JPWO2020045580A1 - Microbial adsorbent and microbial sterilization method using it - Google Patents

Microbial adsorbent and microbial sterilization method using it Download PDF

Info

Publication number
JPWO2020045580A1
JPWO2020045580A1 JP2020539594A JP2020539594A JPWO2020045580A1 JP WO2020045580 A1 JPWO2020045580 A1 JP WO2020045580A1 JP 2020539594 A JP2020539594 A JP 2020539594A JP 2020539594 A JP2020539594 A JP 2020539594A JP WO2020045580 A1 JPWO2020045580 A1 JP WO2020045580A1
Authority
JP
Japan
Prior art keywords
soil
microbial
akahoya
adsorbent
microbial adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020539594A
Other languages
Japanese (ja)
Other versions
JP7398807B2 (en
Inventor
尚明 三澤
尚明 三澤
広幸 木之下
広幸 木之下
賢太郎 安井
賢太郎 安井
太一 小林
太一 小林
秀樹 長▲濱▼
秀樹 長▲濱▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Publication of JPWO2020045580A1 publication Critical patent/JPWO2020045580A1/en
Application granted granted Critical
Publication of JP7398807B2 publication Critical patent/JP7398807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Sludge (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

安価にかつ環境への負担の少ない細菌やウイルス等の微生物を吸着・殺菌できる微生物吸着材およびこれを用いた微生物殺菌方法を提供する。微生物吸着材として、Al2O3が30wt%以上である火山灰土壌を用いた。Provided are a microbial adsorbent capable of adsorbing and sterilizing microorganisms such as bacteria and viruses which are inexpensive and have a low burden on the environment, and a microbial sterilization method using the microbial adsorbent. Volcanic ash soil containing 30 wt% or more of Al2O3 was used as the microbial adsorbent.

Description

本発明は、糞尿等に含まれる大腸菌等の細菌、鳥インフルエンザウイルス等のウイルス等の微生物を吸着する微生物吸着材およびこれを用いた微生物殺菌方法に関する。 The present invention relates to a microbial adsorbent that adsorbs bacteria such as Escherichia coli contained in manure and urine, and microorganisms such as viruses such as avian influenza virus, and a microbial sterilization method using the same.

人や家畜にとって有害な細菌やウイルスに対しては種々の対策がなされている。例えば、家畜の糞尿の処理方法は、形状や畜種によって異なっているが、「野積み」、「素掘り」での処理は、水質汚濁、悪臭の発生源となっており改善が求められている。また、畜産農家から発生した処理水を河川や湖沼等の公共用水域に排出する場合、「水質汚濁防止法」に基づき排水基準(生活環境項目および健康項目)が適用される。このように、処理水の排出には、排水基準が設けられているものの、処理水に含まれる大腸菌群数は、限りなくゼロにすることが望ましいのは言うまでもない。 Various measures have been taken against bacteria and viruses that are harmful to humans and livestock. For example, the method of treating livestock manure differs depending on the shape and breed of livestock, but the treatment by "field stacking" and "bare digging" is a source of water pollution and foul odors, and improvement is required. .. In addition, when the treated water generated by livestock farmers is discharged to public water areas such as rivers and lakes, drainage standards (living environment items and health items) are applied based on the "Water Pollution Control Law". As described above, although wastewater standards are set for the discharge of treated water, it goes without saying that it is desirable that the number of coliform bacteria contained in the treated water be as zero as possible.

ここで、処理水に含まれる大腸菌群の除去方法として、塩素またはオゾン注入、紫外線照射等が一般的であるが、塩素注入は、安価であるものの鋼製配管等の設備を腐食させるという問題がある。また、オゾン注入や紫外線照射は、処理コストが高くなるため、特に小規模の畜産農家では設備導入が難しいという問題がある。 Here, chlorine or ozone injection, ultraviolet irradiation, etc. are generally used as a method for removing coliform bacteria contained in treated water, but chlorine injection is inexpensive but has a problem of corroding equipment such as steel pipes. be. In addition, ozone injection and ultraviolet irradiation have a problem that it is difficult to introduce equipment, especially for small-scale livestock farmers, because the processing cost is high.

また、鳥インフルエンザウイルスは、変異によって高病原性鳥インフルエンザウイルスに変化することがある。野鳥の腸管内に高病原性鳥インフルエンザウイルスが保有されると、養鶏農場周囲にウイルスを含む糞便を落下させ、それらが鶏の感染源となっていると考えられている。ここで、高病原性鳥インフルエンザウイルスの鶏舎内への侵入を防ぐためには、鶏舎周囲への石灰等の薬剤散布が重要となるが、化学薬品の大量使用による環境負荷とコスト面が課題となっていた。 In addition, the avian influenza virus may be transformed into a highly pathogenic avian influenza virus by mutation. When highly pathogenic avian influenza virus is carried in the intestinal tract of wild birds, feces containing the virus are dropped around chicken farms, and it is thought that they are the source of infection for chickens. Here, in order to prevent the invasion of highly pathogenic avian influenza virus into the poultry house, it is important to spray chemicals such as lime around the poultry house, but the environmental load and cost due to the large amount of chemicals used become issues. Was there.

発明者らは、特定の火山灰土壌、特に特定の鬼界アカホヤ火山灰土壌が腸管出血性大腸菌や鳥インフルエンザウイルスの吸着性能に優れるのみならず、驚くことに殺菌効果もあることを見出した。 The inventors have found that certain volcanic ash soils, especially certain Akahoya eruption ash soils, not only excel in enterohemorrhagic Escherichia coli and avian influenza virus adsorption performance, but also have a surprising bactericidal effect.

本発明は、このような問題点に着目してなされたもので、安価にかつ環境への負担の少ない細菌やウイルス等の微生物を吸着・殺菌できる微生物吸着材およびこれを用いた微生物殺菌方法を提供することを目的とする。 The present invention has been made by paying attention to such a problem, and is a microbial adsorbent capable of adsorbing and sterilizing microorganisms such as bacteria and viruses which are inexpensive and have a low burden on the environment, and a microbial sterilization method using the same. The purpose is to provide.

前記課題を解決するために、本発明の微生物吸着材は、
Alが30wt%以上である火山灰土壌を用いたことを特徴としている。
この特徴によれば、細菌、ウイルス等の微生物を含む水分を吸着しやすく、吸着・殺菌能力が高い。
In order to solve the above problems, the microbial adsorbent of the present invention is used.
It is characterized by using volcanic ash soil having Al 2 O 3 of 30 wt% or more.
According to this feature, it easily adsorbs water containing microorganisms such as bacteria and viruses, and has high adsorption / sterilization ability.

前記火山灰土壌は、Feが3〜8wt%である鬼界アカホヤ火山灰土壌であることを特徴としている。
この特徴によれば、Alの割合がFeに比べ3倍以上と多く、アルミニウムイオンとリン酸イオンで錯体を形成しやすいため、リン酸を含む微生物等の吸着・殺菌能力に優れる。
The volcanic ash soil is characterized by being an Akahoya eruption ash soil in which Fe 2 O 3 is 3 to 8 wt%.
According to this feature, the ratio of Al 2 O 3 is more than 3 times that of Fe 2 O 3 , and it is easy to form a complex with aluminum ions and phosphate ions, so that it has the ability to adsorb and kill microorganisms containing phosphoric acid. Excellent for.

