JPWO2020044239A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020044239A5
JPWO2020044239A5 JP2021510199A JP2021510199A JPWO2020044239A5 JP WO2020044239 A5 JPWO2020044239 A5 JP WO2020044239A5 JP 2021510199 A JP2021510199 A JP 2021510199A JP 2021510199 A JP2021510199 A JP 2021510199A JP WO2020044239 A5 JPWO2020044239 A5 JP WO2020044239A5
Authority
JP
Japan
Prior art keywords
vector
receptor
cells
domain
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021510199A
Other languages
Japanese (ja)
Other versions
JP2021534770A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2019/057217 external-priority patent/WO2020044239A1/en
Publication of JP2021534770A publication Critical patent/JP2021534770A/en
Publication of JPWO2020044239A5 publication Critical patent/JPWO2020044239A5/ja
Pending legal-status Critical Current

Links

Claims (23)

a)エリスロポイエチン(Epo)受容体;
b)自己切断ペプチド又は配列内リボソーム進入部位;及び
c)細胞表面受容体
をコードする核酸を含むベクター。
a) the erythropoietin (Epo) receptor;
b) a self-cleaving peptide or an internal ribosome entry site; and c) a vector comprising a nucleic acid encoding a cell surface receptor.
前記Epo受容体は、配列番号2に対して少なくとも90%の配列同一性を有する、請求項1に記載のベクター。 2. The vector of claim 1, wherein said Epo receptor has at least 90% sequence identity to SEQ ID NO:2. 前記Epo受容体は、突然変異型Epo受容体である、請求項1に記載のベクター。 2. The vector of claim 1, wherein said Epo receptor is a mutant Epo receptor. 前記核酸は、前記Epo受容体のエキソン8内に終止コドンをコードする突然変異を有する、請求項3に記載のベクター。 4. The vector of claim 3, wherein said nucleic acid has a mutation encoding a stop codon within exon 8 of said Epo receptor. 前記Epo受容体は、配列番号6に対して少なくとも90%の配列同一性を有する、請求項3に記載のベクター。 4. The vector of claim 3, wherein said Epo receptor has at least 90% sequence identity to SEQ ID NO:6. 前記核酸は、自己切断ペプチドを含む、請求項1に記載のベクター。 2. The vector of claim 1, wherein said nucleic acid comprises a self-cleaving peptide. 前記自己切断ペプチドは、2Aペプチドである、請求項に記載のベクター。 7. The vector of claim 6 , wherein said self-cleaving peptide is a 2A peptide. 前記細胞表面受容体は、標的細胞抗原に結合する細胞外受容体ドメインを含む、請求項1に記載のベクター。 2. The vector of claim 1, wherein said cell surface receptor comprises an extracellular receptor domain that binds to a target cell antigen. 前記細胞表面受容体は、
i)シグナルペプチド;
ii)標的細胞抗原に結合する細胞外受容体ドメイン;
iii)細胞の表面上の前細胞外受容体ドメインを固定するヒンジ及び膜貫通ドメイン;並びに
iv)エフェクタードメイン
を含むキメラ抗原受容体である、請求項1~のいずれか一項に記載のベクター。
The cell surface receptor is
i) a signal peptide;
ii) an extracellular receptor domain that binds to a target cell antigen;
iii) a hinge and transmembrane domain anchoring said extracellular receptor domain on the surface of a cell ; and iv) a chimeric antigen receptor comprising an effector domain. vector.
前記細胞外受容体ドメインは、リンカードメインによってつながれる可変免疫グロブリン軽鎖ドメイン及び可変免疫グロブリン重鎖ドメインを含む、請求項に記載のベクター。 10. The vector of claim 9 , wherein said extracellular receptor domain comprises a variable immunoglobulin light chain domain and a variable immunoglobulin heavy chain domain connected by a linker domain. 前記細胞外受容体ドメインは、単鎖可変断片(scFv)である、請求項に記載のベクター。 10. The vector of claim 9 , wherein said extracellular receptor domain is a single chain variable fragment (scFv). 前記細胞表面受容体は、T細胞受容体である、請求項1~のいずれか一項に記載のベクター。 The vector of any one of claims 1-7 , wherein said cell surface receptor is a T-cell receptor. 前記細胞外受容体ドメインは、抗CD19単鎖可変断片(scFv)である、請求項に記載のベクター。 10. The vector of claim 9 , wherein said extracellular receptor domain is an anti-CD19 single chain variable fragment (scFv). 前記キメラ抗原受容体は、抗CD19-41BB-CD3ζである、請求項に記載のベクター。 10. The vector of claim 9 , wherein said chimeric antigen receptor is anti-CD19-41BB-CD3ζ. トランスジェニック哺乳動物宿主細胞を作製するための方法であって、請求項1~14のいずれか一項に記載のベクターを単離された哺乳動物宿主細胞の中に導入することを含む方法。 A method for producing a transgenic mammalian host cell, comprising introducing the vector of any one of claims 1-14 into an isolated mammalian host cell. 前記哺乳動物宿主細胞は、免疫細胞である、請求項15に記載の方法。 16. The method of claim 15 , wherein said mammalian host cells are immune cells. 前記免疫細胞は、ナチュラルキラー(NK)細胞、単球/マクロファージ細胞、又は樹状細胞である、請求項16に記載の方法。 17. The method of claim 16 , wherein said immune cells are natural killer (NK) cells, monocyte/macrophage cells, or dendritic cells. 前記免疫細胞は、T細胞である、請求項16に記載の方法。 17. The method of claim 16 , wherein said immune cells are T cells. 前記T細胞は、腫瘍抗原又はウイルス抗原に結合するT細胞受容体(TCR)をさらに発現する、請求項18に記載の方法。 19. The method of claim 18 , wherein said T cells further express a T cell receptor (TCR) that binds tumor antigens or viral antigens. 前記TCRは、内在性である、請求項19に記載の方法。 20. The method of claim 19 , wherein said TCR is endogenous. T細胞は、腫瘍浸潤リンパ球(TIL)であり、前記方法は、腫瘍から前記腫瘍浸潤リンパ球を抽出すること及びエクスビボにおいて前記TILを増加させることをさらに含む、請求項20に記載の方法。 21. The method of claim 20 , wherein the T cells are tumor-infiltrating lymphocytes (TILs) and said method further comprises extracting said tumor-infiltrating lymphocytes from a tumor and increasing said TILs ex vivo. 請求項1~14のいずれか一項に記載のベクターを含む哺乳動物免疫細胞。 A mammalian immune cell containing the vector of any one of claims 1-14 . 乳動物T細胞を含む、哺乳動物においてCD19+細胞の数を低下させるための組成物であって、前記哺乳動物T細胞は、請求項1~14のいずれか一項に記載のベクターを含む組成物A composition for reducing the number of CD19+ cells in a mammal comprising mammalian T cells , said mammalian T cells comprising the vector of any one of claims 1-14 . composition .
JP2021510199A 2018-08-29 2019-08-27 Methods for specifically stimulating the survival and proliferation of genetically modified immune cells Pending JP2021534770A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862724488P 2018-08-29 2018-08-29
US62/724,488 2018-08-29
PCT/IB2019/057217 WO2020044239A1 (en) 2018-08-29 2019-08-27 A method to specifically stimulate survival and expansion of genetically-modified immune cells

Publications (2)

Publication Number Publication Date
JP2021534770A JP2021534770A (en) 2021-12-16
JPWO2020044239A5 true JPWO2020044239A5 (en) 2022-09-02

Family

ID=69645138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510199A Pending JP2021534770A (en) 2018-08-29 2019-08-27 Methods for specifically stimulating the survival and proliferation of genetically modified immune cells

Country Status (8)

