JPWO2020039912A1 - Optical systems, optical instruments, and methods of manufacturing optical systems - Google Patents

Optical systems, optical instruments, and methods of manufacturing optical systems Download PDF

Info

Publication number
JPWO2020039912A1
JPWO2020039912A1 JP2020538283A JP2020538283A JPWO2020039912A1 JP WO2020039912 A1 JPWO2020039912 A1 JP WO2020039912A1 JP 2020538283 A JP2020538283 A JP 2020538283A JP 2020538283 A JP2020538283 A JP 2020538283A JP WO2020039912 A1 JPWO2020039912 A1 JP WO2020039912A1
Authority
JP
Japan
Prior art keywords
lens
optical system
group
lens group
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020538283A
Other languages
Japanese (ja)
Other versions
JP7099529B2 (en
Inventor
壮基 原田
壮基 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2020039912A1 publication Critical patent/JPWO2020039912A1/en
Application granted granted Critical
Publication of JP7099529B2 publication Critical patent/JP7099529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、合焦の際、隣り合うレンズ群の間隔が変化し、第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動し、後側レンズ群は所定の条件式を満足することにより、諸収差を良好に補正することができる大口径かつデフォーカス像のボケ味をコントロールできるマクロレンズを提供することができる。It consists of a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side, and when focusing, the distance between adjacent lens groups changes, and the first lens group sets the aperture aperture. It consists of a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side, and the front lens group is close to an infinity object. When focusing on a distant object, it moves to the object side, and the rear lens group satisfies a predetermined conditional expression to satisfactorily correct various aberrations, resulting in a large-diameter and defocused image blur. A controllable macro lens can be provided.

Description

本発明は、光学系、光学機器、および光学系の製造方法に関する。 The present invention relates to an optical system, an optical instrument, and a method for manufacturing the optical system.

従来、近距離物体の撮影を主たる目的とした撮影レンズにおいて、オートフォーカスに適したものが知られている。例えば、特許文献1を参照。近年、このような撮影レンズにおいて、諸収差を良好に補正することができると共に、マニュアルフォーカスにも適した大口径の撮影レンズが望まれている。 Conventionally, a photographic lens whose main purpose is to photograph a short-distance object has been known to be suitable for autofocus. See, for example, Patent Document 1. In recent years, in such a photographic lens, a large-diameter photographic lens that can satisfactorily correct various aberrations and is also suitable for manual focus has been desired.

特開昭63−147124号公報Japanese Unexamined Patent Publication No. 63-147124

本発明の第1の態様は、
物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、
合焦の際、隣り合うレンズ群の間隔が変化し、
前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、
前記前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動し、
前記後側レンズ群は、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式を満足する光学系である。
0.50<h(min)/h(max)
The first aspect of the present invention is
In order from the object side, it consists of a first lens group having a positive refractive power and a plurality of subsequent lens groups.
When focusing, the distance between adjacent lens groups changes,
The first lens group includes a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between.
The front lens group moves to the object side when focusing from an infinity object to a short-distance object.
In the rear lens group, m and n are positive integers satisfying m <n, and an infinity object on the mth and nth lens surfaces counted from the lens surface on the most object side of the rear lens group. When the marginal ray heights at the time of focusing are h (m) and h (n), respectively, the highest h (m) among the marginal ray heights satisfying h (m)> h (n) is h. When (max) is set and the lowest h (n) is h (min), the optical system satisfies the following conditional expression.
0.50 <h (min) / h (max)

また、本発明の第2の態様は、
物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、
合焦の際、隣り合うレンズ群の間隔が変化し、
前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、
前記前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動し、
前記前側レンズ群はさらに、前記前側レンズ群の最も物体側のレンズ面における無限遠物体合焦時のマージナル光線高さをh(1)とし、mおよびnをm<nを満たす2以上の整数とし、前記最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における前記マージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(1)>h(m)かつh(m)<h(n)を満たす前記マージナル光線高さのうち、最も低いh(m)をh(min)とし、最も高いh(n)をh(max)としたとき、以下の条件式を満足する、光学系である。
0.10<{h(max)−h(min)}/{h(1)−h(min)}
The second aspect of the present invention is
In order from the object side, it consists of a first lens group having a positive refractive power and a plurality of subsequent lens groups.
When focusing, the distance between adjacent lens groups changes,
The first lens group includes a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between.
The front lens group moves to the object side when focusing from an infinity object to a short-distance object.
Further, the front lens group is an integer of 2 or more satisfying m <n, where h (1) is the height of the marginal ray when the object is focused at infinity on the lens surface on the most object side of the front lens group. When the heights of the marginal rays on the m-th and n-th lens surfaces counted from the lens surface on the most object side are h (m) and h (n), respectively, h (1)> h ( When the lowest h (m) is h (min) and the highest h (n) is h (max) among the marginal ray heights satisfying m) and h (m) <h (n). It is an optical system that satisfies the following conditional expression.
0.10 << {h (max) -h (min)} / {h (1) -h (min)}

また、本発明の第3の態様は、
物体側から順に、互いに凹面を向かい合わせたレンズの組である第1の組と、互いに凹面を向かい合わせたレンズの組である第2の組とを有し、
前記第1の組と前記第2の組との間に少なくとも1つの正レンズを有し、
前記第1の組の物体側に少なくとも1つの正レンズを有し、
前記第2の組の像側に少なくとも4つの正レンズを有し、
3種類以上の硝材を用いている光学系である。
Further, the third aspect of the present invention is
In order from the object side, it has a first set of lenses having concave surfaces facing each other and a second set of lenses having concave surfaces facing each other.
It has at least one positive lens between the first set and the second set.
Having at least one positive lens on the object side of the first set,
It has at least four positive lenses on the image side of the second set.
It is an optical system that uses three or more types of glass materials.

また、本発明の第4の態様は、
物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなる光学系の製造方法であって、
合焦の際、隣り合うレンズ群の間隔が変化するように構成し、
前記第1レンズ群を、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなるように構成し、
前記前側レンズ群が、無限遠物体から近距離物体への合焦の際、物体側へ移動するように構成し、
前記後側レンズ群が、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式を満足するように構成する光学系の製造方法である。
0.50<h(min)/h(max)
Further, the fourth aspect of the present invention is
A method for manufacturing an optical system including a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side.
It is configured so that the distance between adjacent lens groups changes when focusing.
The first lens group is composed of a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between. Configure to
The front lens group is configured to move to the object side when focusing from an infinity object to a short-distance object.
In the rear lens group, m and n are positive integers satisfying m <n, and an infinity object on the mth and nth lens surfaces counted from the lens surface on the most object side of the rear lens group. When the marginal ray heights at the time of focusing are h (m) and h (n), respectively, the highest h (m) among the marginal ray heights satisfying h (m)> h (n) is h. This is a method for manufacturing an optical system that is configured to satisfy the following conditional expression when (max) is set and the lowest h (n) is h (min).
0.50 <h (min) / h (max)

図1は、第1実施例に係る光学系の断面図である。FIG. 1 is a cross-sectional view of an optical system according to the first embodiment. 図2Aおよび図2Bはそれぞれ、第1実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。2A and 2B are aberration diagrams of the optical system according to the first embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図3Aおよび図3Bはそれぞれ、第1実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。3A and 3B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the first embodiment is in focus, respectively. .. 図4Aおよび図4Bはそれぞれ、第1実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。4A and 4B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the first embodiment, respectively. .. 図5は、第2実施例に係る光学系の断面図である。FIG. 5 is a cross-sectional view of the optical system according to the second embodiment. 図6Aおよび図6Bはそれぞれ、第2実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。6A and 6B are aberration diagrams of the optical system according to the second embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図7Aおよび図7Bはそれぞれ、第2実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。7A and 7B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the second embodiment is in focus, respectively. .. 図8Aおよび図8Bはそれぞれ、第2実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。8A and 8B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the second embodiment, respectively. .. 図9は、第3実施例に係る光学系の断面図である。FIG. 9 is a cross-sectional view of the optical system according to the third embodiment. 図10Aおよび図10Bはそれぞれ、第3実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。10A and 10B are aberration diagrams of the optical system according to the third embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図11Aおよび図11Bはそれぞれ、第3実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。11A and 11B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the optical system of the optical system according to the third embodiment is in focus, respectively. .. 図12Aおよび図12Bはそれぞれ、第3実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。12A and 12B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the third embodiment, respectively. .. 図13は、第4実施例に係る光学系の断面図である。FIG. 13 is a cross-sectional view of the optical system according to the fourth embodiment. 図14Aおよび図14Bはそれぞれ、第4実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。14A and 14B are aberration diagrams of the optical system according to the fourth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図15Aおよび図15Bはそれぞれ、第4実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。15A and 15B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the fourth embodiment is in focus, respectively. .. 図16Aおよび図16Bはそれぞれ、第4実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。16A and 16B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the fourth embodiment, respectively. .. 図17は、第5実施例に係る光学系の断面図である。FIG. 17 is a cross-sectional view of the optical system according to the fifth embodiment. 図18Aおよび図18Bはそれぞれ、第5実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。18A and 18B are aberration diagrams of the optical system according to the fifth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図19Aおよび図19Bはそれぞれ、第5実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。19A and 19B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the fifth embodiment is in focus, respectively. .. 図20Aおよび図20Bはそれぞれ、第5実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。20A and 20B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the fifth embodiment, respectively. .. 図21は、第6実施例に係る光学系の断面図である。FIG. 21 is a cross-sectional view of the optical system according to the sixth embodiment. 図22Aおよび図22Bはそれぞれ、第6実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。22A and 22B are aberration diagrams of the optical system according to the sixth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively. 図23Aおよび図23Bはそれぞれ、第6実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。23A and 23B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the sixth embodiment is in focus, respectively. .. 図24Aおよび図24Bはそれぞれ、第6実施例に係る光学系の近距離物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。24A and 24B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the short-distance object is focused in the optical system according to the sixth embodiment, respectively. .. 図25は、光学系を備えたカメラの構成を示す図である。FIG. 25 is a diagram showing a configuration of a camera provided with an optical system. 図26は、光学系の製造方法の概略を示すフロー図である。FIG. 26 is a flow chart showing an outline of a method for manufacturing an optical system.

以下、本発明の実施形態に係る光学系、光学機器および光学系の製造方法について説明する。まず、本実施形態に係る光学系について説明する。
本実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、合焦の際、隣り合うレンズ群の間隔が変化し、前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、前記前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動する。
Hereinafter, an optical system, an optical device, and a method for manufacturing the optical system according to the embodiment of the present invention will be described. First, the optical system according to this embodiment will be described.
The optical system according to the present embodiment is composed of a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side, and the distance between adjacent lens groups changes at the time of focusing. The first lens group is composed of a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture aperture in between. The front lens group moves to the object side when focusing from an infinity object to a short-range object.

このような構成により、本実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を良好に補正することができる。 With such a configuration, the optical system of the present embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma, from the in-focus state of an infinity object to the in-focus state of a short-distance object.

このような構成のもと、本実施形態の光学系は、前記後側レンズ群が、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式(1)を満足する。
(1)0.50<h(min)/h(max)
Under such a configuration, in the optical system of the present embodiment, the rear lens group has m and n as positive integers satisfying m <n, and the lens surface on the most object side of the rear lens group is used. When the marginal ray heights at the time of focusing on an infinity object on the mth and nth lens planes are h (m) and h (n), respectively, h (m)> h (n) is satisfied. When the highest h (m) of the marginal ray heights is h (max) and the lowest h (n) is h (min), the following conditional expression (1) is satisfied.
(1) 0.50 <h (min) / h (max)

ここで、「マージナル光線」とは、光軸に平行な入射光束のうち、最も入射光が高い光線のことをいう。また、「マージナル光線高さ」とは、光軸からマージナル光線までの距離(光軸と垂直な方向の距離)のことである。 Here, the "marginal ray" means a ray having the highest incident light among the incident light flux parallel to the optical axis. The "marginal ray height" is the distance from the optical axis to the marginal ray (distance in the direction perpendicular to the optical axis).

条件式(1)は、前記後側レンズ群における最も低いマージナル光線高さと最も高いマージナル光線高さとの比を規定する条件式である。条件式(1)を満足することにより、マージナル光線が所定以上の高さで後側レンズ群を通過し、後側レンズ群において球面収差、コマ収差、および像面湾曲を良好に補正することができる。 The conditional expression (1) is a conditional expression that defines the ratio between the lowest marginal ray height and the highest marginal ray height in the rear lens group. By satisfying the conditional equation (1), the marginal ray passes through the rear lens group at a height equal to or higher than a predetermined height, and spherical aberration, coma aberration, and curvature of field can be satisfactorily corrected in the rear lens group. can.

本実施形態の条件式(1)の対応値が下限値を下回ると、後側レンズ群の物体側のレンズ面におけるマージナル光線高さが低くなり、後側レンズ群において球面収差、コマ収差を良好に補正することが困難になってしまう。なお、条件式(1)の下限値を0.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (1)の下限値を0.70、更に0.80にすることが好ましい。 When the corresponding value of the conditional expression (1) of the present embodiment is less than the lower limit value, the height of the marginal ray on the lens surface on the object side of the rear lens group becomes low, and spherical aberration and coma aberration are good in the rear lens group. It becomes difficult to correct to. By setting the lower limit value of the conditional expression (1) to 0.60, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (1) to 0.70 and further to 0.80.

以上の構成により、本実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を実現することができる。 With the above configuration, the optical system of the present embodiment can satisfactorily correct various aberrations from the in-focus state of an infinity object to the in-focus state of a short-range object, and is suitable for both autofocus and manual focus. A large-diameter optical system can be realized.

本実施形態に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、合焦の際、隣り合うレンズ群の間隔が変化し、前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、前記前側レンズ群は、無限遠物体から近距離物体への合焦の際物体側へ移動する。 The optical system according to the present embodiment is composed of a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side, and the distance between adjacent lens groups changes at the time of focusing. The first lens group is composed of a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture aperture in between. The front lens group moves toward the object when focusing from an infinity object to a short-range object.

このような構成により、本実施形態に係る光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差、特に球面収差とコマ収差を良好に補正することができる。 With such a configuration, the optical system according to the present embodiment can satisfactorily correct various aberrations, particularly spherical aberration and coma, from the in-focus state of an infinity object to the in-focus state of a short-distance object.

このような構成のもと、本実施形態の光学系は、前記前側レンズ群が、前記前側レンズ群の最も物体側のレンズ面における無限遠物体合焦時のマージナル光線高さをh(1)とし、mおよびnをm<nを満たす2以上の整数とし、前記最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における前記マージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(1)>h(m)かつh(m)<h(n)を満たす前記マージナル光線高さのうち、最も低いh(m)をh(min)とし、最も高いh(n)をh(max)としたとき、以下の条件式(2)を満足する。
(2)0.10<{h(max)−h(min)}/{h(1)−h(min)}
Under such a configuration, in the optical system of the present embodiment, the front lens group sets the height of the marginal ray when the infinity object is focused on the lens surface on the most object side of the front lens group h (1). Let m and n be two or more integers satisfying m <n, and the heights of the marginal rays on the mth and nth lens planes counted from the lens plane on the most object side are h (m) and h (m), respectively. When h (n), the lowest h (m) among the marginal ray heights satisfying h (1)> h (m) and h (m) <h (n) is defined as h (min). When the highest h (n) is h (max), the following conditional expression (2) is satisfied.
(2) 0.10 << {h (max) -h (min)} / {h (1) -h (min)}

条件式(2)は、前記前側レンズ群における最も高いマージナル光線高さと最も低いマージナル光線高さとの差と、前側レンズ群の最も物体側のレンズ面のマージナル光線高さと最も低いマージナル光線高さとの差との比を規定する条件式である。条件式(2)を満足することにより、開口絞りよりも前側において、マージナル光線は、前記前側レンズ群の最も物体側のレンズ面を通過した後に光軸との距離が短くなり、その後光軸との距離が長くなる光路をとる。本実施形態の光学系は、このように開口絞りよりも前側に、マージナル光線高さが低くなる領域を設けることによりペッツバール和を減少し、像面湾曲を良好に補正することができる。 Conditional expression (2) is the difference between the highest marginal ray height and the lowest marginal ray height in the front lens group, and the marginal ray height and the lowest marginal ray height of the lens surface on the most object side of the front lens group. It is a conditional expression that defines the ratio with the difference. By satisfying the conditional equation (2), the marginal ray becomes shorter in distance from the optical axis after passing through the lens surface on the most object side of the front lens group on the front side of the aperture diaphragm, and then becomes the optical axis. Take an optical path that increases the distance between. In the optical system of the present embodiment, the Petzval sum can be reduced and the curvature of field can be satisfactorily corrected by providing a region in which the height of the marginal ray is low on the front side of the aperture diaphragm.

本実施形態の条件式(2)の対応値が下限値を下回ると、マージナル光線高さが低くなる領域が充分に形成されないためペッツバール和を充分に減少させることができず、像面湾曲を良好に補正することが困難になってしまう。なお、条件式(2)の下限値を0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (2)の下限値を0.15、更に0.18にすることが好ましい。 When the corresponding value of the conditional expression (2) of the present embodiment is less than the lower limit value, the region where the marginal ray height becomes low is not sufficiently formed, so that the Petzval sum cannot be sufficiently reduced and the curvature of field is good. It becomes difficult to correct it. By setting the lower limit value of the conditional expression (2) to 0.12, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (2) to 0.15 and further 0.18.

以上の構成により、本実施形態の光学系は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を実現することができる。 With the above configuration, the optical system of the present embodiment can satisfactorily correct various aberrations from the in-focus state of an infinity object to the in-focus state of a short-range object, and is suitable for both autofocus and manual focus. A large-diameter optical system can be realized.

また、本実施形態に係る光学系は、前記後側レンズ群は、合焦の際移動する少なくとも1つ以上のレンズ群を有している。また、本実施形態に係る光学系は、前記後側レンズ群は、少なくとも2つの負レンズと少なくとも2つの正レンズとを有している。
このように、本実施形態に係る光学系は、開口絞りの後ろ側に隣接する後側レンズ群中に、少なくとも2つの負レンズと少なくとも2つの正レンズとを有する構成により、球面収差、コマ収差、および像面湾曲をさらに良好に補正することができる。なお、「レンズ成分」とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。
Further, in the optical system according to the present embodiment, the rear lens group has at least one or more lens groups that move during focusing. Further, in the optical system according to the present embodiment, the rear lens group has at least two negative lenses and at least two positive lenses.
As described above, the optical system according to the present embodiment has spherical aberration and coma aberration due to the configuration having at least two negative lenses and at least two positive lenses in the rear lens group adjacent to the rear side of the aperture diaphragm. , And the curvature of field can be corrected even better. The "lens component" refers to a bonded lens formed by bonding two or more lenses, or a single lens.

また、本実施形態の光学系は、前記前側レンズ群が、少なくとも4つのレンズ成分を有することが望ましい。これより、合焦距離によらず、球面収差とコマ収差を効果的に低減できる。 Further, in the optical system of the present embodiment, it is desirable that the front lens group has at least four lens components. As a result, spherical aberration and coma can be effectively reduced regardless of the focusing distance.

