JP2001115057A - Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition - Google Patents

Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition

Info

Publication number
JP2001115057A
JP2001115057A JP2000230201A JP2000230201A JP2001115057A JP 2001115057 A JP2001115057 A JP 2001115057A JP 2000230201 A JP2000230201 A JP 2000230201A JP 2000230201 A JP2000230201 A JP 2000230201A JP 2001115057 A JP2001115057 A JP 2001115057A
Authority
JP
Japan
Prior art keywords
magnesium oxide
oxide particles
resin
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000230201A
Other languages
Japanese (ja)
Other versions
JP3821633B2 (en
Inventor
Hitoshi Anabuki
仁 穴吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2000230201A priority Critical patent/JP3821633B2/en
Publication of JP2001115057A publication Critical patent/JP2001115057A/en
Application granted granted Critical
Publication of JP3821633B2 publication Critical patent/JP3821633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide magnesium oxide particles which can be compounded at a high filling rate, have good flowability, and can easily be molded, and to provide a resin composition which contains the particles and gives molded products (especially electronic parts and electric parts) having high acid resistance and high hydration resistance and having an excellent value. SOLUTION: Magnesium oxide particles whose surfaces have been treated with an acidic phosphate ester of the formula [(n) is 1 or 2; R is a 4 to 30C alkyl or a 4 to 30C alkenyl] and which has high acid resistance and high hydration resistance, and a synthetic resin composition compounded with the magnesium oxide particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高耐酸性および高耐
水和性の酸化マグネシウム粒子および樹脂組成物に関す
る。
The present invention relates to magnesium oxide particles and a resin composition having high acid resistance and high hydration resistance.

【0002】さらに詳しくは、本発明は高融点(約2,
800℃)、高電気絶縁性、低誘電体損失、高透光性、
高熱伝導性、無毒性、塩基性等の酸化マグネシウム本来
の物性に、さらに高耐酸性、高耐水和性および高流動性
を付加し、樹脂の熱伝導性改良剤、耐熱材料、電気絶縁
材料、封止材、シーズヒーター充填剤、光学材料、研磨
材等に有用な酸化マグネシウム粒子に関する。また本発
明は、この酸化マグネシウム粒子を含有する樹脂組成物
にも関する。
More specifically, the present invention provides a high melting point (about 2,
800 ° C), high electrical insulation, low dielectric loss, high translucency,
Adds high acid resistance, high hydration resistance and high fluidity to the original physical properties of magnesium oxide such as high thermal conductivity, non-toxicity, basicity, etc., and improves the thermal conductivity of resin, heat-resistant material, electrical insulation material, The present invention relates to magnesium oxide particles useful as sealing materials, sheath heater fillers, optical materials, abrasives, and the like. The present invention also relates to a resin composition containing the magnesium oxide particles.

【0003】[0003]

【従来の技術】酸化マグネシウム粒子は軽焼成酸化マグ
ネシウム(約600〜900℃)と死焼成酸化マグネシ
ウム(約1,100〜1,500℃)とに分類される。
前者は酸物質の中和およびハロゲンの中和に対する優れ
た化学的活性を利用するものであり、その代表的な用途
としては例えばクロロプレン、クロロスルホン化ポリエ
チレン等のハロゲン化ゴムの受酸剤がある。後者は酸化
マグネシウム粒子の優れた物理的性質、すなわち高融点
(約2,800℃)、高温における高電気絶縁性、広い
波長域に亙る透光性および高熱伝導性を利用した耐熱容
器、耐熱部品、断熱材、IC基板、レンズ、ナトリウム
ランプ容器、シーズヒーター、樹脂等の充填材、研磨材
等に用いられる。しかし酸化マグネシウム粒子は水また
は水蒸気により徐々に侵されて水酸化マグネシウム粒子
に変化(水和)し、上記した種々の優れた物理的性質が
失われるという問題点があり、その利用範囲を狭めてい
る。
2. Description of the Related Art Magnesium oxide particles are classified into lightly calcined magnesium oxide (about 600 to 900 ° C.) and dead calcined magnesium oxide (about 1,100 to 1,500 ° C.).
The former utilizes excellent chemical activity for neutralization of acid substances and neutralization of halogens. Typical uses thereof include acid acceptors for halogenated rubbers such as chloroprene and chlorosulfonated polyethylene. . The latter uses the excellent physical properties of magnesium oxide particles, namely, high melting point (about 2,800 ° C.), high electrical insulation at high temperatures, light transmission over a wide wavelength range, and high thermal conductivity. It is used as an insulating material, an IC substrate, a lens, a sodium lamp container, a sheath heater, a filler such as a resin, an abrasive, and the like. However, there is a problem that magnesium oxide particles are gradually eroded by water or water vapor and changed (hydrated) into magnesium hydroxide particles, and the above-mentioned various excellent physical properties are lost. I have.

【0004】この問題点を改良するため、特開昭61−
85474号公報は、1,600℃以上溶融温度(2,
800℃)未満で焼成する方法を提案している。しかし
1,600℃以上酸化マグネシウム粒子の溶融温度未満
で焼成する方法では、焼成温度の割には酸化マグネシウ
ム粒子の結晶成長が悪く、しかも焼成により大きな塊と
なり、強度の粉砕を必要とするため、せっかく成長した
酸化マグネシウム粒子の単結晶が破壊され、結晶表面に
種々の格子欠陥を生ずる。このため、満足できる耐水和
性を示さず、同時に外形が不定形となり、流動性も悪
く、樹脂への高充填を困難ならしめるという問題があっ
た。
To solve this problem, Japanese Patent Application Laid-Open No.
No. 85474 discloses a melting temperature of 1600 ° C. or more (2,
(800 ° C.). However, in the method of firing at a temperature of 1600 ° C. or higher and lower than the melting temperature of the magnesium oxide particles, the crystal growth of the magnesium oxide particles is poor for the firing temperature, and further, the firing results in a large lump, requiring strong pulverization. The single crystal of the magnesium oxide particles that have grown so much is broken, and various lattice defects are generated on the crystal surface. For this reason, satisfactory hydration resistance is not exhibited, and at the same time, the outer shape becomes indefinite, the fluidity is poor, and there has been a problem that it is difficult to highly fill the resin.