Country Link
US (1) US20210324388A1 (en)
EP (1) EP3844186A4 (en)
JP (1) JP2021534770A (en)
KR (1) KR20210050540A (en)
CN (1) CN112601758A (en)
AU (1) AU2019330347A1 (en)
SG (1) SG11202101242VA (en)
WO (1) WO2020044239A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2839089T3 (en) 2014-05-15 2021-07-05 Nat Univ Singapore Modified natural killer lymphocytes and their uses
US11365236B2 (en) 2017-03-27 2022-06-21 Nkarta, Inc. Truncated NKG2D chimeric receptors and uses thereof in natural killer cell immunotherapy
BR112019020001A2 (en) 2017-03-27 2020-04-28 Nat Univ Singapore stimulating cell lines for ex vivo expansion and activation of natural killer cells
IL295888A (en) * 2020-02-24 2022-10-01 Us Health Nk cells or t cells expressing hematopoietic growth factor receptors and use for treating cancer
EP4319773A1 (en) * 2021-04-06 2024-02-14 Ensoma, Inc. Modification of epor-encoding nucleic acids

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067360A2 (en) * 1998-06-25 1999-12-29 Hemosol Inc. Media and methods for expansion of erythroid stem cells for the production of hemoglobin
CN1856506A (en) * 2003-06-27 2006-11-01 株式会社载体研究所 Method for transplanting lymphohematopoietic cells into mammal
US20130266551A1 (en) * 2003-11-05 2013-10-10 St. Jude Children's Research Hospital, Inc. Chimeric receptors with 4-1bb stimulatory signaling domain
AU2011377617B2 (en) * 2011-09-23 2018-03-08 Bluebird Bio, Inc. Improved gene therapy methods
WO2016118857A1 (en) * 2015-01-23 2016-07-28 Musc Foundation For Research Development Cytokine receptor genes and the use thereof to enhance therapy

Similar Documents

Publication Publication Date Title
Steinle et al. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family
CN105377886B (en) High affinity binding molecules that recognize MAGE-A1
JP2021191265A (en) T-cell receptor recognizing mhc class ii-restricted mage-a3
WO2019114235A1 (en) Pdl1 monoclonal antibody and application thereof
Charron et al. Analysis of HLA-D region-associated molecules with monoclonal antibody.
US10005845B2 (en) Antibodies and fragments thereof raised against the alpha-3 domain of HLA-G protein, methods and means for their preparation, and uses thereof
JP2020503885A5 (en)
US20190336533A1 (en) Chimeric antigen receptor and natural killer cells expressing same
Li et al. Emerging roles for the FCRL family members in lymphocyte biology and disease
Mesci et al. NKR-P1 biology: from prototype to missing self
JP2022141761A (en) Transforming growth factor-beta responsive polypeptides and use methods thereof
US20210269502A1 (en) Tumor-specific ifna secretion by car t-cells to reprogram the solid tumor microenvironment
CN105188358B (en) The transgenic mice of chimeric MHC (MHC) the I quasi-molecules of expression
EP3411476B1 (en) Enhanced production of immunoglobulins
JP2019514358A5 (en)
JP2018528786A5 (en)
Karaki et al. Beta-chain broadens range of CD8 recognition for MHC class I molecule.
Karaki et al. HLA-B51 transgenic mice as recipients for production of polymorphic HLA-A, B-specific antibodies
WO2021223604A1 (en) T cell antigen receptor, multimeric complex thereof, and preparation method therefor and use thereof
EP1413316A1 (en) Bifunctional conjugates or fusion proteins
JPWO2020044239A5 (en)
Cook et al. The Qa-1 alloantigens. II. Evidence for the expression of two Qa-1 molecules by the Qa-1d genotype and for cross-reactivity between Qa-1 and H-2K.
Morita et al. TL antigen as a transplantation antigen recognized by TL-restricted cytotoxic T cells.
Noronha et al. Generation and characterization of monoclonal antibodies to equine NKp46
Harding et al. MHC restriction of T-cell proliferative responses in Xenopus