また、本実施形態の光学系は、前記第1レンズ群が、以下の条件式(3)を満足する負レンズを少なくとも1つ有することが望ましい。
(3)0.600<θgFLn+0.0021×νdLn<0.658
ただし、
νdLn:前記負レンズのd線に対するアッベ数
θgFLn:前記負レンズのg線とF線とによる部分分散比
Further, in the optical system of the present embodiment, it is desirable that the first lens group has at least one negative lens satisfying the following conditional expression (3).
(3) 0.600 <θgFLn + 0.0021 × νdLn <0.658
However,
νdLn: Abbe number θgFLn with respect to the d-line of the negative lens: Partial dispersion ratio of the g-line and F-line of the negative lens

ここで、アッベ数νdLnおよび部分分散比θgFLnは、C線(波長656.3nm)に対する屈折率をnC、d線(波長587.6nm)に対する屈折率をnd、F線(波長486.1nm)に対する屈折率をnF、g線(波長435.8nm)に対する屈折率をngとしたとき、それぞれ次の式で表される。
νdLn=(nd−1)/(nF−nC)
θgFLn=(ng−nF)/(nF−nC)
Here, the Abbe number νdLn and the partial dispersion ratio θgFLn have a refractive index for the C line (wavelength 656.3 nm) of nC, a refractive index for the d line (wavelength 587.6 nm) of nd, and a refractive index for the F line (wavelength 486.1 nm). When the refractive index is nF and the refractive index for g-line (wavelength 435.8 nm) is ng, they are expressed by the following equations, respectively.
νdLn = (nd-1) / (nF-nC)
θgFLn = (ng-nF) / (nF-nC)

上記条件式(3)は、前記第1レンズ群が有する負レンズに用いる硝材を規定する条件式である。条件式(3)を満足する負レンズを有することにより、軸上色収差を良好に補正することができる。 The conditional expression (3) is a conditional expression that defines the glass material used for the negative lens of the first lens group. By having a negative lens that satisfies the conditional expression (3), axial chromatic aberration can be satisfactorily corrected.

本実施形態の光学系の条件式(3)の対応値が上限値を上回ると、前記負レンズの異常分散性が大きくなり、軸上色収差の補正が困難となってしまう。なお、条件式(3)の上限値を0.657に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (3)の上限値を0.656、更に0.655にすることが好ましい。 If the corresponding value of the conditional expression (3) of the optical system of the present embodiment exceeds the upper limit value, the abnormal dispersibility of the negative lens becomes large, and it becomes difficult to correct the axial chromatic aberration. By setting the upper limit value of the conditional expression (3) to 0.657, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (3) to 0.656 and further to 0.655.

一方、本実施形態の光学系の条件式(3)の対応値が下限値を下回ると、前記負レンズの異常分散性が小さくなり、軸上色収差の補正が困難となってしまう。なお、条件式(3)の下限値を0.610に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (3)の下限値を0.620、更に0.630にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (3) of the optical system of the present embodiment is less than the lower limit value, the abnormal dispersibility of the negative lens becomes small, and it becomes difficult to correct the axial chromatic aberration. By setting the lower limit value of the conditional expression (3) to 0.610, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (3) to 0.620 and further to 0.630.

また、本実施形態の光学系は、以下の条件式(4)を満足することが望ましい。
(4)0.790<f(1F〜1R)/f<1.400
ただし、
f(1F〜1R):無限遠物体合焦時の前記前側レンズ群と前記後側レンズ群との合成焦点距離
f:無限遠物体合焦時の前記光学系全系の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (4).
(4) 0.790 <f (1F to 1R) / f <1.400
However,
f (1F to 1R): Combined focal length of the front lens group and the posterior lens group when the object is in focus at infinity f: Focal length of the entire optical system when the object is in focus at infinity

条件式(4)は、無限遠物体合焦時の前記前側レンズ群と前記後側レンズ群との合成焦点距離、すなわち無限遠物体合焦時の第1レンズ群の焦点距離と、無限遠物体合焦時の前記光学系全系の焦点距離との比を規定する条件式である。条件式(4)を満足することにより、第1レンズ群の屈折力が光学系全系の焦点距離に近くなり、マスターレンズの収差を拡大させず、至近距離撮影性能を向上させることができる。特に、至近距離撮影時の球面収差およびコマ収差を良好に補正することができる。 Conditional expression (4) expresses the combined focal length of the front lens group and the rear lens group when the object is in focus at infinity, that is, the focal length of the first lens group when the object is in focus at infinity and the object at infinity. It is a conditional expression that defines the ratio with the focal length of the entire optical system at the time of focusing. By satisfying the conditional equation (4), the refractive power of the first lens group becomes close to the focal length of the entire optical system, the aberration of the master lens is not enlarged, and the close-range shooting performance can be improved. In particular, spherical aberration and coma aberration during close-range photography can be satisfactorily corrected.

本実施形態の光学系の条件式(4)の対応値が上限値を上回ると、第1レンズ群の屈折力が弱くなり、球面収差およびコマ収差を良好に補正することが困難になってしまう。なお、条件式(4)の上限値を1.350に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (4)の上限値を1.300、1.250、1.200、更に1.150にすることが好ましい。 If the corresponding value of the conditional expression (4) of the optical system of the present embodiment exceeds the upper limit value, the refractive power of the first lens group becomes weak, and it becomes difficult to satisfactorily correct spherical aberration and coma. .. By setting the upper limit value of the conditional expression (4) to 1.350, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit values of the conditional expression (4) to 1.300, 1.250, 1.200, and further 1.150.

一方、本実施形態の光学系の条件式(4)の対応値が下限値を下回ると、第1レンズ群のパワーが強くなり、コマ収差を良好に補正することが困難になってしまう。なお、条件式(4)の下限値を0.820に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (4)の下限値を0.850、更に0.880、0.900更に0.920にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (4) of the optical system of the present embodiment is less than the lower limit value, the power of the first lens group becomes strong, and it becomes difficult to satisfactorily correct the coma aberration. By setting the lower limit value of the conditional expression (4) to 0.820, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (4) to 0.850, further to 0.880, further to 0.900, and further to 0.920.

本実施形態に係る光学系は、物体側から順に、互いに凹面を向かい合わせたレンズの組である第1の組と、互いに凹面を向かい合わせたレンズの組である第2の組とを有し、前記第1の組と前記第2の組との間に少なくとも1つの正レンズを有し、前記第1の組の物体側に少なくとも1つの正レンズを有し、前記第2の組の像側に少なくとも4つの正レンズを有し、3種類以上の硝材を用いている。 The optical system according to the present embodiment has, in order from the object side, a first set of lenses having concave surfaces facing each other and a second set of lenses having concave surfaces facing each other. , The image of the second set, having at least one positive lens between the first set and the second set, and having at least one positive lens on the object side of the first set. It has at least four positive lenses on the side and uses three or more types of glass materials.

本実施形態の光学系は、物体側から順に、互いに凹面を向かい合わせたレンズの組である第1の組と、互いに凹面を向かい合わせたレンズの組である第2の組とを有し、この2組のレンズの組の間に少なくとも1つの正レンズを配置することにより、前記第1の組および第2の組を、ペッツバール和を小さくすることに寄与させて像面湾曲を良好に補正すると共に、コマ収差、球面収差の悪化を抑制している。 The optical system of the present embodiment has, in order from the object side, a first set of lenses having concave surfaces facing each other and a second set of lenses having concave surfaces facing each other. By arranging at least one positive lens between the two sets of lenses, the first set and the second set contribute to reducing the Petzval sum, and the curvature of field is satisfactorily corrected. At the same time, the deterioration of coma and spherical aberration is suppressed.

また、本実施形態の光学系は、前記第1の組の物体側に少なくとも1つの正レンズを配置することにより、前記第1の組に入射する軸外光線の光線高を低くし、前記第1の組および第2の組の屈折力を適切な値にすると共に、コマ収差の発生量を、他のレンズ群で補正可能な量に抑制している。
さらに、本実施形態の光学系は、前記第2の組の像側に少なくとも4つの正レンズを有することより、球面収差を良好に補正することができる。
Further, in the optical system of the present embodiment, by arranging at least one positive lens on the object side of the first set, the height of the off-axis light rays incident on the first set is lowered, and the first set is described. The refractive powers of the first set and the second set are set to appropriate values, and the amount of coma aberration generated is suppressed to an amount that can be corrected by another lens group.
Further, the optical system of the present embodiment can satisfactorily correct spherical aberration by having at least four positive lenses on the image side of the second set.

また、本実施形態の光学系は、3種類以上の硝材を用いることにより、色収差等の諸収差を良好に補正することができる。 Further, in the optical system of the present embodiment, various aberrations such as chromatic aberration can be satisfactorily corrected by using three or more kinds of glass materials.

また、本実施形態の光学系は、以下の条件式(5)乃至(8)を満足することにより、ペッツバール和を更に効果的に小さくし、像面湾曲を更に良好に補正することができる。
(5)0.30<R1/f<0.80
(6)0.30<R3/f<0.80
(7)−0.80<(R1+R2)/(R1−R2)<0.80
(8)−0.80<(R3+R4)/(R3−R4)<0.80
ただし、
f:無限遠物体合焦時の前記光学系全系の焦点距離
R1:前記第1の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径
R2:前記第1の組の向かい合う前記凹面のうち、像側の凹面の曲率半径
R3:前記第2の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径
R4:前記第2の組の向かい合う前記凹面のうち、像側の凹面の曲率半径
Further, the optical system of the present embodiment can further effectively reduce the Petzval sum and correct the curvature of field more satisfactorily by satisfying the following conditional expressions (5) to (8).
(5) 0.30 <R1 / f <0.80
(6) 0.30 <R3 / f <0.80
(7) −0.80 <(R1 + R2) / (R1-R2) <0.80
(8) −0.80 <(R3 + R4) / (R3-R4) <0.80
However,
f: Focal length of the entire optical system when the object is in focus at infinity R1: Of the concave surfaces facing each other in the first set, the radius of curvature R2 of the concave surface on the object side: Of these, the radius of curvature R3 of the concave surface on the image side: the radius of curvature R4 of the concave surface on the object side among the concave surfaces facing each other in the second set: the curvature of the concave surface on the image side of the concave surfaces facing each other in the second set. radius

条件式(5)は、前記第1の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径と前記光学系全系の焦点距離との比を規定する条件式である。
条件式(6)は、前記第2の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径と前記光学系全系の焦点距離との比を規定する条件式である。
条件式(7)は、前記第1の組の向かい合う前記凹面の形状因子を規定するための条件式である。
条件式(8)は、前記第2の組の向かい合う前記凹面の形状因子を規定するための条件式である。
The conditional expression (5) is a conditional expression that defines the ratio of the radius of curvature of the concave surface on the object side to the focal length of the entire optical system among the concave surfaces facing each other in the first set.
The conditional expression (6) is a conditional expression that defines the ratio of the radius of curvature of the concave surface on the object side to the focal length of the entire optical system among the concave surfaces facing each other in the second set.
The conditional expression (7) is a conditional expression for defining the shape factor of the concave surface facing the first set.
The conditional expression (8) is a conditional expression for defining the shape factor of the concave surface facing the second set.

条件式 (5)の上限値を0.750に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (5)の上限値を0.700、更に0.650にすることが好ましい。
また、条件式 (5)の下限値を0.350に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (5)の下限値を0.400、更に0.450にすることが好ましい。
By setting the upper limit value of the conditional expression (5) to 0.750, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (5) to 0.700 and further to 0.650.
Further, by setting the lower limit value of the conditional expression (5) to 0.350, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (5) to 0.400 and further to 0.450.

条件式 (6)の上限値を0.750に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (6)の上限値を0.700、更に0.650にすることが好ましい。
また、条件式 (6)の下限値を0.350に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (6)の下限値を0.400、更に0.450にすることが好ましい。
By setting the upper limit value of the conditional expression (6) to 0.750, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (6) to 0.700 and further to 0.650.
Further, by setting the lower limit value of the conditional expression (6) to 0.350, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (6) to 0.400 and further to 0.450.

条件式 (7)の上限値を0.600に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (7)の上限値を0.400、0.200、更に−0.100にすることが好ましい。
また、条件式 (7)の下限値を−0.750に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (7)の下限値を−0.700、−0.650、更に−0.600にすることが好ましい。
By setting the upper limit value of the conditional expression (7) to 0.600, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit values of the conditional expression (7) to 0.400, 0.200, and further −0.100.
Further, by setting the lower limit value of the conditional expression (7) to −0.750, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (7) to −0.700, −0.650, and further −0.600.

条件式 (8)の上限値を0.700に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (8)の上限値を0.500、更に0.300にすることが好ましい。
また、条件式 (8)の下限値を−0.700に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (8)の下限値を−0.500、−0.300、更に−0.100にすることが好ましい。
By setting the upper limit value of the conditional expression (8) to 0.700, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (8) to 0.500 and further to 0.300.
Further, by setting the lower limit value of the conditional expression (8) to −0.700, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (8) to −0.500, −0.300, and further −0.100.

また、本実施形態の光学系は、以下の条件式(9)を満足することが望ましい。
(9)0.100<f/(−f1)< 1.000
ただし、
f:無限遠物体合焦時の前記光学系全系の焦点距離
f1:前記光学系全系のうち、最も物体側のレンズ成分から、物体側から2つ目の負レンズ成分までの全てのレンズ成分の合成焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (9).
(9) 0.100 <f / (-f1) <1,000
However,
f: Focal length of the entire optical system when the object is in focus at infinity f1: All lenses from the lens component on the most object side to the second negative lens component from the object side in the entire optical system. Synthetic focal length of components

条件式(9)は、光学系全系のうち、最も物体側のレンズ成分から、物体側から2つ目の負レンズ成分までの全てのレンズ成分の合成焦点距離と、光学系全系の焦点距離との比を規定するための条件式である。条件式(9)を満足することにより、ペッツバール和を効果的に小さくしつつコマ収差および球面収差の悪化を抑制することができ、その結果、像面湾曲を良好に補正することができる。 The conditional equation (9) is the combined focal length of all the lens components from the lens component on the most object side to the second negative lens component in the entire optical system, and the focal length of the entire optical system. It is a conditional expression for defining the ratio with the distance. By satisfying the conditional equation (9), it is possible to suppress the deterioration of coma aberration and spherical aberration while effectively reducing the Petzval sum, and as a result, the curvature of field can be satisfactorily corrected.

本実施形態の光学系の条件式(9)の対応値が上限値を上回ると、ペッツバール和を効果的に小さくすることができず、像面湾曲を良好に補正することが困難となってしまう。なお、条件式(9)の上限値を0.950に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の上限値を0.900、更に0.850に設定することが好ましい。 If the corresponding value of the conditional expression (9) of the optical system of the present embodiment exceeds the upper limit value, the Petzval sum cannot be effectively reduced, and it becomes difficult to satisfactorily correct the curvature of field. .. By setting the upper limit value of the conditional expression (9) to 0.950, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (9) to 0.900 and further to 0.850.

一方、本実施形態の光学系の条件式(9)の対応値が下限値を下回ると、球面収差、コマ収差が悪化してしまう。なお、条件式(9)の下限値を0.150に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の下限値を0.200、更に0.250に設定することが好ましい。 On the other hand, if the corresponding value of the conditional expression (9) of the optical system of the present embodiment is less than the lower limit value, spherical aberration and coma aberration will be deteriorated. By setting the lower limit value of the conditional expression (9) to 0.150, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (9) to 0.200 and further to 0.250.

また、本実施形態の光学系は、以下の条件式(10)を満足することが望ましい。
(10)12.0°<2ω<40.0°
ただし、
2ω:無限遠物体合焦時の前記光学系の画角
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (10).
(10) 12.0 ° <2ω <40.0 °
However,
2ω: Angle of view of the optical system when focusing on an infinity object

条件式(10)は、画角の最適な値を規定する条件である。本実施形態の光学系は、この条件式(10)を満足することにより、光学系全体の小型化と良好な光学性能を満足することができる。 The conditional expression (10) is a condition that defines the optimum value of the angle of view. By satisfying this conditional expression (10), the optical system of the present embodiment can satisfy the miniaturization of the entire optical system and good optical performance.

本実施形態の効果を確実なものとするために、条件式(10)の上限値を35.0°にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式 (10)の上限値を30.0°、28.0°、更に25.0°にすることが好ましい。
本実施形態の効果を確実なものとするために、条件式(10)の下限値を13.0°にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式 (10)の下限値を15.0°、18.0°、更に21.0°にすることが好ましい。
In order to ensure the effect of this embodiment, it is preferable to set the upper limit value of the conditional expression (10) to 35.0 °. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit values of the conditional expression (10) to 30.0 °, 28.0 °, and further 25.0 °.
In order to ensure the effect of this embodiment, it is preferable to set the lower limit value of the conditional expression (10) to 13.0 °. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (10) to 15.0 °, 18.0 °, and further 21.0 °.

また、本実施形態の光学系は、以下の条件式(11)を満足することが望ましい。
(11)0.100<bfa/f<0.250
ただし、
bfa:最も像側に配置されるレンズの像側レンズ面から像面までの光軸上の空気換算距離
f:無限遠物体合焦時の前記光学系全系の焦点距離
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (11).
(11) 0.100 <bfa / f <0.250
However,
bfa: Air conversion distance on the optical axis from the image side lens surface of the lens placed closest to the image side to the image surface f: Focal length of the entire optical system when the object is focused at infinity

上記条件式(11)は、最も像側に配置されるレンズの像側レンズ面から像面までの光軸上の空気換算距離と、光学系全系の焦点距離との比を規定する条件式である。条件式(11)を満足することにより、光学系全体の小型化と良好な光学性能を満足することができる。 The above conditional expression (11) is a conditional expression that defines the ratio between the air conversion distance on the optical axis from the image side lens surface of the lens arranged on the image side to the image surface and the focal length of the entire optical system. Is. By satisfying the conditional expression (11), it is possible to satisfy the miniaturization of the entire optical system and good optical performance.

本実施形態の光学系の条件式(11)の対応値が上限値を上回ると、大きな開口数によって光学系全体が径方向に大きくなり、像面湾曲の補正が困難となる。なお、条件式(11)の上限値を0.220に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (11)の上限値を0.195、0.185、更に0.182に設定することが好ましい。 When the corresponding value of the conditional expression (11) of the optical system of the present embodiment exceeds the upper limit value, the entire optical system becomes large in the radial direction due to the large numerical aperture, and it becomes difficult to correct curvature of field. By setting the upper limit value of the conditional expression (11) to 0.220, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit values of the conditional expression (11) to 0.195, 0.185, and further 0.182.

一方、本実施形態の光学系の条件式(11)の対応値が下限値を下回ると、周辺光束によって最終レンズ群の径が大きくなり、小型化するために強い負のパワーが光学系全系の後側に必要となり、特に球面収差の補正が困難となる。なお、条件式(11)の下限値を0.110に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (11)の下限値を0.120、0.130、更に0.140に設定することが好ましい。 On the other hand, when the corresponding value of the conditional expression (11) of the optical system of the present embodiment is less than the lower limit value, the diameter of the final lens group becomes large due to the peripheral luminous flux, and a strong negative power is applied to the entire optical system for miniaturization. It is required on the rear side, and it is particularly difficult to correct spherical aberration. By setting the lower limit value of the conditional expression (11) to 0.110, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (11) to 0.120, 0.130, and further 0.140.

また、本実施形態に係る光学系は、前記後続レンズ群が、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、無限遠物体合焦時の前記DC群の光軸方向への移動量に対する像面の移動量の比である像面移動係数をγDCとしたとき、以下の条件式(12)を満足することが望ましい。
(12)−0.500<γDC<0.500
ただし、
γDC=(1−βDC)×βR
ただし、
βDC:前記DC群の横倍率
βR:前記DC群よりも像側のレンズ群の横倍率
Further, the optical system according to the present embodiment includes a DC group in which the subsequent lens group changes the bokeh in the defocus region by moving along the optical axis, and the DC group at the time of focusing on an infinity object. When the image plane movement coefficient, which is the ratio of the movement amount of the image plane to the movement amount in the optical axis direction, is γDC, it is desirable that the following conditional expression (12) is satisfied.
(12) −0.500 <γDC <0.500
However,
γDC = (1-βDC 2 ) × βR 2
However,
βDC: Horizontal magnification of the DC group βR: Horizontal magnification of the lens group on the image side of the DC group

球面収差をはじめ、諸収差を良好に補正することにより無収差に近い光学系を達成すると、ピントの合った前後のデフォーカス領域のボケ方が均質ではあるが用途によっては急にボケてしまい、使いにくいと評価されることもある。そのため、デフォーカス領域のボケ味に影響を与える収差のうち、主に球面収差のみを使用者の意図に合わせて変化させることが出来る光学系が望ましい。 When an optical system that is almost aberration-free is achieved by satisfactorily correcting various aberrations such as spherical aberration, the defocus area before and after focusing is uniform, but it suddenly becomes blurred depending on the application. It may be evaluated as difficult to use. Therefore, among the aberrations that affect the bokeh in the defocus region, it is desirable to have an optical system that can mainly change only spherical aberration according to the intention of the user.