【0005】また特開昭61−36119号公報は、水
溶性マグネシウム塩を含む水溶液に、マグネシウム1当
量に対し1〜3.5当量のアンモニアを水酸化マグネシ
ウムの種の存在下に反応させ、平均2次粒子径5〜50
0μmの見掛上球形の凝集体からなる水酸化マグネシウ
ムを合成し、これを1,200〜2,000℃で焼成す
る方法を提案している。
Japanese Patent Application Laid-Open No. 61-36119 discloses that an aqueous solution containing a water-soluble magnesium salt is reacted with 1 to 3.5 equivalents of ammonia per 1 equivalent of magnesium in the presence of a magnesium hydroxide seed to obtain an average. Secondary particle size 5-50
A method of synthesizing a magnesium hydroxide having an apparent spherical aggregate of 0 μm and firing the same at 1,200 to 2,000 ° C. has been proposed.

【0006】この提案方法において、水溶性マグネシウ
ム塩水溶液と所定量のアンモニアを水酸化マグネシウム
粒子の種の存在下に反応させ、ついで、1,200〜
2,000℃で焼成する方法により得られた酸化マグネ
シウム粒子は、流動性と樹脂への充填性は、粉末品に比
して改良されている。なお、粉末品とは、機械的粉砕で
得られる平均粒子径約10〜20μm以下の外形が不定
形である粗い酸化マグネシウム粒子(球形でない)であ
る。しかし焼成前の水酸化マグネシウム粒子が比較的大
きな結晶であり、しかも鱗片状外形をしているため、焼
結性は粉末水酸化マグネシウムの場合よりも改良されて
はいるが未だ満足できるものではなく、また高温の焼成
を必要とする。また凝集体内部だけでなく凝集体同士が
結合するため、強度の粉砕を必要とし、このためほぼ球
形の元の2次凝集体も同時に破壊されるとともに、結晶
表面の欠陥部分が増加し、その結果耐水和性が不十分で
あるという問題を有している。
In the proposed method, an aqueous solution of a water-soluble magnesium salt and a predetermined amount of ammonia are reacted in the presence of seeds of magnesium hydroxide particles.
The magnesium oxide particles obtained by the method of baking at 2,000 ° C. have improved fluidity and resin filling properties as compared with powdered products. The powdered product is a coarse magnesium oxide particle (not spherical) having an irregular outer shape with an average particle diameter of about 10 to 20 μm or less obtained by mechanical pulverization. However, since the magnesium hydroxide particles before firing are relatively large crystals and have a scale-like outer shape, the sinterability has been improved compared to the case of powdered magnesium hydroxide, but it is still not satisfactory. Requires high temperature firing. In addition, since not only the inside of the agglomerate but also the agglomerates are bonded to each other, a strong pulverization is required, so that the almost spherical original secondary agglomerates are simultaneously destroyed, and the number of defects on the crystal surface increases. As a result, there is a problem that the hydration resistance is insufficient.

【0007】特開昭62−288114号公報および特
開昭63−45117号公報は、酸化マグネシウム微粉
末を有機シリケート化合物で表面処理後熱処理して酸化
マグネシウムの粒子表面にシリカの被膜を形成させる方
法を提案している。
JP-A-62-288114 and JP-A-63-45117 disclose a method of forming a silica coating on the surface of magnesium oxide particles by subjecting a magnesium oxide fine powder to a surface treatment with an organic silicate compound and then heat-treating the same. Has been proposed.

【0008】この提案方法において酸化マグネシウム微
粉末を有機シラン化合物で表面処理して酸化マグネシウ
ムの粒子表面にシラン化合物の被膜を形成させる方法
は、酸化マグネシウム粒子の表面をシラン化合物で被膜
するので、単位面積当たりの耐水和性は酸化マグネシウ
ムそれ自体よりも改良された酸化マグネシウム粒子を提
供する。しかし、表面積が大きいため耐水和性が不十分
であり、また表面積が約5〜20m2/gと大きいこと
に起因して多くの有機シランが必要となるので、経済的
でないことは勿論、酸化マグネシウム粒子の優れた熱伝
導性を低下させるという問題点を有していた。
[0008] In this proposed method, the surface treatment of magnesium oxide fine powder with an organic silane compound to form a film of the silane compound on the surface of the magnesium oxide particles is performed by coating the surface of the magnesium oxide particles with the silane compound. Hydration resistance per area provides improved magnesium oxide particles over magnesium oxide itself. However, the hydration resistance is insufficient due to the large surface area, and a large amount of organic silane is required due to the large surface area of about 5 to 20 m 2 / g. There was a problem that the excellent thermal conductivity of the magnesium particles was reduced.