前記火山灰土壌は、SiOが39〜65wt%、Alが31〜45wt%、Feが3〜8wt%、その他が0〜22wt%からなることを特徴としている。
この特徴によれば、天然の鬼界アカホヤ火山灰土壌への加工処理が少ない。
The volcanic ash soil is characterized in that SiO 2 is 39 to 65 wt%, Al 2 O 3 is 31 to 45 wt%, Fe 2 O 3 is 3 to 8 wt%, and the others are 0 to 22 wt%.
According to this feature, there is little processing to the natural Akahoya volcanic ash soil.

前記火山灰土壌は、焼成されていることを特徴としている。
この特徴によれば、天然の鬼界アカホヤ火山灰土壌中に含まれている雑菌を消滅させることができる。
The volcanic ash soil is characterized by being calcined.
According to this feature, it is possible to eliminate various germs contained in the natural Akahoya volcanic ash soil.

前記焼成は、1000℃以下で行われることを特徴としている。
この特徴によれば、火山灰土壌が有する細孔の径が小さいものが存在しやすく、微生物を吸着しやすい。
The firing is characterized in that it is carried out at 1000 ° C. or lower.
According to this feature, those having a small diameter of pores in volcanic ash soil are likely to exist, and microorganisms are easily adsorbed.

前記火山灰土壌は、少なくとも径100nm以下の細孔を有することを特徴としている。
この特徴によれば、細孔の径が小さいものが存在しやすく、微生物を吸着しやすい。
The volcanic ash soil is characterized by having pores having a diameter of at least 100 nm or less.
According to this feature, those having a small pore diameter are likely to exist, and microorganisms are easily adsorbed.

前記火山灰土壌は、比表面積が3.9m−1以上であることを特徴としている。
この特徴によれば、表面積が広く、微生物を吸着しやすい。
The volcanic ash soil is characterized by having a specific surface area of 3.9 m 2 g -1 or more.
According to this feature, the surface area is large and it is easy to adsorb microorganisms.

前記火山灰土壌は、粒径1mm以下の粉末であることを特徴としている。
この特徴によれば、粉末状であるので散布して使用することが簡便である。
The volcanic ash soil is characterized by being a powder having a particle size of 1 mm or less.
According to this feature, since it is in powder form, it is convenient to spray and use it.

前記火山灰土壌は、土粒子密度2.6〜2.7g/cmの粉末であることを特徴としている。
この特徴によれば、土粒子密度が低いため、攪拌やばっ気を行うことで水に浮かせた状態で使用することができる。
The volcanic ash soil is characterized by being a powder having a soil particle density of 2.6 to 2.7 g / cm 3.
According to this feature, since the soil particle density is low, it can be used in a state of being floated on water by stirring or aeration.

前記課題を解決するために、本発明の微生物吸着材を用いた微生物殺菌方法は、前記微生物吸着材を用いたことを特徴としている。
この特徴によれば、細菌やウイルス等の微生物を安価にかつ環境への負担の少なく殺菌することができる。
In order to solve the above problems, the microbial sterilization method using the microbial adsorbent of the present invention is characterized by using the microbial adsorbent.
According to this feature, microorganisms such as bacteria and viruses can be sterilized at low cost and with less burden on the environment.

本発明の実施例における微生物吸着材を構成するアカホヤの焼成温度と細孔径分布の関係を示すグラフである。It is a graph which shows the relationship between the firing temperature and the pore diameter distribution of Akahoya constituting the microorganism adsorbent in the Example of this invention. 実施例における微生物吸着材を構成するアカホヤの大腸菌に対する吸着能力を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the adsorption capacity to Escherichia coli of Akahoya which constitutes a microorganism adsorbent in an Example. 本発明の実施例1における微生物吸着材の大腸菌に対する殺菌能力を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the bactericidal ability of the microbial adsorbent with respect to Escherichia coli in Example 1 of this invention. 本発明の実施例2における微生物吸着材の鳥インフルエンザウイルスに対する吸着能力を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the adsorption capacity to the avian influenza virus of the microbial adsorbent in Example 2 of this invention. 本発明の実施例5における微生物吸着材に吸着された大腸菌の生存試験の結果を示すグラフである。It is a graph which shows the result of the survival test of Escherichia coli adsorbed on the microbial adsorbent in Example 5 of this invention. 本発明の実施例6における微生物吸着材に吸着されたO−157の生存試験の結果を示すグラフである。It is a graph which shows the result of the survival test of O-157 adsorbed on the microbial adsorbent in Example 6 of this invention.

発明者らは、家畜の糞尿等に含まれる腸管出血性大腸菌(以下、単に「大腸菌」と表記することもある。)等の細菌、鳥インフルエンザウイルス等のウイルス等の微生物を吸着ないし殺菌する素材として、火山灰土壌、特に天然の鬼界アカホヤ火山灰土壌(以下、単に「アカホヤ」と表記する。)が優れるとの知見を得た。研究の結果から、成分および構造に着目することが有意であったことから、先ずこの事項について説明する。 The inventors adsorb or sterilize bacteria such as enterohemorrhagic Escherichia coli (hereinafter, may be simply referred to as "Escherichia coli") contained in livestock manure and microorganisms such as viruses such as bird influenza virus. As a result, it was found that the volcanic ash soil, especially the natural Akahoya volcanic ash soil (hereinafter, simply referred to as "Akahoya") is excellent. From the results of the research, it was significant to focus on the components and structure, so this matter will be explained first.

微生物吸着材による微生物の吸着ないし殺菌のメカニズムについて説明する。微生物吸着材は、径100nm以下の無数の細孔を有し、その比表面積が大きいため、ファンデルワールス力や水素結合による微生物に対する物理的な吸着性に優れているとともに、吸水性にも優れている。さらに、微生物吸着材は、Al(酸化アルミニウム)およびFe(酸化鉄)の組成比が高く、親水性を示すため、吸水後では、イオン化したAl3+(アルミニウムイオン)およびFe3+(鉄イオン)が微生物の細胞膜の表面(リン脂質の親水基)を構成するPO 3−(リン酸イオン)と高い化学結合性(化学反応性)を示し、不溶性のAlPO(リン酸アルミニウム)およびFePO(リン酸鉄)が生成される。イオン化したAl3+およびFe3+とPO 3−との化学結合の化学式を下記の化1に示す。The mechanism of adsorption or sterilization of microorganisms by a microorganism adsorbent will be described. The microbial adsorbent has innumerable pores with a diameter of 100 nm or less and has a large specific surface area, so that it has excellent physical adsorption to microorganisms due to van der Waals force and hydrogen bonds, and also has excellent water absorption. ing. Furthermore, since the microbial adsorbent has a high composition ratio of Al 2 O 3 (aluminum oxide) and Fe 2 O 3 (iron oxide) and exhibits hydrophilicity, ionized Al 3+ (aluminum ion) and Fe after water absorption. 3+ (iron ions) shows the PO 4 3- constitutes the surface (hydrophilic groups of phospholipids) in cell membranes of microorganisms (phosphate ion) and high chemical bonding (chemical reactivity), AlPO 4 (phosphoric acid-insoluble Aluminum) and FePO 4 (iron phosphate) are produced. The ionized Al 3+ and Fe 3+ and chemical formula of the chemical bonds between the PO 4 3- is shown in chemical formula 1 below.