通常、レンズ間或いはレンズ群間の間隔変化で収差を変化させると、球面収差だけではなくて他の収差も変化してしまう。本実施形態に係る光学系は、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、条件式(12)を満足することにより、ボケ味において好ましくないコマ収差、非点収差、色収差などの変化は極力抑えて、球面収差のみが変化するようにしている。また、本実施形態に係る光学系は、DC群を光軸方向に移動させ、DC群と、DC群の前後のレンズ群との間隔を変化させることで球面収差を正負両方に変化させることが出来、被写体の前側、後側それぞれについてボケ味を変化させることが出来る。これにより、ピントが合っている被写体のシャープな描写を維持しつつ、被写界深度外の背景または被写界深度外の前景のボケ味を変化させることができる。なお、本実施形態においてDC群の光軸に沿った移動方向は、像側に向かう方向を正の方向とし、物体側に向かう方向を負の方向とする。 Normally, when the aberration is changed by changing the distance between lenses or between lens groups, not only spherical aberration but also other aberrations change. The optical system according to the present embodiment includes a DC group that changes the bokeh in the defocus region by moving along the optical axis, and satisfying the conditional equation (12), unfavorable coma aberration in the bokeh. , Astigmatism, chromatic aberration, etc. are suppressed as much as possible so that only spherical aberration changes. Further, in the optical system according to the present embodiment, the spherical aberration can be changed to both positive and negative by moving the DC group in the optical axis direction and changing the distance between the DC group and the lens groups before and after the DC group. It is possible to change the bokeh on the front side and the back side of the subject. As a result, it is possible to change the bokeh of the background outside the depth of field or the foreground outside the depth of field while maintaining a sharp depiction of the subject in focus. In the present embodiment, the moving direction of the DC group along the optical axis is such that the direction toward the image side is a positive direction and the direction toward the object side is a negative direction.

条件式(12)は、DC群の光軸方向への移動量に対する像面の移動量の比を規定する条件式であり、DC群を光軸方向に移動させた際、できるだけバックフォーカスを変動させないための条件式である。条件式(12)を満足することにより、DC群を光軸方向に移動させて主に球面収差を変化させた際、再度ピント合わせを行う量を低減することができる。その結果、再度のピント合わせ時の収差変動を抑制することができる。 The conditional expression (12) is a conditional expression that defines the ratio of the amount of movement of the image plane to the amount of movement of the DC group in the optical axis direction, and changes the back focus as much as possible when the DC group is moved in the optical axis direction. It is a conditional expression to prevent it. By satisfying the conditional equation (12), it is possible to reduce the amount of refocusing when the DC group is moved in the optical axis direction to mainly change the spherical aberration. As a result, it is possible to suppress aberration fluctuations during refocusing.

ここで、無限遠物体合焦時のDC群の光軸方向への移動量に対する像面の移動量の比である像面移動係数γDCは、次の式で定義される。
γDC=(1−βDC)×βR
ただし、
βDC:前記DC群の横倍率
βR:前記DC群よりも像側のレンズ群の横倍率
Here, the image plane movement coefficient γDC, which is the ratio of the movement amount of the image plane to the movement amount of the DC group in the optical axis direction at the time of focusing on an infinity object, is defined by the following equation.
γDC = (1-βDC 2 ) × βR 2
However,
βDC: Horizontal magnification of the DC group βR: Horizontal magnification of the lens group on the image side of the DC group

本実施形態の光学系の条件式(12)の対応値が条件式(12)の範囲を外れてしまうと、DC群を光軸方向に移動させた際にバックフォーカスが大きく変動してしまい、再度フォーカス群を大きく移動させる必要が生じてしまう。その結果、フォーカシングに伴う収差変動で主にコマ収差、像面湾曲が変動してしまい、望ましくない。 If the corresponding value of the conditional expression (12) of the optical system of the present embodiment is out of the range of the conditional expression (12), the back focus will fluctuate greatly when the DC group is moved in the optical axis direction. It becomes necessary to move the focus group greatly again. As a result, coma and curvature of field mainly fluctuate due to aberration fluctuations associated with focusing, which is not desirable.

なお、条件式(12)の上限値を0.450に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (12)の上限値を0.400、0.350、更に0.300にすることが好ましい。
また、条件式(12)の下限値を−0.450に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (12)の下限値を−0.400、−0.350、更に−0.300にすることが好ましい。
By setting the upper limit value of the conditional expression (12) to 0.450, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit values of the conditional expression (12) to 0.400, 0.350, and further 0.300.
Further, by setting the lower limit value of the conditional expression (12) to −0.450, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (12) to −0.400, −0.350, and further −0.300.

また、本実施形態の光学系は、以下の条件式(13)を満足することが望ましい。
(13)0.700<βDC<1.300
ただし、
βDC:前記DC群の横倍率
Further, it is desirable that the optical system of the present embodiment satisfies the following conditional expression (13).
(13) 0.700 <βDC <1.300
However,
βDC: Horizontal magnification of the DC group

条件式(13)は、DC群の横倍率を規定する条件式である。条件式(13)を満足することにより、DC群よりも物体側のレンズ群の収差の過剰な拡大或いは過剰な縮小を抑制することができる。 The conditional expression (13) is a conditional expression that defines the lateral magnification of the DC group. By satisfying the conditional expression (13), it is possible to suppress excessive enlargement or excessive reduction of the aberration of the lens group on the object side of the DC group.

本実施形態の光学系の条件式(13)の対応値が上限値を上回ると、DC群より物体側のレンズ群の収差を拡大し過ぎるため、球面収差以外のコマ収差、像面湾曲、軸上色収差、倍率色収差等も大きく発生してしまう。なお、条件式(13)の上限値を1.250に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (13)の上限値を1.200、更に1.150に設定することが好ましい。 If the corresponding value of the conditional equation (13) of the optical system of the present embodiment exceeds the upper limit value, the aberration of the lens group on the object side of the DC group is enlarged too much, so that coma aberration other than spherical aberration, curvature of field, and axis Top chromatic aberration, chromatic aberration of magnification, etc. also occur significantly. By setting the upper limit value of the conditional expression (13) to 1.250, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (13) to 1.200 and further to 1.150.

一方、本実施形態の光学系の条件式(13)の対応値が下限値を下回ると、DC群を光軸方向に移動させても所定の球面収差を発生させづらくなる。その結果、DC群を光軸方向に大きく移動させることが必要となり、球面収差以外のコマ収差、像面湾曲、軸上色収差、倍率色収差等が大きく発生してしまう。なお、条件式(13)の下限値を0.750に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (13)の下限値を0.800、更に0.850に設定することが好ましい。 On the other hand, when the corresponding value of the conditional expression (13) of the optical system of the present embodiment is less than the lower limit value, it becomes difficult to generate a predetermined spherical aberration even if the DC group is moved in the optical axis direction. As a result, it is necessary to move the DC group significantly in the optical axis direction, and coma aberration other than spherical aberration, curvature of field, axial chromatic aberration, chromatic aberration of magnification, and the like are greatly generated. By setting the lower limit value of the conditional expression (13) to 0.750, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (13) to 0.800 and further to 0.850.

また、本実施形態に係る光学系は、前記後続レンズ群が、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、無限遠物体合焦時の前記DC群の光軸方向への移動量をΔDCとし、前記ΔDCに対応する縦収差表示での球面収差変化量をΔSAとし、無限遠物体合焦時に前記DC群が光軸方向へ移動しない時の最大口径のF値をFinfとしたとき、以下の条件式(14)を満足することが望ましい。
(14)0.300<|ΔSA×(Finf)/ΔDC|<2.500
Further, the optical system according to the present embodiment includes a DC group in which the subsequent lens group changes the bokeh of the defocus region by moving along the optical axis, and the DC group at the time of focusing on an infinity object. The amount of movement in the optical axis direction is ΔDC, the amount of change in spherical aberration in the longitudinal aberration display corresponding to the ΔDC is ΔSA, and the maximum diameter when the DC group does not move in the optical axis direction when the object is focused at infinity. When the F value of is set to Finf, it is desirable that the following conditional expression (14) is satisfied.
(14) 0.300 << | ΔSA × (Finf) 2 / ΔDC | <2.500

条件式(14)は、無限遠物体合焦時にDC群を光軸方向に移動させた際のDC群の移動量と、DC群のこの移動によって変化する球面収差の変化量との比率を規定する条件式である。条件式(14)を満足することにより、DC群の比較的微小な光軸方向への移動によっても、大きな球面収差の変化を実現することができる。その結果、各レンズ群における光線の通り方がDC群を移動させていないときと比較して大きく変化しないため、DC群を移動させた際の球面収差以外の収差変動を抑制することが可能となる。 Conditional expression (14) defines the ratio between the amount of movement of the DC group when the DC group is moved in the optical axis direction during focusing on an infinity object and the amount of change in spherical aberration that changes due to this movement of the DC group. It is a conditional expression to be performed. By satisfying the conditional expression (14), a large change in spherical aberration can be realized even by a relatively small movement of the DC group in the optical axis direction. As a result, the passage of light rays in each lens group does not change significantly as compared with when the DC group is not moved, so that it is possible to suppress aberration fluctuations other than spherical aberration when the DC group is moved. Become.

本実施形態の光学系の条件式(14)の対応値が上限値を上回ると、DC群を移動させた際、球面収差以外のコマ収差、像面湾曲、軸上色収差も大きく発生してしまう。なお、条件式(14)の上限値を2.200に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (14)の上限値を2.000、1.800、更に1.500に設定することが好ましい。 If the corresponding value of the conditional expression (14) of the optical system of the present embodiment exceeds the upper limit value, coma aberration other than spherical aberration, curvature of field, and axial chromatic aberration will be greatly generated when the DC group is moved. .. By setting the upper limit value of the conditional expression (14) to 2.200, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (14) to 2.000, 1.800, and further 1.500.

一方、本実施形態の光学系の条件式(14)の対応値が下限値を下回ると、所定の球面収差の変化を実現するためにDC群を光軸方向に大きく移動させることが必要となる。その結果、各レンズ群における光線の通り方がDC群を移動させていないときと比較して大きく異なるものとなるため、特にコマ収差、像面湾曲が大きく変動してしまう。なお、条件式(14)の下限値を0.350に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (14)の下限値を0.400、0.450、更に0.500に設定することが好ましい。 On the other hand, when the corresponding value of the conditional expression (14) of the optical system of the present embodiment is less than the lower limit value, it is necessary to move the DC group significantly in the optical axis direction in order to realize a predetermined change in spherical aberration. .. As a result, the passage of light rays in each lens group is significantly different from that when the DC group is not moved, so that coma aberration and curvature of field are particularly greatly changed. By setting the lower limit value of the conditional expression (14) to 0.350, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit values of the conditional expression (14) to 0.400, 0.450, and further 0.500.

また、本実施形態に係る光学系は、前記後続レンズ群が、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、近距離物体合焦時の前記DC群の光軸方向への移動量をΔDCとし、前記ΔDCに対応する縦収差表示での球面収差変化量をΔSAとし、近距離物体合焦時に前記DC群が光軸方向へ移動しない時の最大口径のF値をFmodとしたとき、以下の条件式(15)を満足することが望ましい。
(15)2.000<|ΔSA×(Fmod)/ΔDC|<15.000
Further, the optical system according to the present embodiment includes a DC group in which the subsequent lens group changes the bokeh of the defocus region by moving along the optical axis, and the DC group at the time of focusing on a short-range object. The amount of movement in the optical axis direction is ΔDC, the amount of change in spherical aberration in the longitudinal aberration display corresponding to the ΔDC is ΔSA, and the maximum diameter when the DC group does not move in the optical axis direction during short-range object focusing. When the F value of is Fmod, it is desirable that the following conditional expression (15) is satisfied.
(15) 2.000 << | ΔSA × (Fmod) 2 / ΔDC | <15.000

条件式(15)は、近距離物体合焦時にDC群を光軸方向に移動させた際のDC群の移動量と、DC群のこの移動によって変化する球面収差の変化量との比率を規定する条件式である。条件式(15)を満足することにより、DC群の比較的微小な光軸方向への移動によっても、大きな球面収差の変化を実現することができる。その結果、各レンズ群における光線の通り方がDC群を移動させていないときと比較して大きく変化しないため、DC群を移動させた際の球面収差以外の収差変動を抑制することが可能となる。 Conditional expression (15) defines the ratio between the amount of movement of the DC group when the DC group is moved in the optical axis direction during short-distance object focusing and the amount of change in spherical aberration that changes due to this movement of the DC group. It is a conditional expression to be performed. By satisfying the conditional equation (15), a large change in spherical aberration can be realized even by a relatively small movement of the DC group in the optical axis direction. As a result, the passage of light rays in each lens group does not change significantly as compared with when the DC group is not moved, so that it is possible to suppress aberration fluctuations other than spherical aberration when the DC group is moved. Become.

本実施形態の光学系の条件式(15)の対応値が上限値を上回ると、DC群を移動させた際、球面収差以外のコマ収差、像面湾曲、軸上色収差も大きく発生してしまう。なお、条件式(15)の上限値を12.000に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (15)の上限値を10.000、更に9.000に設定することが好ましい。 If the corresponding value of the conditional equation (15) of the optical system of the present embodiment exceeds the upper limit value, coma aberration other than spherical aberration, curvature of field, and axial chromatic aberration will be greatly generated when the DC group is moved. .. By setting the upper limit value of the conditional expression (15) to 12.000, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the upper limit value of the conditional expression (15) to 10.000 and further to 9.000.

一方、本実施形態の光学系の条件式(15)の対応値が下限値を下回ると、所定の球面収差の変化を実現するためにDC群を光軸方向に大きく移動させることが必要となる。その結果、各レンズ群における光線の通り方がDC群を移動させていないときと比較して大きく異なるものとなるため、特にコマ収差、像面湾曲が大きく変動してしまう。なお、条件式(15)の下限値を2.400に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (15)の下限値を2.700、更に3.000に設定することが好ましい。 On the other hand, when the corresponding value of the conditional expression (15) of the optical system of the present embodiment is less than the lower limit value, it is necessary to move the DC group significantly in the optical axis direction in order to realize a predetermined change in spherical aberration. .. As a result, the passage of light rays in each lens group is significantly different from that when the DC group is not moved, so that coma aberration and curvature of field are particularly greatly changed. By setting the lower limit value of the conditional expression (15) to 2.400, the effect of the present embodiment can be made more reliable. Further, in order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (15) to 2.700 and further to 3.000.

また、本実施形態に係る光学系は、最も像側のレンズ群が前記DC群であることが望ましい。この構成により、球面収差以外の収差の変動を抑制するとともに、光学系を小型化することができる。 Further, in the optical system according to the present embodiment, it is desirable that the lens group on the image side is the DC group. With this configuration, it is possible to suppress fluctuations in aberrations other than spherical aberration and to reduce the size of the optical system.

本実施形態の光学機器は、上述した構成の光学系を有する。これにより、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を備えた光学機器を実現することができる。 The optical device of this embodiment has an optical system having the above-described configuration. As a result, various aberrations can be satisfactorily corrected from the in-focus state of an infinity object to the in-focus state of a short-range object, and an optical device equipped with a large-diameter optical system suitable for both autofocus and manual focus. Can be realized.

本実施形態の光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなる光学系の製造方法であって、合焦の際、隣り合う前記レンズ群の間隔が変化するように構成し、前記第1レンズ群を、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなるように構成し、前記前側レンズ群が、無限遠物体から近距離物体への合焦の際、物体側へ移動するように構成し、前記後側レンズ群が、mおよびnをm<n満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式(1)を満足するように構成する光学系の製造方法である。
(1)0.50<h(min)/h(max)
The method for manufacturing the optical system of the present embodiment is a method for manufacturing an optical system including a first lens group having a positive refractive force and a plurality of subsequent lens groups in order from the object side, and at the time of focusing, The distance between the adjacent lens groups is changed, and the first lens group is arranged on the image side with the front lens group having a positive refractive force arranged on the object side with the aperture aperture in between. It is configured to consist of a rear lens group having a positive refractive force, and the front lens group is configured to move to the object side when focusing from an infinity object to a short-range object. The rear lens group is a positive integer satisfying m and n by m <n, and the infinity object is focused on the mth and nth lens surfaces counted from the lens surface on the most object side of the rear lens group. When the marginal ray heights at time are h (m) and h (n), respectively, the highest h (m) among the marginal ray heights satisfying h (m)> h (n) is h (max). ), And when the lowest h (n) is h (min), this is a method for manufacturing an optical system that satisfies the following conditional expression (1).
(1) 0.50 <h (min) / h (max)

これにより、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を製造することができる。 As a result, various aberrations can be satisfactorily corrected from the in-finity object in-focus state to the short-distance object in-focus state, and a large-diameter optical system suitable for both autofocus and manual focus can be manufactured. can.

以下、本実施形態の数値実施例に係る光学系を添付図面に基づいて説明する。
(第1実施例)
図1は第1実施例に係る光学系の無限遠物体合焦時の断面図である。なお、図1および後述する図5、図9、図13、図17、図21中の矢印は、無限遠物体から近距離物体への合焦の際の各レンズ群の移動軌跡を示している。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
Hereinafter, the optical system according to the numerical embodiment of the present embodiment will be described with reference to the accompanying drawings.
(First Example)
FIG. 1 is a cross-sectional view of the optical system according to the first embodiment when focusing on an infinity object. The arrows in FIGS. 1, 9, 13, 17, and 21 which will be described later indicate the movement locus of each lens group when focusing from an infinity object to a short-distance object. ..
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた平凸レンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15とを接合した接合負レンズと、物体側に凸面を向けた平凸レンズL16と、両凸形状の正レンズL17と、両凸形状の正レンズL18と物体側に凹面を向けた負メニスカスレンズL19との接合正レンズと、両凸形状の正レンズL110と両凹形状の負レンズL111との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a biconcave negative lens L12, a plano-convex lens L13 with a convex surface facing the object side, and a positive meniscus with a concave surface facing the object side, in order from the object side. A bonded negative lens in which a lens L14 and a biconcave negative lens L15 are joined, a plano-convex lens L16 with a convex surface facing the object side, a biconvex positive lens L17, a biconvex positive lens L18 and an object side. It is composed of a bonded positive lens with a negative meniscus lens L19 having a concave surface facing the surface, and a bonded negative lens with a biconvex positive lens L110 and a biconcave negative lens L111.

後側レンズ群G1Rは、物体側から順に、両凹形状の負レンズL112と両凸形状の正レンズL113との接合負レンズと、像側に凸面を向けた平凸レンズL114と、両凸形状の正レンズL115と、像側に凸面を向けた平凸レンズL116と物体側に凹面を向けた負メニスカスレンズL117との接合正レンズとからなる。 The rear lens group G1R has a biconvex negative lens L112 and a biconvex positive lens L113 in order from the object side, a plano-convex lens L114 with a convex surface facing the image side, and a biconvex lens. It is composed of a positive lens L115, a plano-convex lens L116 having a convex surface facing the image side, and a negative meniscus lens L117 having a concave surface facing the object side.