【0009】特開平6−171928号公報は上記従来
の技術が有していた課題を解決し、流動性が高く作業性
に優れるとともに、十分な熱伝導性改良に必要な樹脂へ
の高充填を可能ならしめる2次粒子径と高密度を有し、
かつ高耐水和性の酸化マグネシウムを従来の方法より
も、より低温焼成で製造する方法を提供している。さら
には上記高耐水和性酸化マグネシウム粒子を有機シラン
処理することにより、一層優れた耐水和性を有すると共
に、エポキシ樹脂、ポリエステル樹脂、ポリオレフィン
樹脂、シリコーンゴム等への高充填か可能であり、また
酸化マグネシウム粒子と樹脂との親和性が増し、樹脂本
来の機械的強度、電気的性質を低下させずに十分な熱伝
導性を付与できる酸化マグネシウム粒子の製造方法を提
供している。
Japanese Patent Application Laid-Open No. Hei 6-171928 solves the above-mentioned problems of the prior art, and has a high fluidity and excellent workability, and a high filling of resin necessary for sufficient improvement of thermal conductivity. It has a secondary particle size and high density that make it possible,
Further, the present invention provides a method for producing magnesium oxide having high hydration resistance by firing at a lower temperature than conventional methods. Furthermore, by treating the high hydration-resistant magnesium oxide particles with an organic silane, the hydration resistance is further improved, and epoxy resin, polyester resin, polyolefin resin, and silicone rubber can be filled at a high level. The present invention provides a method for producing magnesium oxide particles capable of imparting sufficient thermal conductivity without decreasing the mechanical strength and electrical properties inherent in the resin by increasing the affinity between the magnesium oxide particles and the resin.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、各用途
とも高湿度および酸性物質との接触を余儀なくされる雰
囲気、または条件下で使用されることが多々あり、未だ
低耐酸性および低耐水和性という問題があった。本発明
の目的は、これらの問題点が改良された酸化マグネシウ
ム粒子を提供することにある。本発明の他の目的は、十
分な熱伝導性を有しかつ機械的強度の低下が少なく、電
子材料として優れた性質を有する成形品を与える樹脂組
成物を提供することにある。本発明のさらに他の目的
は、酸化マグネシウム粒子の高充填組成であっても、高
温度および酸性物質との接触する雰囲気下において、十
分満足すべき性質の成形品を与える樹脂組成物を提供す
ることにある。
However, each application is often used in an atmosphere or under conditions where it is necessary to come into contact with high humidity and acidic substances, and still has low acid resistance and low hydration resistance. There was a problem. An object of the present invention is to provide magnesium oxide particles in which these problems are improved. Another object of the present invention is to provide a resin composition having a sufficient thermal conductivity, a small decrease in mechanical strength, and a molded article having excellent properties as an electronic material. Still another object of the present invention is to provide a resin composition which gives a molded article having sufficiently satisfactory properties even at a high temperature and under an atmosphere in contact with an acidic substance even at a high filling composition of magnesium oxide particles. It is in.

【0011】[0011]

【課題を解決するための手段】本発明者の研究によれ
ば、本発明の目的は、下記式(1)
According to the study of the present inventors, the object of the present invention is to provide the following formula (1)

【0012】[0012]

【化2】 Embedded image

【0013】(式中、nは1または2、RはC4〜C30
のアルキル基またはC4〜C30のアルケニル基を示
す、)で表される酸性リン酸エステルで表面処理された
高耐酸性および高耐水和性の酸化マグネシウム粒子によ
って達成される。また本発明の他の目的は、(A)合成
樹脂100重量部および(B)前記式(1)で表される
酸性リン酸エステルで表面処理された酸化マグネシウム
粒子50〜1,000重量部より実質的になる樹脂組成
物によって達成される。以下本発明についてさらに詳細
に説明する。
(Wherein n is 1 or 2, R is C 4 -C 30)
And an alkenyl group having from 4 to 30 carbon atoms. Another object of the present invention is to provide (A) 100 parts by weight of a synthetic resin and (B) 50 to 1,000 parts by weight of magnesium oxide particles surface-treated with an acidic phosphate represented by the above formula (1). This is achieved by a resin composition that substantially becomes. Hereinafter, the present invention will be described in more detail.

【0014】本発明において、酸化マグネシウム粒子
は、レーザー光回折散乱法により測定された平均二次粒
子径が0.1〜130μm、好ましくは0.5〜50μ
mであり、またBET法により測定された比表面積が
0.1〜5m2/g、好ましくは0.1〜3m2/gであ
るのが有利である。
In the present invention, the magnesium oxide particles have an average secondary particle diameter of 0.1 to 130 μm, preferably 0.5 to 50 μm, measured by a laser light diffraction scattering method.
m and the specific surface area measured by the BET method is advantageously 0.1 to 5 m 2 / g, preferably 0.1 to 3 m 2 / g.

【0015】酸化マグネシウム粒子は種々の方法で製造
されたものでもよい。例えば特開平6−171928号
公報に記載の方法、すなわち、高分散性水酸化マグネシ
ウムを所定の温度で焼成し、ついで該焼成物の結晶を実
質的に破壊しないように所定粒径に粉砕分級する方法に
より得られたものが使用できる。この方法によれば、高
流動性、高充填性かつ高耐水和性を有する酸化マグネシ
ウム粒子が得られる。この酸化マグネシウム粒子は高分
散性水酸化マグネシウムスラリーを、噴霧乾燥などによ
り造粒乾燥し、所定の温度で好ましくは約1,100〜
1,600℃の温度で焼成することにより得られる球状
もしくはたまご状の形状を有する酸化マグネシウム粒子
であって、本発明の樹脂組成物のために好ましい。
[0015] The magnesium oxide particles may be produced by various methods. For example, the method described in JP-A-6-171928, that is, high-dispersion magnesium hydroxide is calcined at a predetermined temperature, and then pulverized and classified to a predetermined particle size so as not to substantially destroy crystals of the calcined product. Those obtained by the method can be used. According to this method, magnesium oxide particles having high fluidity, high filling properties, and high hydration resistance can be obtained. The magnesium oxide particles are obtained by granulating and drying a highly dispersible magnesium hydroxide slurry by spray drying or the like, preferably at a predetermined temperature of about 1,100 to
Magnesium oxide particles having a spherical or egg-like shape obtained by firing at a temperature of 1,600 ° C., and are preferred for the resin composition of the present invention.

