereof and a moiety whose surface is composed of a silane compound. In the case of the above form (d), the surface of the modified ZWP is composed of a moiety composed of the fatty acid or its derivative and a moiety composed of a silane compound, and depending on these constitutional modes, tungsten phosphate as a base is further formed. There is a site consisting of zirconium tungate. In the case of the form (e), in the modified ZWP, the entire surface of the ZWP particles is completely covered with the fatty acid or a mixture thereof and a silane compound, so that the surface of the particles is not exposed. .. In the case of the form (f), the modified ZWP is composed of a moiety composed of zirconium tungate phosphate whose surface is a base and a moiety composed of a mixture of the fatty acid or its derivative and a silane compound. When the silane compound covers only a part of the surface of the ZWP particles or the fatty acid layer, the coating sites may be continuous, may be discontinuously coated in a sea-island shape, or a combination thereof. You may.

改質ZWPのシラン化合物の被覆量(存在量)は、ZWP粒子に対し、好ましくは0.05質量%〜30質量%、より好ましくは0.1質量%〜10質量%、更に好ましくは0.2質量%〜5質量%である。被覆量がこのような範囲であることによって、改質ZWPからのジルコニウムイオン、タングステンイオン及びリンイオンの溶出をより一層抑制し、負熱膨張材としての性能を更に高めることができる。また、改質ZWPの疎水性が更に高くなるので、改質ZWPを負熱膨張フィラーとして用いたときに、樹脂等の正熱膨張材への分散性が良好となる。 The coating amount (abundance amount) of the modified ZWP silane compound is preferably 0.05% by mass to 30% by mass, more preferably 0.1% by mass to 10% by mass, and further preferably 0. It is 2% by mass to 5% by mass. When the coating amount is in such a range, the elution of zirconium ions, tungsten ions and phosphorus ions from the modified ZWP can be further suppressed, and the performance as a negative thermal expansion material can be further enhanced. Further, since the hydrophobicity of the modified ZWP is further increased, when the modified ZWP is used as a negative thermal expansion filler, the dispersibility in a positive thermal expansion material such as a resin is improved.

リン酸タングステン酸ジルコニウム粒子の表面を脂肪酸又はその誘導体で被覆した本発明の改質リン酸タングステン酸ジルコニウムによれば、水に接触した場合であっても、リン酸タングステン酸ジルコニウムからのジルコニウム、タングステン及びリンのイオン溶出を効果的に抑制することができ、負熱膨張材としての優れた性能を発現させることができる。また、本発明の改質リン酸タングステン酸ジルコニウムは、脂肪酸に由来する疎水基を有しているので、樹脂等の疎水性の高分子化合物に均一に分散させることができ、その結果、低熱膨張性の材料を首尾よく製造することができる。更に、改質ZWPの粒子どうしの凝集を抑制できるという利点もある。 According to the modified zirconium tungate phosphate of the present invention in which the surface of zirconium tungate phosphate particles is coated with a fatty acid or a derivative thereof, zirconium tungrate from zirconium tungate phosphate, tungsten even when in contact with water. And, the ion elution of phosphorus can be effectively suppressed, and excellent performance as a negative thermal expansion material can be exhibited. Further, since the modified zirconium tungstate phosphate of the present invention has a hydrophobic group derived from a fatty acid, it can be uniformly dispersed in a hydrophobic polymer compound such as a resin, and as a result, low thermal expansion occurs. Sexual materials can be successfully produced. Further, there is an advantage that the agglomeration of the modified ZWP particles can be suppressed.

以下に、本発明の改質ZWPの好適な製造方法を説明する。改質ZWPの製造方法は、ジルコニウム源、タングステン源及びリン源を反応させてZWP粒子を得る工程、及び得られたZWP粒子の表面を脂肪酸又はその誘導体で被覆処理する工程の2つに大別される。 Hereinafter, a suitable method for producing the modified ZWP of the present invention will be described. The method for producing the modified ZWP is roughly divided into two steps: a step of reacting a zirconium source, a tungsten source and a phosphorus source to obtain ZWP particles, and a step of coating the surface of the obtained ZWP particles with a fatty acid or a derivative thereof. Will be done.

まず、ジルコニウム源、タングステン源及びリン源を反応させてZWP粒子を得る。本発明に用いられるZWP粒子の製造方法は、特に制限されるものではなく、例えば、(i)リン酸ジルコニウム、酸化タングステン及びMgO等の反応促進剤を湿式ボールミルで混合して得られた混合物を焼成する方法(例えば、特開2005−35840号公報参照)、(ii)塩化ジルコニウム等のジルコニウム源、タングステン酸アンモニウム等のタングステン源及びリン酸アンモニウム等のリン源を湿式混合し、得られた混合物を焼成する方法(例えば、特開2015−10006号公報参照)、(iii)酸化ジルコニウム、酸化タングステン及びリン酸二水素アンモニウムを含む混合物を焼成する方法(例えば、Materials Research Bulletin、44(2009)、p.2045−2049参照)、或いは、(iv)タングステン化合物と、リンとジルコニウムとを含む無定形の化合物との混合物を反応前駆体として、該反応前駆体を焼成する方法(例えば、国際公開第2017/061402号パンフレット参照)等が挙げられる。 First, the zirconium source, the tungsten source and the phosphorus source are reacted to obtain ZWP particles. The method for producing ZWP particles used in the present invention is not particularly limited, and for example, (i) a mixture obtained by mixing a reaction accelerator such as zirconium phosphate, tungsten oxide and MgO with a wet ball mill is used. Method of firing (see, for example, Japanese Patent Application Laid-Open No. 2005-355840), (ii) A mixture obtained by wet-mixing a zirconium source such as zirconium chloride, a tungsten source such as ammonium tungstate, and a phosphorus source such as ammonium phosphate. (For example, Japanese Patent Application Laid-Open No. 2015-10006), (iii) A method for firing a mixture containing zirconium oxide, tungsten oxide and ammonium dihydrogen phosphate (for example, Materials Research Bulletin, 44 (2009), (See p.2045-249), or (iv) a method of calcining the reaction precursor using a mixture of a tungsten compound and an amorphous compound containing phosphorus and zirconium as a reaction precursor (for example, International Publication No. 1). (Refer to the 2017/061402 pamphlet) and the like.

改質ZWPを正熱膨張材に対するフィラーとして用いる際の取扱いを容易にする観点から、ZWP粒子は、そのBET比表面積が好ましくは0.1m/g〜50m/g、更に好ましくは0.1m/g〜20m/gである。また、改質ZWPのBET比表面積は、上述と同様の範囲とすることができる。BET比表面積は、例えばBET比表面積測定装置(カンタクロームインスツルメンツ株式会社製、AUTOSORB−1)を用いて測定することができる。From the viewpoint of ease of handling when using a reforming ZWP as a filler for positive thermal expansion material, ZWP particles, the BET specific surface area is preferably 0.1m 2 / g~50m 2 / g, more preferably 0. It is 1 m 2 / g to 20 m 2 / g. Further, the BET specific surface area of the modified ZWP can be in the same range as described above. The BET specific surface area can be measured using, for example, a BET specific surface area measuring device (AUTOSORB-1 manufactured by Kantachrome Instruments Co., Ltd.).

同様の観点から、ZWP粒子は、その平均粒子径が好ましくは0.02μm〜50μm、更に好ましくは0.5μm〜30μmである。また、改質ZWPの平均粒子径は、上述と同様の範囲とすることができる。平均粒子径は、任意の100個の粒子を走査型電子顕微鏡を用いて観察し、そのときの粒子の最大長さの算術平均値として求めることができる。 From the same viewpoint, the average particle size of the ZWP particles is preferably 0.02 μm to 50 μm, more preferably 0.5 μm to 30 μm. Further, the average particle size of the modified ZWP can be in the same range as described above. The average particle size can be obtained as an arithmetic mean value of the maximum length of the particles at that time by observing any 100 particles using a scanning electron microscope.