両凹形状の負レンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL111と両凹形状の負レンズL112とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負レンズL12と正メニスカスレンズL14との間には平凸レンズL13が含まれているが、本実施形態における「互いに凹面を向かい合わせたレンズの組」は、間に簡単な構成のレンズ成分を含むこともある。 The biconcave negative lens L12 and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L111 and the biconcave negative lens L112 form a second lens set C2 in which the concave surfaces face each other. A plano-convex lens L13 is included between the negative lens L12 and the positive meniscus lens L14, but the "set of lenses having concave surfaces facing each other" in the present embodiment includes a lens component having a simple configuration between them. Sometimes.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた平凸レンズL22と、物体側に凸面を向けた負メニスカスレンズL23とからなる。 The second lens group G2 is composed of a biconvex positive lens L21, a plano-convex lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side, in this order from the object side.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合負レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、第1レンズ群G1、第2レンズ群G2、および第3レンズ群G3を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。このとき、第1レンズ群G1の前側レンズ群G1Fと後側レンズ群G1Rとは、一体に物体側へ移動する。 In the optical system according to the present embodiment, the first lens group G1, the second lens group G2, and the third lens group G3 are moved to the object side along the optical axis with different trajectories, thereby moving from an infinity object. Focusing on a short-range object. At this time, the front lens group G1F and the rear lens group G1R of the first lens group G1 move integrally to the object side.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表1に、本実施例に係る光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスすなわち最も像側のレンズ面から像面Iまでの光軸上の距離を示す。
[面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、Dn(nは整数)は可変の面間隔、STは開口絞り、Iは像面をそれぞれ示している。CE(1)は、条件式(1)に関してマージナル光線高さがh(max)およびh(min)となるレンズ面における当該h(max)およびh(min)の値を示し、CE(2)は、条件式(2)に関してマージナル光線高さがh(1)、h(max)およびh(min)となるレンズ面における当該h(1)、h(max)hおよび(min)の値を示し、CE(3)は、条件式(3)を満たす負レンズにおける条件式(3)の対応値を示している。なお、曲率半径r=∞は平面を示している。空気の屈折率nd=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に「*」を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists the values of the specifications of the optical system according to this embodiment.
In Table 1, f indicates the focal length, and BF indicates the back focus, that is, the distance on the optical axis from the lens surface on the image side to the image surface I.
In [plane data], m is the order of the optical planes counted from the object side, r is the radius of curvature, d is the plane spacing (distance between the nth plane (n is an integer) and the n + 1 plane), and nd is the d line (d line). The refractive index for wavelength 587.6 nm) and νd indicate the Abbe number for the d line (wavelength 587.6 nm). Further, OP indicates an object surface, Dn (n is an integer) indicates a variable surface interval, ST indicates an aperture stop, and I indicates an image plane. CE (1) indicates the values of h (max) and h (min) on the lens surface where the marginal ray heights are h (max) and h (min) with respect to the conditional expression (1), and CE (2) Sets the values of h (1), h (max) h and (min) on the lens surface where the marginal ray heights are h (1), h (max) and h (min) with respect to the conditional expression (2). Shown, CE (3) shows the corresponding value of the conditional expression (3) in the negative lens satisfying the conditional expression (3). The radius of curvature r = ∞ indicates a plane. The description of the refractive index of air nd = 1.00000 is omitted. When the lens surface is aspherical, "*" is added to the surface number and the radius of curvature r indicates the paraxial radius of curvature.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12+A14h14
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離であるサグ量、κを円錐定数、A4、A6、A8、A10、A12、A14を非球面係数、rを基準球面の曲率半径である近軸曲率半径とする。なお、「e−n」(n:整数)は「×10−n」を示し、例えば「1.234e-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows the aspherical coefficient and the conical constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1 + {1-κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12 + A14h 14
Here, h is the height in the direction perpendicular to the optical axis, x is the sag amount which is the distance along the optical axis direction from the tangent plane of the aspherical apex at the height h to the aspherical surface, and κ is the conical constant. , A4, A6, A8, A10, A12, A14 are aspherical coefficients, and r is the near-axis radius of curvature, which is the radius of curvature of the reference sphere. In addition, "e-n" (n: integer) indicates "x10-n ", for example, "1.234e-05" indicates "1.234 × 10-5 ". The second-order aspherical coefficient A2 is 0, and the description is omitted.

[各種データ]において、fは光学系全系の焦点距離、FNoはFナンバー、ωは半画角(単位は「°」)、Yは最大像高、TLは本実施例に係る光学系の全長すなわち第1面から像面Iまでの光軸上の距離、BF(空気換算長)はフィルタ群FLの厚みを空気換算したBFをそれぞれ示す。また、Finfは、無限遠物体合焦時にDC群が光軸方向へ移動しない時、すなわちDC群の光軸方向への移動量が0(零)の状態での最大口径のF値を示し、Fmodは、近距離物体合焦時に前記DC群が光軸方向へ移動しない時、すなわちDC群の光軸方向への移動量が0(零)の状態での最大口径のF値を示す。 In [various data], f is the focal length of the entire optical system, FNo is the F number, ω is the half angle of view (unit is "°"), Y is the maximum image height, and TL is the optical system according to this embodiment. The total length, that is, the distance on the optical axis from the first plane to the image plane I, and the BF (air equivalent length) indicate the BF obtained by converting the thickness of the filter group FL into air. Further, Finf indicates the F value of the maximum diameter when the DC group does not move in the optical axis direction at the time of focusing on an infinity object, that is, when the amount of movement of the DC group in the optical axis direction is 0 (zero). Fmod indicates the F value of the maximum diameter when the DC group does not move in the optical axis direction at the time of focusing on a short-distance object, that is, when the amount of movement of the DC group in the optical axis direction is 0 (zero).

[可変間隔データ]において、D0は物体から最も物体側のレンズ面までの距離、βは至近撮影倍率、fは光学系全系の焦点距離、Dn(nは整数)は第n面と第n+1面との可変の間隔をそれぞれ示す。なお、INFは無限遠物体への合焦時、CLOは近距離物体への合焦時をそれぞれ示す。また、INFDC(-)は無限遠物体への合焦時且つDC群が物体側へ移動した時、INFDC(+)は無限遠物体への合焦時且つDC群が像面I側へ移動した時、CLODC(-)は近距離物体への合焦時且つDC群が物体側へ移動した時、CLODC(+)は近距離物体への合焦時且つDC群が像面I側へ移動した時をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面番号STと焦点距離fを示す。
[条件式対応値]には、各条件式の対応値をそれぞれ示す。
In [variable interval data], D0 is the distance from the object to the lens plane closest to the object, β is the closest shooting magnification, f is the focal length of the entire optical system, and Dn (n is an integer) is the nth plane and the n + 1th. The variable distance from the surface is shown respectively. Note that INF indicates the time of focusing on an infinity object, and CLO indicates the time of focusing on a short-distance object. INFDC (-) is when focusing on an infinity object and the DC group moves to the object side, INFDC (+) is when focusing on an infinity object and the DC group moves to the image plane I side. When, CLODC (-) is when focusing on a short-distance object and the DC group moves to the object side, CLODC (+) is when focusing on a short-distance object and the DC group moves to the image plane I side. Show each time.
[Lens group data] shows the start surface number ST and the focal length f of each lens group.
[Conditional expression corresponding value] shows the corresponding value of each conditional expression.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r and other lengths listed in Table 1. However, the optical system is not limited to this because the same optical performance can be obtained even if the optical system is proportionally expanded or decreased.
The reference numerals in Table 1 described above shall be used in the same manner in the tables of the respective examples described later.

(表1)第1実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 118.32411 8.500 1.77250 49.6 h(1)=27.500
2 -292.61047 0.600
3 -386.00590 3.350 1.59349 67.0
4 58.84212 3.860
5 125.77544 5.730 1.77250 49.6
6 ∞ 7.200
7 -118.99709 7.770 1.59319 67.9 h(min)=24.921
8 -48.97300 3.200 1.73400 51.5 0.656
9 151.85769 0.300
10 79.50410 8.200 1.75500 52.3 h(max)=26.479
11 ∞ 0.980
12 345.01701 6.900 1.65160 58.6
13 -116.11262 0.100
14 920.16592 8.590 1.49782 82.6
15 -62.19000 3.050 1.80400 46.6 0.655
16 -139.96552 0.100
17 82.51931 9.500 1.49782 82.6
18 -82.50800 2.500 1.64000 60.1
19 51.17934 9.800
20(ST) ∞ 7.680
21 -43.07701 8.610 1.69680 55.5
22 97.43100 10.950 1.59319 67.9
23 -64.35612 0.100
24 ∞ 5.200 1.59319 67.9
25 -124.99358 0.100 h(max)=22.456
26 129.31006 7.400 1.59319 67.9
27 -219.57514 0.100
28 ∞ 7.800 1.49782 82.6
29 -73.47100 3.850 1.78800 47.4 0.655
30 -150.94368 D30 h(min)=20.474

31 176.22469 5.350 1.49782 82.6
32 -176.22469 0.100
33 163.48731 3.620 1.49782 82.6
34 ∞ 0.100
35 147.51071 2.200 1.48749 70.3
36 41.66333 D36

*37 -109.61587 2.100 1.84666 23.8
38 79.18000 7.230 1.83481 42.7
39 -121.86282 0.360
40 97.94703 7.000 2.00069 25.5
41 -97.92100 12.000 1.73400 51.5
*42 76.42448 6.500
43 -51.29543 2.000 1.75500 52.3
44 -213.31929 D44

45 ∞ 1.600 1.51680 64.1
46 ∞ D46
I ∞

[非球面データ]
m:37
κ = 2.74700e+00
A4 = -4.29947e-07、A6 = 2.27092e-09、A8 = -1.46465e-11、
A10= 5.87168e-14、A12= -1.20550e-16、A14= 9.94040e-20

m:42
κ = 1.00000e+00
A4 = -1.77286e-06、A6 = 3.42452e-09、A8 = -2.59406e-11、
A10= 1.02831e-13、A12= -2.17180e-16、A14= 1.88280e-19

[各種データ]
f 102.01
FNo 1.85
ω 11.9
Y 21.60
TL 224.130
BF 18.300
BF(空気換算長) 17.755
Finf 1.85
Fmod 3.92

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 126.79 ∞ ∞ 126.79 126.79
β - -0.9996 - - -1.0206 -0.9794
f 102.01 - 103.89 100.19 - -
D30 5.580 30.312 1.580 9.580 26.312 34.312
D36 9.670 40.808 9.670 9.670 40.808 40.808
D44 15.700 53.600 19.700 11.700 57.600 49.600
D46 1.000 0.995 0.475 1.649 1.775 0.409

[レンズ群データ]
ST f
G1 1 110.44
G2 31 1399.36
G3 37 -162.39

[条件式対応値]
(1)h(min)/h(max)=0.912
(2){h(max)−h(min)}/{h(1)−h(min)}=0.604
(3)θgFLn+0.0021×νdLn=0.656
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=1.083
(5)R1/f=0.577
(6)R3/f=0.502
(7)(R1+R2)/(R1−R2)=-0.338
(8)(R3+R4)/(R3−R4)=0.086
(9)f/(−f1)=0.789
(10)2ω=23.8
(11)bfa/f=0.174
(12)γDC=0.147
βDC=0.924
βR=1.000
(13)βDC=0.924
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.625
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.551
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=4.688
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=3.838
(Table 1) First Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 118.32411 8.500 1.77250 49.6 h (1) = 27.500
2 -292.61047 0.600
3 -386.00590 3.350 1.59349 67.0
4 58.84212 3.860
5 125.77544 5.730 1.77250 49.6
6 ∞ 7.200
7 -118.99709 7.770 1.59319 67.9 h (min) = 24.921
8-48.97300 3.200 1.73400 51.5 0.656
9 151.85769 0.300
10 79.50410 8.200 1.75500 52.3 h (max) = 26.479
11 ∞ 0.980
12 345.01701 6.900 1.65160 58.6
13 -116.11262 0.100
14 920.16592 8.590 1.49782 82.6
15 -62.19000 3.050 1.80400 46.6 0.655
16 -139.96552 0.100
17 82.51931 9.500 1.49782 82.6
18 -82.50800 2.500 1.64000 60.1
19 51.17934 9.800
20 (ST) ∞ 7.680
21 -43.07701 8.610 1.69680 55.5
22 97.43100 10.950 1.59319 67.9
23 -64.35612 0.100
24 ∞ 5.200 1.59319 67.9
25 -124.99358 0.100 h (max) = 22.456
26 129.31006 7.400 1.59319 67.9
27 -219.57514 0.100
28 ∞ 7.800 1.49782 82.6
29 -73.47100 3.850 1.78800 47.4 0.655
30 -150.94368 D30 h (min) = 20.474

31 176.22469 5.350 1.49782 82.6
32 -176.22469 0.100
33 163.48731 3.620 1.49782 82.6
34 ∞ 0.100
35 147.51071 2.200 1.48749 70.3
36 41.66333 D36

* 37 -109.61587 2.100 1.84666 23.8
38 79.18000 7.230 1.83481 42.7
39 -121.86282 0.360
40 97.94703 7.000 2.00069 25.5
41 -97.92100 12.000 1.73400 51.5
* 42 76.42448 6.500
43 -51.29543 2.000 1.75500 52.3
44 -213.31929 D44

45 ∞ 1.600 1.51680 64.1
46 ∞ D46
I ∞

[Aspherical data]
m: 37
κ = 2.74700e + 00
A4 = -4.29947e-07, A6 = 2.27092e-09, A8 = -1.46465e-11,
A10 = 5.87168e-14, A12 = -1.20550e-16, A14 = 9.94040e-20

m: 42
κ = 1.00000e + 00
A4 = -1.77286e-06, A6 = 3.42452e-09, A8 = -2.59406e-11,
A10 = 1.02831e-13, A12 = -2.17180e-16, A14 = 1.88280e-19

[Various data]
f 102.01
FNo 1.85
ω 11.9
Y 21.60
TL 224.130
BF 18.300
BF (air equivalent length) 17.755
Finf 1.85
Fmod 3.92

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 126.79 ∞ ∞ 126.79 126.79
β --- 0.9996 ---- 1.0206 -0.9794
f 102.01 --103.89 100.19 ----
D30 5.580 30.312 1.580 9.580 26.312 34.312
D36 9.670 40.808 9.670 9.670 40.808 40.808
D44 15.700 53.600 19.700 11.700 57.600 49.600
D46 1.000 0.995 0.475 1.649 1.775 0.409

[Lens group data]
ST f
G1 1 110.44
G2 31 1399.36
G3 37 -162.39

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.912
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.604
(3) θgFLn + 0.0021 × νdLn = 0.656
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 1.083
(5) R1 / f = 0.577
(6) R3 / f = 0.502
(7) (R1 + R2) / (R1-R2) =-0.338
(8) (R3 + R4) / (R3-R4) = 0.086
(9) f / (-f1) = 0.789
(10) 2ω = 23.8
(11) bfa / f = 0.174
(12) γDC = 0.147
βDC = 0.924
βR = 1.000
(13) βDC = 0.924
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.625
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.551
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 4.688
When moving to the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 3.838

図2A及び図2Bはそれぞれ、第1実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時においてDC郡を移動させない状態での諸収差図である。
図3A及び図3Bはそれぞれ、第1実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図4A及び図4Bはそれぞれ、第1実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
2A and 2B are aberration diagrams of the optical system according to the first embodiment in a state where the DC group is not moved at the time of focusing on an infinity object and the time of focusing on a short-distance object, respectively.
3A and 3B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the first embodiment is in focus, respectively. ..
4A and 4B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the first embodiment, respectively. be.

各収差図において、FNOはFナンバー、Yは像高、NAは開口数をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーFNOまたは開口数NAの値を示し、非点収差図及び歪曲収差図では像高Yの最大値をそれぞれ示し、横収差図では各像高の値を示す。また、各収差図において、dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差曲線をそれぞれ示し、記載のないものはd線での収差曲線を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。横収差図は、各像高Yにおける横収差(コマ収差)を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。 In each aberration diagram, FNO indicates F number, Y indicates image height, and NA indicates numerical aperture. The spherical aberration diagram shows the value of the F number FNO or the numerical aperture NA corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum value of the image height Y, and the transverse aberration diagram shows the maximum value of each image height. Indicates a value. Further, in each aberration diagram, d indicates an aberration curve on the d line (wavelength 587.6 nm), g indicates an aberration curve on the g line (wavelength 435.8 nm), and those not described indicate an aberration curve on the d line. In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. The lateral aberration diagram shows the lateral aberration (coma aberration) at each image height Y. In the aberration diagram of each embodiment described later, the same reference numerals as those of this embodiment are used.

図2A及び図2Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図3A及び図3Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図4A及び図4Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 2A and 2B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 3A and 3B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 4A and 4B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

(第2実施例)
図5は第2実施例に係る光学系の無限遠物体合焦時の断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
(Second Example)
FIG. 5 is a cross-sectional view of the optical system according to the second embodiment when the object is in focus at infinity.
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、両凹形状の負レンズL12と、両凸形状の正レンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15との接合負レンズと、両凸形状の正レンズL16と、物体側に凹面を向けた正メニスカスレンズL17と、像側に凸面を向けた平凸レンズL18と物体側に凹面を向けた負メニスカスレンズL19との接合負レンズと、両凸形状の正レンズL110と両凹形状の負レンズL111との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a biconcave negative lens L12, a biconvex positive lens L13, and a positive meniscus lens L14 with a concave surface facing the object side, in order from the object side. A junction negative lens with a biconcave negative lens L15, a biconvex positive lens L16, a positive meniscus lens L17 with a concave surface facing the object side, a plano-convex lens L18 with a convex surface facing the image side, and an object side. It is composed of a junction negative lens with a negative meniscus lens L19 facing a concave surface, and a junction negative lens with a biconvex positive lens L110 and a biconcave negative lens L111.

後側レンズ群G1Rは、物体側から順に、両凹形状の負レンズL112と両凸形状の正レンズL113との接合負レンズと、像側に凸面を向けた平凸レンズL114と、両凸形状の正レンズL115と、像側に凸面を向けた平凸レンズL116と物体側に凹面を向けた負メニスカスレンズL117との接合正レンズとからなる。 The rear lens group G1R has a biconvex negative lens L112 and a biconvex positive lens L113 in order from the object side, a plano-convex lens L114 with a convex surface facing the image side, and a biconvex lens. It is composed of a positive lens L115, a plano-convex lens L116 having a convex surface facing the image side, and a negative meniscus lens L117 having a concave surface facing the object side.

両凹形状の負レンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL111と両凹形状の負レンズL112とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負レンズL12と正メニスカスレンズL14との間には両凸形状の正レンズL13が含まれている。 The biconcave negative lens L12 and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L111 and the biconcave negative lens L112 form a second lens set C2 in which the concave surfaces face each other. A biconvex positive lens L13 is included between the negative lens L12 and the positive meniscus lens L14.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた平凸レンズL22と、物体側に凸面を向けた負メニスカスレンズL23とからなる。 The second lens group G2 is composed of a biconvex positive lens L21, a plano-convex lens L22 having a convex surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side, in this order from the object side.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合負レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、第1レンズ群G1、第2レンズ群G2、および第3レンズ群を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。このとき、第1レンズ群G1の前側レンズ群G1Fと後側レンズ群G1Rとは、一体に物体側へ移動する。 The optical system according to the present embodiment is close to an infinity object by moving the first lens group G1, the second lens group G2, and the third lens group toward the object side along the optical axis with different trajectories. Focusing on a distant object. At this time, the front lens group G1F and the rear lens group G1R of the first lens group G1 move integrally to the object side.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表2に、本実施例に係る光学系の諸元の値を掲げる。 Table 2 below lists the values of the specifications of the optical system according to this embodiment.

(表2)第2実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 114.97670 10.300 1.77250 49.6 h(1)=27.567
2 -287.35805 0.500
3 -417.21557 3.400 1.60300 65.4
4 58.74891 3.932
5 129.87994 5.900 1.77250 49.6
6 -1700.00000 6.537
7 -121.22183 9.725 1.59319 67.9 h(min)=24.719
8 -46.17455 5.952 1.73400 51.5 0.656
9 138.16095 0.300
10 79.66161 9.928 1.75500 52.3 h(max)=26.326
11 -228.74419 2.097
12 -509.14081 6.475 1.60300 65.4
13 -95.56490 0.100
14 ∞ 8.554 1.49782 82.6
15 -55.63252 4.131 1.77250 49.6 0.656
16 -160.00736 0.100
17 80.72800 9.338 1.49782 82.6
18 -80.72800 2.500 1.64000 60.1
19 53.48277 6.979
20(ST) ∞ 7.605
21 -42.89184 9.400 1.69680 55.5
22 94.58827 11.270 1.59319 67.9
23 -64.56310 0.100
24 ∞ 5.559 1.59319 67.9
25 -111.11111 0.100 h(max)=22.786
26 111.52567 8.769 1.59319 67.9
27 -149.37413 0.100
28 ∞ 7.450 1.59319 67.9
29 -77.58863 2.900 1.81600 46.6 0.655
30 -613.60499 D30 h(min)=20.010

31 423.57902 4.287 1.59319 67.9
32 -176.89865 0.100
33 149.36320 3.793 1.59319 67.9
34 ∞ 0.100
35 113.25945 2.200 1.48749 70.3
36 40.88782 D36

*37 -162.74998 2.100 1.84666 23.8
38 86.88439 6.025 1.83481 42.7
39 -182.10979 0.100
40 108.48466 10.000 2.00069 25.5
41 -108.48466 8.876 1.77250 49.6
*42 83.77445 6.313
43 -48.03467 2.000 1.72916 54.6
44 -166.42259 D44

45 ∞ 1.600 1.51680 63.9
46 ∞ D46
I ∞

[非球面データ]
m:37
κ = 4.81540e+00
A4 = -4.04528e-07、A6 = 4.61920e-10、A8 = -1.66157e-13、
A10= 0.00000e+00、A12= 0.00000e+00、A14= 0.00000e+00

m:42
κ = 1.17990e+00
A4 = -1.79983e-06、A6 = -4.69736e-10、A8 = 3.28084e-12、
A10= -1.20925e-14、A12= 1.44250e-17、A14= -1.56060e-21

[各種データ]
f 102.00
FNo 1.85
ω 11.9
Y 21.60
TL 230.250
BF 17.792
BF(空気換算長) 17.247
Finf 1.85
Fmod 3.90

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 121.97 ∞ ∞ 121.97 121.97
β - -1.0001 - - -1.0206 -0.9804
f 102.00 - 103.95 100.12 - -
D30 5.500 30.000 1.500 9.500 26.000 34.000
D36 11.063 40.486 11.063 11.063 40.486 40.486
D44 15.200 52.300 19.200 11.200 56.300 48.300
D46 0.992 0.982 0.458 1.654 1.505 0.637

[レンズ群データ]
ST f
G1 1 110.62
G2 31 666.15
G3 37 -134.19

[条件式対応値]
(1)h(min)/h(max)=0.878
(2){h(max)−h(min)}/{h(1)−h(min)}=0.564
(3)θgFLn+0.0021×νdLn=0.656
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=1.085
(5)R1/f=0.576
(6)R3/f=0.524
(7)(R1+R2)/(R1−R2)=-0.347
(8)(R3+R4)/(R3−R4)=0.110
(9)f/(−f1)=0.788
(10)2ω=23.8
(11)bfa/f=0.169
(12)γDC=0.150
βDC=0.922
βR=1.000
(13)βDC=0.922
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.671
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.590
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=4.414
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=4.184
(Table 2) Second Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 114.97670 10.300 1.77250 49.6 h (1) = 27.567
2-287.35805 0.500
3 -417.21557 3.400 1.60300 65.4
4 58.74891 3.932
5 129.87994 5.900 1.77250 49.6
6 -1700.00000 6.537
7 -121.22183 9.725 1.59319 67.9 h (min) = 24.719
8-46.17455 5.952 1.73400 51.5 0.656
9 138.16095 0.300
10 79.66161 9.928 1.75500 52.3 h (max) = 26.326
11 -228.74419 2.097
12 -509.14081 6.475 1.60300 65.4
13 -95.56490 0.100
14 ∞ 8.554 1.49782 82.6
15 -55.63252 4.131 1.77250 49.6 0.656
16 -160.00736 0.100
17 80.72800 9.338 1.49782 82.6
18 -80.72800 2.500 1.64000 60.1
19 53.48277 6.979
20 (ST) ∞ 7.605
21 -42.89184 9.400 1.69680 55.5
22 94.58827 11.270 1.59319 67.9
23 -64.56310 0.100
24 ∞ 5.559 1.59319 67.9
25 -111.11111 0.100 h (max) = 22.786
26 111.52567 8.769 1.59319 67.9
27 -149.37413 0.100
28 ∞ 7.450 1.59319 67.9
29 -77.58863 2.900 1.81600 46.6 0.655
30 -613.60499 D30 h (min) = 20.010

31 423.57902 4.287 1.59319 67.9
32 -176.89865 0.100
33 149.36320 3.793 1.59319 67.9
34 ∞ 0.100
35 113.25945 2.200 1.48749 70.3
36 40.88782 D36

* 37 -162.74998 2.100 1.84666 23.8
38 86.88439 6.025 1.83481 42.7
39 -182.10979 0.100
40 108.48466 10.000 2.00069 25.5
41 -108.48466 8.876 1.77250 49.6
* 42 83.77445 6.313
43 -48.03467 2.000 1.72916 54.6
44 -166.42259 D44

45 ∞ 1.600 1.51680 63.9
46 ∞ D46
I ∞

[Aspherical data]
m: 37
κ = 4.81540e + 00
A4 = -4.04528e-07, A6 = 4.61920e-10, A8 = -1.66157e-13,
A10 = 0.00000e + 00, A12 = 0.00000e + 00, A14 = 0.00000e + 00

m: 42
κ = 1.17990e + 00
A4 = -1.79983e-06, A6 = -4.69736e-10, A8 = 3.28084e-12,
A10 = -1.20925e-14, A12 = 1.44250e-17, A14 = -1.56060e-21

[Various data]
f 102.00
FNo 1.85
ω 11.9
Y 21.60
TL 230.250
BF 17.792
BF (air equivalent length) 17.247
Finf 1.85
Fmod 3.90

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 121.97 ∞ ∞ 121.97 121.97
β --- 1.0001 ---- 1.0206 -0.9804
f 102.00 --103.95 100.12 ----
D30 5.500 30.000 1.500 9.500 26.000 34.000
D36 11.063 40.486 11.063 11.063 40.486 40.486
D44 15.200 52.300 19.200 11.200 56.300 48.300
D46 0.992 0.982 0.458 1.654 1.505 0.637

[Lens group data]
ST f
G1 1 110.62
G2 31 666.15
G3 37 -134.19

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.878
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.564
(3) θgFLn + 0.0021 × νdLn = 0.656
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 1.085
(5) R1 / f = 0.576
(6) R3 / f = 0.524
(7) (R1 + R2) / (R1-R2) = -0.347
(8) (R3 + R4) / (R3-R4) = 0.110
(9) f / (-f1) = 0.788
(10) 2ω = 23.8
(11) bfa / f = 0.169
(12) γDC = 0.150
βDC = 0.922
βR = 1.000
(13) βDC = 0.922
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.671
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.590
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 4.414
When moving the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 4.184

図6A及び図6Bはそれぞれ、第2実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時においてDC郡を移動させない状態での諸収差図である。
図7A及び図7Bはそれぞれ、第2実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図8A及び図8Bはそれぞれ、第2実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
6A and 6B are aberration diagrams of the optical system according to the second embodiment in a state where the DC group is not moved at the time of focusing on an infinity object and the time of focusing on a short-distance object, respectively.
7A and 7B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the second embodiment is in focus, respectively. ..
8A and 8B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the second embodiment, respectively. be.

図6A及び図6Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図7A及び図7Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図8A及び図8Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 6A and 6B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 7A and 7B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 8A and 8B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

(第3実施例)
図9は第3実施例に係る光学系の無限遠物体合焦時の断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
(Third Example)
FIG. 9 is a cross-sectional view of the optical system according to the third embodiment when the object is in focus at infinity.
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、両凹形状の負レンズL12と、両凸形状の正レンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15との接合負レンズと、両凸形状の正レンズL16と、両凸形状の正レンズL17と、両凸形状の正レンズL18と物体側に凹面を向けた負メニスカスレンズL19との接合正レンズと、両凸形状の正レンズL110と両凹形状の負レンズL111との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a biconcave negative lens L12, a biconvex positive lens L13, and a positive meniscus lens L14 with a concave surface facing the object side, in order from the object side. Joining a negative lens L15 with a biconcave shape A negative lens with a biconvex shape, a positive lens L16 with a biconvex shape, a positive lens L17 with a biconvex shape, a positive lens L18 with a biconvex shape, and a negative meniscus lens with a concave surface facing the object side. It is composed of a bonded positive lens with L19 and a bonded negative lens with a biconvex positive lens L110 and a biconcave negative lens L111.

後側レンズ群G1Rは、物体側から順に、負の屈折力を有する第1部分群G1R1と、正の屈折力を有する第2部分群G1R2とから構成されている。
第1部分群G1R1は、物体側から順に、両凹形状の負レンズL112と両凸形状の正レンズL113との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL114とからなる。
第2部分群G1R2は、物体側から順に、両凸形状の正レンズL115と、両凸形状の正レンズL116と両凹形状の負レンズL117との接合負レンズとからなる。
The rear lens group G1R is composed of a first subgroup G1R1 having a negative refractive power and a second subgroup G1R2 having a positive refractive power in order from the object side.
The first subgroup G1R1 comprises, in order from the object side, a junction negative lens of a biconcave negative lens L112 and a biconvex positive lens L113, and a positive meniscus lens L114 with a concave surface facing the object side.
The second subgroup G1R2 is composed of a biconvex positive lens L115, a biconvex positive lens L116, and a biconcave negative lens L117 in this order from the object side.

両凹形状の負レンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL111と両凹形状の負レンズL112とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負レンズL12と正メニスカスレンズL14との間には両凸形状の正レンズL13が含まれている。 The biconcave negative lens L12 and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L111 and the biconcave negative lens L112 form a second lens set C2 in which the concave surfaces face each other. A biconvex positive lens L13 is included between the negative lens L12 and the positive meniscus lens L14.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、両凸形状の正レンズL22と、物体側に凸面を向けた負メニスカスレンズL23とからなる。 The second lens group G2 includes a biconvex positive lens L21, a biconvex positive lens L22, and a negative meniscus lens L23 with a convex surface facing the object side, in this order from the object side.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、前側レンズ群G1F、後側レンズ群G1Rの第1部分群G1R1、後側レンズ群G1Rの第2部分群G1R2、第2レンズ群G2、および第3レンズ群を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。 The optical system according to this embodiment includes the front lens group G1F, the first subgroup G1R1 of the rear lens group G1R, the second subgroup G1R2 of the rear lens group G1R, the second lens group G2, and the third lens group. By moving the lens toward the object along the optical axis with different trajectories, the lens is focused from the infinity object to the short-range object.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表3に、本実施例に係る光学系の諸元の値を掲げる。 Table 3 below lists the values of the specifications of the optical system according to this embodiment.

(表3)第3実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 135.03333 9.349 1.77250 49.6 h(1)=27.941
2 -353.68745 0.200
3 -1326.79710 3.300 1.60300 65.4
4 59.85064 3.805
5 122.94569 6.348 1.77250 49.6
6 -3523.67770 5.236
7 -147.75434 10.312 1.59319 67.9 h(min)=25.521
8 -50.30242 3.200 1.74100 52.8 0.658
9 173.92371 0.400
10 74.56833 8.543 1.72916 54.6 h(max)=26.916
11 -1246.93110 2.859
12 1465.83490 7.778 1.59319 67.9
13 -116.40558 0.100
14 396.13803 8.688 1.49782 82.6
15 -62.13892 8.000 1.69680 55.5
16 -278.68492 0.100
17 100.33769 8.323 1.49782 82.6
18 -78.51954 2.300 1.65160 58.6
19 55.58802 9.159
20(ST) ∞ D20

21 -41.67735 6.145 1.69680 55.5
22 99.47632 10.502 1.59319 67.9
23 -63.25972 0.200
24 -415.95457 5.329 1.59319 67.9
25 -87.68769 D25 h(max)=22.653

26 110.13940 8.879 1.59319 67.9
27 -147.30298 0.200
28 198.55135 8.727 1.59319 67.9
29 -83.42574 2.600 1.81600 46.6 0.655
30 1283.39870 D30 h(min)=19.372

31 343.17085 3.717 1.59319 67.9
32 -276.16215 0.200
33 190.10017 3.941 1.59319 67.9
34 -437.21483 0.200
35 114.88308 2.000 1.48749 70.3
36 40.91738 D36

*37 -125.28102 2.000 1.78472 25.6
38 70.04588 7.076 1.81600 46.6
39 -139.74444 0.200
40 104.33844 8.000 2.00069 25.5
41 -100.49252 8.000 1.77250 49.6
*42 75.04102 6.715
43 -46.23974 2.000 1.72916 54.6
44 -144.32299 D44

45 ∞ 1.600 1.51680 63.9
46 ∞ D46
I ∞

[非球面データ]
m:37
κ = -6.98400e-01
A4 = -5.80236e-07、A6 = 4.54093e-10、A8 = -1.77180e-14、
A10= 0.00000e+00、A12= 0.00000e+00、A14= 0.00000e+00

m:42
κ = -9.30000e-03
A4 = -1.25277e-06、A6 = -2.23480e-10、A8 = 5.87714e-13、
A10= -1.65910e-15、A12= 0.00000e+00、A14= 0.00000e+00

[各種データ]
f 103.37
FNo 1.85
ω 11.8
Y 21.60
TL 227.000
BF 17.610
BF(空気換算長) 17.064
Finf 1.85
Fmod 3.91

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 120.00 ∞ ∞ 120.000 120.000
β - -1.0238 - - -1.0475 -1.0013
f 103.37 - 105.45 101.27 - -
D20 8.163 6.000 8.163 8.163 6.000 6.000
D25 0.200 1.600 0.200 0.200 1.600 1.600
D30 6.000 30.500 2.000 10.000 26.500 34.500
D36 10.395 45.000 10.395 10.395 45.000 45.000
D44 15.000 48.500 19.000 11.000 52.500 44.500
D46 1.010 0.970 0.717 1.453 1.826 0.328

[レンズ群データ]
ST f
G1 1 108.50
G2 31 989.41
G3 37 -142.13

[条件式対応値]
(1)h(min)/h(max)=0.855
(2){h(max)−h(min)}/{h(1)−h(min)}=0.576
(3)θgFLn+0.0021×νdLn=0.658
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=1.050
(5)R1/f=0.579
(6)R3/f=0.538
(7)(R1+R2)/(R1−R2)=-0.423
(8)(R3+R4)/(R3−R4)=0.143
(9)f/(−f1)=0.656
(10)2ω=23.6
(11)bfa/f=0.165
(12)γDC=0.092
βDC=0.953
βR=1.000
(13)βDC=0.953
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.632
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.549
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=4.111
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=4.015
(Table 3) Third Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 135.03333 9.349 1.77250 49.6 h (1) = 27.941
2 -353.68745 0.200
3-1326.79710 3.300 1.60300 65.4
4 59.85064 3.805
5 122.94569 6.348 1.77250 49.6
6 -3523.67770 5.236
7 -147.75434 10.312 1.59319 67.9 h (min) = 25.521
8 -50.30242 3.200 1.74100 52.8 0.658
9 173.92371 0.400
10 74.56833 8.543 1.72916 54.6 h (max) = 26.916
11 -1246.93110 2.859
12 1465.83490 7.778 1.59319 67.9
13 -116.40558 0.100
14 396.13803 8.688 1.49782 82.6
15 -62.13892 8.000 1.69680 55.5
16 -278.68492 0.100
17 100.33769 8.323 1.49782 82.6
18 -78.51954 2.300 1.65160 58.6
19 55.58802 9.159
20 (ST) ∞ D20

21 -41.67735 6.145 1.69680 55.5
22 99.47632 10.502 1.59319 67.9
23 -63.25972 0.200
24 -415.95457 5.329 1.59319 67.9
25 -87.68769 D25 h (max) = 22.653

26 110.13940 8.879 1.59319 67.9
27 -147.30298 0.200
28 198.55135 8.727 1.59319 67.9
29 -83.42574 2.600 1.81600 46.6 0.655
30 1283.39870 D30 h (min) = 19.372

31 343.17085 3.717 1.59319 67.9
32 -276.16215 0.200
33 190.10017 3.941 1.59319 67.9
34 -437.21483 0.200
35 114.88308 2.000 1.48749 70.3
36 40.91738 D36

* 37 -125.28102 2.000 1.78472 25.6
38 70.04588 7.076 1.81600 46.6
39 -139.74444 0.200
40 104.33844 8.000 2.00069 25.5
41 -100.49252 8.000 1.77250 49.6
* 42 75.04102 6.715
43 -46.23974 2.000 1.72916 54.6
44 -144.32299 D44

45 ∞ 1.600 1.51680 63.9
46 ∞ D46
I ∞

[Aspherical data]
m: 37
κ = -6.98400e-01
A4 = -5.80236e-07, A6 = 4.54093e-10, A8 = -1.77180e-14,
A10 = 0.00000e + 00, A12 = 0.00000e + 00, A14 = 0.00000e + 00

m: 42
κ = -9.30000e-03
A4 = -1.25277e-06, A6 = -2.23480e-10, A8 = 5.87714e-13,
A10 = -1.65910e-15, A12 = 0.00000e + 00, A14 = 0.00000e + 00

[Various data]
f 103.37
FNo 1.85
ω 11.8
Y 21.60
TL 227.000
BF 17.610
BF (air equivalent length) 17.064
Finf 1.85
Fmod 3.91

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 120.00 ∞ ∞ 120.000 120.000
β --- 1.0238 ---- 1.0475 -1.0013
f 103.37 --105.45 101.27 ---
D20 8.163 6.000 8.163 8.163 6.000 6.000
D25 0.200 1.600 0.200 0.200 1.600 1.600
D30 6.000 30.500 2.000 10.000 26.500 34.500
D36 10.395 45.000 10.395 10.395 45.000 45.000
D44 15.000 48.500 19.000 11.000 52.500 44.500
D46 1.010 0.970 0.717 1.453 1.826 0.328

[Lens group data]
ST f
G1 1 108.50
G2 31 989.41
G3 37 -142.13

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.855
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.576
(3) θgFLn + 0.0021 × νdLn = 0.658
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 1.050
(5) R1 / f = 0.579
(6) R3 / f = 0.538
(7) (R1 + R2) / (R1-R2) = -0.423
(8) (R3 + R4) / (R3-R4) = 0.143
(9) f / (-f1) = 0.656
(10) 2ω = 23.6
(11) bfa / f = 0.165
(12) γDC = 0.092
βDC = 0.953
βR = 1.000
(13) βDC = 0.953
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.632
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.549
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 4.111
When moving the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 4.015

図10A及び図10Bはそれぞれ、第3実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。
図11A及び図11Bはそれぞれ、第3実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図12A及び図12Bはそれぞれ、第3実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
10A and 10B are aberration diagrams of the optical system according to the third embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively.
11A and 11B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the third embodiment is in focus, respectively. ..
12A and 12B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the third embodiment, respectively. be.