【0016】本発明の酸化マグネシウム粒子は、その表
面と前記式(1)で表される酸性リン酸エステル(以下
“表面処理剤”という)で表面処理されたものである。
前記式(1)においてRはC4〜C30のアルキル基また
はC4〜C30のアルケニル基であり、これらアルキル基
またはアルケニル基は直鎖でもよくまた分岐していても
よい。好ましいRは、C8〜C20のアルキル基である。
またnは1または2であり、このことはリン酸エステル
はモノエステル型もしくはジエステル型いずれでもよい
ことを意味する。またモノエステル型とジエステル型の
混合物であってもよい。リン酸エステルの例としてはブ
チルアシッドフォスフェイト、2−エチルヘキシルアシ
ッドフォスフェイト、ラウリルアシッドフォスフェイ
ト、トリデシルアシッドフォスフェイト、ステアリルア
シッドフォスフェイト、ジ−2−エチルヘキシルフォス
フェイト、オレイルアシッドフォスフェイト等が挙げら
れる。これらのうち、ステアリルアシッドフォスフェイ
トが最も好ましい。
The magnesium oxide particles of the present invention have been subjected to a surface treatment with an acidic phosphate ester represented by the above formula (1) (hereinafter referred to as “surface treating agent”).
In the above formula (1), R is a C 4 -C 30 alkyl group or a C 4 -C 30 alkenyl group, and these alkyl groups or alkenyl groups may be linear or branched. Preferred R is an alkyl group of C 8 -C 20.
Further, n is 1 or 2, which means that the phosphate ester may be either a monoester type or a diester type. Further, a mixture of a monoester type and a diester type may be used. Examples of the phosphate ester include butyl acid phosphate, 2-ethylhexyl acid phosphate, lauryl acid phosphate, tridecyl acid phosphate, stearyl acid phosphate, di-2-ethylhexyl phosphate, oleyl acid phosphate, and the like. Can be Of these, stearyl acid phosphate is most preferred.

【0017】酸化マグネシウム粒子を表面処理したとき
の表面処理剤の酸化マグネシウム粒子に対する付着量は
0.1〜10重量%、好ましくは、0.5〜7重量%で
ある。表面処理剤の付着量が、上記範囲より少ない場合
には耐水、耐酸性の改善効果が不十分であり、また上記
範囲より多い場合には耐水、耐酸性の改善効果をさらに
向上させるものではなく、逆に該酸化マグネシウム粒子
を配合した合成樹脂組成物から得られた成形品の引張強
度、アイゾット衝撃強度等の機械的強度等を低下させる
可能性がある。
When the magnesium oxide particles are subjected to surface treatment, the amount of the surface treating agent attached to the magnesium oxide particles is 0.1 to 10% by weight, preferably 0.5 to 7% by weight. If the amount of the surface treatment agent is less than the above range, the effect of improving water resistance and acid resistance is insufficient.If the amount is more than the above range, the effect of improving water resistance and acid resistance is not further improved. Conversely, there is a possibility that the mechanical strength such as tensile strength and Izod impact strength of a molded product obtained from the synthetic resin composition containing the magnesium oxide particles is reduced.

【0018】表面処理剤による酸化マグネシウム粒子の
表面処理方法は酸化マグネシウム粒子と表面処理剤を直
接加熱する方法;有機溶剤に溶解させた表面処理剤を、
酸化マグネシウム粒子に直接噴霧または混合処理後、有
機溶剤を揮発除去する方法;有機溶剤に懸濁させた酸化
マグネシウムスラリーに有機溶剤に溶解した表面処理剤
を加え、混合処理後、有機溶剤を分離、揮発除去する方
法等を用いることができる。これら方法により表面処理
された酸化マグネシウム粒子は耐酸性および耐水和性が
優れているだけでなく高流動性および高充填性をも有し
ている。
The surface treatment of the magnesium oxide particles with the surface treatment agent is a method of directly heating the magnesium oxide particles and the surface treatment agent;
A method of directly spraying or mixing the magnesium oxide particles and then volatilizing and removing the organic solvent; adding a surface treating agent dissolved in the organic solvent to a magnesium oxide slurry suspended in the organic solvent, separating the organic solvent after the mixing treatment, A method of volatilization removal or the like can be used. Magnesium oxide particles surface-treated by these methods have not only excellent acid resistance and hydration resistance, but also high fluidity and high filling properties.

【0019】前記した酸性リン酸エステルで表面処理さ
れた酸化マグネシウム粒子は、耐酸性および耐水和性が
著しく優れているので、この粒子を合成樹脂に配合する
ことによって、その利点を顕著に発現することができ
る。合成樹脂としては、従来酸化マグネシウム粒子を配
合して高熱伝導性材料あるいは電気絶縁材料などに使用
されているものが有利に利用できる。合成樹脂の例とし
ては、例えばエポキシ樹脂、シリコーン樹脂、フェノー
ル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ポ
リフェニレンサルファイド樹脂、アクリルゴム、ブチル
ゴム、エチレンプロピレンゴム、エチレン酢酸ビニル共
重合体、エチレンアクリル酸エステル共重合体またはフ
ッ素樹脂等が挙げられる。これらのうち、エポキシ樹脂
またはシリコーン樹脂が好ましく、ことにエポキシ樹脂
が本発明の樹脂組成物に適している。
The magnesium oxide particles surface-treated with the above-mentioned acidic phosphate have remarkably excellent acid resistance and hydration resistance. By blending these particles with a synthetic resin, the advantages are remarkably exhibited. be able to. As the synthetic resin, those conventionally used as a high heat conductive material or an electrically insulating material by mixing magnesium oxide particles can be advantageously used. Examples of the synthetic resin include, for example, epoxy resin, silicone resin, phenol resin, diallyl phthalate resin, polyimide resin, polyphenylene sulfide resin, acrylic rubber, butyl rubber, ethylene propylene rubber, ethylene vinyl acetate copolymer, ethylene acrylate copolymer Coalescence or fluororesin. Of these, epoxy resins or silicone resins are preferred, and epoxy resins are particularly suitable for the resin composition of the present invention.