Figure 2020045580
Figure 2020045580

尚、微生物の細胞膜は、リン脂質の自己組織化により脂質二重層を構成しているが、細胞膜の表面(リン脂質の親水基)を構成するPO 3−が微生物吸着材のAl3+およびFe3+と化学結合してAlPOおよびFePOを生成することにより、リン脂質が分解する。特に、大腸菌については、このリン脂質の分解を原因として細胞膜の分解が起こり死滅するものと考えられる。尚、微生物吸着材に吸着されず処理水中を浮遊している大腸菌についても、処理水中に溶け出したAl3+およびFe3+と化学結合することにより同様に死滅する。Incidentally, the cell membranes of the microorganisms and also forms the lipid bilayer by self-organization of phospholipids, of PO 4 3- microorganisms adsorbent constituting the surface (hydrophilic groups of phospholipids) in cell membranes Al 3+ and Fe Phospholipids are degraded by chemically binding to 3+ to produce AlPO 4 and FePO 4. In particular, it is considered that Escherichia coli is killed by the decomposition of the cell membrane caused by the decomposition of this phospholipid. Escherichia coli that is not adsorbed by the microbial adsorbent and is suspended in the treated water is also killed by chemically bonding with Al 3+ and Fe 3+ dissolved in the treated water.

このように、微生物吸着材は、径100nm以下の無数の細孔により微生物を物理的に吸着するとともに、イオン化したAl3+およびFe3+が微生物の細胞膜を構成するPO 3−と高い化学結合性を示してAlPOおよびFePOを生成することにより、微生物を効率よく吸着ないし殺菌することができる。Thus, microbial adsorbent with physically adsorb the microorganisms by innumerable pores of diameter 100nm or less, PO 4 3- and high chemical binding of Al 3+ and Fe 3+ ionized constitute the cell membrane of the microorganism By producing AlPO 4 and FePO 4 , microorganisms can be efficiently adsorbed or sterilized.

本発明に係る微生物吸着材を実施するための形態を実施例に基づいて以下に説明する。尚、本実施例において成分組成比等の各試験結果はサンプル数3以上の平均値である。 A mode for carrying out the microorganism adsorbent according to the present invention will be described below based on examples. In this example, each test result such as the component composition ratio is an average value of 3 or more samples.

微生物吸着材は、宮崎県東諸県郡地区産出のアカホヤを粉砕してふるいにかけた後、次の条件で焼成することにより土壌由来の細菌を死滅させるとともに、構成化合物を安定させ、一定の形状と強度を確保する。
温度 800℃
保持時間 60分(昇温100℃/1時間)
焼成装置(ADVANTEC社製電気マッフル炉FUW220PA)
The microbial adsorbent kills soil-derived bacteria by crushing and sieving Akahoya eruption from the Higashimorokata district of Miyazaki prefecture, and then firing under the following conditions to stabilize the constituent compounds and to maintain a certain shape and strength. To secure.
Temperature 800 ℃
Holding time 60 minutes (temperature rise 100 ° C / 1 hour)
Firing equipment (ADVANTEC electric muffle furnace FUW220PA)

焼成前のアカホヤの成分組成比は以下のとおりであった。尚、成分組成比は、島津製作所社製エネルギー分散型蛍光X線分析装置EDX−720を用いてJIS K0119:2008により分析した。
51.0wt% SiO
39.7wt% Al
4.71wt% Fe
1.49wt% K
1.40wt% CaO
0.51wt% MgO
0.53wt% TiO
0.66wt% その他
The composition ratio of Akahoya before firing was as follows. The component composition ratio was analyzed by JIS K0119: 2008 using an energy dispersive fluorescent X-ray analyzer EDX-720 manufactured by Shimadzu Corporation.
51.0 wt% SiO 2
39.7 wt% Al 2 O 3
4.71 wt% Fe 2 O 3
1.49 wt% K 2 O
1.40 wt% CaO
0.51 wt% MgO
0.53 wt% TiO 2
0.66 wt% Other

焼成後のアカホヤの成分組成比は以下の表1のとおりであった。 The composition ratio of Akahoya after firing is shown in Table 1 below.

Figure 2020045580
Figure 2020045580

焼成後のアカホヤは、Alの成分組成比が38.3wt%、Feの成分組成比が3.96wt%であり、SiOに対してAlおよびFeの比率が高い。After firing, the red squirrel has a component composition ratio of Al 2 O 3 of 38.3 wt% and a component composition ratio of Fe 2 O 3 of 3.96 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2. The ratio is high.

ここで、焼成温度によって細孔径分布、比表面積が変化しているので以下説明する。尚、細孔径分布は、Micromeritics社製AutoPoreV9620を用いて水銀圧入法(JIS R1655)により分析した。 Here, since the pore size distribution and the specific surface area change depending on the firing temperature, they will be described below. The pore size distribution was analyzed by a mercury intrusion method (JIS R1655) using AutoPore V9620 manufactured by Micromeritics.

図1のグラフに示されるように、アカホヤの細孔は、径0.01〜10μm(100〜10000nm)に分布しており、焼成温度800〜1000℃では、径100nm以下の細孔は1体積%以上であり細孔の分布があるが、焼成温度1100℃、1150℃では、径100nm以下の細孔は1体積%未満であり細孔の分布がなくなっている。すなわち、焼成温度が高くなるにつれて細孔が閉塞し、細孔径分布が変化することが確認された。 As shown in the graph of FIG. 1, the pores of Akahoya are distributed in a diameter of 0.01 to 10 μm (100 to 10000 nm), and at a firing temperature of 800 to 1000 ° C., one volume of pores having a diameter of 100 nm or less is one volume. % Or more and there is a distribution of pores, but at a firing temperature of 1100 ° C. and 1150 ° C., the pores having a diameter of 100 nm or less are less than 1% by volume, and the distribution of pores is lost. That is, it was confirmed that the pores were closed and the pore size distribution changed as the firing temperature increased.

また、比表面積は、Micromeritics社製FlowSorb3 2310を用いてBET法(JIS Z8830)により求めた。 The specific surface area was determined by the BET method (JIS Z8830) using FlowSorb3 2310 manufactured by Micromeritics.

表2に示されるように、アカホヤの比表面積は、焼成無しで68.7m−1であったものが、焼成温度800℃で36.0m−1、焼成温度900℃で9.54m−1、焼成温度1000℃で3.9m−1、焼成温度1100℃で1.35m−1、焼成温度1150℃で0.79m−1と低下している。すなわち、焼成温度が高くなるにつれて細孔の閉塞に伴い比表面積が低下する。As shown in Table 2, the specific surface area of Akahoya was 68.7 m 2 g -1 without firing, but it was 36.0 m 2 g -1 at a firing temperature of 800 ° C and 9. at a firing temperature of 900 ° C. 54m 2 g -1, 3.9m 2 g -1 at a firing temperature 1000 ℃, 1.35m 2 g -1 at a firing temperature 1100 ° C., is reduced with 0.79 m 2 g -1 at a firing temperature 1150 ° C.. That is, as the firing temperature increases, the specific surface area decreases as the pores are closed.