図10A及び図10Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図11A及び図11Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図12A及び図12Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 10A and 10B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 11A and 11B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 12A and 12B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

(第4実施例)
図13は第4実施例に係る光学系の無限遠物体合焦時の断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
(Fourth Example)
FIG. 13 is a cross-sectional view of the optical system according to the fourth embodiment when the object is in focus at infinity.
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15との接合負レンズと、両凸形状の正レンズL16と、両凸形状の正レンズL17と、両凸形状の正レンズL18と両凹形状の負レンズL19との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a negative meniscus lens L12 with a convex surface facing the object side, a positive meniscus lens L13 with a convex surface facing the object side, and a concave surface on the object side, in order from the object side. A conjunctive negative lens of a positive meniscus lens L14 and a biconcave negative lens L15, a biconvex positive lens L16, a biconvex positive lens L17, a biconvex positive lens L18 and a biconcave. It is composed of a junction negative lens with a negative lens L19 having a shape.

後側レンズ群G1Rは、物体側から順に、両凹形状の負レンズL110と両凸形状の正レンズLL111との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL112と、両凸形状の正レンズLL113と、両凸形状の正レンズLL114と両凹形状の負レンズL115との接合正レンズとからなる。 The rear lens group G1R has a biconvex negative lens L110 and a biconvex positive lens LL111 in this order from the object side, a positive meniscus lens L112 with a concave surface facing the object side, and a biconvex shape. The positive lens LL113 is composed of a biconvex positive lens LL114 and a biconcave negative lens L115.

物体側に凸面を向けた負メニスカスレンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL19と両凹形状の負レンズL110とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負メニスカスレンズL12と正メニスカスレンズL14との間には正メニスカスレンズL13が含まれている。 The negative meniscus lens L12 with the convex surface facing the object side and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L19 and the biconcave negative lens L110 form a second lens set C2 in which the concave surfaces face each other. A positive meniscus lens L13 is included between the negative meniscus lens L12 and the positive meniscus lens L14.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合正レンズとからなる。 The second lens group G2 has a biconvex positive lens L21, a negative meniscus lens L22 with a convex surface facing the object side, and a negative meniscus lens L23 with a convex surface facing the object side in order from the object side. It is composed of a bonded normal lens with a positive lens L24.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合負レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、第1レンズ群G1、第2レンズ群G2、および第3レンズ群を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。 The optical system according to the present embodiment is close to an infinity object by moving the first lens group G1, the second lens group G2, and the third lens group toward the object side along the optical axis with different trajectories. Focusing on a distant object.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表4に、本実施例に係る光学系の諸元の値を掲げる。 Table 4 below lists the values of the specifications of the optical system according to this embodiment.

(表4)第4実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 288.49072 5.443 1.61800 63.3 h(1)=28.624
2 -491.71848 0.200
3 156.54138 3.000 1.69680 55.5
4 62.45887 2.466
5 81.38191 7.723 1.77250 49.6
6 822.35328 5.520
7 -162.73014 12.533 1.59319 67.9
8 -52.05158 3.002 1.69680 55.5 h(min)=26.457
9 187.45283 0.870
10 84.12143 8.577 1.72916 54.6 h(max)=27.043
11 -459.32870 2.912
12 461.54273 5.280 1.72916 54.6
13 -171.42798 6.932
14 227.84173 7.354 1.49782 82.6
15 -72.97216 2.500 1.74100 52.8 0.658
16 59.34422 6.444
17(ST) ∞ 9.023
18 -44.77396 4.280 1.74100 52.8 0.658
19 112.52559 10.187 1.59319 67.9
20 -64.58965 0.200
21 -530.23883 5.083 1.59319 67.9
22 -91.86159 0.200
23 121.09791 11.022 1.59319 67.9 h(max)=23.238
24 -98.74231 0.200
25 90.23193 10.882 1.49782 82.6
26 -89.35428 2.500 1.81600 46.6 0.655
27 511.96883 D27 h(min)=18.896

28 210.59892 4.683 1.61800 63.3
29 -192.16242 0.200
30 115.14902 2.000 1.74100 52.8
31 49.76472 4.840
32 440.05352 2.000 1.74397 44.9
33 68.87069 6.055 1.62591 35.8
34 -384.12562 D34

35 -98.33394 2.000 1.73485 28.4
36 43.39099 9.580 1.81600 46.6
37 -180.42370 0.200
38 87.58783 8.551 2.00100 29.1
39 -67.62732 4.716 1.72916 54.6
40 66.60569 7.105
41 -51.12138 2.000 1.77250 49.6
42 -254.33453 D42

43 ∞ 1.600 1.51680 64.1
44 ∞ D44
I ∞

[各種データ]
f 105.85
FNo 1.85
ω 11.5
Y 21.60
TL 215.000
BF 16.100
BF(空気換算長) 15.555
Finf 1.85
Fmod 3.71

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 131.04 ∞ ∞ 131.04 131.04
β - -1.0000 - - -1.0365 -0.9660
f 105.85 - 109.05 102.84 - -
D27 5.000 25.498 1.000 9.000 21.498 29.498
D34 5.640 51.888 5.640 5.640 51.888 51.888
D42 13.500 36.700 17.500 9.500 40.700 32.700
D44 1.000 1.054 1.490 0.765 3.338 -0.803

[レンズ群データ]
ST f
G1 1 101.40
G2 28 -2271.16
G3 35 -153.80

[条件式対応値]
(1)h(min)/h(max)=0.813
(2){h(max)−h(min)}/{h(1)−h(min)}=0.270
(3)θgFLn+0.0021×νdLn=0.658
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=0.958
(5)R1/f=0.590
(6)R3/f=0.561
(7)(R1+R2)/(R1−R2)=-0.445
(8)(R3+R4)/(R3−R4)=0.140
(9)f/(−f1)=0.344
(10)2ω=23.0
(11)bfa/f=0.147
(12)γDC=-0.090
βDC=1.044
βR=1.000
(13)βDC=1.044
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.707
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.594
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=4.380
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=4.155
(Table 4) Fourth Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 288.49072 5.443 1.61800 63.3 h (1) = 28.624
2-491.71848 0.200
3 156.54138 3.000 1.69680 55.5
4 62.45887 2.466
5 81.38191 7.723 1.77250 49.6
6 822.35328 5.520
7 -162.73014 12.533 1.59319 67.9
8-52.05158 3.002 1.69680 55.5 h (min) = 26.457
9 187.45283 0.870
10 84.12143 8.577 1.72916 54.6 h (max) = 27.043
11 -459.32870 2.912
12 461.54273 5.280 1.72916 54.6
13 -171.42798 6.932
14 227.84173 7.354 1.49782 82.6
15 -72.97216 2.500 1.74100 52.8 0.658
16 59.34422 6.444
17 (ST) ∞ 9.023
18 -44.77396 4.280 1.74100 52.8 0.658
19 112.52559 10.187 1.59319 67.9
20 -64.58965 0.200
21 -530.23883 5.083 1.59319 67.9
22 -91.86159 0.200
23 121.09791 11.022 1.59319 67.9 h (max) = 23.238
24-98.74231 0.200
25 90.23193 10.882 1.49782 82.6
26 -89.35428 2.500 1.81600 46.6 0.655
27 511.96883 D27 h (min) = 18.896

28 210.59892 4.683 1.61800 63.3
29 -192.16242 0.200
30 115.14902 2.000 1.74100 52.8
31 49.76472 4.840
32 440.05352 2.000 1.74397 44.9
33 68.87069 6.055 1.62591 35.8
34 -384.12562 D34

35 -98.33394 2.000 1.73485 28.4
36 43.39099 9.580 1.81600 46.6
37 -180.42370 0.200
38 87.58783 8.551 2.00100 29.1
39 -67.62732 4.716 1.72916 54.6
40 66.60569 7.105
41 -51.12138 2.000 1.77250 49.6
42 -254.33453 D42

43 ∞ 1.600 1.51680 64.1
44 ∞ D44
I ∞

[Various data]
f 105.85
FNo 1.85
ω 11.5
Y 21.60
TL 215.000
BF 16.100
BF (air equivalent length) 15.555
Finf 1.85
Fmod 3.71

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 131.04 ∞ ∞ 131.04 131.04
β --- 1.0000 ---- 1.0365 -0.9660
f 105.85 --109.05 102.84 ---
D27 5.000 25.498 1.000 9.000 21.498 29.498
D34 5.640 51.888 5.640 5.640 51.888 51.888
D42 13.500 36.700 17.500 9.500 40.700 32.700
D44 1.000 1.054 1.490 0.765 3.338 -0.803

[Lens group data]
ST f
G1 1 101.40
G2 28 -2271.16
G3 35 -153.80

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.813
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.270
(3) θgFLn + 0.0021 × νdLn = 0.658
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 0.958
(5) R1 / f = 0.590
(6) R3 / f = 0.561
(7) (R1 + R2) / (R1-R2) = -0.445
(8) (R3 + R4) / (R3-R4) = 0.140
(9) f / (-f1) = 0.344
(10) 2ω = 23.0
(11) bfa / f = 0.147
(12) γDC = -0.090
βDC = 1.044
βR = 1.000
(13) βDC = 1.044
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.707
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.594
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 4.380
When moving the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 4.155

図14A及び図14Bはそれぞれ、第4実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。
図15A及び図15Bはそれぞれ、第4実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図16A及び図16Bはそれぞれ、第4実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
14A and 14B are aberration diagrams of the optical system according to the fourth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively.
15A and 15B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the fourth embodiment is in focus, respectively. ..
16A and 16B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the fourth embodiment, respectively. be.

図14A及び図14Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図15A及び図15Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図16A及び図16Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 14A and 14B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 15A and 15B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 16A and 16B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

(第5実施例)
図17は第5実施例に係る光学系の無限遠物体合焦時の断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
(Fifth Example)
FIG. 17 is a cross-sectional view of the optical system according to the fifth embodiment when the object is in focus at infinity.
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a positive refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15との接合負レンズと、両凸形状の正レンズL16と、両凸形状の正レンズL17と両凹形状の負レンズL18との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a negative meniscus lens L12 with a convex surface facing the object side, a positive meniscus lens L13 with a convex surface facing the object side, and a concave surface on the object side, in order from the object side. Joint negative lens of positive meniscus lens L14 and biconcave negative lens L15, biconvex positive lens L16, biconvex positive lens L17 and biconcave negative lens L18 It consists of a lens.

後側レンズ群G1Rは、物体側から順に、両凹形状の負レンズL19と両凸形状の正レンズLL110との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL111と、両凸形状の正レンズLL112と、両凸形状の正レンズLL113と、物体側に凹面を向けた負メニスカスレンズL114とからなる。 The rear lens group G1R has a biconvex negative lens L19 and a biconvex positive lens LL110 in order from the object side, a positive meniscus lens L111 with a concave surface facing the object side, and a biconvex shape. The positive lens LL112, the biconvex positive lens LL113, and the negative meniscus lens L114 with the concave surface facing the object side.

物体側に凸面を向けた負メニスカスレンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL18と両凹形状の負レンズL19とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負メニスカスレンズL12と正メニスカスレンズL14との間には正メニスカスレンズL13が含まれている。 The negative meniscus lens L12 with the convex surface facing the object side and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L18 and the biconcave negative lens L19 form a second lens set C2 in which the concave surfaces face each other. A positive meniscus lens L13 is included between the negative meniscus lens L12 and the positive meniscus lens L14.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23とからなる。 The second lens group G2 is composed of a biconvex positive lens L21, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a concave surface facing the object side, in this order from the object side.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合負レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、第1レンズ群G1、第2レンズ群G2、および第3レンズ群を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。 The optical system according to the present embodiment is close to an infinity object by moving the first lens group G1, the second lens group G2, and the third lens group toward the object side along the optical axis with different trajectories. Focusing on a distant object.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表5に、本実施例に係る光学系の諸元の値を掲げる。 Table 5 below lists the values of the specifications of the optical system according to this embodiment.

(表5)第5実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 761.50735 4.738 1.65160 58.6 h(1)=27.694
2 -237.89913 0.200
3 110.20243 3.000 1.64000 60.2
4 55.10184 3.155
5 85.29685 5.347 1.80400 46.6
6 317.45339 4.998
7 -201.99324 8.293 1.59319 67.9
8 -52.48046 2.500 1.77250 49.6 h(min)=25.613 0.656
9 415.19106 0.200
10 64.47366 13.760 1.80400 46.6 h(max)=26.523
11 -194.89845 0.200
12 118.06307 9.563 1.59319 67.9
13 -67.29261 2.500 1.74100 52.8 0.658
14 48.41302 8.879
15(ST) ∞ 8.209
16 -46.81371 2.500 1.74100 52.8 0.658
17 54.09936 12.010 1.59319 67.9
18 -60.23032 0.200
19 -2046.46440 4.658 1.49782 82.6
20 -106.89392 0.200 h(max)=22.064
21 225.90980 4.944 1.49782 82.6
22 -225.74391 0.200
23 89.46360 12.199 1.49782 82.6
24 -69.48538 0.200
25 -84.73437 2.500 1.80440 39.6 0.655
26 -214.80685 D26 h(min)=19.556

27 213.27742 4.845 1.72916 54.6
28 -216.44047 0.400
29 108.81540 2.000 1.74100 52.8
30 45.39782 6.421
31 -35237.46400 8.000 1.75520 27.6
32 -188.95862 D32

33 -111.91871 4.168 1.75520 27.6
34 42.70344 8.255 1.88300 40.7
35 -4657.66950 0.200
36 76.04959 8.139 2.00100 29.1
37 -82.35219 2.000 1.75500 52.3
38 62.35462 7.450
39 -52.35364 2.000 1.75500 52.3
40 -244.87415 D40

41 ∞ 1.500 1.51680 64.1
42 ∞ D42
I ∞

[各種データ]
f 103.03
FNo 1.86
ω 11.8
Y 21.60
TL 195.449
BF 16.000
BF(空気換算長) 15.489
Finf 1.86
Fmod 3.73

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 140.00 ∞ ∞ 140.00 140.00
β - -1.0000 - - -1.0381 -0.9643
f 103.03 - 106.50 99.78 - -
D26 5.000 28.871 1.000 9.000 24.871 32.871
D32 5.417 29.229 5.417 5.417 29.229 29.229
D40 13.500 45.800 17.500 9.500 49.800 41.800
D42 1.000 1.017 1.639 0.654 3.536 -1.041

[レンズ群データ]
ST f
G1 1 97.27
G2 27 632.10
G3 33 -102.96

[条件式対応値]
(1)h(min)/h(max)=0.886
(2){h(max)−h(min)}/{h(1)−h(min)}=0.437
(3)θgFLn+0.0021×νdLn=0.656
(3)θgFLn+0.0021×νdLn=0.658
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=0.944
(5)R1/f=0.535
(6)R3/f=0.470
(7)(R1+R2)/(R1−R2)=-0.571
(8)(R3+R4)/(R3−R4)=0.017
(9)f/(−f1)=0.290
(10)2ω=23.6
(11)bfa/f=0.150
(12)γDC=-0.122
βDC=1.059
βR=1.000
(13)βDC=1.059
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.797
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.667
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=4.271
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=3.939
(Table 5) Fifth Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 761.50735 4.738 1.65160 58.6 h (1) = 27.694
2 -237.89913 0.200
3 110.20243 3.000 1.64000 60.2
4 55.10184 3.155
5 85.29685 5.347 1.80400 46.6
6 317.45339 4.998
7 -201.99324 8.293 1.59319 67.9
8-52.48046 2.500 1.77250 49.6 h (min) = 25.613 0.656
9 415.19106 0.200
10 64.47366 13.760 1.80400 46.6 h (max) = 26.523
11 -194.89845 0.200
12 118.06307 9.563 1.59319 67.9
13 -67.29261 2.500 1.74100 52.8 0.658
14 48.41302 8.879
15 (ST) ∞ 8.209
16 -46.81371 2.500 1.74100 52.8 0.658
17 54.09936 12.010 1.59319 67.9
18 -60.23032 0.200
19 -2046.46440 4.658 1.49782 82.6
20 -106.89392 0.200 h (max) = 22.064
21 225.90980 4.944 1.49782 82.6
22 -225.74391 0.200
23 89.46360 12.199 1.49782 82.6
24-69.48538 0.200
25 -84.73437 2.500 1.80440 39.6 0.655
26 -214.80685 D26 h (min) = 19.556

27 213.27742 4.845 1.72916 54.6
28 -216.44047 0.400
29 108.81540 2.000 1.74100 52.8
30 45.39782 6.421
31 -35237.46400 8.000 1.75520 27.6
32 -188.95862 D32

33 -111.91871 4.168 1.75520 27.6
34 42.70344 8.255 1.88300 40.7
35 -4657.66950 0.200
36 76.04959 8.139 2.00100 29.1
37 -82.35219 2.000 1.75500 52.3
38 62.35462 7.450
39 -52.35364 2.000 1.75500 52.3
40 -244.87415 D40

41 ∞ 1.500 1.51680 64.1
42 ∞ D42
I ∞

[Various data]
f 103.03
FNo 1.86
ω 11.8
Y 21.60
TL 195.449
BF 16.000
BF (air equivalent length) 15.489
Finf 1.86
Fmod 3.73

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 140.00 ∞ ∞ 140.00 140.00
β --- 1.0000 ---- 1.0381 -0.9643
f 103.03 --106.50 99.78 ----
D26 5.000 28.871 1.000 9.000 24.871 32.871
D32 5.417 29.229 5.417 5.417 29.229 29.229
D40 13.500 45.800 17.500 9.500 49.800 41.800
D42 1.000 1.017 1.639 0.654 3.536 -1.041

[Lens group data]
ST f
G1 1 97.27
G2 27 632.10
G3 33 -102.96

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.886
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.437
(3) θgFLn + 0.0021 × νdLn = 0.656
(3) θgFLn + 0.0021 × νdLn = 0.658
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 0.944
(5) R1 / f = 0.535
(6) R3 / f = 0.470
(7) (R1 + R2) / (R1-R2) = -0.571
(8) (R3 + R4) / (R3-R4) = 0.017
(9) f / (-f1) = 0.290
(10) 2ω = 23.6
(11) bfa / f = 0.150
(12) γDC = -0.122
βDC = 1.059
βR = 1.000
(13) βDC = 1.059
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.797
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.667
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 4.271
When moving to the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 3.939

図18A及び図18Bはそれぞれ、第5実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。
図19A及び図19Bはそれぞれ、第5実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図20A及び図20Bはそれぞれ、第5実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
18A and 18B are aberration diagrams of the optical system according to the fifth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively.
19A and 19B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side when the optical system of the optical system according to the fifth embodiment is in focus, respectively. ..
20A and 20B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the fifth embodiment, respectively. be.

図18A及び図18Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図19A及び図19Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図20A及び図20Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 18A and 18B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 19A and 19B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 20A and 20B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

(第6実施例)
図21は第6実施例に係る光学系の無限遠物体合焦時の断面図である。
本実施例に係る光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成されている。
(6th Example)
FIG. 21 is a cross-sectional view of the optical system according to the sixth embodiment when the object is in focus at infinity.
In the optical system according to this embodiment, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the third lens group having a negative refractive power are arranged in this order from the object side. It is composed of G3.

第1レンズ群G1は、開口絞りSを挟んで、物体側に配置された正の屈折力を有する前側レンズ群G1Fと、像側に配置された正の屈折力を有する後側レンズ群G1Rとから構成されている。 The first lens group G1 includes a front lens group G1F having a positive refractive power arranged on the object side and a rear lens group G1R having a positive refractive power arranged on the image side with the aperture stop S in between. It is composed of.

前側レンズ群G1Fは、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凹面を向けた正メニスカスレンズL14と両凹形状の負レンズL15との接合負レンズと、両凸形状の正レンズL16と、両凸形状の正レンズL17と、両凸形状の正レンズL18と両凹形状の負レンズL19との接合負レンズとからなる。 The front lens group G1F includes a biconvex positive lens L11, a negative meniscus lens L12 with a convex surface facing the object side, a positive meniscus lens L13 with a convex surface facing the object side, and a concave surface on the object side, in order from the object side. A conjunctive negative lens of a positive meniscus lens L14 and a biconcave negative lens L15, a biconvex positive lens L16, a biconvex positive lens L17, a biconvex positive lens L18 and a biconcave. It is composed of a junction negative lens with a negative lens L19 having a shape.

後側レンズ群G1Rは、物体側から順に、両凹形状の負レンズL110と両凸形状の正レンズLL111との接合負レンズと、物体側に凹面を向けた正メニスカスレンズL112と、両凸形状の正レンズLL113と、両凸形状の正レンズLL114と物体側に凹面を向けた負メニスカスレンズL115との接合負レンズとからなる。 The rear lens group G1R has a biconvex negative lens L110 and a biconvex positive lens LL111 in this order from the object side, a positive meniscus lens L112 with a concave surface facing the object side, and a biconvex shape. LL113, a biconvex positive lens LL114, and a negative meniscus lens L115 with a concave surface facing the object side.

物体側に凸面を向けた負メニスカスレンズL12と物体側に凹面を向けた正メニスカスレンズL14とは、互いに凹面を向かい合わせた第1のレンズの組C1を構成している。両凹形状の負レンズL19と両凹形状の負レンズL110とは、互いに凹面を向かい合わせた第2のレンズの組C2を構成している。負メニスカスレンズL12と正メニスカスレンズL14との間には正メニスカスレンズL13が含まれている。 The negative meniscus lens L12 with the convex surface facing the object side and the positive meniscus lens L14 with the concave surface facing the object side form a first lens set C1 with the concave surfaces facing each other. The biconcave negative lens L19 and the biconcave negative lens L110 form a second lens set C2 in which the concave surfaces face each other. A positive meniscus lens L13 is included between the negative meniscus lens L12 and the positive meniscus lens L14.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凸面を向けた負メニスカスレンズL22と、両凹形状の負レンズL23と両凸形状の正レンズL24との接合正レンズとからなる。 The second lens group G2 includes a biconvex positive lens L21, a negative meniscus lens L22 with a convex surface facing the object side, a biconcave negative lens L23, and a biconvex positive lens L24 in order from the object side. Consists of a bonded positive lens.

第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と両凹形状の負レンズL34との接合正レンズと、物体側に凹面を向けた負メニスカスレンズL35とからなる。 The third lens group G3 includes a biconcave negative lens L31 and a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens L34, in order from the object side. It is composed of a bonded positive lens and a negative meniscus lens L35 with a concave surface facing the object side.

第3レンズ群G3と像面Iとの間には、ローパスフィルタ等からなるフィルタ群FLが配置されている。
像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
A filter group FL composed of a low-pass filter or the like is arranged between the third lens group G3 and the image plane I.
An image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.

本実施例に係る光学系は、第1レンズ群G1、第2レンズ群G2、および第3レンズ群を、それぞれ異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行っている。 The optical system according to the present embodiment is close to an infinity object by moving the first lens group G1, the second lens group G2, and the third lens group toward the object side along the optical axis with different trajectories. Focusing on a distant object.

また、本実施例に係る光学系は、最も像側に、光軸に沿って移動することにより主に球面収差を変化させ、デフォーカス領域のボケ味を変化させるためのDC群を有している。本実施例においては、第2レンズ群G2および第3レンズ群G3がDC群として光軸に沿って移動する。第2レンズ群G2および第3レンズ群は、DC群として光軸沿って移動する際、1つのレンズ群として一体に移動する。 Further, the optical system according to the present embodiment has a DC group for changing the spherical aberration mainly by moving along the optical axis and changing the bokeh in the defocus region on the most image side. There is. In this embodiment, the second lens group G2 and the third lens group G3 move along the optical axis as a DC group. When the second lens group G2 and the third lens group move along the optical axis as a DC group, they move integrally as one lens group.

本実施例に係る光学系は、DC群の光軸方向への移動量が0(零)の状態、すなわち球面収差が良好に補正されている状態から、DC群を物体に向かう方向すなわち負の方向に移動させることにより、球面収差を補正不足の方向に変化させることができる。一方、DC群の光軸方向への移動量が0(零)の状態から、DC群を像面Iに向かう方向すなわち正の方向に移動させることにより、球面収差を補正過剰の方向に変化させることができる。 In the optical system according to this embodiment, the amount of movement of the DC group in the optical axis direction is 0 (zero), that is, the spherical aberration is satisfactorily corrected, and then the DC group is directed toward the object, that is, negative. By moving in the direction, the spherical aberration can be changed in the direction of insufficient correction. On the other hand, by moving the DC group in the direction toward the image plane I, that is, in the positive direction from the state where the amount of movement of the DC group in the optical axis direction is 0 (zero), the spherical aberration is changed in the direction of overcorrection. be able to.

以下の表6に、本実施例に係る光学系の諸元の値を掲げる。 Table 6 below lists the values of the specifications of the optical system according to this embodiment.

(表6)第6実施例
[面データ]
m r d nd νd CE(1) CE(2) CE(3)
OP ∞
1 99.46909 7.495 1.72916 54.6 h(1)=22.732
2 -471.73008 0.200
3 346.75105 3.300 1.74100 52.8 0.658
4 50.06131 2.003
5 66.26767 6.510 1.80400 46.6
6 736.40569 4.503
7 -141.36292 6.363 1.59319 67.9
8 -53.55769 4.000 1.72916 54.6
9 83.60783 2.359 h(min)=19.938
10 60.88997 8.272 1.75500 52.3 h(max)=20.521
11 -301.20099 2.264
12 439.52964 4.624 1.59319 67.9
13 -174.67735 0.875
14 120.42146 6.859 1.59319 67.9
15 -69.51126 2.500 1.75500 52.3 0.657
16 51.56376 8.722
17(ST) ∞ 6.969
18 -38.28970 4.341 1.74100 52.8 0.658
19 105.68496 8.786 1.59319 67.9
20 -53.12708 0.200
21 -13481.47900 4.527 1.59319 67.9
22 -110.20285 0.200 h(max)=18.644
23 111.06583 11.561 1.59319 67.9
24 -83.79197 0.200
25 270.47689 7.791 1.49782 82.6
26 -56.94695 2.500 1.81600 46.6 0.655
27 -307.78343 D27 h(min)=16.021

28 136.15847 4.588 1.61800 63.3
29 -188.06171 0.200
30 90.24706 2.000 1.83481 42.7
31 45.72289 5.063
32 -518.05521 2.000 1.69680 55.5
33 98.48679 4.192 1.70244 30.1
34 -462.90084 D34

35 -64.66052 2.000 1.75520 27.6
36 55.65422 8.968 1.81600 46.6
37 -77.40083 0.200
38 73.42391 9.065 2.00100 29.1
39 -56.43143 3.455 1.76684 46.8
40 64.37441 6.732
41 -48.15448 2.000 1.81600 46.6
42 -456.63754 D42

43 ∞ 1.600 1.51680 64.1
44 ∞ D44
I ∞
[各種データ]
f 102.09
FNo 2.25
ω 11.9
Y 21.60
TL 199.306
BF 18.797
BF(空気換算長) 18.252
Finf 2.25
Fmod 4.73

[可変間隔データ]
INF CLO INFDC(-) INFDC(+) CLODC(-) CLODC(+)
D0 ∞ 143.37 ∞ ∞ 143.37 143.37
β - -0.9993 - - -1.0332 -0.9676
f 102.09 - 104.81 99.51 - -
D27 6.000 24.786 2.000 10.000 20.786 28.786
D34 6.125 39.584 6.125 6.125 39.584 39.584
D42 16.200 51.900 20.200 12.200 55.900 47.900
D44 0.997 0.996 1.295 0.917 3.678 -1.261

[レンズ群データ]
ST f
G1 1 99.79
G2 28 -1907.08
G3 35 -171.99

[条件式対応値]
(1)h(min)/h(max)=0.859
(2){h(max)−h(min)}/{h(1)−h(min)}=0.209
(3)θgFLn+0.0021×νdLn=0.658
(3)θgFLn+0.0021×νdLn=0.657
(3)θgFLn+0.0021×νdLn=0.655
(4)f(1F〜1R)/f=0.977
(5)R1/f=0.490
(6)R3/f=0.505
(7)(R1+R2)/(R1−R2)=-0.477
(8)(R3+R4)/(R3−R4)=0.148
(9)f/(−f1)=0.622
(10)2ω=23.8
(11)bfa/f=0.179
(12)γDC=-0.047
βDC=1.023
βR=1.000
(13)βDC=1.023
(14)DC群物体側移動時:|ΔSA×(Finf)/ΔDC|=0.768
DC群像面側移動時:|ΔSA×(Finf)/ΔDC|=0.650
(15)DC群物体側移動時:|ΔSA×(Fmod)/ΔDC|=6.701
DC群像面側移動時:|ΔSA×(Fmod)/ΔDC|=5.708
(Table 6) 6th Example [Surface data]
m r d nd ν d CE (1) CE (2) CE (3)
OP ∞
1 99.46909 7.495 1.72916 54.6 h (1) = 22.732
2 -471.73008 0.200
3 346.75105 3.300 1.74100 52.8 0.658
4 50.06131 2.003
5 66.26767 6.510 1.80400 46.6
6 736.40569 4.503
7 -141.36292 6.363 1.59319 67.9
8-53.55769 4.000 1.72916 54.6
9 83.60783 2.359 h (min) = 19.938
10 60.88997 8.272 1.75500 52.3 h (max) = 20.521
11 -301.20099 2.264
12 439.52964 4.624 1.59319 67.9
13 -174.67735 0.875
14 120.42146 6.859 1.59319 67.9
15 -69.51126 2.500 1.75500 52.3 0.657
16 51.56376 8.722
17 (ST) ∞ 6.969
18 -38.28970 4.341 1.74100 52.8 0.658
19 105.68496 8.786 1.59319 67.9
20 -53.12708 0.200
21 -13481.47900 4.527 1.59319 67.9
22 -110.20285 0.200 h (max) = 18.644
23 111.06583 11.561 1.59319 67.9
24-83.79197 0.200
25 270.47689 7.791 1.49782 82.6
26 -56.94695 2.500 1.81600 46.6 0.655
27 -307.78343 D27 h (min) = 16.021

28 136.15847 4.588 1.61800 63.3
29 -188.06171 0.200
30 90.24706 2.000 1.83481 42.7
31 45.72289 5.063
32 -518.05521 2.000 1.69680 55.5
33 98.48679 4.192 1.70244 30.1
34 -462.90084 D34

35 -64.66052 2.000 1.75520 27.6
36 55.65422 8.968 1.81600 46.6
37 -77.40083 0.200
38 73.42391 9.065 2.00100 29.1
39 -56.43143 3.455 1.76684 46.8
40 64.37441 6.732
41 -48.15448 2.000 1.81600 46.6
42 -456.63754 D42

43 ∞ 1.600 1.51680 64.1
44 ∞ D44
I ∞
[Various data]
f 102.09
FNo 2.25
ω 11.9
Y 21.60
TL 199.306
BF 18.797
BF (air equivalent length) 18.252
Finf 2.25
Fmod 4.73

[Variable interval data]
INF CLO INFDC (-) INFDC (+) CLODC (-) CLODC (+)
D0 ∞ 143.37 ∞ ∞ 143.37 143.37
β --- 0.9993 ---- 1.0332 -0.9676
f 102.09 --104.81 99.51 ----
D27 6.000 24.786 2.000 10.000 20.786 28.786
D34 6.125 39.584 6.125 6.125 39.584 39.584
D42 16.200 51.900 20.200 12.200 55.900 47.900
D44 0.997 0.996 1.295 0.917 3.678 -1.261

[Lens group data]
ST f
G1 1 99.79
G2 28 -1907.08
G3 35 -171.99

[Conditional expression correspondence value]
(1) h (min) / h (max) = 0.859
(2) {h (max) -h (min)} / {h (1) -h (min)} = 0.209
(3) θgFLn + 0.0021 × νdLn = 0.658
(3) θgFLn + 0.0021 × νdLn = 0.657
(3) θgFLn + 0.0021 × νdLn = 0.655
(4) f (1F to 1R) / f = 0.977
(5) R1 / f = 0.490
(6) R3 / f = 0.505
(7) (R1 + R2) / (R1-R2) =-0.477
(8) (R3 + R4) / (R3-R4) = 0.148
(9) f / (-f1) = 0.622
(10) 2ω = 23.8
(11) bfa / f = 0.179
(12) γDC = -0.047
βDC = 1.023
βR = 1.000
(13) βDC = 1.023
(14) DC group When moving on the object side: | ΔSA × (Finf) 2 / ΔDC | = 0.768
When moving the DC group image plane side: | ΔSA × (Finf) 2 / ΔDC | = 0.650
(15) DC group When moving on the object side: | ΔSA × (Fmod) 2 / ΔDC | = 6.701
When moving the DC group image plane side: | ΔSA × (Fmod) 2 / ΔDC | = 5.708

図22A及び図22Bはそれぞれ、第6実施例に係る光学系の無限遠物体合焦時および近距離物体合焦時の諸収差図である。
図23A及び図23Bはそれぞれ、第6実施例に係る光学系の無限遠物体合焦時においてDC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
図24A及び図24Bはそれぞれ、第6実施例に係る光学系の近距離物体合焦時において、DC群が物体側に移動した状態およびDC群が像側に移動した状態での諸収差図である。
22A and 22B are aberration diagrams of the optical system according to the sixth embodiment when focusing on an infinity object and when focusing on a short-distance object, respectively.
23A and 23B are aberration diagrams of the state in which the DC group is moved to the object side and the state in which the DC group is moved to the image side when the optical system of the optical system according to the sixth embodiment is in focus, respectively. ..
24A and 24B are aberration diagrams of a state in which the DC group is moved to the object side and a state in which the DC group is moved to the image side at the time of focusing on a short-distance object of the optical system according to the sixth embodiment, respectively. be.

図22A及び図22Bに示す各諸収差図より、本実施例に係る光学系は、無限遠物体合焦時から近距離物体合焦時にわたって諸収差を良好に補正し優れた結像性能を有していることがわかる。
図23A及び図23Bに示す諸収差図より、本実施例に係る光学系は、無限遠物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
図24A及び図24Bに示す諸収差図より、本実施例に係る光学系は、近距離物体合焦時において、主に球面収差のみを変化させつつ、他の収差の変動を良好に抑制していることがわかる。
From the various aberration diagrams shown in FIGS. 22A and 22B, the optical system according to this embodiment satisfactorily corrects various aberrations from the time of focusing on an infinity object to the time of focusing on a short-distance object, and has excellent imaging performance. You can see that it is doing.
From the various aberration diagrams shown in FIGS. 23A and 23B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on an object at infinity. You can see that there is.
From the various aberration diagrams shown in FIGS. 24A and 24B, the optical system according to this embodiment satisfactorily suppresses fluctuations in other aberrations while mainly changing only spherical aberration when focusing on a short-distance object. You can see that there is.

上記各実施例によれば、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を実現することができる。
また、デフォーカス領域のボケ味に影響を与える収差のうち、主に球面収差のみを使用者の意図に合わせて変化させて、ピントが合っている被写体のシャープな描写を維持しつつ、被写界深度外の背景または被写界深度外の前景のボケ味を変化させることができる。
According to each of the above embodiments, various aberrations can be satisfactorily corrected from the in-focus state of an infinity object to the in-focus state of a short-distance object, and a large-diameter optical system suitable for both autofocus and manual focus. Can be realized.
In addition, among the aberrations that affect the bokeh in the defocus area, only the spherical aberration is changed according to the user's intention, and the subject is captured while maintaining a sharp depiction of the subject in focus. It is possible to change the bokeh of the background outside the depth of field or the foreground outside the depth of field.

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。 It should be noted that each of the above examples shows a specific example of the present invention, and the present invention is not limited thereto. The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.

本実施形態の光学系の数値実施例として3群構成のものを示したが、本実施形態はこれに限られず、その他の群構成(例えば、4群等)の光学系を構成することもできる。具体的には、上記各実施例の光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。或いは、隣り合うレンズ群とレンズ群との間にレンズ又はレンズ群を追加しても良い。なお、レンズ群は、少なくとも1枚以上のレンズで構成されてもよい。 Although a three-group configuration is shown as a numerical example of the optical system of the present embodiment, the present embodiment is not limited to this, and an optical system having another group configuration (for example, four groups, etc.) can also be configured. .. Specifically, a lens or a lens group may be added to the most object side or the most image side of the optical system of each of the above embodiments. Alternatively, a lens or a lens group may be added between adjacent lens groups. The lens group may be composed of at least one or more lenses.

また、上記各実施例では、各レンズ群を合焦レンズ群としている。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ、ステッピングモータ、VCMモータ等による駆動にも適している。 Further, in each of the above examples, each lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by a motor for autofocus, for example, an ultrasonic motor, a stepping motor, a VCM motor, or the like.

また、上記各実施例の光学系において、いずれかのレンズ群全体又はその一部を、防振群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。 Further, in the optical system of each of the above embodiments, the entire lens group or a part thereof is moved as a vibration isolation group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis. It is also possible to provide vibration isolation by rotating (swinging) inward.

また、上記各実施例の光学系の開口絞りは、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。 Further, the aperture diaphragm of the optical system of each of the above-described embodiments may be configured such that a lens frame substitutes the role of the aperture diaphragm without providing a member as the aperture diaphragm.

また、上記各実施例の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens constituting the optical system of each of the above embodiments may be a spherical surface or a flat surface, or may be an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is deviated, the depiction performance is less deteriorated, which is preferable. When the lens surface is aspherical, it can be either an aspherical surface formed by grinding, a glass molded aspherical surface formed by molding glass into an aspherical shape, or a composite aspherical surface formed by forming a resin provided on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

また、上記各実施例の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of each of the above embodiments. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

次に、本実施形態の光学系を備えたカメラを図25に基づいて説明する。
図25は本実施形態の光学系を備えたカメラの構成を示す図である。
図25に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る光学系を備えたレンズ交換式のミラーレスカメラである。
Next, the camera provided with the optical system of the present embodiment will be described with reference to FIG.
FIG. 25 is a diagram showing a configuration of a camera provided with the optical system of the present embodiment.
As shown in FIG. 25, the camera 1 is a lens-interchangeable mirrorless camera provided with the optical system according to the first embodiment as the photographing lens 2.

本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
In the camera 1, the light from an object (subject) (not shown) is collected by the photographing lens 2 and passed through an OLPF (Optical low pass filter) (not shown) on the imaging surface of the imaging unit 3. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3, and the image of the subject is generated. This image is displayed on the EVF (Electronic viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.
Further, when the photographer presses the release button (not shown), the image of the subject generated by the imaging unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系は、上述のように無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系である。すなわち本カメラ1は、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した性能を実現することができる。なお、上記第2〜第6実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Here, the optical system according to the first embodiment mounted on the camera 1 as the photographing lens 2 satisfactorily corrects various aberrations from the infinity object in-focus state to the short-range object in-focus state as described above. It is a large-diameter optical system that can be used for both autofocus and manual focus. That is, the camera 1 can satisfactorily correct various aberrations from the in-focus state of an infinity object to the in-focus state of a short-distance object, and can realize performance suitable for both autofocus and manual focus. .. Even if a camera equipped with the optical system according to the second to sixth embodiments is configured as the photographing lens 2, the same effect as that of the camera 1 can be obtained. Further, even when the single-lens reflex type camera having a quick return mirror and observing the subject by the finder optical system is equipped with the optical system according to each of the above embodiments, the same effect as that of the camera 1 can be obtained.

次に、本実施形態の光学系の製造方法の概略を図26に基づいて説明する。
図26は、本実施形態の光学系の製造方法の概略を示すフロー図である。
図26に示す本実施形態の光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなる光学系の製造方法であって、以下のステップS1〜S4を含むものである。
Next, an outline of the method for manufacturing the optical system of the present embodiment will be described with reference to FIG.
FIG. 26 is a flow chart showing an outline of a method for manufacturing an optical system according to the present embodiment.
The method for manufacturing the optical system of the present embodiment shown in FIG. 26 is a method for manufacturing an optical system including a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side. Steps S1 to S4 of the above.

ステップS1:合焦の際、隣り合う前記レンズ群の間隔が変化するように構成する。
ステップS2:前記第1レンズ群を、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなるように構成する。
ステップS3:前記前側レンズ群が、無限遠物体から近距離物体への合焦の際、物体側へ移動するように構成する。
Step S1: At the time of focusing, the distance between adjacent lens groups is changed.
Step S2: The first lens group includes a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between. It is configured to consist of.
Step S3: The front lens group is configured to move to the object side when focusing from an infinity object to a short-distance object.

ステップS4:前記後側レンズ群が、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式(1)を満足するように構成する。
(1)0.50<h(min)/h(max)
Step S4: In the rear lens group, m and n are positive integers satisfying m <n, and the mth and nth lens surfaces of the rear lens group are counted from the most object-side lens surface. When the marginal ray heights at the time of focusing on an infinity object are h (m) and h (n), respectively, the highest h (m) of the marginal ray heights satisfying h (m)> h (n). ) Is h (max) and the lowest h (n) is h (min), so that the following conditional expression (1) is satisfied.
(1) 0.50 <h (min) / h (max)

斯かる本実施形態の光学系の製造方法によれば、無限遠物体合焦状態から近距離物体合焦状態に亘って諸収差を良好に補正することができ、オートフォーカスにもマニュアルフォーカスにも適した大口径の光学系を製造することができる。 According to the method of manufacturing the optical system of the present embodiment, various aberrations can be satisfactorily corrected from the in-focus state of an infinity object to the in-focus state of a short-range object, and both autofocus and manual focus can be performed. A suitable large-diameter optical system can be manufactured.

Claims (19)

物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、
合焦の際、隣り合うレンズ群の間隔が変化し、
前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、
前記前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動し、
前記後側レンズ群は、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式を満足する光学系。
0.50<h(min)/h(max)
In order from the object side, it consists of a first lens group having a positive refractive power and a plurality of subsequent lens groups.
When focusing, the distance between adjacent lens groups changes,
The first lens group includes a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between.
The front lens group moves to the object side when focusing from an infinity object to a short-distance object.
In the rear lens group, m and n are positive integers satisfying m <n, and an infinity object on the mth and nth lens surfaces counted from the lens surface on the most object side of the rear lens group. When the marginal ray heights at the time of focusing are h (m) and h (n), respectively, the highest h (m) among the marginal ray heights satisfying h (m)> h (n) is h. An optical system that satisfies the following conditional expression when (max) is set and the lowest h (n) is h (min).
0.50 <h (min) / h (max)
物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなり、
合焦の際、隣り合うレンズ群の間隔が変化し、
前記第1レンズ群は、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなり、
前記前側レンズ群は、無限遠物体から近距離物体への合焦の際、物体側へ移動し、
前記前側レンズ群はさらに、前記前側レンズ群の最も物体側のレンズ面における無限遠物体合焦時のマージナル光線高さをh(1)とし、mおよびnをm<nを満たす2以上の整数とし、前記最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における前記マージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(1)>h(m)かつh(m)<h(n)を満たす前記マージナル光線高さのうち、最も低いh(m)をh(min)とし、最も高いh(n)をh(max)としたとき、以下の条件式を満足する、光学系。
0.10<{h(max)−h(min)}/{h(1)−h(min)}
In order from the object side, it consists of a first lens group having a positive refractive power and a plurality of subsequent lens groups.
When focusing, the distance between adjacent lens groups changes,
The first lens group includes a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between.
The front lens group moves to the object side when focusing from an infinity object to a short-distance object.
Further, the front lens group is an integer of 2 or more satisfying m <n, where h (1) is the height of the marginal ray when the object is focused at infinity on the lens surface on the most object side of the front lens group. When the heights of the marginal rays on the m-th and n-th lens surfaces counted from the lens surface on the most object side are h (m) and h (n), respectively, h (1)> h ( When the lowest h (m) is h (min) and the highest h (n) is h (max) among the marginal ray heights satisfying m) and h (m) <h (n). An optical system that satisfies the following conditional expression.
0.10 << {h (max) -h (min)} / {h (1) -h (min)}
前記後側レンズ群は、合焦の際移動する少なくとも1つ以上のレンズ群を有する請求項1または2に記載の光学系。 The optical system according to claim 1 or 2, wherein the rear lens group has at least one or more lens groups that move during focusing. 前記後側レンズ群は、少なくとも2つの負レンズと少なくとも2つの正レンズとを有する請求項1から3の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 3, wherein the rear lens group has at least two negative lenses and at least two positive lenses. 前記前側レンズ群は、少なくとも4つのレンズ成分を有する請求項1から4の何れか一項に記載の光学系。 The optical system according to any one of claims 1 to 4, wherein the front lens group has at least four lens components. 前記第1レンズ群は、以下の条件式を満足する負レンズを少なくとも1つ有する請求項1から5の何れか一項に記載の光学系。
0.600<θgFLn+0.0021×νdLn<0.658
ただし、
νdLn:前記負レンズのd線に対するアッベ数
θgFLn:前記負レンズのg線とF線とによる部分分散比
The optical system according to any one of claims 1 to 5, wherein the first lens group has at least one negative lens satisfying the following conditional expression.
0.600 <θgFLn + 0.0021 × νdLn <0.658
However,
νdLn: Abbe number θgFLn with respect to the d-line of the negative lens: Partial dispersion ratio of the g-line and F-line of the negative lens
以下の条件式を満足する請求項1から6の何れか一項に記載の光学系。
0.790<f(1F〜1R)/f<1.400
ただし、
f(1F〜1R):無限遠物体合焦時の前記前側レンズ群と前記後側レンズ群との合成焦点距離
f:無限遠物体合焦時の前記光学系全系の焦点距離
The optical system according to any one of claims 1 to 6, which satisfies the following conditional expression.
0.790 <f (1F to 1R) / f <1.400
However,
f (1F to 1R): Combined focal length of the front lens group and the posterior lens group when the object is in focus at infinity f: Focal length of the entire optical system when the object is in focus at infinity
物体側から順に、互いに凹面を向かい合わせたレンズの組である第1の組と、互いに凹面を向かい合わせたレンズの組である第2の組とを有し、
前記第1の組と前記第2の組との間に少なくとも1つの正レンズを有し、
前記第1の組の物体側に少なくとも1つの正レンズを有し、
前記第2の組の像側に少なくとも4つの正レンズを有し、
3種類以上の硝材を用いている光学系。
In order from the object side, it has a first set of lenses having concave surfaces facing each other and a second set of lenses having concave surfaces facing each other.
It has at least one positive lens between the first set and the second set.
Having at least one positive lens on the object side of the first set,
It has at least four positive lenses on the image side of the second set.
An optical system that uses three or more types of glass materials.
以下の条件式を満足する請求項8に記載の光学系。
0.30<R1/f<0.80
0.30<R3/f<0.80
−0.80<(R1+R2)/(R1−R2)<0.80
−0.80<(R3+R4)/(R3−R4)<0.80
ただし、
f:無限遠物体合焦時の前記光学系全系の焦点距離
R1:前記第1の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径
R2:前記第1の組の向かい合う前記凹面のうち、像側の凹面の曲率半径
R3:前記第2の組の向かい合う前記凹面のうち、物体側の凹面の曲率半径
R4:前記第2の組の向かい合う前記凹面のうち、像側の凹面の曲率半径
The optical system according to claim 8, which satisfies the following conditional expression.
0.30 <R1 / f <0.80
0.30 <R3 / f <0.80
−0.80 <(R1 + R2) / (R1-R2) <0.80
−0.80 <(R3 + R4) / (R3-R4) <0.80
However,
f: Focal length of the entire optical system when the object is in focus at infinity R1: Of the concave surfaces facing each other in the first set, the radius of curvature R2 of the concave surface on the object side: Of these, the radius of curvature R3 of the concave surface on the image side: the radius of curvature R4 of the concave surface on the object side among the concave surfaces facing each other in the second set: the curvature of the concave surface on the image side of the concave surfaces facing each other in the second set. radius
以下の条件式を満足する請求項1から9の何れか一項に記載の光学系。
0.100<f/(−f1)< 1.000
ただし、
f:無限遠物体合焦時の前記光学系全系の焦点距離
f1:前記光学系全系のうち、最も物体側のレンズ成分から、物体側から2つ目の負レンズ成分までの全てのレンズ成分の合成焦点距離
The optical system according to any one of claims 1 to 9, which satisfies the following conditional expression.
0.100 <f / (-f1) <1,000
However,
f: Focal length of the entire optical system when the object is in focus at infinity f1: All lenses from the lens component on the most object side to the second negative lens component from the object side in the entire optical system. Synthetic focal length of components
以下の条件式を満足する請求項1から10の何れか一項に記載の光学系。
12.0°<2ω<40.0°
ただし、
2ω:無限遠物体合焦時の前記光学系の画角
The optical system according to any one of claims 1 to 10, which satisfies the following conditional expression.
12.0 ° <2ω <40.0 °
However,
2ω: Angle of view of the optical system when focusing on an infinity object
以下の条件式を満足する請求項1から11の何れか一項に記載の光学系。
0.100<bfa/f<0.250
ただし、
bfa:最も像側に配置されるレンズの像側レンズ面から像面までの光軸上の空気換算距離
f:無限遠物体合焦時の前記光学系全系の焦点距離
The optical system according to any one of claims 1 to 11, which satisfies the following conditional expression.
0.100 <bfa / f <0.250
However,
bfa: Air conversion distance on the optical axis from the image side lens surface of the lens placed closest to the image side to the image surface f: Focal length of the entire optical system when the object is focused at infinity
前記後続レンズ群は、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、
無限遠物体合焦時の前記DC群の光軸方向への移動量に対する像面の移動量の比である像面移動係数をγDCとしたとき、以下の条件式(12)を満足する請求項1または2に記載の光学系。
−0.500<γDC<0.500
ただし、
γDC=(1−βDC)×βR
ただし、
βDC:前記DC群の横倍率
βR:前記DC群よりも像側のレンズ群の横倍率
The subsequent lens group includes a DC group that changes the bokeh of the defocus region by moving along the optical axis.
A claim that satisfies the following conditional expression (12) when the image plane movement coefficient, which is the ratio of the movement amount of the image plane to the movement amount of the DC group in the optical axis direction when the object is focused at infinity, is γDC. The optical system according to 1 or 2.
-0.500 <γDC <0.500
However,
γDC = (1-βDC 2 ) × βR 2
However,
βDC: Horizontal magnification of the DC group βR: Horizontal magnification of the lens group on the image side of the DC group
以下の条件式(13)を満足する請求項13に記載の光学系。
0.700<βDC<1.300
ただし、
βDC:前記DC群の横倍率
The optical system according to claim 13, which satisfies the following conditional expression (13).
0.700 <βDC <1.300
However,
βDC: Horizontal magnification of the DC group
前記後続レンズ群は、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、
無限遠物体合焦時の前記DC群の光軸方向への移動量をΔDCとし、前記ΔDCに対応する縦収差表示での球面収差変化量をΔSAとし、無限遠物体合焦時に前記DC群が光軸方向へ移動しない時の最大口径のF値をFinfとしたとき、以下の条件式(14)を満足する請求項1または2に記載の光学系。
0.300<|ΔSA×(Finf)/ΔDC|<2.500
The subsequent lens group includes a DC group that changes the bokeh of the defocus region by moving along the optical axis.
The amount of movement of the DC group in the optical axis direction when the object is in focus at infinity is ΔDC, the amount of change in spherical aberration in the longitudinal aberration display corresponding to the ΔDC is ΔSA, and the DC group is in focus at infinity. The optical system according to claim 1 or 2, which satisfies the following conditional expression (14), where the F value of the maximum diameter when not moving in the optical axis direction is Finf.
0.300 << | ΔSA × (Finf) 2 / ΔDC | <2.500
前記後続レンズ群は、光軸に沿って移動することによりデフォーカス領域のボケ味を変化させるDC群を含み、
近距離物体合焦時の前記DC群の光軸方向への移動量をΔDCとし、前記ΔDCに対応する縦収差表示での球面収差変化量をΔSAとし、近距離物体合焦時に前記DC群が光軸方向へ移動しない時の最大口径のF値をFmodとしたとき、以下の条件式(15)を満足する請求項1または2に記載の光学系。
2.000<|ΔSA×(Fmod)/ΔDC|<15.000
The subsequent lens group includes a DC group that changes the bokeh of the defocus region by moving along the optical axis.
The amount of movement of the DC group in the optical axis direction during short-distance object focusing is defined as ΔDC, the amount of spherical aberration change in the longitudinal aberration display corresponding to the ΔDC is defined as ΔSA, and the DC group moves during short-distance object focusing. The optical system according to claim 1 or 2, which satisfies the following conditional expression (15), where the F value of the maximum diameter when not moving in the optical axis direction is Fmod.
2.000 << | ΔSA × (Fmod) 2 / ΔDC | <15.000
最も像側のレンズ群が前記DC群である請求項13から16の何れか一項に記載の光学系。 The optical system according to any one of claims 13 to 16, wherein the lens group on the image side is the DC group. 請求項1から17の何れか一項に記載の光学系を備えた光学機器 An optical device provided with the optical system according to any one of claims 1 to 17. 物体側から順に、正の屈折力を有する第1レンズ群と、複数の後続レンズ群とからなる光学系の製造方法であって、
合焦の際、隣り合うレンズ群の間隔が変化するように構成し、
前記第1レンズ群を、開口絞りを挟んで、物体側に配置された正の屈折力を有する前側レンズ群と、像側に配置された正の屈折力を有する後側レンズ群とからなるように構成し、
前記前側レンズ群が、無限遠物体から近距離物体への合焦の際、物体側へ移動するように構成し、
前記後側レンズ群が、mおよびnをm<nを満たす正の整数とし、前記後側レンズ群の最も物体側のレンズ面から数えて第m番目および第n番目のレンズ面における無限遠物体合焦時のマージナル光線高さをそれぞれh(m)およびh(n)としたとき、h(m)>h(n)を満たす前記マージナル光線高さのうち、最も高いh(m)をh(max)とし、最も低いh(n)をh(min)としたとき、以下の条件式を満足するように構成する光学系の製造方法。
0.50<h(min)/h(max)
A method for manufacturing an optical system including a first lens group having a positive refractive power and a plurality of subsequent lens groups in order from the object side.
It is configured so that the distance between adjacent lens groups changes when focusing.
The first lens group is composed of a front lens group having a positive refractive power arranged on the object side and a rear lens group having a positive refractive power arranged on the image side with an aperture diaphragm in between. Configure to
The front lens group is configured to move to the object side when focusing from an infinity object to a short-distance object.
In the rear lens group, m and n are positive integers satisfying m <n, and an infinity object on the mth and nth lens surfaces counted from the lens surface on the most object side of the rear lens group. When the marginal ray heights at the time of focusing are h (m) and h (n), respectively, the highest h (m) among the marginal ray heights satisfying h (m)> h (n) is h. A method for manufacturing an optical system, which is configured to satisfy the following conditional expression when (max) is set and the lowest h (n) is h (min).
0.50 <h (min) / h (max)
JP2020538283A 2018-08-24 2019-08-06 Optical systems, optical instruments, and methods for manufacturing optical systems Active JP7099529B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018157379 2018-08-24
JP2018157379 2018-08-24
PCT/JP2019/030872 WO2020039912A1 (en) 2018-08-24 2019-08-06 Optical system, optical device, and method for manufacturing optical system

Publications (2)

Publication Number Publication Date
JPWO2020039912A1 true JPWO2020039912A1 (en) 2021-08-10
JP7099529B2 JP7099529B2 (en) 2022-07-12

Family

ID=69593053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020538283A Active JP7099529B2 (en) 2018-08-24 2019-08-06 Optical systems, optical instruments, and methods for manufacturing optical systems

Country Status (2)

Country Link
JP (1) JP7099529B2 (en)
WO (1) WO2020039912A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835209B (en) * 2021-11-19 2024-04-26 中导光电设备股份有限公司 Large-view-field DUV objective lens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107210A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Lens system permitting short-distance photographing
JPH09218346A (en) * 1996-02-08 1997-08-19 Minolta Co Ltd Optical system
JPH11281892A (en) * 1998-03-27 1999-10-15 Canon Inc Photographic lens utilizing floating
JP2000089113A (en) * 1998-09-07 2000-03-31 Canon Inc Photographic lens making good use of floating
JP2010145830A (en) * 2008-12-19 2010-07-01 Canon Inc Photographic lens and imaging apparatus having the same
JP2012185263A (en) * 2011-03-04 2012-09-27 Nikon Corp Photographic lens, optical instrument with photographic lens, and manufacturing method for photographic lens
JP2013104994A (en) * 2011-11-14 2013-05-30 Sigma Corp Inner focus type large-diameter telephotographic macro lens with vibration-proof function
JP2013238827A (en) * 2012-05-17 2013-11-28 Canon Inc Optical system and imaging apparatus including the same
JP2013250294A (en) * 2012-05-30 2013-12-12 Nikon Corp Imaging lens, optical device, and method for manufacturing imaging lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107210A (en) * 1980-01-31 1981-08-26 Nippon Kogaku Kk <Nikon> Lens system permitting short-distance photographing
JPH09218346A (en) * 1996-02-08 1997-08-19 Minolta Co Ltd Optical system
JPH11281892A (en) * 1998-03-27 1999-10-15 Canon Inc Photographic lens utilizing floating
JP2000089113A (en) * 1998-09-07 2000-03-31 Canon Inc Photographic lens making good use of floating
JP2010145830A (en) * 2008-12-19 2010-07-01 Canon Inc Photographic lens and imaging apparatus having the same
JP2012185263A (en) * 2011-03-04 2012-09-27 Nikon Corp Photographic lens, optical instrument with photographic lens, and manufacturing method for photographic lens
JP2013104994A (en) * 2011-11-14 2013-05-30 Sigma Corp Inner focus type large-diameter telephotographic macro lens with vibration-proof function
JP2013238827A (en) * 2012-05-17 2013-11-28 Canon Inc Optical system and imaging apparatus including the same
JP2013250294A (en) * 2012-05-30 2013-12-12 Nikon Corp Imaging lens, optical device, and method for manufacturing imaging lens

Also Published As

Publication number Publication date
JP7099529B2 (en) 2022-07-12
WO2020039912A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5510113B2 (en) Photographic lens, optical apparatus equipped with photographic lens, and method of manufacturing photographic lens
CN108490592B (en) Zoom optical system
CN110573924B (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
US10379319B2 (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
CN106133579B (en) Zoom lens and photographic device
WO2016104771A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
US10473901B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN110494786B (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
CN110520777B (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
WO2021241230A1 (en) Optical system, optical device, and method for manufacturing optical system
JP2014021329A (en) Optical system, optical device and manufacturing method of optical system
JP6784952B2 (en) Optical system and optical equipment
US10527829B2 (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JP7099529B2 (en) Optical systems, optical instruments, and methods for manufacturing optical systems
JP2015191064A (en) Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
CN112368624B (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
WO2020157801A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
CN110546544B (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
CN112166360B (en) Optical system and optical apparatus
WO2013179659A1 (en) Photographic lens, optical apparatus, and photographic lens fabrication method
JP6897733B2 (en) Variable magnification optical system, optical device
JP6984643B2 (en) Variable magnification optical system, optical device
JP6635180B2 (en) Variable power optical system and optical equipment
JP6551420B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150