【0020】エポキシ樹脂の具体例としては、例えば
4,4’−ビス(2,3−エポキシプロポキシ)ビフェ
ニル、4,4’−ビス(2,3−エポキシプロポキシ)
3,3’5,5’−テトラメチルビフェニル、4,4’
−ビス(2,3−エポキシプロポキシ)−3,3’5,
5’−テトラエチルビフェニル、4,4’−ビス(2,
3−エポキシプロポキシ)−3,3’5,5’−テトラ
メチル−2−クロロビフェニルなど、ビフェニル骨格を
有するビフェニル型エポキシ樹脂;1,5−ジ(2,3
−エポキシプロポキシ)ナフタレン、1,6−ジ(2,
3−エポキシプロポキシ)ナフタレンなどのナフタレン
型エポキシ樹脂;4,4’−ビス(2,3−エポキシプ
ロポキシ)スチルベン、4,4’−ビス(2,3−エポ
キシプロポキシ)−3,3’5,5’−テトラメチルス
チルベンなどのスチルベン型エポキシ樹脂;クレゾール
ノボラック型エポキシ樹脂;フェノールノボラック型エ
ポキシ樹脂;ビスフェノールA骨格含有ノボラック型エ
ポキシ樹脂などのノボラック型エポキシ樹脂;フェノー
ルアラルキル型エポキシ樹脂;ナフトールアラルキル型
エポキシ樹脂などのアリールアラルキル型エポキシ樹
脂;ジシクロペンタジエン骨格含有エポキシ樹脂、トリ
ス(2,3−エポキシプロポキシ)フェニルメタンなど
の多官能エポキシ樹脂などが挙げられる。これらの中
で、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ
樹脂、スチルベン型エポキシ樹脂等の2官能エポキシ樹
脂が特に好ましく用いられる。
Specific examples of the epoxy resin include, for example, 4,4'-bis (2,3-epoxypropoxy) biphenyl and 4,4'-bis (2,3-epoxypropoxy)
3,3'5,5'-tetramethylbiphenyl, 4,4 '
-Bis (2,3-epoxypropoxy) -3,3'5
5′-tetraethylbiphenyl, 4,4′-bis (2,
Biphenyl type epoxy resin having a biphenyl skeleton such as 3-epoxypropoxy) -3,3′5,5′-tetramethyl-2-chlorobiphenyl; 1,5-di (2,3
-Epoxypropoxy) naphthalene, 1,6-di (2,
Naphthalene-type epoxy resins such as 3-epoxypropoxy) naphthalene; 4,4′-bis (2,3-epoxypropoxy) stilbene, 4,4′-bis (2,3-epoxypropoxy) -3,3′5 Stilbene type epoxy resins such as 5′-tetramethylstilbene; cresol novolak type epoxy resins; phenol novolak type epoxy resins; novolak type epoxy resins such as bisphenol A skeleton-containing novolak type epoxy resins; phenol aralkyl type epoxy resins; Aryl aralkyl type epoxy resins such as resins; epoxy resins containing a dicyclopentadiene skeleton; and polyfunctional epoxy resins such as tris (2,3-epoxypropoxy) phenylmethane. Among them, bifunctional epoxy resins such as biphenyl type epoxy resin, naphthalene type epoxy resin and stilbene type epoxy resin are particularly preferably used.

【0021】本発明の樹脂組成物において、(A)合成
樹脂100重量部に対して(B)前記酸化マグネシウム
粒子は50〜1,000重量部、好ましくは60〜50
0重量部、より好ましくは70〜400重量部の割合で
配合される。合成樹脂と酸化マグネシウム粒子との混合
は、充填剤と樹脂との混練において通常知られた手段が
採用される。本発明によれば、酸化マグネシウム粒子を
樹脂中に高充填することができ、また得られた組成物は
流動性も優れているので成形加工性に優れている。また
樹脂組成物から形成された成形物は、耐酸性および耐水
和性が良好であり、酸化マグネシウムを高充填した成形
品は高い熱伝導性を有しているので、電子部品もしくは
電気部品の材料として有利に利用できる。以下実施例を
挙げ本発明を詳述する。
In the resin composition of the present invention, the magnesium oxide particles (B) are 50 to 1,000 parts by weight, preferably 60 to 50 parts by weight, per 100 parts by weight of the synthetic resin (A).
0 parts by weight, more preferably 70 to 400 parts by weight. The mixing of the synthetic resin and the magnesium oxide particles employs a commonly known means for kneading a filler and a resin. ADVANTAGE OF THE INVENTION According to this invention, magnesium oxide particles can be highly filled into a resin, and the obtained composition has excellent fluidity, and therefore has excellent moldability. Molded articles formed from the resin composition have good acid resistance and hydration resistance, and molded articles highly filled with magnesium oxide have high thermal conductivity. It can be used advantageously as Hereinafter, the present invention will be described in detail with reference to examples.

【0022】[0022]

【実施例】実施例1 平均2次粒子径0.80μm、BET法比表面積6.3
2/gである水酸化マグネシウムを1,300℃で焼
成し酸化マグネシウムを得た。この酸化マグネシウムを
粉砕分級した。得られた酸化マグネシウム粒子はレーザ
ー光回折散乱法で測定した平均2次粒子径が約2μm、
最大粒子径16μm、BET法比表面積1.6m2/g
であり、走査型電子顕微鏡で観察すると、ほぼ球状の酸
化マグネシウム粒子であった。
EXAMPLES Example 1 Average secondary particle diameter 0.80 μm, BET specific surface area 6.3
Magnesium hydroxide of m 2 / g was calcined at 1,300 ° C. to obtain magnesium oxide. This magnesium oxide was pulverized and classified. The obtained magnesium oxide particles have an average secondary particle diameter of about 2 μm measured by a laser light diffraction scattering method,
Maximum particle diameter 16 μm, BET specific surface area 1.6 m 2 / g
When observed with a scanning electron microscope, the particles were substantially spherical magnesium oxide particles.