Figure 2020045580
Figure 2020045580

また、図2の写真に示されるように、焼成温度800℃で焼成したアカホヤに大腸菌の浮遊液をろ過した後の通過液を培養すると、生菌が検出されなかった(図2の中段参照)。また、大腸菌の浮遊液をろ過した後のアカホヤに再びバッファ液を通して洗浄した洗浄液を培養しても、同様の結果が得られた(図2の下段参照)。すなわち、アカホヤの焼成は、径100nm以下の細孔の分布があり、その比表面積が3.9m−1以上(好ましくは36.0〜69.0m−1)となる焼成温度1000℃以下(好ましくは800℃以下)で行われることにより、アカホヤの細孔による微生物の物理的な吸着能力を維持することができる。また、焼成温度が100℃未満では、土壌由来の細菌が十分に死滅しない可能性があることから、焼成温度は、好ましくは100〜1000℃、さらに好ましくは180〜800℃であることが判明した。さらに、火山灰土壌中の有機物は無い方が好ましく、この場合、焼成温度は800℃以上であることが望ましい。Further, as shown in the photograph of FIG. 2, when the passing solution after filtering the suspension solution of Escherichia coli was cultured in Akahoya erupted at a firing temperature of 800 ° C., no viable bacteria were detected (see the middle part of FIG. 2). .. Further, the same result was obtained by culturing the washing liquid which was washed by passing the buffer liquid through Akahoya after filtering the suspension liquid of Escherichia coli again (see the lower part of FIG. 2). That is, in the firing of Akahoya, the firing temperature is 1000, which has a distribution of pores having a diameter of 100 nm or less and a specific surface area of 3.9 m 2 g -1 or more (preferably 36.0 to 69.0 m 2 g -1). By performing the operation at a temperature of ° C. or lower (preferably 800 ° C. or lower), the physical adsorption capacity of microorganisms by the pores of Akahoya can be maintained. Further, it was found that the calcination temperature is preferably 100 to 1000 ° C., more preferably 180 to 800 ° C., because the soil-derived bacteria may not be sufficiently killed when the calcination temperature is less than 100 ° C. .. Further, it is preferable that there is no organic matter in the volcanic ash soil, and in this case, the firing temperature is preferably 800 ° C. or higher.

次に、上述したアカホヤと同様の加工処理を行った栃木県鹿沼地区産出の赤玉土について説明する。 Next, Akadama soil produced in the Kanuma area of Tochigi prefecture, which has been processed in the same manner as Akahoya eruption described above, will be described.

焼成前の赤玉土の成分組成比は以下のとおりであった。
46.5wt% SiO
34.9wt% Al
13.2wt% Fe
1.37wt% K
0.58wt% CaO
1.31wt% MgO
1.35wt% TiO
0.79wt% その他
The composition ratio of Akadama soil before firing was as follows.
46.5 wt% SiO 2
34.9 wt% Al 2 O 3
13.2 wt% Fe 2 O 3
1.37 wt% K 2 O
0.58 wt% CaO
1.31 wt% MgO
1.35 wt% TiO 2
0.79 wt% Other

焼成後の赤玉土の成分組成比は以下の表3のとおりであった。 The composition ratio of Akadama soil after firing is shown in Table 3 below.

Figure 2020045580
Figure 2020045580

焼成後の赤玉土は、Alの成分組成比が33.0wt%、Feの成分組成比が12.5wt%であり、SiOに対してAlおよびFeの比率が高い。また、アカホヤと比べてAlの成分組成比が低く、Feの成分組成比が高い。The fired Akadama soil has a component composition ratio of Al 2 O 3 of 33.0 wt% and a component composition ratio of Fe 2 O 3 of 12.5 wt%, and Al 2 O 3 and Fe 2 O with respect to SiO 2. The ratio of 3 is high. Further, the component composition ratio of Al 2 O 3 is lower than that of Akahoya, and the component composition ratio of Fe 2 O 3 is high.

次に、上述したアカホヤおよび赤玉土と同様の加工処理を行った宮崎県新富地区産出の粘土について説明する。 Next, clay produced in the Shintomi district of Miyazaki Prefecture, which has been processed in the same manner as Akahoya and Akadama soil described above, will be described.

焼成前の成分組成比は以下のとおりであった。
65.2wt% SiO
23.0wt% Al
5.18wt% Fe
3.71wt% K
0.24wt% CaO
1.65wt% MgO
0.81wt% TiO
0.21wt% その他
The component composition ratio before firing was as follows.
65.2 wt% SiO 2
23.0 wt% Al 2 O 3
5.18 wt% Fe 2 O 3
3.71 wt% K 2 O
0.24 wt% CaO
1.65 wt% MgO
0.81 wt% TiO 2
0.21 wt% Other

焼成後の粘土の成分組成比は以下の表4のとおりであった。 The composition ratio of the clay after firing is shown in Table 4 below.

Figure 2020045580
Figure 2020045580

焼成後の粘土は、Alの成分組成比が22.7wt%、Feの成分組成比が4.76wt%であり、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlの成分組成比が低く、Feの成分組成比が略同じである。The clay after firing has a component composition ratio of Al 2 O 3 of 22.7 wt% and a component composition ratio of Fe 2 O 3 of 4.76 wt%, and Al 2 O 3 and Fe 2 O 3 with respect to SiO 2. The ratio of is low. Further, the component composition ratio of Al 2 O 3 is lower than that of Akahoya, and the component composition ratio of Fe 2 O 3 is substantially the same.

尚、上述したアカホヤ、赤玉土および粘土と同様の加工処理を行った宮崎県都城地区産出のシラスについて、焼成後のシラスは、一般的な成分の特徴として、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlおよびFeの成分組成比が低い。Regarding the shirasu produced in the Miyakonojo area of Miyazaki prefecture, which was processed in the same manner as the above-mentioned red sardine, Akadama soil, and clay, the shirasu after firing has a general component characteristic of Al 2 O 3 with respect to SiO 2. And the ratio of Fe 2 O 3 is low. In addition, the composition ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of Akahoya.

同じく、栃木県鹿沼地区産出の鹿沼土について、焼成後の鹿沼土は、一般的な成分の特徴として、SiOに対してAlおよびFeの比率が低い。また、アカホヤと比べてAlおよびFeの比率が低い。Similarly, with respect to Kanuma soil produced in the Kanuma area of Tochigi prefecture, the ratio of Al 2 O 3 and Fe 2 O 3 to SiO 2 is low in the calcined Kanuma soil as a characteristic of general components. In addition, the ratio of Al 2 O 3 and Fe 2 O 3 is lower than that of Akahoya.

すなわち、アカホヤは、赤玉土、粘土、シラスおよび鹿沼土と比べて、安定度定数の高いAl3+を生じるAlの成分組成比が高く、かつ赤玉土と比べてFeの成分組成比が低いため、例えばAl3+(アルミニウムイオン)と糞尿中のPO 3−(リン酸イオン)で錯体を形成しやすく、当該錯体と微生物の細胞膜を構成するPO 3−との逐次反応が起こり、微生物をより効率よく吸着することができる。That is, Akadama has a higher composition ratio of Al 2 O 3 that produces Al 3+ with a higher stability constant than Akadama soil, clay, silas, and Kanuma soil, and has a higher Fe 2 O 3 component than Akadama soil. since the composition ratio is low, for example, Al 3+ (aluminum ion) and PO 4 3- easily form a complex with (phosphate ion) in manure, sequential reaction with PO 4 3- constituting a cell membrane of the complex and the microorganism Can occur and the microorganisms can be adsorbed more efficiently.

このように、微生物吸着材は、九州南部において地下の比較的浅い場所に無尽蔵に存在する自然素材であるアカホヤから構成されることにより、細菌やウイルス等の微生物に対する高い吸着能力を有しながら、安価にかつ環境への負担の少なくすることができる。尚、微生物吸着材として用いるアカホヤは、九州南部において産出されたものであれば、宮崎県東諸県郡地区産出のものに限らない。 In this way, the microbial adsorbent is composed of Akahoya, which is a natural material that exists inexhaustibly in a relatively shallow place underground in the southern part of Kyushu, and thus has a high adsorption capacity for microorganisms such as bacteria and viruses. It can be inexpensive and reduce the burden on the environment. Akahoya used as a microbial adsorbent is not limited to that produced in the Higashimorokata district of Miyazaki prefecture as long as it is produced in southern Kyushu.

尚、以下の各実施例におけるアカホヤ等の火山灰土壌は、上述した成分のものを用いている。 As the volcanic ash soil such as Akahoya in each of the following examples, those having the above-mentioned components are used.

実施例1に係る微生物吸着材について説明する。実施例1の微生物吸着材は、粉砕し次の条件で乾熱滅菌した後、粒径0.5mm以下に調整したアカホヤ10gを径15mmの円筒形状のカラム内に充填することにより構成されている。
温度 180℃
時間 40分
乾熱滅菌器(ADVANTEC社製STA620DA)
The microorganism adsorbent according to Example 1 will be described. The microbial adsorbent of Example 1 is composed of crushed and dry heat sterilized under the following conditions, and then filled in a cylindrical column having a diameter of 15 mm with 10 g of Akahoya adjusted to have a particle size of 0.5 mm or less. ..
Temperature 180 ℃
Time 40 minutes Dry heat sterilizer (STA620DA manufactured by ADVANTEC)

微生物吸着材に大腸菌(10cfu/ml)10mlを通過させた後、カラム内のアカホヤ10mgを4℃で保存し、吸着した大腸菌の生存性を培養法により確認すると、図3の写真に示されるように、アカホヤに吸着された大腸菌は時間の経過と共に死滅していき、6日以降は生菌が検出されなかった(図3の左シャーレ参照)。尚、対照実験として、同一のカラムに宮崎県都城地区産出のシラス10gを充填して同様の実験を行った場合には、17日後まで生菌が検出された(図3の右シャーレ参照)。すなわち、アカホヤを素材とする微生物吸着材は、大腸菌の吸着・殺菌能力を有する。After E. coli (10 5 cfu / ml) 10ml was passed through a microorganism adsorbent, save the Akahoya 10mg in the column at 4 ° C., when confirmed by culture viability adsorbed E. coli, shown in the photograph of FIG. 3 As a result, the Escherichia coli adsorbed on Akahoya died over time, and no viable bacteria were detected after 6 days (see the left petri dish in FIG. 3). As a control experiment, when 10 g of shirasu produced in Miyakonojo area, Miyazaki prefecture was filled in the same column and the same experiment was performed, viable bacteria were detected until 17 days later (see the right petri dish in FIG. 3). That is, the microbial adsorbent made of Akahoya has the ability to adsorb and sterilize Escherichia coli.

尚、本実施例では、180℃で40分乾熱滅菌したアカホヤを使用する例について説明したが、焼成温度800℃で焼成されたアカホヤについても、同様の結果が得られた。 In this example, an example of using Akahoya eruption sterilized by dry heat at 180 ° C. for 40 minutes was described, but the same result was obtained for Akahoya eruption fired at a firing temperature of 800 ° C.

実施例2に係る微生物吸着材について説明する。実施例2の微生物吸着材は、粉砕し乾熱滅菌したアカホヤ0.2gを0.6mlのカラム(マイクロチューブ)に入れることにより構成されている。 The microorganism adsorbent according to Example 2 will be described. The microbial adsorbent of Example 2 is composed of 0.2 g of Akahoya crushed and dry heat sterilized in a 0.6 ml column (microtube).

微生物吸着材に鳥インフルエンザウイルス(H3N2亜型)0.4ml(HA価16倍、図4の上から2段目参照)を接種し、アカホヤを通過した後の通過液を2〜256倍に希釈して血球凝集価(HA価)を測定すると、図4の写真に示されるように、鳥インフルエンザウイルスがアカホヤに吸着され、血球と凝集しなかった(HA価陰性、図4の下から2段目参照)。尚、対照実験として、0.6mlのカラムに宮崎県都城地区産出のシラス0.2gを入れて同様の実験を行った場合には、鳥インフルエンザウイルスがシラスにほとんど吸着されず血球と凝集した(HA価8倍,図4の最下段参照)。すなわち、アカホヤを素材とする微生物吸着材は、鳥インフルエンザウイルスの吸着能力を有する。 Avian influenza virus (H3N2 subtype) 0.4 ml (HA value 16 times, see the second row from the top of Fig. 4) was inoculated into the microbial adsorbent, and the passing solution after passing through Akahoya was diluted 2-256 times. Then, when the blood cell agglutination titer (HA titer) was measured, as shown in the photograph of FIG. 4, the avian influenza virus was adsorbed on the red squirrel and did not aggregate with the blood cells (HA titer negative, 2 steps from the bottom of FIG. 4). See eyes). As a control experiment, when 0.2 g of silas produced in the Miyakonojo area of Miyazaki prefecture was placed in a 0.6 ml column and the same experiment was performed, the avian influenza virus was hardly adsorbed on the silas and aggregated with blood cells ( HA value 8 times, see the bottom of Fig. 4). That is, the microbial adsorbent made of Akahoya has the ability to adsorb avian influenza virus.

実施例3に係る微生物吸着材について説明する。実施例3の微生物吸着材は、天然または焼成されたアカホヤであり、大型の容器に家畜の糞尿等の処理対象と一緒に投入した後、攪拌ことにより、処理対象物に含まれる大腸菌等の微生物との接触を促進しながら吸着ないし殺菌する。尚、これらの処理において発生する汚泥(使用後の微生物吸着材)は、大地還元が可能であることから処理コストが安く、汚泥の処理設備も不要となる。 The microorganism adsorbent according to Example 3 will be described. The microbial adsorbent of Example 3 is a natural or fired Akahoya eruption, which is put into a large container together with a treatment target such as livestock manure, and then stirred to contain microorganisms such as Escherichia coli contained in the treatment target. Adsorbs or sterilizes while promoting contact with. Since the sludge (microorganism adsorbent after use) generated in these treatments can be reduced to the ground, the treatment cost is low and the sludge treatment equipment is not required.

実施例4に係る微生物吸着材について説明する。実施例4の微生物吸着材は、粒径0.5mm以下の粉末状に加工処理された天然または焼成されたアカホヤであり、散布しやすくなっている。粉末状の微生物吸着材は、例えば畜舎周囲に散布されることにより、畜舎周囲に存在する微生物を吸着ないし殺菌し、微生物の畜舎内への侵入を防ぐことができる。また、微生物吸着材として自然素材であるアカホヤを使用することにより、大量散布してもコストが安く、環境負荷も少ない。 The microorganism adsorbent according to Example 4 will be described. The microbial adsorbent of Example 4 is a natural or calcined red squirrel processed into a powder having a particle size of 0.5 mm or less, and is easy to spray. By spraying the powdered microbial adsorbent around the barn, for example, it is possible to adsorb or sterilize the microorganisms existing around the barn and prevent the microorganisms from invading the barn. In addition, by using Akahoya, which is a natural material, as a microbial adsorbent, the cost is low and the environmental load is small even if it is sprayed in large quantities.

これらのことから、粒径は1mm以下、好ましくは0.5mm以下、さらに好ましくは0.1mm以下である。 From these facts, the particle size is 1 mm or less, preferably 0.5 mm or less, and more preferably 0.1 mm or less.

さらに、微生物吸着材の素材としてのアカホヤを攪拌またはばっ気させることにより、水中に浮遊させた状態で使用できるようにしてもよい。また、例えば畜舎の出入口等に設置したトレー等に水を張り、水面に微生物吸着材を散布し、水面に浮かせた状態とすることにより、微生物吸着材を靴や家畜の脚等に確実に付着させ、靴や家畜の脚等に存在する微生物を確実に吸着ないし殺菌し、微生物の畜舎内への侵入を防ぐことができる。 Further, Akahoya as a material of the microorganism adsorbent may be agitated or aerated so that it can be used in a state of being suspended in water. In addition, for example, by filling a tray installed at the entrance / exit of a livestock barn with water, spraying a microbial adsorbent on the water surface, and keeping the microbial adsorbent floating on the water surface, the microbial adsorbent is surely attached to shoes, livestock legs, etc. It is possible to reliably adsorb or sterilize microorganisms existing in shoes, legs of livestock, etc., and prevent microorganisms from invading the barn.

これらのことから、土粒子密度は2.6〜2.7g/cmが好ましく、さらにできる限り密度が低いことが好ましい。尚、土粒子密度は、JIS A1202:2009により求めた。From these facts, the soil particle density is preferably 2.6 to 2.7 g / cm 3 , and the density is preferably as low as possible. The soil particle density was determined by JIS A1202: 2009.

実施例5では大腸菌の生存試験について説明する。実施例5の微生物吸着材は、粉砕し次の条件で乾熱滅菌した後、粒径0.5mm以下に調整したアカホヤ、赤玉土、鹿沼土、シラス各10gを径15mmの円筒形状のカラム内にそれぞれ充填することにより構成されている。
温度 180℃
時間 40分
乾熱滅菌器(ADVANTEC社製STA620DA)
Example 5 describes a survival test of Escherichia coli. The microbial adsorbent of Example 5 was crushed and sterilized by dry heat under the following conditions, and then 10 g each of Akahoya, Akadama soil, Kanuma soil, and Shirasu adjusted to a particle size of 0.5 mm or less was placed in a cylindrical column having a diameter of 15 mm. It is configured by filling each of them.
Temperature 180 ℃
Time 40 minutes Dry heat sterilizer (STA620DA manufactured by ADVANTEC)

微生物吸着材に定量の大腸菌を通過させた後、カラム内のアカホヤ、赤玉土、鹿沼土、シラス各10mgをそれぞれ4℃で保存し、吸着した大腸菌の生存性を培養法により確認すると、図5のグラフに示されるように、アカホヤ、赤玉土、鹿沼土、シラスに吸着された大腸菌は時間の経過と共にその菌数が減少していくことが確認された。このように、アカホヤ、赤玉土、鹿沼土、シラスを素材とする微生物吸着材は、大腸菌の吸着・殺菌能力を有する。 After passing a certain amount of Escherichia coli through the microbial adsorbent, 10 mg each of Akahoya, Akadama soil, Kanuma soil, and Silas in the column was stored at 4 ° C., and the viability of the adsorbed Escherichia coli was confirmed by the culture method. As shown in the graph of, it was confirmed that the number of Escherichia coli adsorbed on Akahoya, Akadama soil, Kanuma soil, and Silas decreased with the passage of time. As described above, the microbial adsorbent made of Akahoya, Akadama soil, Kanuma soil, and Shirasu has the ability to adsorb and sterilize Escherichia coli.

ここで、菌数が100分の1まで減少、すなわち99%の菌が死滅することで、有意な殺菌効果と言えるので、この値を評価基準とした。菌数が100分の1未満となる日数、すなわち大腸菌が死滅する日数は、アカホヤ、赤玉土に吸着された大腸菌は3日後、鹿沼土に吸着された大腸菌は9日後、シラスに吸着された大腸菌は17日後であり、それぞれ殺菌効果が確認された。このように、アカホヤ、赤玉土を素材とする微生物吸着材は、短期間で殺菌効果が得られることが確認された。尚、アカホヤ、赤玉土、鹿沼土に吸着された大腸菌は、その菌数が17日後には約1log cfu/gまで減少しており、長期間かけて略全ての菌が殺菌されることが確認された。 Here, it can be said that a significant bactericidal effect is obtained by reducing the number of bacteria to 1/100, that is, killing 99% of the bacteria, and this value was used as the evaluation standard. The number of days when the number of bacteria is less than 1/100, that is, the number of days when Escherichia coli is killed, is 3 days after Escherichia coli adsorbed on Akadama and Akadama soil, 9 days after Escherichia coli adsorbed on Kanuma soil, and Escherichia coli adsorbed on Shirasu. Was 17 days later, and the bactericidal effect was confirmed for each. As described above, it was confirmed that the microbial adsorbent made of Akahoya and Akadama soil has a bactericidal effect in a short period of time. The number of Escherichia coli adsorbed on Akahoya, Akadama soil, and Kanuma soil decreased to about 1 log cfu / g after 17 days, and it was confirmed that almost all the bacteria were sterilized over a long period of time. Was done.

実施例6では腸管出血性大腸菌O−157の生存試験について説明する。尚、微生物吸着材は実施例5と同様に製作したものを用いた。 Example 6 describes a survival test for enterohemorrhagic Escherichia coli O-157. As the microorganism adsorbent, the one produced in the same manner as in Example 5 was used.

微生物吸着材に定量の腸管出血性大腸菌O−157(以下、単に「O−157」と表記する。)を通過させた後、カラム内のアカホヤ、赤玉土、鹿沼土、シラス各10mgをそれぞれ4℃で保存し、吸着したO−157の生存性を培養法により確認すると、図6のグラフに示されるように、アカホヤ、赤玉土、鹿沼土に吸着されたO−157は時間の経過と共にその菌数が減少していくことが確認された。このように、アカホヤ、赤玉土、鹿沼土を素材とする微生物吸着材は、O−157の吸着・殺菌能力を有する。 After passing a certain amount of enterohemorrhagic Escherichia coli O-157 (hereinafter, simply referred to as "O-157") through the microbial adsorbent, 10 mg each of Akahoya, Akadama soil, Kanuma soil, and Silas in the column is 4 each. When the viability of the adsorbed O-157 was confirmed by the culture method after storage at ° C, as shown in the graph of FIG. 6, the O-157 adsorbed on Akahoya, Akadama soil, and Kanuma soil became the same with the passage of time. It was confirmed that the number of bacteria decreased. As described above, the microbial adsorbent made of Akahoya, Akadama soil, and Kanuma soil has the ability to adsorb and sterilize O-157.

ここで、菌数が100分の1まで減少、すなわち99%の菌が死滅することで、有意な殺菌効果と言えるので、この値を評価基準とした。菌数が100分の1未満となる日数、すなわちO−157が死滅する日数は、アカホヤ、赤玉土に吸着されたO−157は7日後、鹿沼土に吸着されたO−157は14日以上後であり、それぞれ殺菌効果が確認された。このように、アカホヤ、赤玉土を素材とする微生物吸着材は、短期間で殺菌効果が得られることが確認された。尚、アカホヤ、赤玉土に吸着されたO−157は、その菌数が1ヶ月後には約1log cfu/gまで減少しており、長期間かけて略全ての菌が殺菌されることが確認された。 Here, it can be said that a significant bactericidal effect is obtained by reducing the number of bacteria to 1/100, that is, killing 99% of the bacteria, and this value was used as the evaluation standard. The number of days when the number of bacteria is less than 1/100, that is, the number of days when O-157 is killed, is 7 days for O-157 adsorbed on Akahoya and Akadama soil, and 14 days or more for O-157 adsorbed on Kanuma soil. Later, the bactericidal effect was confirmed for each. As described above, it was confirmed that the microbial adsorbent made of Akahoya and Akadama soil has a bactericidal effect in a short period of time. The number of O-157 adsorbed on Akahoya and Akadama soil decreased to about 1 log cfu / g after 1 month, and it was confirmed that almost all the bacteria were sterilized over a long period of time. rice field.

これら実施例5,6から、表5に示されるように、アカホヤ、赤玉土を素材とする微生物吸着材は、鹿沼土、シラスを素材とする微生物吸着材と比べて大腸菌およびO−157に対する有意な殺菌能力を有する。尚、表5中の「○」は有意な殺菌能力があることを示し、「△」は長い期間を要するものの殺菌能力があること示し、「×」は殺菌能力が不十分であったものを示している。 From Examples 5 and 6, as shown in Table 5, the microbial adsorbent made of Akahoya and Akadama soil is significantly more resistant to Escherichia coli and O-157 than the microbial adsorbent made of Kanuma soil and Shirasu. Has excellent bactericidal ability. In Table 5, "○" indicates that the bactericidal ability is significant, "△" indicates that the bactericidal ability is required for a long period of time, and "x" indicates that the bactericidal ability is insufficient. Shown.

また、図5を参照し大腸菌に対する短期間(3日間以内)での殺菌能力、すなわち0日から3日後までの菌数の減少率は、アカホヤが赤玉土よりも優位である。同様に、図6を参照しO−157に対する短期間(7日間以内)での殺菌能力、すなわち0日から7日後までの菌数の減少率は、赤玉土がアカホヤよりも優位である。 Also, referring to FIG. 5, the bactericidal ability against Escherichia coli in a short period of time (within 3 days), that is, the reduction rate of the number of bacteria from 0 days to 3 days later, is superior to Akadama soil. Similarly, referring to FIG. 6, the bactericidal ability against O-157 in a short period of time (within 7 days), that is, the rate of decrease in the number of bacteria from 0 days to 7 days later, is superior to Akahoya eruption.

Figure 2020045580
Figure 2020045580

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although examples of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these examples, and any changes or additions within the scope of the gist of the present invention are included in the present invention. Is done.

例えば、前記実施例1〜4では、微生物吸着材に天然または焼成等の加工処理が行われたアカホヤが用いられる例について説明したが、これに限らず、Alを30wt%以上含有している火山灰土壌であれば、例えば天然の赤玉土、あるいは焼成された赤玉土であってもよく、鹿沼土や粘土やシラス等の火山灰土壌にAlを30wt%以上含有させるように加工処理したものであってもよい。For example, in Examples 1 to 4, the example in which Akahoya, which has been processed by natural or fired, is used as the microbial adsorbent has been described, but the present invention is not limited to this, and Al 2 O 3 is contained in an amount of 30 wt% or more. The volcanic ash soil may be, for example, natural Akadama soil or fired Akadama soil, and is processed so that the volcanic ash soil such as Kanuma soil, clay, and silas contains 30 wt% or more of Al 2 O 3. It may be processed.

また、微生物吸着材は、大腸菌以外の細菌(例えば、黄色ブドウ球菌、サルモネラ属菌、カンピロバクター、枯草菌芽胞、炭疽菌芽胞等)、鳥インフルエンザウイルス以外のウイルス等の微生物に対しても吸着効果を奏する。 In addition, the microbial adsorbent also has an adsorption effect on microorganisms other than Escherichia coli (for example, Staphylococcus aureus, Salmonella spp., Campylobacter, Bacillus subtilis spore, Anthrax spore, etc.) and viruses other than bird influenza virus. Play.

また、微生物吸着材は、焼成に限らず、例えば紫外線等により殺菌処理されてもよい。 Further, the microbial adsorbent is not limited to firing, and may be sterilized by, for example, ultraviolet rays.

産業上の利用分野Industrial application fields

1.家畜飼育環境の浄化システムの吸着材としての利用。
2.空気の浄化システム、例えば大気中の微生物を吸着する吸着材としての利用。
3.水の浄化システム、例えば閉鎖性水域(湖沼)における富栄養塩(リン)除去および大腸菌または大腸菌群等の微生物の吸着材としての利用。
4.バイオテロ対策システムにおける炭疽菌芽胞等の細菌やウイルスの吸着材としての利用。
5.病原体吸着物質含有飼料としての利用。
1. 1. Use as an adsorbent for purification systems in livestock breeding environments.
2. Use as an air purification system, such as an adsorbent that adsorbs microorganisms in the atmosphere.
3. 3. Use in water purification systems, such as eutrophic salt (phosphorus) removal in closed waters (lakes) and as an adsorbent for microorganisms such as E. coli or coliforms.
4. Use as an adsorbent for bacteria and viruses such as anthrax spores in bioterrorism control systems.
5. Use as feed containing pathogen adsorbent.

Claims (10)

Alが30wt%以上である火山灰土壌を用いたことを特徴とする微生物吸着材。A microbial adsorbent characterized by using volcanic ash soil having an Al 2 O 3 content of 30 wt% or more. 前記火山灰土壌は、Feが3〜8wt%である鬼界アカホヤ火山灰土壌であることを特徴とする請求項1に記載の微生物吸着材。The microbial adsorbent according to claim 1, wherein the volcanic ash soil is Akahoya eruption ash soil in which Fe 2 O 3 is 3 to 8 wt%. 前記火山灰土壌は、SiOが39〜65wt%、Alが31〜45wt%、Feが3〜8wt%、その他が0〜22wt%からなることを特徴とする請求項1または2に記載の微生物吸着材。The volcanic ash soil is characterized in that SiO 2 is 39 to 65 wt%, Al 2 O 3 is 31 to 45 wt%, Fe 2 O 3 is 3 to 8 wt%, and the others are 0 to 22 wt%. 2. The microbial adsorbent according to 2. 前記火山灰土壌は、焼成されていることを特徴とする請求項1ないし3のいずれかに記載の微生物吸着材。 The microbial adsorbent according to any one of claims 1 to 3, wherein the volcanic ash soil is calcined. 前記焼成は、1000℃以下で行われることを特徴とする請求項1ないし4のいずれかに記載の微生物吸着材。 The microorganism adsorbent according to any one of claims 1 to 4, wherein the firing is performed at 1000 ° C. or lower. 前記火山灰土壌は、少なくとも径100nm以下の細孔を有することを特徴とする請求項1ないし5のいずれかに記載の微生物吸着材。 The microbial adsorbent according to any one of claims 1 to 5, wherein the volcanic ash soil has pores having a diameter of at least 100 nm or less. 前記火山灰土壌は、比表面積が3.9m−1以上であることを特徴とする請求項1ないし6のいずれかに記載の微生物吸着材。The microbial adsorbent according to any one of claims 1 to 6, wherein the volcanic ash soil has a specific surface area of 3.9 m 2 g -1 or more. 前記火山灰土壌は、粒径1mm以下の粉末であることを特徴とする請求項1ないし7のいずれかに記載の微生物吸着材。 The microbial adsorbent according to any one of claims 1 to 7, wherein the volcanic ash soil is a powder having a particle size of 1 mm or less. 前記火山灰土壌は、土粒子密度2.6〜2.7g/cmの粉末であることを特徴とする請求項1ないし8のいずれかに記載の微生物吸着材。The microbial adsorbent according to any one of claims 1 to 8, wherein the volcanic ash soil is a powder having a soil particle density of 2.6 to 2.7 g / cm 3. 前記請求項1ないし9のいずれかに記載の微生物吸着材を用いた微生物殺菌方法。 The method for sterilizing a microorganism using the microbial adsorbent according to any one of claims 1 to 9.
JP2020539594A 2018-08-29 2019-08-29 Microbial adsorbent and microbial sterilization method using the same Active JP7398807B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018160790 2018-08-29
JP2018160790 2018-08-29
PCT/JP2019/033956 WO2020045580A1 (en) 2018-08-29 2019-08-29 Microorganism adsorbent and method for sterilizing microorganisms using same

Publications (2)

Publication Number Publication Date
JPWO2020045580A1 true JPWO2020045580A1 (en) 2021-09-24
JP7398807B2 JP7398807B2 (en) 2023-12-15

Family

ID=69642783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539594A Active JP7398807B2 (en) 2018-08-29 2019-08-29 Microbial adsorbent and microbial sterilization method using the same

Country Status (2)

Country Link
JP (1) JP7398807B2 (en)
WO (1) WO2020045580A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613014A (en) * 1979-07-11 1981-02-07 Toru Taniguchi Water treating method
JPH0937782A (en) * 1995-07-27 1997-02-10 Kirin Brewery Co Ltd Carrier with immobilized microorganism and fermentation using the same
JP2000042538A (en) * 1998-07-29 2000-02-15 Asuku Technica:Kk Method of removing phosphorus in water
JP2000117020A (en) * 1998-10-16 2000-04-25 Konichi Komatsu Contact purifying material and its production
JP2001314882A (en) * 2000-05-09 2001-11-13 Dreams:Kk Biological cleaning material
JP2004105944A (en) * 2002-07-25 2004-04-08 Toshio Kitahara Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals
JP2010247062A (en) * 2009-04-15 2010-11-04 Nishimatsu Constr Co Ltd Water cleaning method and water cleaning apparatus
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
JP2014128773A (en) * 2012-12-28 2014-07-10 Nbc Meshtec Inc Virus adsorbent and virus adsorbing component with use of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613014A (en) * 1979-07-11 1981-02-07 Toru Taniguchi Water treating method
JPH0937782A (en) * 1995-07-27 1997-02-10 Kirin Brewery Co Ltd Carrier with immobilized microorganism and fermentation using the same
JP2000042538A (en) * 1998-07-29 2000-02-15 Asuku Technica:Kk Method of removing phosphorus in water
JP2000117020A (en) * 1998-10-16 2000-04-25 Konichi Komatsu Contact purifying material and its production
JP2001314882A (en) * 2000-05-09 2001-11-13 Dreams:Kk Biological cleaning material
JP2004105944A (en) * 2002-07-25 2004-04-08 Toshio Kitahara Stabilizing material for heavy metals, method of stabilizing heavy metals and method of treating substance containing heavy metals
JP2010247062A (en) * 2009-04-15 2010-11-04 Nishimatsu Constr Co Ltd Water cleaning method and water cleaning apparatus
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
JP2014128773A (en) * 2012-12-28 2014-07-10 Nbc Meshtec Inc Virus adsorbent and virus adsorbing component with use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
浅岡 聡 他: "赤玉土および各種無機系吸着剤混合赤玉土による海水の脱塩", 日本土壌肥料学雑誌, vol. 第1号, JPN6023030285, 2006, pages 33 - 39, ISSN: 0005113568 *
藤原 誠 他: "幸屋火砕流堆積物及びその給源近傍相のガラス組成と堆積様式", 火山, vol. 第58巻,第4号, JPN6023030284, 2013, pages 489 - 498, ISSN: 0005113569 *

Also Published As

Publication number Publication date
WO2020045580A1 (en) 2020-03-05
JP7398807B2 (en) 2023-12-15

Similar Documents

Publication Publication Date Title
Guo et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes
Sharma et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes
JP6664707B2 (en) Mineral functional water, method for producing the same, and method for controlling single-celled organisms and / or viruses
Ignatov et al. Preparation of electrochemically activated water solutions (catholyte/anolyte) and studying their physical-chemical properties
EA012032B1 (en) Functional transition metal silicates (ftms)
CN108786432A (en) A kind of biological enzyme air purifying preparation and the preparation method and application thereof
NO176794B (en) Process for the treatment of sludge from wastewater for the production of fertilizers
Hussain et al. Disinfection performance of adsorption using graphite adsorbent coupled with electrochemical regeneration for various microorganisms present in water
KR102186894B1 (en) Liquid lime hydrate for farm disinfection included sodium gluconate and sodium hypochlorite and manufacturing method thereof
CA2597112C (en) Systems and methods for disinfecting and sterilizing by applying steam vapor containing low zeta potential mineral crystals
JP2015517984A (en) Method for preparing an aqueous biocidal composition
KR100669204B1 (en) Composition for deodorization and sterilization and its manufacturing process
Gao et al. Redesigning water disinfection using recyclable nanomaterials and metal ions: Evaluation with Escherichia coli
JPWO2020045580A1 (en) Microbial adsorbent and microbial sterilization method using it
KR102260565B1 (en) Germicide for vian influenza and foot and mouth disease virus using liquid lime hydrate and method of manufacture thereof
KR102315987B1 (en) REAL-TIME MONITORING AND MANAGEMENT SYSTEM FOR VIAN INFLUENZA AND FOOT AND MOUTH DISEASE VIRUS USING IoT SMART TECHNOLOGY
JP2021186812A (en) Disinfectant, disinfection method and disinfection kit
KR20090044958A (en) Play ground ozone water sand sterilization a method
Xie et al. Effect of TiO2 loading, water depth and light intensity on photo-disinfection efficacy of Escherichia coli O157: H7 using TiO2 NP-embedded cellulose acetate film in water
JP4916308B2 (en) Sewage sludge treatment
KR101355177B1 (en) Water treating agent for removing green algae, red algae and odors in water
JP5081393B2 (en) Avian influenza preventive
CN105820884B (en) Free of contamination Na2Fe04 cleaning toilet sterilization slow-release material of a kind of Cheap highly effective and preparation method thereof
JP7270902B2 (en) Iodine-supported activated carbon
JP4602005B2 (en) Antibacterial and deodorant for livestock and poultry

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7398807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150