ZWP粒子の粒子形状は、特に制限されるものではなく、例えば、球状、粒状、板状、鱗片状、ウィスカー状、棒状、フィラメント状、破砕状、又はこれらの組み合わせであってもよい。 The particle shape of the ZWP particles is not particularly limited, and may be, for example, spherical, granular, plate-shaped, scaly, whisker-shaped, rod-shaped, filament-shaped, crushed, or a combination thereof.

上述した粒子径や比表面積、粒子形状等の諸特性を工業的に有利な方法で制御しやすく、且つ負熱膨張性に優れた改質ZWPを得る観点から、ZWP粒子の製造方法として、前記方法(iv)で製造されたZWP粒子を用いることが好ましい。 As a method for producing ZWP particles, the above-mentioned method for producing ZWP particles is described from the viewpoint of obtaining modified ZWP having excellent negative thermal expansion and easy control of various characteristics such as particle size, specific surface area, and particle shape by an industrially advantageous method. It is preferable to use the ZWP particles produced by the method (iv).

次いで、上述の方法で得られたZWP粒子の表面を脂肪酸又はその誘導体で被覆処理する。本工程は、湿式法又は乾式法で行うことができる。 Next, the surface of the ZWP particles obtained by the above method is coated with a fatty acid or a derivative thereof. This step can be performed by a wet method or a dry method.

脂肪酸又はその誘導体の被覆処理を湿式法によって行う場合、例えば前記脂肪酸又はその誘導体を所望の濃度で含む分散液にZWP粒子を浸漬してスラリーとし、該スラリーを噴霧乾燥するか、又は該スラリーを固液分離して、得られた固形分を乾燥することによって、目的とする改質ZWPを得ることができる。分散液における前記脂肪酸又はその誘導体の濃度は、改質ZWPにおける脂肪酸又はその誘導体の被覆量が上述した範囲となるように適宜調整すればよい。 When the coating treatment of the fatty acid or its derivative is carried out by a wet method, for example, ZWP particles are immersed in a dispersion liquid containing the fatty acid or its derivative at a desired concentration to form a slurry, and the slurry is spray-dried or the slurry is prepared. The desired modified ZWP can be obtained by solid-liquid separation and drying the obtained solid content. The concentration of the fatty acid or its derivative in the dispersion may be appropriately adjusted so that the coating amount of the fatty acid or its derivative in the modified ZWP is within the above-mentioned range.

脂肪酸又はその誘導体の被覆処理を乾式法によって行う場合、例えばZWP粒子と、固体の前記脂肪酸又はその誘導体とを、ヘンシェルミキサー、気流式粉砕機等の混合装置を用いて混合するか、又は、ZWP粒子と、前記脂肪酸又はその誘導体を溶剤で希釈した希釈液とを混合し、その後、必要に応じて加熱乾燥することによって、目的とする改質ZWPを得ることができる。乾式法においては、ZWP粒子と、前記脂肪酸又はその誘導体との混合物をそのまま用いて改質ZWPを製造するので、前記脂肪酸又はその誘導体の仕込み量と、被覆量とは、略一致する。 When the coating treatment of the fatty acid or its derivative is carried out by a dry method, for example, the ZWP particles and the solid fatty acid or its derivative are mixed using a mixing device such as a Henschel mixer or an air flow crusher, or ZWP. The desired modified ZWP can be obtained by mixing the particles with a diluted solution obtained by diluting the fatty acid or its derivative with a solvent, and then heating and drying the mixture, if necessary. In the dry method, the modified ZWP is produced by using the mixture of the ZWP particles and the fatty acid or its derivative as it is, so that the charged amount of the fatty acid or its derivative and the coating amount are substantially the same.

このように製造された本発明の改質ZWPは、水の存在下であっても、改質ZWPからのイオン溶出が抑制され、負熱膨張材として好適に用いられるものである。本発明の改質ZWPは、1gの改質ZWPを85℃の水70mLで1時間加熱処理し、次いで25℃まで冷却して24時間静置したときの、該水中に溶出するジルコニウム(Zr)イオン量は、その質量として、好ましくは20μg以下、更に好ましくは10μg以下であり、タングステン(W)イオン量が好ましくは400μg以下、更に好ましくは300μg以下であり、且つリン(P)イオン量が好ましくは100μg以下、更に好ましくは50μg以下である。これらのイオン量は、イオンの価数によらず、Zr,W,Pの各元素の総イオン量が上述の範囲以下であればよい。各イオン量は、例えばICP発光分光装置を用いて測定することができる。 The modified ZWP of the present invention produced in this manner is suitably used as a negative thermal expansion material because ion elution from the modified ZWP is suppressed even in the presence of water. The modified ZWP of the present invention is a zirconium (Zr) eluted in the water when 1 g of the modified ZWP is heat-treated with 70 mL of water at 85 ° C. for 1 hour, then cooled to 25 ° C. and allowed to stand for 24 hours. The amount of ions is preferably 20 μg or less, more preferably 10 μg or less, the amount of tungsten (W) ions is preferably 400 μg or less, further preferably 300 μg or less, and the amount of phosphorus (P) ions is preferable. Is 100 μg or less, more preferably 50 μg or less. The total amount of ions of each element of Zr, W, and P may be less than or equal to the above range regardless of the valence of the ions. Each ion amount can be measured using, for example, an ICP emission spectroscope.

上述した改質ZWPの各種物性は、例えば上述した物性及び形状を有するZWP粒子を用い、前記脂肪酸又はその誘導体との反応量を適宜調整することによって達成することができる。 The various physical properties of the modified ZWP described above can be achieved, for example, by using ZWP particles having the above-mentioned physical properties and shape and appropriately adjusting the amount of reaction with the fatty acid or its derivative.

湿式法及び乾式法のいずれの方法で被覆処理を行った場合であっても、被覆処理後に加熱処理を更に行うことが好ましい。加熱処理の温度は、好ましくは70℃〜230℃、更に好ましくは100℃〜210℃であり、加熱処理する時間は、好ましくは30分以上、更に好ましくは1時間〜10時間である。また、加熱処理における雰囲気は、真空、不活性ガス雰囲気或いは大気雰囲気のいずれであってもよい。加熱処理を施すことによって、ZWP粒子の表面に存在する前記脂肪酸又はその誘導体が緻密な構造となり、水の存在下での改質ZWPからのイオン溶出が一層抑制される。その結果、負熱膨張性に優れた改質ZWPを得ることができる。 Regardless of whether the coating treatment is performed by a wet method or a dry method, it is preferable to further perform the heat treatment after the coating treatment. The temperature of the heat treatment is preferably 70 ° C. to 230 ° C., more preferably 100 ° C. to 210 ° C., and the time of the heat treatment is preferably 30 minutes or more, more preferably 1 hour to 10 hours. The atmosphere in the heat treatment may be a vacuum, an inert gas atmosphere, or an atmospheric atmosphere. By performing the heat treatment, the fatty acid or its derivative existing on the surface of the ZWP particles becomes a dense structure, and ion elution from the modified ZWP in the presence of water is further suppressed. As a result, a modified ZWP having excellent negative thermal expansion can be obtained.

加熱処理を行う場合、加熱処理の温度は、前記脂肪酸又はその誘導体の融点以上であり、且つ前記脂肪酸又はその誘導体の分解点より低い温度であることが特に好ましい。このような加熱温度で処理することによって、ZWP粒子の表面に存在する被覆層が一層緻密な構造となり、水の存在下での改質ZWPからのイオン溶出がより一層抑制される。 When the heat treatment is performed, it is particularly preferable that the temperature of the heat treatment is equal to or higher than the melting point of the fatty acid or its derivative and lower than the decomposition point of the fatty acid or its derivative. By treating at such a heating temperature, the coating layer existing on the surface of the ZWP particles has a more dense structure, and ion elution from the modified ZWP in the presence of water is further suppressed.

本発明において、シランカップリング剤による被覆処理を行って、シラン化合物で被覆された改質ZWP(以下、これを「Si処理改質ZWP」ともいう。)は、以下の方法(A)又は(B)によって製造することができる。いずれの方法であっても、本発明の効果は十分に奏される。 In the present invention, the modified ZWP coated with a silane compound by coating with a silane coupling agent (hereinafter, this is also referred to as "Si-treated modified ZWP") is the following method (A) or ( It can be manufactured according to B). Regardless of which method is used, the effects of the present invention can be fully achieved.

方法(A)は、原料となるZWP粒子を、脂肪酸又はその誘導体で被覆処理し、次いで、シランカップリング剤で被覆処理して、Si処理改質ZWPとするものである。本方法では、前記形態(a)ないし(d)のうちいずれかの形態を有する改質ZWPが好適に製造される。 In the method (A), ZWP particles as a raw material are coated with a fatty acid or a derivative thereof, and then coated with a silane coupling agent to obtain Si-treated modified ZWP. In this method, a modified ZWP having any one of the forms (a) to (d) is preferably produced.

詳細には、方法(A)は、上述のようにZWP粒子を前記脂肪酸又はその誘導体で被覆処理し、次いで、シランカップリング剤による被覆処理を湿式又は乾式で行う。 Specifically, in the method (A), the ZWP particles are coated with the fatty acid or a derivative thereof as described above, and then the coating treatment with a silane coupling agent is performed wet or dry.

シランカップリング剤の被覆処理を湿式法によって行う場合は、後述するシランカップリング剤を所望の濃度で含む分散液に、前記脂肪酸又はその誘導体で被覆処理されたZWP粒子を浸漬してスラリーとし、該スラリーを噴霧乾燥するか、或いは該スラリーを固液分離して固形分を乾燥して、シランカップリング剤を加水分解及び縮合させる。これによって、目的とするSi処理改質ZWPを得ることができる。分散液におけるシランカップリング剤の濃度は、改質ZWPにおけるシラン化合物の被覆量が上述した範囲となるように適宜調整すればよい。 When the coating treatment of the silane coupling agent is performed by a wet method, ZWP particles coated with the fatty acid or a derivative thereof are immersed in a dispersion liquid containing the silane coupling agent described later at a desired concentration to form a slurry. The slurry is spray-dried or the slurry is solid-liquid separated to dry the solids to hydrolyze and condense the silane coupling agent. As a result, the desired Si-treated modified ZWP can be obtained. The concentration of the silane coupling agent in the dispersion may be appropriately adjusted so that the coating amount of the silane compound in the modified ZWP is within the above range.

シランカップリング剤の被覆処理を乾式法によって行う場合、例えば前記脂肪酸又はその誘導体で被覆処理されたZWP粒子と、シランカップリング剤とを、ヘンシェルミキサー、気流式粉砕機等の混合装置を用いて混合するか、又は、前記脂肪酸又はその誘導体で被覆処理されたZWP粒子と、シランカップリング剤を溶剤で希釈した希釈液とを混合し、その後、必要に応じて上述した条件で加熱処理して、シランカップリング剤を加水分解及び縮合させる。これによって、目的とするSi処理改質ZWPを得ることができる。乾式法においては、前記脂肪酸又はその誘導体で被覆処理されたZWP粒子と、シランカップリング剤との混合物をそのまま用いて改質ZWPを製造するので、シラン化合物の被覆量は、シランカップリング剤の仕込み量から理論的に算出された値と略一致する。 When the coating treatment of the silane coupling agent is carried out by a dry method, for example, the ZWP particles coated with the fatty acid or a derivative thereof and the silane coupling agent are mixed with a mixing device such as a Henschel mixer or an air flow type crusher. ZWP particles coated with the fatty acid or a derivative thereof are mixed, or a diluent obtained by diluting a silane coupling agent with a solvent is mixed, and then, if necessary, heat-treated under the above-mentioned conditions. , The silane coupling agent is hydrolyzed and condensed. As a result, the desired Si-treated modified ZWP can be obtained. In the dry method, the modified ZWP is produced by using the mixture of the ZWP particles coated with the fatty acid or its derivative and the silane coupling agent as they are, so that the coating amount of the silane compound is the amount of the silane coupling agent. It is almost the same as the value theoretically calculated from the amount charged.

また方法(B)は、原料であるZWP粒子を、脂肪酸又はその誘導体で被覆処理するとともに、シランカップリング剤で被覆処理して、Si処理改質ZWPとするものである。つまり、ZWP粒子に対する各被覆処理を一度の工程で行うものである。本方法では、前記形態(e)又は(f)の形態を有する改質ZWPが好適に製造される。 Further, in the method (B), ZWP particles as a raw material are coated with a fatty acid or a derivative thereof and coated with a silane coupling agent to obtain Si-treated modified ZWP. That is, each coating treatment on the ZWP particles is performed in one step. In this method, a modified ZWP having the form (e) or (f) is preferably produced.

脂肪酸又はその誘導体による処理と、シランカップリング剤による処理とを湿式法によって行う場合は、前記脂肪酸又はその誘導体及びシランカップリング剤をそれぞれ所望の濃度で含む分散液に、ZWP粒子を浸漬してスラリーとし、該スラリーを噴霧乾燥するか、或いは該スラリーを固液分離して固形分を乾燥して、シランカップリング剤を加水分解及び縮合させる。これによって、目的とするSi処理改質ZWPを得ることができる。分散液における前記脂肪酸又はその誘導体及びシランカップリング剤の濃度は、改質ZWPにおける前記脂肪酸又はその誘導体及びシラン化合物の被覆量がそれぞれ上述した範囲となるように適宜調整すればよい。 When the treatment with the fatty acid or its derivative and the treatment with the silane coupling agent are performed by a wet method, the ZWP particles are immersed in a dispersion liquid containing the fatty acid or its derivative and the silane coupling agent at desired concentrations. The slurry is prepared by spray drying, or the slurry is solid-liquid separated to dry the solid content, and the silane coupling agent is hydrolyzed and condensed. As a result, the desired Si-treated modified ZWP can be obtained. The concentration of the fatty acid or its derivative and the silane coupling agent in the dispersion may be appropriately adjusted so that the coating amount of the fatty acid or its derivative and the silane compound in the modified ZWP is within the above-mentioned range.

脂肪酸又はその誘導体による処理と、シランカップリング剤による処理とを乾式法によって行う場合、例えばZWP粒子、前記脂肪酸またはその誘導体及びシランカップリング剤を、ヘンシェルミキサー、気流式粉砕機等の混合装置を用いて一度に混合するか、又は、ZWP粒子と、前記脂肪酸又はその誘導体及びシランカップリング剤をともに溶剤で希釈した希釈液とを混合し、その後、必要に応じて加熱等の乾燥を行って、シランカップリング剤を加水分解及び縮合させる。これによって、目的とするSi処理改質ZWPを得ることができる。乾式法においては、記脂肪酸又はその誘導体で被覆処理されたZWP粒子とシランカップリング剤との混合物をそのまま用いて改質ZWPを製造するので、シラン化合物の被覆量は、シランカップリング剤の仕込み量から理論的に算出された値と略一致する。 When the treatment with the fatty acid or its derivative and the treatment with the silane coupling agent are carried out by a dry method, for example, ZWP particles, the fatty acid or its derivative and the silane coupling agent are mixed with a mixing device such as a Henschel mixer or an air flow type crusher. Use to mix them all at once, or mix the ZWP particles with a diluent obtained by diluting the fatty acid or its derivative and a silane coupling agent together with a solvent, and then, if necessary, dry by heating or the like. , The silane coupling agent is hydrolyzed and condensed. As a result, the desired Si-treated modified ZWP can be obtained. In the dry method, the modified ZWP is produced by using the mixture of the ZWP particles coated with the fatty acid or its derivative and the silane coupling agent as they are, so that the coating amount of the silane compound is the preparation of the silane coupling agent. It is in good agreement with the value theoretically calculated from the quantity.

前記方法(B)で得られたSi処理改質ZWPは、湿式法及び乾式法のいずれの方法で被覆処理を行った場合であっても、被覆処理後に加熱処理を更に行うことが好ましい。加熱処理の温度は、好ましくは70℃〜230℃、更に好ましくは100℃〜210℃であり、加熱処理する時間は、好ましくは30分以上、更に好ましくは1時間〜10時間である。また、加熱処理における雰囲気は、真空、不活性ガス雰囲気或いは大気雰囲気のいずれであってもよい。加熱処理を施すことによって、ZWP粒子の表面に存在する被覆層が緻密な構造となり、水の存在下での改質ZWPからのイオン溶出がより一層抑制される。その結果、負熱膨張フィラーとしての性能に一層優れた改質ZWPを得ることができる。 The Si-treated modified ZWP obtained by the method (B) is preferably further heat-treated after the coating treatment, regardless of whether the coating treatment is performed by a wet method or a dry method. The temperature of the heat treatment is preferably 70 ° C. to 230 ° C., more preferably 100 ° C. to 210 ° C., and the time of the heat treatment is preferably 30 minutes or more, more preferably 1 hour to 10 hours. The atmosphere in the heat treatment may be a vacuum, an inert gas atmosphere, or an atmospheric atmosphere. By performing the heat treatment, the coating layer existing on the surface of the ZWP particles has a dense structure, and ion elution from the modified ZWP in the presence of water is further suppressed. As a result, a modified ZWP having further excellent performance as a negative thermal expansion filler can be obtained.

Si処理改質ZWPの製造の際に加熱処理を行う場合、加熱処理の温度は、前記脂肪酸又はその誘導体の融点以上であり、且つ前記脂肪酸又はその誘導体の分解点より低い温度であることが特に好ましい。このような加熱温度で処理することによって、ZWP粒子の表面に存在する被覆層が一層緻密な構造となり、水の存在下での改質ZWPからのイオン溶出がより一層抑制される。 When heat treatment is performed during the production of Si-treated modified ZWP, the temperature of the heat treatment is particularly higher than the melting point of the fatty acid or its derivative and lower than the decomposition point of the fatty acid or its derivative. preferable. By treating at such a heating temperature, the coating layer existing on the surface of the ZWP particles has a more dense structure, and ion elution from the modified ZWP in the presence of water is further suppressed.

前記シランカップリング剤としては、疎水性のものが好ましく、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、アミノシラン、γ−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、ベンジルジメチルクロルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ブチルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ユレイドプロピルトリエトトキシシラン、アミノフッ素シラン等が挙げられる。 The silane coupling agent is preferably hydrophobic, for example, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, aminosilane, γ-amino. Propyltriethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, hexamethyldisilazane, trimethylsilane, Trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorsilane, benzyldimethylchlorsilane, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane , Hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltri Methoxysilane, vinyltriacetoxysilane, γ-chloropropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, N Examples thereof include −β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-ureidopropyltrietoxysilane, and aminofluorinesilane.

以上の工程を経て得られた本発明の改質ZWPは、これをそのまま粉末等の乾燥状態で、又は該粉末を溶媒に分散させた湿潤状態で、低熱膨張性材料を製造するための負熱膨張フィラーとして好適に用いることができる。 The modified ZWP of the present invention obtained through the above steps has a negative heat for producing a low thermal expansion material in a dry state such as powder as it is, or in a wet state in which the powder is dispersed in a solvent. It can be suitably used as an expansion filler.

また、本発明の負熱膨張フィラーは、該負熱膨張フィラーと高分子化合物とを混合することによって、高分子組成物を製造することができる。この高分子組成物は、改質ZWPが備える高い負熱膨張性に起因して、熱膨張率が抑制された材料となる。 Further, the negative thermal expansion filler of the present invention can produce a polymer composition by mixing the negative thermal expansion filler with a polymer compound. This polymer composition is a material in which the coefficient of thermal expansion is suppressed due to the high negative thermal expansion property of the modified ZWP.

本発明の高分子組成物に用いられる高分子化合物としては、特に制限されるものではないが、好ましくは正熱膨張性を有する樹脂等である。このような樹脂としては、例えばゴム、ポリオレフィン樹脂、ポリシクロオレフィン樹脂、ポリスチレン樹脂、ABS樹脂、ポリアクリレート樹脂、ポリフェニレンスルファイド樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂(PET樹脂)及びポリ塩化ビニル樹脂等が挙げられる。これらは単独で又は複数組み合わせて用いることができる。 The polymer compound used in the polymer composition of the present invention is not particularly limited, but is preferably a resin having positive thermal expansion. Examples of such resins include rubber, polyolefin resin, polycycloolefin resin, polystyrene resin, ABS resin, polyacrylate resin, polyphenylene sulfide resin, phenol resin, polyamide resin, polyimide resin, epoxy resin, silicone resin, and polycarbonate resin. , Polyethylene resin, polypropylene resin, polyethylene terephthalate resin (PET resin), polyvinyl chloride resin and the like. These can be used alone or in combination of two or more.

高分子組成物中の負熱膨張フィラーの含有量は、用いる高分子化合物の種類や、製造する材料の用途や目的に応じて適宜変更することができるが、高分子組成物に対して、好ましくは1体積%〜90体積%である。同様に、高分子組成物中の高分子化合物の含有量は、高分子組成物に対して、好ましくは10体積%〜99体積%である。 The content of the negative thermal expansion filler in the polymer composition can be appropriately changed depending on the type of the polymer compound used and the use and purpose of the material to be produced, but is preferable with respect to the polymer composition. Is 1% by volume to 90% by volume. Similarly, the content of the polymer compound in the polymer composition is preferably 10% by volume to 99% by volume with respect to the polymer composition.

高分子組成物は、負熱膨張フィラー及び高分子化合物に加えて、添加剤を更に含有させることができる。添加剤としては、例えば酸化防止剤、熱安定剤、紫外線吸収剤、滑剤、離剤、染料、顔料を含む着色剤、難燃剤、架橋剤、軟化剤、分散剤、硬化剤、重合開始剤、無機充填剤等が挙げられる。添加物の含有量は、高分子組成物に対して、好ましくは10体積%〜90体積%である。 The polymer composition can further contain additives in addition to the negative thermal expansion filler and the polymer compound. Additives include, for example, antioxidants, heat stabilizers, UV absorbers, lubricants, release agents, dyes, colorants containing pigments, flame retardants, cross-linking agents, softeners, dispersants, curing agents, polymerization initiators, etc. Examples include inorganic fillers. The content of the additive is preferably 10% by volume to 90% by volume with respect to the polymer composition.

本発明の高分子組成物は、公知の方法によって製造することができる。例えば、高分子化合物として硬化性樹脂を用いる場合、負熱膨張フィラー、硬化性樹脂(或いはプレポリマー)及び必要に応じて添加物を同時に混合して、成形体とする方法や、樹脂成分の一種にあらかじめ負熱膨張フィラー及び必要に応じて添加剤と混合して混合物とし、次いで、該混合物を硬化性樹脂(或いはプレポリマー)と混合して成形体とする方法等が挙げられる。 The polymer composition of the present invention can be produced by a known method. For example, when a curable resin is used as the polymer compound, a method of simultaneously mixing a negative thermosetting filler, a curable resin (or prepolymer) and, if necessary, an additive to form a molded product, or a type of resin component. Examples thereof include a method in which a negative thermosetting filler and, if necessary, an additive are mixed in advance to form a mixture, and then the mixture is mixed with a curable resin (or a prepolymer) to form a molded product.

また、高分子化合物として熱可塑性樹脂を用いる場合、負熱膨張フィラーと熱可塑性樹脂とをエクストルーダーで溶融混合して成形体とする方法や、負熱膨張フィラーと熱可塑性樹脂とを固体状態で混合した混合物を射出成形機を用いて成形体とする方法等が挙げられる。 When a thermoplastic resin is used as the polymer compound, a method of melting and mixing the negative thermal expansion filler and the thermoplastic resin with an extruder to form a molded product, or a method of melt-mixing the negative thermal expansion filler and the thermoplastic resin in a solid state Examples thereof include a method of forming a molded product from the mixed mixture using an injection molding machine.

このように製造された本発明の高分子組成物は、負熱膨張フィラーとして用いられる改質ZWPが備える高い負熱膨張性によって、熱膨張率が効果的に抑制され、熱による変形が生じづらい材料となる。また、負熱膨張フィラーとして用いられる改質ZWPからのイオンの溶出が少ないので、特に、電子部品の封止材料等の精密機器の材料として好適に用いることができる。 The polymer composition of the present invention produced in this manner has a high coefficient of negative thermal expansion provided by the modified ZWP used as a negative thermal expansion filler, so that the coefficient of thermal expansion is effectively suppressed and deformation due to heat is unlikely to occur. It becomes a material. Further, since the elution of ions from the modified ZWP used as a negative thermal expansion filler is small, it can be suitably used as a material for precision equipment such as a sealing material for electronic parts.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.

<リン酸タングステン酸ジルコニウム粒子(ZWP粒子)の調製>
(1.ZWP粒子試料1)
市販の三酸化タングステン(WO;平均粒子径1.2μm)15質量部をビーカーに入れ、更に純水84質量部を添加し、分散剤としてポリカルボン酸アンモニウム塩を1質量部添加し、分散液とした。この分散液を室温(25℃)でスリーワンモーター攪拌機を用いて120分間撹拌して、三酸化タングステンを含む15質量%スラリーを調製した。スラリー中の固形分の平均粒子径は1.2μmであった。
<Preparation of zirconium tungate phosphate particles (ZWP particles)>
(1. ZWP particle sample 1)
15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle diameter 1.2 μm) was placed in a beaker, 84 parts by mass of pure water was further added, and 1 part by mass of an ammonium polycarboxylic acid salt was added as a dispersant to disperse. It was made into a liquid. This dispersion was stirred at room temperature (25 ° C.) for 120 minutes using a three-one motor stirrer to prepare a 15% by mass slurry containing tungsten trioxide. The average particle size of the solid content in the slurry was 1.2 μm.

次いで、スラリー中のZr:W:Pのモル比が2.00:1.00:2.00となるように、水酸化ジルコニウムと85質量%リン酸水溶液とを室温(25℃)でスラリーに添加し、反応液とした。この反応液を用いて、室温(25℃)で2時間、撹拌下で反応させた。反応終了後の反応液の全量を、200℃で24時間、大気下で乾燥を行って、反応前駆体を得た。得られた反応前駆体についてX線回折分析を行った結果、三酸化タングステンの回折ピークのみが観察された。 Next, zirconium hydride and an 85 mass% phosphoric acid aqueous solution were added to the slurry at room temperature (25 ° C.) so that the molar ratio of Zr: W: P in the slurry was 2.00: 1.00: 2.00. It was added to prepare a reaction solution. Using this reaction solution, the reaction was carried out at room temperature (25 ° C.) for 2 hours with stirring. After completion of the reaction, the entire amount of the reaction solution was dried at 200 ° C. for 24 hours in the air to obtain a reaction precursor. As a result of performing X-ray diffraction analysis on the obtained reaction precursor, only the diffraction peak of tungsten trioxide was observed.

続いて、得られた反応前駆体を950℃で2時間、大気中で焼成を行い、焼成品として白色のZWP粒子試料1を得た。得られたZWP粒子試料1についてX線回折分析を行ったところ、該試料1は、単相のZr(WO)(POであった。ZWP粒子試料1の平均粒子径及びBET比表面積を表1に示す。また、走査型電子顕微鏡観察を行った結果、得られたZWP粒子試料1の粒子形状は、図1に示すように破砕状であった。Subsequently, the obtained reaction precursor was calcined at 950 ° C. for 2 hours in the air to obtain a white ZWP particle sample 1 as a calcined product. When the obtained ZWP particle sample 1 was subjected to X-ray diffraction analysis, the sample 1 was a single-phase Zr 2 (WO 4 ) (PO 4 ) 2 . Table 1 shows the average particle size and BET specific surface area of the ZWP particle sample 1. Further, as a result of observing with a scanning electron microscope, the particle shape of the obtained ZWP particle sample 1 was crushed as shown in FIG.

(2.ZWP粒子試料2)
市販の三酸化タングステン(WO;平均粒子径1.2μm)15質量部をビーカーに入れ、更に純水84質量部を添加し、分散液とした。この分散液を室温(25℃)で120分間撹拌して、三酸化タングステンを含む15質量%スラリーを調製した。スラリー中の固形分の平均粒子径は1.2μmであった。
(2. ZWP particle sample 2)
15 parts by mass of commercially available tungsten trioxide (WO 3 ; average particle size 1.2 μm) was placed in a beaker, and 84 parts by mass of pure water was further added to prepare a dispersion liquid. This dispersion was stirred at room temperature (25 ° C.) for 120 minutes to prepare a 15% by mass slurry containing tungsten trioxide. The average particle size of the solid content in the slurry was 1.2 μm.

次いで、スラリー中のZr:W:P:Mgのモル比が2.00:1.00:2.00:0.1となるように、水酸化ジルコニウムと、85質量%リン酸水溶液と、水酸化マグネシウムとを室温(25℃)でスラリーに添加し、反応液とした。この反応液を80℃に昇温して4時間撹拌下に反応を行った。その後、反応終了後の反応液に、分散剤としてポリカルボン酸アンモニウム塩を1質量部添加し、これを攪拌しながら、直径0.5mmのジルコニアビーズをメディア攪拌型ビーズミル(アシザワファインテック社製、LMZ2)に供給し、2000rpmで15分間湿式粉砕を行った。湿式粉砕後の反応液中の固形分の平均粒子径は0.3μmであった。 Next, zirconium hydride, an 85 mass% phosphoric acid aqueous solution, and water so that the molar ratio of Zr: W: P: Mg in the slurry is 2.00: 1.00: 2.00: 0.1. Magnesium oxide was added to the slurry at room temperature (25 ° C.) to prepare a reaction solution. The temperature of this reaction solution was raised to 80 ° C., and the reaction was carried out under stirring for 4 hours. Then, 1 part by mass of an ammonium polycarboxylic acid salt was added as a dispersant to the reaction solution after completion of the reaction, and while stirring this, zirconia beads having a diameter of 0.5 mm were mixed with a media stirring type bead mill (manufactured by Ashizawa Finetech Co., Ltd.). It was supplied to LMZ2) and wet-ground at 2000 rpm for 15 minutes. The average particle size of the solid content in the reaction solution after wet pulverization was 0.3 μm.

続いて、湿式粉砕後の反応液を、220℃に設定したスプレードライヤーに、2.4L/hの供給速度で供給し、反応前駆体を得た。得られた反応前駆体についてX線回折分析を行った結果、三酸化タングステンの回折ピークのみが観察された。 Subsequently, the reaction solution after wet pulverization was supplied to a spray dryer set at 220 ° C. at a supply rate of 2.4 L / h to obtain a reaction precursor. As a result of performing X-ray diffraction analysis on the obtained reaction precursor, only the diffraction peak of tungsten trioxide was observed.

最後に、得られた反応前駆体を960℃で2時間、大気中で焼成し、焼成品として白色のZWP粒子試料2を得た。得られたZWP粒子試料2をX線回折分析したところ
、該試料2は単相のZr(WO)(POであった。ZWP粒子試料2の平均粒子径及びBET比表面積を表1に示す。また、走査型電子顕微鏡観察を行った結果、得られたZWP粒子試料2の粒子形状は、図2に示すように球状であった。
Finally, the obtained reaction precursor was calcined at 960 ° C. for 2 hours in the air to obtain a white ZWP particle sample 2 as a calcined product. When the obtained ZWP particle sample 2 was subjected to X-ray diffraction analysis, the sample 2 was a single-phase Zr 2 (WO 4 ) (PO 4 ) 2 . Table 1 shows the average particle size and BET specific surface area of the ZWP particle sample 2. Further, as a result of observing with a scanning electron microscope, the particle shape of the obtained ZWP particle sample 2 was spherical as shown in FIG.

Figure 2020095837
Figure 2020095837

(実施例1)
50gのZWP粒子試料1と、0.25g(0.5質量%)のステアリン酸(融点:62℃〜72℃)とを、気流式粉砕機(セイシン企業製、A−Oジェットミル)で粉砕混合して粉体混合物とし、該混合物を100℃で30分加熱処理して、ZWP粒子の表面が脂肪酸で被覆された改質ZWPを得た。この改質ZWPは、破砕状の粒子であった。気流式粉砕機の条件は、粉体供給速度:3g/分、プッシャー圧:0.6MPa、ジェット圧:0.6MPaとした。
(Example 1)
50 g of ZWP particle sample 1 and 0.25 g (0.5 mass%) of stearic acid (melting point: 62 ° C. to 72 ° C.) are pulverized with an air flow crusher (AO jet mill manufactured by Seishin Enterprise Co., Ltd.). The mixture was mixed to obtain a powder mixture, and the mixture was heat-treated at 100 ° C. for 30 minutes to obtain a modified ZWP in which the surface of ZWP particles was coated with a fatty acid. This modified ZWP was crushed particles. The conditions of the airflow type crusher were powder supply rate: 3 g / min, pusher pressure: 0.6 MPa, and jet pressure: 0.6 MPa.

(実施例2)
ZWP粒子試料1とステアリン酸との粉体混合物を200℃で30分加熱処理したほかは実施例1と同様の方法で行い、ZWP粒子の表面が脂肪酸で被覆された改質ZWPを得た。この改質ZWPは、破砕状の粒子であった。
(Example 2)
The powder mixture of the ZWP particle sample 1 and stearic acid was heat-treated at 200 ° C. for 30 minutes in the same manner as in Example 1 to obtain a modified ZWP in which the surface of the ZWP particles was coated with a fatty acid. This modified ZWP was crushed particles.

(実施例3)
50gのZWP粒子試料1と、0.25g(0.5質量%)のステアリン酸(融点:62℃〜72℃)と、0.25g(0.5質量%)のシランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)とを気流式粉砕機(セイシン企業製、A−Oジェットミル)で粉砕混合して粉体混合物とし、該混合物を200℃で30分加熱処理して、ZWP粒子の表面が脂肪酸及びシラン化合物で被覆された改質ZWPを得た。気流式粉砕機の条件は、実施例1と同様とした。この改質ZWPは、破砕状の粒子であった。
(Example 3)
50 g of ZWP particle sample 1, 0.25 g (0.5% by mass) of stearic acid (melting point: 62 ° C. to 72 ° C.), and 0.25 g (0.5% by mass) of silane coupling agent (γ-). Glycydoxypropyltrimethoxysilane) is pulverized and mixed with an air flow crusher (AO jet mill manufactured by Seishin Enterprise Co., Ltd.) to obtain a powder mixture, and the mixture is heat-treated at 200 ° C. for 30 minutes to produce ZWP particles. A modified ZWP whose surface was coated with a fatty acid and a silane compound was obtained. The conditions of the airflow crusher were the same as in Example 1. This modified ZWP was crushed particles.

(実施例4)
50gのZWP粒子試料2と、0.25g(0.5質量%)のステアリン酸(融点:62℃〜72℃)と、0.25g(0.5質量%)のシランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)を加えて、20000rpmで1分間、混合機(ラボ用ミキサー:Labo Milser)で混合して粉体混合物とし、該混合物を200℃で30分加熱処理して、ZWP粒子の表面が脂肪酸及びシラン化合物で被覆された改質ZWPを得た。この改質ZWPは、球状の粒子であった。
(Example 4)
50 g of ZWP particle sample 2, 0.25 g (0.5% by mass) of stearic acid (melting point: 62 ° C. to 72 ° C.), and 0.25 g (0.5% by mass) of silane coupling agent (γ-). Glycydoxypropyltrimethoxysilane) is added and mixed at 20000 rpm for 1 minute in a mixer (laboratory mixer: Labo Miller) to obtain a powder mixture, and the mixture is heat-treated at 200 ° C. for 30 minutes to generate ZWP. A modified ZWP in which the surface of the particles was coated with a fatty acid and a silane compound was obtained. This modified ZWP was spherical particles.

(実施例5)
50gのZWP粒子試料1と、0.25g(0.5質量%)のステアリン酸亜鉛(融点:128℃〜140℃)を前記気流式粉砕機で粉砕混合して粉体混合物とし、該混合物を200℃で30分加熱処理して、ZWP粒子の表面が脂肪酸誘導体で被覆された改質ZWPを得た。気流式粉砕機の条件は、実施例1と同様とした。この改質ZWPは、破砕状の粒子であった。
(Example 5)
50 g of ZWP particle sample 1 and 0.25 g (0.5 mass%) of zinc stearate (melting point: 128 ° C. to 140 ° C.) were pulverized and mixed by the air flow type crusher to obtain a powder mixture, and the mixture was prepared. The mixture was heat-treated at 200 ° C. for 30 minutes to obtain a modified ZWP in which the surface of the ZWP particles was coated with a fatty acid derivative. The conditions of the airflow crusher were the same as in Example 1. This modified ZWP was crushed particles.

(比較例1及び2)
ZWP粒子試料1のみを比較例1とし、ZWP粒子試料2のみを比較例2とした。つまり、各比較例は、ZWP粒子のみを用いており、該粒子表面が脂肪酸及びその誘導体並びにシラン化合物で被覆されていないものである。
(Comparative Examples 1 and 2)
Only the ZWP particle sample 1 was designated as Comparative Example 1, and only the ZWP particle sample 2 was designated as Comparative Example 2. That is, each Comparative Example uses only ZWP particles, and the surface of the particles is not coated with a fatty acid, a derivative thereof, or a silane compound.

(比較例3)
50gのZWP粒子試料1と、0.25g(0.5質量%)のシランカップリング剤(γ−グリシドキシプロピルトリメトキシシラン)とを用い、加熱処理を行わなかったほかは、実施例3と同様に改質ZWPを得た。本比較例は、脂肪酸又はその誘導体を用いておらず、ZWP粒子の表面をシラン化合物のみで被覆したものである。この改質ZWPは、破砕状の粒子であった。
(Comparative Example 3)
Example 3 except that 50 g of ZWP particle sample 1 and 0.25 g (0.5% by mass) of a silane coupling agent (γ-glycidoxypropyltrimethoxysilane) were used and no heat treatment was performed. The modified ZWP was obtained in the same manner as in the above. In this comparative example, the surface of ZWP particles is coated only with a silane compound without using a fatty acid or a derivative thereof. This modified ZWP was crushed particles.

<物性の評価>
(粉体の熱膨張係数の評価)
実施例及び比較例で得られた粒子について、昇温機能が付いたXRD装置(リガク社 Ultima IV)にて、昇温速度20℃/分で、25℃から目標温度を100℃として昇温させ、目標温度に到達してから10分後に、試料のa軸、b軸、c軸に対する格子定数を測定した。次いで、目標温度を200℃、300℃、及び400℃として順次昇温させ、上述した方法と同様に、それぞれの温度における試料のa軸、b軸、c軸に対する格子定数を測定した。得られた格子体積変化(直方体)を線換算して、熱膨張係数(ppm/℃)を求めた(J. Mat. Sci.,(2000)35、p.2451−2454参照)。その結果を表2に示す。
<Evaluation of physical properties>
(Evaluation of coefficient of thermal expansion of powder)
The particles obtained in Examples and Comparative Examples were heated from 25 ° C. to a target temperature of 100 ° C. at a heating rate of 20 ° C./min using an XRD device (Ultima IV, Rigaku Co., Ltd.) equipped with a temperature raising function. , 10 minutes after reaching the target temperature, the lattice constants with respect to the a-axis, b-axis, and c-axis of the sample were measured. Next, the target temperatures were sequentially raised to 200 ° C., 300 ° C., and 400 ° C., and the lattice constants for the a-axis, b-axis, and c-axis of the sample at each temperature were measured in the same manner as described above. The obtained lattice volume change (rectangular parallelepiped) was converted into a line to obtain the coefficient of thermal expansion (ppm / ° C.) (see J. Mat. Sci., (2000) 35, p. 2451-2454). The results are shown in Table 2.

(溶出イオン量の評価)
実施例及び比較例で得られた粒子1gを純水70mLに添加して試験液とし、該試験液を85℃で1時間加熱処理した後、室温(25℃)まで冷却し、純水で試験液が100mLになるように調整した。この試験液を24時間静置後、該試験液をろ過により固液分離し、ろ液100mL当たりの総Zrイオン量、総Wイオン量及び総Pイオン量をICP発光分光装置で測定した。その結果を表2に示す。
(Evaluation of the amount of eluted ions)
1 g of the particles obtained in Examples and Comparative Examples was added to 70 mL of pure water to prepare a test solution, and the test solution was heat-treated at 85 ° C. for 1 hour, cooled to room temperature (25 ° C.), and tested with pure water. The liquid was adjusted to 100 mL. After allowing this test solution to stand for 24 hours, the test solution was solid-liquid separated by filtration, and the total Zr ion amount, total W ion amount and total P ion amount per 100 mL of the filtrate were measured by an ICP emission spectroscope. The results are shown in Table 2.

Figure 2020095837
Figure 2020095837

表2に示すように、各実施例の改質ZWPは、比較例の粒子と比較して、同じレベルの負の熱膨張係数を有しつつ、粒子からのイオン溶出が抑制されていることが判る。特に、加熱処理の温度が高い実施例2及び5や、シラン化合物で更に被覆した実施例3及び4は、粒子からのイオン溶出が顕著に抑制されていることも判る。 As shown in Table 2, the modified ZWP of each example has the same level of negative thermal expansion coefficient as that of the particles of the comparative example, but the elution of ions from the particles is suppressed. I understand. In particular, it can be seen that in Examples 2 and 5 in which the heat treatment temperature is high and in Examples 3 and 4 further coated with the silane compound, ion elution from the particles is remarkably suppressed.

(実施例6ないし10)
実施例1ないし5で得られた改質ZWPを負熱膨張フィラーとして用い、高分子組成物を製造した。詳細には、5.8gの負熱膨張フィラーと、高分子化合物として4.2gのエポキシ樹脂(三菱化学 jER807、エポキシ当量160〜175)とを、真空ミキサー(シンキー製 あわとり練太郎ARV−310)を用いて、回転速度2000rpmで混合して、30体積%のペーストを作製した。
(Examples 6 to 10)
The modified ZWP obtained in Examples 1 to 5 was used as a negative thermal expansion filler to produce a polymer composition. Specifically, 5.8 g of negative thermal expansion filler and 4.2 g of epoxy resin (Mitsubishi Chemical jER807, epoxy equivalent 160 to 175) as a polymer compound are mixed with a vacuum mixer (Sinky Awatori Rentaro ARV-310). ) Was mixed at a rotation speed of 2000 rpm to prepare a 30% by volume paste.

次いで、前記ペーストに硬化剤(四国化成製 キュアゾール)を100μL加えて、前記真空ミキサーを用いて、回転速度1500rpmで混合して、150℃で1時間にわたり硬化させて、目的とする高分子組成物を得た。得られた高分子組成物の断面を走査型電子顕微鏡像で観察したところ、いずれの実施例も、負熱膨張フィラーである改質ZWPが高分子組成物中に均一に分散していることが確認できた。 Next, 100 μL of a curing agent (Shikoku Kasei Curesol) was added to the paste, mixed at a rotation speed of 1500 rpm using the vacuum mixer, and cured at 150 ° C. for 1 hour to obtain the desired polymer composition. Got When the cross section of the obtained polymer composition was observed with a scanning electron microscope image, it was found that the modified ZWP, which is a negative thermal expansion filler, was uniformly dispersed in the polymer composition in all the examples. It could be confirmed.

(参考例1)
改質ZWPに代えて、3.3gの球状溶融シリカ(平均粒子径10μm、線膨張係数5×10−7/℃)を負熱膨張フィラーとして用いて、30体積%のペーストを作製したほかは、実施例6と同様の方法で、目的とする高分子組成物を得た。得られた高分子組成物の断面を走査型電子顕微鏡像で観察したところ、球状溶融シリカ粒子が高分子組成物中に均一に分散していることが確認できた。
(Reference example 1)
Instead of the modified ZWP, 3.3 g of spherical fused silica (average particle diameter 10 μm, linear expansion coefficient 5 × 10 -7 / ° C.) was used as a negative thermal expansion filler to prepare a 30% by volume paste. , The target polymer composition was obtained in the same manner as in Example 6. When the cross section of the obtained polymer composition was observed with a scanning electron microscope image, it was confirmed that the spherical molten silica particles were uniformly dispersed in the polymer composition.

<組成物の熱膨張係数の評価>
実施例及び参考例で得られた高分子組成物を5mm×5mm×10mmの直方体状に切り出し、測定サンプルとした。この測定サンプルを熱機械分析装置(TMA; NETZSCH社製、4000SE)を用いて、昇温速度1℃/分で30℃〜120℃の線膨張係数を測定した。その結果を表3に示す。
<Evaluation of thermal expansion coefficient of composition>
The polymer compositions obtained in Examples and Reference Examples were cut into a rectangular parallelepiped shape of 5 mm × 5 mm × 10 mm and used as a measurement sample. Using a thermomechanical analyzer (TMA; 4000SE manufactured by NETZSCH), the coefficient of linear expansion of 30 ° C. to 120 ° C. was measured at a heating rate of 1 ° C./min. The results are shown in Table 3.

Figure 2020095837
Figure 2020095837

表3に示すように、本発明の改質ZWPを負熱膨張フィラーとして用いた各実施例の高分子組成物は、線膨張係数が低く、熱による変形が起こりにくい材料であることが判る。
As shown in Table 3, it can be seen that the polymer composition of each example using the modified ZWP of the present invention as a negative thermal expansion filler is a material having a low coefficient of linear expansion and less likely to be deformed by heat.

Claims (10)

リン酸タングステン酸ジルコニウム粒子の表面が、脂肪酸又はその誘導体で被覆されている、改質リン酸タングステン酸ジルコニウム。 Modified zirconium tungate phosphate in which the surface of the zirconium tungate phosphate particles is coated with a fatty acid or a derivative thereof. 前記粒子のBET比表面積が0.1m/g〜50m/gである、請求項1に記載の改質リン酸タングステン酸ジルコニウム。BET specific surface area of the particles is 0.1m 2 / g~50m 2 / g, reforming phosphoric acid zirconium tungstate according to claim 1. 前記粒子の平均粒子径が0.02μm〜50μmである、請求項1又は2に記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium tungate phosphate according to claim 1 or 2, wherein the average particle size of the particles is 0.02 μm to 50 μm. 前記粒子は副成分元素を更に含有する、請求項1ないし3の何れか一項に記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium tungate phosphate according to any one of claims 1 to 3, wherein the particles further contain a subcomponent element. 前記脂肪酸又はその誘導体の被覆量が、前記粒子に対して0.05質量%〜30質量%である、請求項1ないし4の何れか一項に記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium tungate phosphate according to any one of claims 1 to 4, wherein the coating amount of the fatty acid or a derivative thereof is 0.05% by mass to 30% by mass with respect to the particles. 1gの改質リン酸タングステン酸ジルコニウムを85℃の水70mLで1時間加熱処理し、次いで25℃に冷却して24時間静置したときの、該水中のジルコニウムイオン量が20μg以下であり、タングステンイオン量が400μg以下であり、且つリンイオン量が100μg以下である、請求項1ないし5の何れか一項に記載の改質リン酸タングステン酸ジルコニウム。 When 1 g of modified zirconium tungstate phosphate was heat-treated with 70 mL of water at 85 ° C. for 1 hour, then cooled to 25 ° C. and allowed to stand for 24 hours, the amount of zirconium ion in the water was 20 μg or less, and tungsten. The modified zirconium tungstate phosphate according to any one of claims 1 to 5, wherein the amount of ions is 400 μg or less and the amount of phosphate is 100 μg or less. 前記脂肪酸又はその誘導体が、炭素数7以上の脂肪酸又はその誘導体である、請求項1ないし6の何れか一項に記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium tungstate phosphate according to any one of claims 1 to 6, wherein the fatty acid or a derivative thereof is a fatty acid having 7 or more carbon atoms or a derivative thereof. シラン化合物で被覆されている、請求項1ないし7の何れか1項に記載の改質リン酸タングステン酸ジルコニウム。 The modified zirconium tungate phosphate according to any one of claims 1 to 7, which is coated with a silane compound. 請求項1ないし8の何れか一項に記載の改質リン酸タングステン酸ジルコニウムからなる負熱膨張フィラー。 A negative thermal expansion filler made of the modified zirconium tungstate phosphate according to any one of claims 1 to 8. 請求項9に記載の負熱膨張フィラーと、高分子化合物とを含有する高分子組成物。 A polymer composition containing the negative thermal expansion filler according to claim 9 and a polymer compound.
JP2020556042A 2018-11-05 2019-11-01 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition Active JP7239608B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018207864 2018-11-05
JP2018207864 2018-11-05
JP2018228444 2018-12-05
JP2018228444 2018-12-05
JP2019042596 2019-03-08
JP2019042596 2019-03-08
PCT/JP2019/043032 WO2020095837A1 (en) 2018-11-05 2019-11-01 Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition

Publications (2)

Publication Number Publication Date
JPWO2020095837A1 true JPWO2020095837A1 (en) 2021-10-07
JP7239608B2 JP7239608B2 (en) 2023-03-14

Family

ID=70611844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556042A Active JP7239608B2 (en) 2018-11-05 2019-11-01 Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition

Country Status (2)

Country Link
JP (1) JP7239608B2 (en)
WO (1) WO2020095837A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162729A (en) * 1986-12-26 1988-07-06 Mitsui Toatsu Chem Inc Gas-permeable film and its production
JPH0948930A (en) * 1995-08-04 1997-02-18 Merck Japan Kk New pearlescent pigment and its production
JP2005264135A (en) * 2004-02-20 2005-09-29 Fuji Photo Film Co Ltd Organic and inorganic complex composition, plastic base plate, gas barrier laminated film, and image display element
JP2006501521A (en) * 2002-10-02 2006-01-12 スリーエム イノベイティブ プロパティズ カンパニー Multi-photon reactive composition having inorganic particles and method for producing structure
WO2017061402A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Production method for zirconium tungsten phosphate
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114214B2 (en) * 2016-05-24 2022-08-08 味の素株式会社 adhesive film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162729A (en) * 1986-12-26 1988-07-06 Mitsui Toatsu Chem Inc Gas-permeable film and its production
JPH0948930A (en) * 1995-08-04 1997-02-18 Merck Japan Kk New pearlescent pigment and its production
JP2006501521A (en) * 2002-10-02 2006-01-12 スリーエム イノベイティブ プロパティズ カンパニー Multi-photon reactive composition having inorganic particles and method for producing structure
JP2005264135A (en) * 2004-02-20 2005-09-29 Fuji Photo Film Co Ltd Organic and inorganic complex composition, plastic base plate, gas barrier laminated film, and image display element
WO2017061402A1 (en) * 2015-10-07 2017-04-13 日本化学工業株式会社 Production method for zirconium tungsten phosphate
JP2018016796A (en) * 2016-07-19 2018-02-01 セントラル硝子株式会社 Curable resin composition and cured product of the same, and semiconductor device using them

Also Published As

Publication number Publication date
WO2020095837A1 (en) 2020-05-14
JP7239608B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6553831B1 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
KR101645056B1 (en) Columnar zinc oxide particles and method for producing same
CN112384471B (en) Negative thermal expansion material, method for producing the same, and composite material
WO2020179703A1 (en) Modified zirconium phosphate tungstate, negative thermal expansion filler and polymer composition
JP6907295B2 (en) Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition
JPWO2019017305A1 (en) Coated inorganic fine particles and method for producing the same
JP2001115057A (en) Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP7239608B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
TWI843814B (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
TWI836228B (en) Compound and method for manufacturing the same, and composite material
US11521768B2 (en) Ferrite powder, resin composition, and molded body
WO2020004072A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7472129B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition
TWI846677B (en) Modified zirconium tungstate phosphate, negative thermal expansion filler, and polymeric composition
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7364418B2 (en) Thermal expansion suppressing filler, method for producing the same, and composite material containing the same
WO2022107462A1 (en) PRODUCTION METHOD OF PHOSPHATE-COATED SmFeN-BASE ANISOTROPIC MAGNETIC POWDER, AND BOND MAGNET
TW202340097A (en) Negative thermal expansion material and composite material
JP6652908B2 (en) Conductive particles
JP5773581B2 (en) Method for producing coated magnetite particles
JP2023123327A (en) Negative thermal expansion material and composite material
US20240112838A1 (en) METHOD OF PRODUCING PHOSPHATE-COATED SmFeN-BASED ANISOTROPIC MAGNETIC POWDER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R150 Certificate of patent or registration of utility model

Ref document number: 7239608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150