【0023】得られた酸化マグネシウム粒子100kg
を三井三池製作所(株)製ヘンシェルミキサーに投入
し、攪拌下にステアリルアシッドフォスフェイト1kg
を60℃エタノール20リットルに溶解した液を徐々に
加え、5分間攪拌した後、80℃以上に加熱し溶媒のエ
タノールを除去した。次に、東亜電波工業(株)製自動
スタット滴定装置AUT−21を用いて、耐酸性試験を
行った。以下にその内容を示す。ステアリルアシッドフ
ォスフェイト処理酸化マグネシウム粒子0.5gをエタ
ノール:水=1:1の混合溶液50ccに懸濁し、攪拌
下に0.1N−硝酸を滴下することによりpHを4.0
に維持しながら一定時間後の0.1N−硝酸の消費量を
測定した。その結果を表1に示す。耐水和性試験は、ス
テアリルアシッドフォスフェイト処理酸化マグネシウム
を2.5倍(重量比)の水と混合し、105℃で2.5
時間乾燥した後の重量増加%を測定した。その結果を表
2に示す。
100 kg of the obtained magnesium oxide particles
Into a Henschel mixer manufactured by Mitsui Miike Seisakusho Co., Ltd., and 1 kg of stearyl acid phosphate is stirred.
Was slowly added to 20 liters of ethanol at 60 ° C., and the mixture was stirred for 5 minutes. The mixture was heated to 80 ° C. or higher to remove ethanol as a solvent. Next, an acid resistance test was performed using an automatic stat titrator AUT-21 manufactured by Toa Denpa Kogyo KK. The details are shown below. 0.5 g of magnesium oxide particles treated with stearyl acid phosphate are suspended in 50 cc of a mixed solution of ethanol: water = 1: 1, and 0.1N-nitric acid is added dropwise with stirring to adjust the pH to 4.0.
, The consumption of 0.1 N-nitric acid after a certain time was measured. Table 1 shows the results. The hydration resistance test was conducted by mixing stearyl acid phosphate treated magnesium oxide with 2.5 times (weight ratio) of water,
The percent weight gain after drying for hours was measured. Table 2 shows the results.

【0024】比較例1 実施例1のステアリルアシッドフォスフェイト処理前の
酸化マグネシウム粒子を用いて実施例1と同様の耐酸性
試験および耐水和性試験を行った。
Comparative Example 1 The same acid resistance test and hydration resistance test as in Example 1 were conducted using the magnesium oxide particles before the stearyl acid phosphate treatment of Example 1.

【0025】比較例2 実施例1のステアリルアシッドフォスフェイトの代わり
にビニルトリエトキシシランを用いて実施例1と同様の
表面処理および耐酸性試験および耐水和性試験を行っ
た。
Comparative Example 2 The same surface treatment, acid resistance test and hydration resistance test as in Example 1 were conducted using vinyltriethoxysilane instead of stearyl acid phosphate of Example 1.

【0026】比較例3 比較例2のビニルトリエトキシシラン処理酸化マグネシ
ウム粒子を800℃で1時間焼成し、実施例1と同様の
耐酸性試験および耐水和性試験を行った。実施例1およ
び比較例1、2、3の結果を表1および表2に示す。
Comparative Example 3 The vinyltriethoxysilane-treated magnesium oxide particles of Comparative Example 2 were calcined at 800 ° C. for 1 hour, and subjected to the same acid resistance test and hydration resistance test as in Example 1. Tables 1 and 2 show the results of Example 1 and Comparative Examples 1, 2, and 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】実施例2および比較例4〜6 実施例1および比較例1〜2で得られたそれぞれの酸化
マグネシウム粒子を下記配合条件となる割合でエポキシ
樹脂に配合し、得られた組成物を真空ポンプで引きなが
ら攪拌し、混練した。次いでステンレスバット(8cm
×12cm×3cm)に流し込み、前硬化(110℃、
2時間)させ、さらに後硬化(150℃、3時間)させ
た。得られた成形物の熱伝導率および吸水率を測定し
た。その結果を表3に示す。なお、酸化マグネシウム粒
子を配合しない場合を比較例4として示した。
Example 2 and Comparative Examples 4 to 6 Each of the magnesium oxide particles obtained in Example 1 and Comparative Examples 1 and 2 was blended into an epoxy resin in a proportion satisfying the following blending conditions. The mixture was stirred and kneaded while being pulled by a vacuum pump. Then stainless steel bat (8cm
× 12cm × 3cm) and pre-cured (110 ° C,
2 hours) and post-curing (150 ° C., 3 hours). The thermal conductivity and the water absorption of the obtained molded product were measured. Table 3 shows the results. The case where no magnesium oxide particles were blended was shown as Comparative Example 4.

【0030】吸水率および熱伝導率の測定は以下の方法
で行った。 1)吸水率 恒温恒湿槽(アドバンテック東洋AGX−326)を用
い85℃、85%RHの条件で重量変化を測定した。 2)熱伝導率 京都電子工業(株)製のQTM迅速熱伝導率計を用い
て、プローブ法にて測定した。 配合条件; エポキシ樹脂(エピコート828、油化シエル製) 100部 硬化剤(リカシッド MH−700、新日本理化製) 80部 硬化促進剤(BDMA、広栄化学製) 1部 酸化マグネシウム粒子 300部 なお使用されたマグネシウム粒子は、実施例2では実施
例1の粒子、比較例5では比較例1の粒子、比較例6で
は比較例2の粒子であった。
The water absorption and the thermal conductivity were measured by the following methods. 1) Water absorption The weight change was measured using a constant temperature and humidity chamber (Advantech Toyo AGX-326) under the conditions of 85 ° C. and 85% RH. 2) Thermal conductivity Measured by a probe method using a QTM rapid thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd. Mixing conditions: Epoxy resin (Epicoat 828, manufactured by Yuka Shell) 100 parts Curing agent (Ricacid MH-700, manufactured by Shin Nippon Rika) 80 parts Curing accelerator (BDMA, manufactured by Koei Chemical) 1 part Magnesium oxide particles 300 parts The magnesium particles thus obtained were the particles of Example 1 in Example 2, the particles of Comparative Example 1 in Comparative Example 5, and the particles of Comparative Example 2 in Comparative Example 6.

【0031】[0031]

【表3】 [Table 3]

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/08 C09C 3/08 H01L 23/29 H01B 3/00 A 23/31 H01L 23/30 R // H01B 3/00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C09C 3/08 C09C 3/08 H01L 23/29 H01B 3/00 A 23/31 H01L 23/30 R // H01B 3 / 00

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】下記式(1) 【化1】 (式中、nは1または2、RはC4〜C30のアルキル基
またはC4〜C30のアルケニル基を示す、)で表される
酸性リン酸エステルで表面処理された高耐酸性および高
耐水和性の酸化マグネシウム粒子。
(1) The following formula (1): (Wherein, n represents 1 or 2, R represents a C 4 -C 30 alkyl group or a C 4 -C 30 alkenyl group). Highly hydrate-resistant magnesium oxide particles.
【請求項2】 該酸化マグネシウム粒子は0.1〜13
0μmの平均2次粒子径を有する請求項1記載の酸化マ
グネシウム粒子。
2. The magnesium oxide particles have a particle size of 0.1 to 13.
The magnesium oxide particles according to claim 1, having an average secondary particle diameter of 0 µm.
【請求項3】 該酸化マグネシウム粒子は、0.1〜5
2/gのBET法比表面積を有する請求項1記載の酸
化マグネシウム粒子。
3. The magnesium oxide particles have a particle size of 0.1 to 5
magnesium oxide particles according to claim 1 having a BET specific surface area of m 2 / g.
【請求項4】 該酸化マグネシウム粒子は、球状もしく
はたまご状の粒形を有する請求項1記載の酸化マグネシ
ウム粒子。
4. The magnesium oxide particles according to claim 1, wherein the magnesium oxide particles have a spherical or egg-like particle shape.
【請求項5】 該酸性リン酸エステルは、前記式(1)
においてRがC8〜C20のアルキル基の化合物である請
求項1記載の酸化マグネシウム粒子。
5. The acidic phosphate ester according to the formula (1)
Magnesium oxide particles according to claim 1, wherein R is a compound of the alkyl groups of C 8 -C 20 in.
【請求項6】 該酸化マグネシウム粒子は、前記式
(1)で表される酸性リン酸エステルの合計量が0.1
〜10重量%である請求項1記載の酸化マグネシウム粒
子。
6. The magnesium oxide particles have a total amount of the acidic phosphate represented by the formula (1) of 0.1 or less.
The magnesium oxide particles according to claim 1, wherein the amount is 10 to 10% by weight.
【請求項7】 (A)合成樹脂100重量部および
(B)請求項1記載の酸化マグネシウム粒子50〜1,
000重量部、より実質的になる樹脂組成物。
7. The (A) 100 parts by weight of the synthetic resin and (B) the magnesium oxide particles 50 to 1, according to claim 1.
000 parts by weight, more substantially the resin composition.
【請求項8】 (A)合成樹脂100重量部および
(B)請求項1記載の酸化マグネシウム粒子70〜40
0重量部、より実質的になる請求項7記載の樹脂組成
物。
8. The magnesium oxide particles according to claim 1, wherein (A) 100 parts by weight of the synthetic resin and (B) the magnesium oxide particles according to claim 1.
The resin composition according to claim 7, which is more substantially 0 parts by weight.
【請求項9】 該合成樹脂が、エポキシ樹脂、シリコー
ン樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポ
リイミド樹脂、ポリフェニレンサルファイド樹脂、アク
リルゴム、ブチルゴム、エチレンプロピレンゴム、エチ
レン酢酸ビニル共重合体、エチレンアクリル酸エステル
共重合体またはフッ素樹脂である請求項7記載の樹脂組
成物。
9. The synthetic resin is an epoxy resin, a silicone resin, a phenol resin, a diallyl phthalate resin, a polyimide resin, a polyphenylene sulfide resin, an acrylic rubber, a butyl rubber, an ethylene propylene rubber, an ethylene vinyl acetate copolymer, an ethylene acrylate ester. The resin composition according to claim 7, which is a copolymer or a fluororesin.
【請求項10】 該合成樹脂が、エポキシ樹脂である請
求項7記載の樹脂組成物。
10. The resin composition according to claim 7, wherein the synthetic resin is an epoxy resin.
【請求項11】 請求項7記載の樹脂組成物より形成さ
れた成形品。
11. A molded article formed from the resin composition according to claim 7.
【請求項12】 請求項7記載の樹脂組成物より形成さ
れた電子材料封止剤。
12. An electronic material sealing agent formed from the resin composition according to claim 7.
【請求項13】 請求項7記載の樹脂組成物より形成さ
れた電気絶縁材料。
13. An electrically insulating material formed from the resin composition according to claim 7.
JP2000230201A 1999-08-06 2000-07-31 Resin composition containing magnesium oxide particles having high acid resistance and high hydration resistance Expired - Fee Related JP3821633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230201A JP3821633B2 (en) 1999-08-06 2000-07-31 Resin composition containing magnesium oxide particles having high acid resistance and high hydration resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-224157 1999-08-06
JP22415799 1999-08-06
JP2000230201A JP3821633B2 (en) 1999-08-06 2000-07-31 Resin composition containing magnesium oxide particles having high acid resistance and high hydration resistance

Publications (2)

Publication Number Publication Date
JP2001115057A true JP2001115057A (en) 2001-04-24
JP3821633B2 JP3821633B2 (en) 2006-09-13

Family

ID=26525881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230201A Expired - Fee Related JP3821633B2 (en) 1999-08-06 2000-07-31 Resin composition containing magnesium oxide particles having high acid resistance and high hydration resistance

Country Status (1)

Country Link
JP (1) JP3821633B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096299A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition for resin molding and molded product
WO2006059666A1 (en) * 2004-12-01 2006-06-08 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2007031259A (en) * 2005-06-22 2007-02-08 Nissan Motor Co Ltd Metal oxide particle composite, metal oxide composite sol, and method for producing metal oxide composite sol
JP2007091525A (en) * 2005-09-28 2007-04-12 Nippon Chem Ind Co Ltd Magnesium oxide powder, precursor for magnesium oxide molded body, method for producing them, magnesium oxide molded body, and magnesium oxide sintered pellet
JP2007246687A (en) * 2006-03-16 2007-09-27 Sumitomo Bakelite Co Ltd Liquid resin composition for underfill, and method for producing semiconductor device therewith and semiconductor device
JP2008074683A (en) * 2006-09-25 2008-04-03 Tateho Chem Ind Co Ltd Coated magnesium oxide powder, its production method, and resin composition comprising the same
JP2008184540A (en) * 2007-01-30 2008-08-14 Inoac Corp Injection-molded article and its manufacturing method
JP2011068757A (en) * 2009-09-25 2011-04-07 Konoshima Chemical Co Ltd Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
JP2013500352A (en) * 2009-07-24 2013-01-07 ティコナ・エルエルシー Thermally conductive polymer composition and articles made therefrom
JP2014051581A (en) * 2012-09-06 2014-03-20 Daicel Polymer Ltd Additive for thermoplastic resin
JP2015071730A (en) * 2013-10-04 2015-04-16 株式会社トクヤマ Surface-modified particle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240044446A (en) 2021-08-09 2024-04-04 조인트 스탁 컴퍼니 카우스티크 High purity magnesium oxide and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170131A (en) * 1983-03-17 1984-09-26 Daihachi Kagaku Kogyosho:Kk Surface-modified inorganic powder
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170131A (en) * 1983-03-17 1984-09-26 Daihachi Kagaku Kogyosho:Kk Surface-modified inorganic powder
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096299A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition for resin molding and molded product
KR100799042B1 (en) * 2004-12-01 2008-01-28 다테호 가가쿠 고교 가부시키가이샤 Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
WO2006059666A1 (en) * 2004-12-01 2006-06-08 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same and resin composition containing such powder
US7393885B2 (en) 2004-12-01 2008-07-01 Tateho Chemical Industries Co., Ltd. Phosphorus-containing coated magnesium oxide powder, method for producing same, and resin composition containing such powder
JP2006282783A (en) * 2005-03-31 2006-10-19 Polyplastics Co Highly heat-conductive resin composition
JP2007031259A (en) * 2005-06-22 2007-02-08 Nissan Motor Co Ltd Metal oxide particle composite, metal oxide composite sol, and method for producing metal oxide composite sol
JP2007091525A (en) * 2005-09-28 2007-04-12 Nippon Chem Ind Co Ltd Magnesium oxide powder, precursor for magnesium oxide molded body, method for producing them, magnesium oxide molded body, and magnesium oxide sintered pellet
JP2007246687A (en) * 2006-03-16 2007-09-27 Sumitomo Bakelite Co Ltd Liquid resin composition for underfill, and method for producing semiconductor device therewith and semiconductor device
JP2008074683A (en) * 2006-09-25 2008-04-03 Tateho Chem Ind Co Ltd Coated magnesium oxide powder, its production method, and resin composition comprising the same
JP2008184540A (en) * 2007-01-30 2008-08-14 Inoac Corp Injection-molded article and its manufacturing method
JP2013500352A (en) * 2009-07-24 2013-01-07 ティコナ・エルエルシー Thermally conductive polymer composition and articles made therefrom
JP2011068757A (en) * 2009-09-25 2011-04-07 Konoshima Chemical Co Ltd Magnesium oxide-based highly water-resistant thermoconductive filler, method for producing the same, and resin composition
JP2014051581A (en) * 2012-09-06 2014-03-20 Daicel Polymer Ltd Additive for thermoplastic resin
JP2015071730A (en) * 2013-10-04 2015-04-16 株式会社トクヤマ Surface-modified particle

Also Published As

Publication number Publication date
JP3821633B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
EP2455339B1 (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
JP2001115057A (en) Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP5330644B2 (en) Surface-treated silica particles
JP2010228997A (en) Method of producing hydrophobic silica particle
EP1153984A1 (en) Resin composition, molded article therefrom, and utilization thereof
US20120291670A1 (en) Magnesium oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition
US20230416501A1 (en) Hydrophobic aluminum nitride powder and method for producing the same
JP6977666B2 (en) Low soda α-alumina powder and its manufacturing method
JP7459801B2 (en) Plate-like alumina particles, method for producing plate-like alumina particles, and resin composition
WO2022059661A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
KR101394808B1 (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
TWI712560B (en) Silane-treated forsterite fine particles and manufacturing method thereof, and organic solvent dispersion liquid of silane-treated forsterite fine particles and manufacturing method thereof
JP2003201116A (en) Granular alumina, manufacturing method of granular alumina and composition containing granular alumina
WO2001010958A1 (en) Highly acid-resistant, hydration-resistant magnesium oxide particles and resin compositions
JPH10204300A (en) Highly heat-conductive resin composition
JP2003137528A (en) Production method for spherical silica powder
JP3714506B2 (en) High thermal conductive resin composition having excellent water resistance
KR102375076B1 (en) Method for producing heat-resistant aluminum hydroxide
JP3520582B2 (en) Coated inorganic powder and method for producing the same, and coating agent for inorganic powder and method for producing the same
JP2005082668A (en) Flame retardant, method for producing the same, and resin composition
JP2000119443A (en) Resin-filling aluminum hydroxide
JP2000264619A (en) Siliceous powder and its production
JP2001226522A (en) Flame-retardant filler and flame-retardant resin composition
JP7239608B2 (en) Modified zirconium tungstate phosphate, negative thermal expansion filler and polymer composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3821633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees