JP2014021329A - Optical system, optical device and manufacturing method of optical system - Google Patents

Optical system, optical device and manufacturing method of optical system Download PDF

Info

Publication number
JP2014021329A
JP2014021329A JP2012160747A JP2012160747A JP2014021329A JP 2014021329 A JP2014021329 A JP 2014021329A JP 2012160747 A JP2012160747 A JP 2012160747A JP 2012160747 A JP2012160747 A JP 2012160747A JP 2014021329 A JP2014021329 A JP 2014021329A
Authority
JP
Japan
Prior art keywords
lens
optical system
lens group
object side
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160747A
Other languages
Japanese (ja)
Other versions
JP5924172B2 (en
Inventor
Yoko Komatsubara
陽子 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012160747A priority Critical patent/JP5924172B2/en
Publication of JP2014021329A publication Critical patent/JP2014021329A/en
Application granted granted Critical
Publication of JP5924172B2 publication Critical patent/JP5924172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system that has excellent optical performance from an in-focus of an object at infinity to an in-focus of the object at a close distance while sufficiently maintaining a distance from an imaging plane to an exit pupil plane, and to provide an optical device including the optical system and a manufacturing method of the optical system.SOLUTION: The optical system is substantially composed of two lens groups of, in order from an object side: a first lens group G1 that has negative refractive power as a whole; and a second lens group G2 that has positive refractive power as a whole. In the first lens group G1, a lens L11 on the most object side is a negative lens with a concave surface directed to an image side and a second lens L12 counted from the object side is a positive lens. The second lens group G2, in which a lens L21 on the most object side is a single lens with positive refractive power, has at least one cemented lens L24.

Description

本発明は、写真用カメラやビデオカメラ等に好適な光学系、光学装置、光学系の製造方法に関する。   The present invention relates to an optical system, an optical apparatus, and an optical system manufacturing method suitable for a photographic camera, a video camera, and the like.

従来、写真用カメラやビデオカメラ等に用いられる大口径の標準レンズとして、屈折力配置が開口絞りを挟んで略対称ないわゆるガウスタイプのレンズが数多く提案されている。   Conventionally, as a large-diameter standard lens used for a photographic camera, a video camera, or the like, many so-called Gaussian lenses in which the refractive power arrangement is substantially symmetrical with an aperture stop interposed therebetween have been proposed.

しかしながら、カメラのデジタル化に伴い、撮像素子にCCDやCMOSが用いられており、これらのデジタルカメラにおいては、撮像素子の法線方向からの入射光の角度が大きいと、撮像素子にうまく光を取り込むことができないという問題がある。   However, with the digitization of cameras, CCDs and CMOSs have been used for image sensors. In these digital cameras, if the angle of incident light from the normal direction of the image sensor is large, the image sensor can emit light well. There is a problem that it cannot be imported.

そこで、その解決策として、ガウスタイプの物体側に負レンズを配置し、射出瞳の長さ(撮像面から射出瞳面までの距離)を長くした画角50°程度の撮影レンズがある(例えば、特許文献1参照)。   Therefore, as a solution, there is a photographing lens having a field angle of about 50 ° in which a negative lens is arranged on the Gauss type object side and the length of the exit pupil (distance from the imaging surface to the exit pupil surface) is increased (for example, , See Patent Document 1).

特開平11−30743号公報Japanese Patent Laid-Open No. 11-30743

しかしながら、上記のような撮影レンズは、負レンズ先行タイプであるため負の歪曲収差が発生しやすいという問題があった。   However, since the photographing lens as described above is a negative lens preceding type, there is a problem that negative distortion is likely to occur.

本発明は上記課題に鑑みてなされたものであり、撮像面から射出瞳面までの距離を十分に確保し、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を備えた光学系、この光学系を備えた光学装置、及びこの光学系の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and ensures a sufficient distance from the imaging surface to the exit pupil plane, and has good optical performance from focusing on an object at infinity to focusing on a short distance object. An object is to provide an optical system, an optical device including the optical system, and a method for manufacturing the optical system.

上記課題を解決するために本発明では、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、
無限遠物体から有限距離物体への合焦に際して前記第1レンズ群と前記第2レンズ群との間隔を変化させ、
前記第1レンズ群は、最も物体側のレンズが像側に凹面を向けた負レンズ、物体側から2枚目のレンズが正レンズであり、
前記第2レンズ群は、最も物体側のレンズが正の屈折力を有する単レンズであり、少なくとも1個の接合レンズを有することを特徴とする光学系を提供する。
In order to solve the above problems, in the present invention,
In order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power,
When focusing from an object at infinity to an object at a finite distance, the distance between the first lens group and the second lens group is changed,
In the first lens group, the most object side lens is a negative lens with a concave surface facing the image side, and the second lens from the object side is a positive lens,
The second lens group provides an optical system characterized in that the most object side lens is a single lens having a positive refractive power and has at least one cemented lens.

また、本発明は、前記光学系を備えることを特徴とする光学装置を提供する。   The present invention also provides an optical device comprising the optical system.

さらに、上記課題を解決するために本発明では、
最も物体側のレンズを像面に凹面を向けた負レンズとし、物体側から2枚目のレンズを正レンズとした第1のレンズ群を配置し、
該第1のレンズ群よりも像側に、最も物体側のレンズを正の屈折力を有する単レンズとし、少なくとも1個の接合レンズを設けた第2レンズ群を配置することを特徴とする光学系の製造方法を提供する。
Furthermore, in order to solve the above-mentioned problem, in the present invention,
A first lens group in which the lens closest to the object side is a negative lens with the concave surface facing the image surface, and the second lens from the object side is a positive lens;
An optical system characterized in that a lens closest to the object side is a single lens having a positive refractive power and a second lens group provided with at least one cemented lens is disposed closer to the image side than the first lens group. A method for manufacturing a system is provided.

本発明によれば、撮像面から射出瞳面までの距離を十分に確保し、無限遠物体合焦時から近距離物体合焦時まで良好な光学性能を備えた光学系、この光学系を備えた光学装置、及びこの光学系の製造方法を提供することができる。   According to the present invention, an optical system that secures a sufficient distance from the imaging surface to the exit pupil plane and has good optical performance from when focusing on an object at infinity to when focusing on a short distance object is provided. An optical device and a method for manufacturing the optical system can be provided.

第1実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 1st Example. 第1実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12482)の諸収差を示す。FIG. 7 is a diagram illustrating various aberrations of the optical system according to the first example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12482). 第2実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 2nd Example. 第2実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12485)の諸収差を示す。It is an aberration diagram of the optical system according to the second example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12485). 第3実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 3rd Example. 第3実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12483)の諸収差を示す。It is an aberration diagram of the optical system according to the third example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12483). 第4実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 4th Example. 第4実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12434)の諸収差を示す。FIG. 12 is a diagram illustrating various aberrations of the optical system according to the fourth example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12434). 第5実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 5th Example. 第5実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12729)の諸収差を示す。FIG. 10 is various aberration diagrams of the optical system according to Example 5. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12729). 第6実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 6th Example. 第6実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12483)の諸収差を示す。FIG. 12 is a diagram illustrating various aberrations of the optical system according to Example 6. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12483). 第7実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 7th Example. 第7実施例に係る光学系の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12538)の諸収差を示す。FIG. 10 is various aberration diagrams of the optical system according to Example 7. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12538). 第8実施例に係る光学系の無限遠物体合焦状態におけるレンズ構成図である。It is a lens block diagram in the infinite object focusing state of the optical system which concerns on 8th Example. 第8実施例に係る光学系の諸収差図を示し、(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12671)の諸収差を示す。The aberration diagrams of the optical system according to Example 8 are shown. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12671). 本願の光学系を備えたカメラの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the camera provided with the optical system of this application. 本願の光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the optical system of this application.

以下、本願の光学系、光学装置、及び光学系の製造方法について説明する。   Hereinafter, the optical system, the optical device, and the method for manufacturing the optical system of the present application will be described.

本願の実施形態に係る光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、無限遠物体から有限距離物体への合焦に際して前記第1レンズ群と前記第2レンズ群との間隔を変化させ、前記第1レンズ群は、最も物体側のレンズが像側に凹面を向けた負レンズ、物体側から2枚目のレンズが正レンズであり、前記第2レンズ群は、最も物体側のレンズが正の屈折力を有する単レンズであり、少なくとも1個の接合レンズを有することを特徴とする。   An optical system according to an embodiment of the present application includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, from an infinite object to a finite distance object. The distance between the first lens group and the second lens group is changed at the time of focusing, and the first lens group is a negative lens whose lens closest to the object side has a concave surface on the image side, and two lenses from the object side. The eye lens is a positive lens, and in the second lens group, the lens closest to the object side is a single lens having a positive refractive power, and has at least one cemented lens.

本願の実施形態に係る光学系は、負の屈折力を有する第1レンズ群内に正レンズを配置することで歪曲収差を良好に補正している。   The optical system according to the embodiment of the present application corrects distortion well by disposing a positive lens in the first lens group having a negative refractive power.

また、第1レンズ群のうち最も物体側のレンズが像側に凸面を向けた負レンズでは、特に軸外光線を強く屈折させてしまい、像面湾曲、コマ収差、歪曲収差、倍率色収差などの発生原因となるため、本実施形態に係る光学系では、第1レンズ群のうち最も物体側のレンズを像側に凹面を向けた負レンズとすることで、これらの収差の発生を防いでいる。   Further, in a negative lens in which the most object side lens in the first lens group has a convex surface facing the image side, particularly off-axis rays are strongly refracted, and field curvature, coma aberration, distortion aberration, lateral chromatic aberration, etc. In the optical system according to the present embodiment, the occurrence of these aberrations is prevented by making the most object side lens of the first lens group a negative lens with a concave surface facing the image side. .

さらに、第2レンズ群において、最も物体側のレンズを正の屈折力を有する単レンズとすることでコマ収差や歪曲収差を良好に補正し、接合レンズを配置することで色収差を良好に補正している。   Furthermore, in the second lens group, the most object side lens is a single lens having a positive refractive power, so that coma and distortion can be corrected well, and a cemented lens is used to correct chromatic aberration. ing.

本実施形態に係る光学系においては、以下の条件式を満足することが望ましい。
6.00<−f1/f2 ・・・(1)
ここで、f1は前記第1レンズ群の焦点距離、f2は前記第2レンズ群の焦点距離を示す。
In the optical system according to the present embodiment, it is desirable that the following conditional expression is satisfied.
6.00 <−f1 / f2 (1)
Here, f1 represents the focal length of the first lens group, and f2 represents the focal length of the second lens group.

条件式(1)は前記第1レンズ群の適切なパワーを規定する条件式である。条件式(1)の下限を下回ると、第1レンズ群のパワーが強くなりすぎて至近フォーカシング時の特に球面収差とコマ収差の変動が大きくなるため好ましくない。   Conditional expression (1) is a conditional expression that defines an appropriate power of the first lens group. If the lower limit of conditional expression (1) is not reached, the power of the first lens group becomes too strong, and the fluctuations of spherical aberration and coma during focusing are particularly large.

なお、本実施形態の効果を確実にするために、条件式(1)の下限値を6.50にすることが好ましい。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を7.00にすることが好ましい。   In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 6.50. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 7.00.

本実施形態において十分な射出瞳の長さを確保するために、条件式(1)に上限値200.00を設けることが好ましい。当該効果を確実にするためには、条件式(1)の上限値を180.00にすることが好ましい。また、当該効果をより確実にするためには、条件式(1)の上限値を160.00にすることが好ましい。   In this embodiment, in order to ensure a sufficient exit pupil length, it is preferable to provide an upper limit value 200.00 in the conditional expression (1). In order to ensure the effect, it is preferable to set the upper limit of conditional expression (1) to 180.00. In order to further secure the effect, it is preferable to set the upper limit of conditional expression (1) to 160.00.

本実施形態に係る光学系においては、前記第2レンズ群は、物体側から順に、正の屈折力を有する前群、絞り、正の屈折力を有する後群で構成されており、前記接合レンズが前記後群中に配置されていることが望ましい。絞りより像側の構成によっては、画像に害悪なゴーストの要因になりやすいが、接合レンズを絞りより像側に配置することでゴーストの発生を抑えることができる。   In the optical system according to the present embodiment, the second lens group includes, in order from the object side, a front group having a positive refractive power, a stop, and a rear group having a positive refractive power. Is preferably arranged in the rear group. Depending on the configuration on the image side from the stop, it may easily cause a ghost that is harmful to the image, but the occurrence of ghost can be suppressed by arranging the cemented lens on the image side from the stop.

本実施形態に係る光学系においては、第2レンズ群が少なくとも1面以上の非球面を有することが望ましい。このような構成とすることで、結像性能を良好にすることができる。特にコマ収差の補正に有効である。   In the optical system according to the present embodiment, it is desirable that the second lens group has at least one aspheric surface. With such a configuration, the imaging performance can be improved. This is particularly effective for correcting coma.

以下、本実施形態の数値実施例として第1実施例ないし第8実施例について、図面を参照しつつ説明する。   Hereinafter, first to eighth examples will be described as numerical examples of the present embodiment with reference to the drawings.

(第1実施例)
図1は、第1実施例に係る光学系10の無限遠物体合焦状態におけるレンズ構成図である。
(First embodiment)
FIG. 1 is a lens configuration diagram of the optical system 10 according to the first example when the object at infinity is in focus.

本第1実施例に係る光学系10は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 10 according to the first example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凹面を向けた負メニスカスレンズL23、絞りS、両凹形状の負レンズと両凸形状の正レンズとの接合負レンズL24、両凸形状の正レンズL25、及び両凸形状の正レンズL26から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a negative meniscus lens L23 having a concave surface facing the image side, an aperture S, and a biconcave shape. The negative lens L24 is a cemented negative lens L24 of a biconvex positive lens, a biconvex positive lens L25, and a biconvex positive lens L26, and has a positive refractive power as a whole.

本第1実施例に係る光学系10において、無限遠物体から近距離物体への合焦は第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 10 according to the first example, focusing from an object at infinity to an object at a short distance is performed by moving the second lens group G2 to the object side along the optical axis.

下記の[表1]に、本第1実施例に係る光学系10の諸元値を掲げる。   The following [Table 1] lists specification values of the optical system 10 according to the first example.

表中の(面データ)において、「面番号」は物体側からの面の番号、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との面間隔)、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は合焦における可変面間隔、(絞り)は開口絞りSをそれぞれ表している。また、レンズ面が非球面である場合には、面番号に*印を付し、曲率半径rの欄には近軸曲率半径を示す。なお、曲率半径r=∞は平面又は開口を示し、空気の屈折率nd=1.00000は記載を省略している。   In (surface data) in the table, “surface number” is the surface number from the object side, r is the radius of curvature, d is the surface interval (the surface interval between the nth surface (n is an integer) and the n + 1th surface), nd is the refractive index at the d-line (wavelength λ = 587.6 nm), νd is the Abbe number at the d-line (wavelength λ = 587.6 nm), (variable) is the variable surface distance in focus, (diaphragm) is the aperture stop S Respectively. When the lens surface is an aspherical surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r. Note that the radius of curvature r = ∞ indicates a plane or an opening, and the refractive index nd = 1.0000 of air is omitted.

(非球面データ)の非球面は、光軸に垂直な高さをy、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)、基準球面の曲率半径(近軸曲率半径)をR、円錐定数をκ、n次の非球面係数をAnとしたとき、以下の数式で表される。なお、非球面データ欄の「E-n」(nは整数)は「×10−n」を示す。
S(y)=(y/R)/{1+(1−κy/R1/2}
+A2y+A4y+A6y+A8y+A10y10
The aspherical surface of (aspherical surface data) is the height (sag amount) along the optical axis from the tangent plane of the apex of each aspherical surface to each aspherical surface at the height y. (Y) When the radius of curvature (paraxial radius of curvature) of the reference sphere is R, the conic constant is κ, and the n-th order aspherical coefficient is An, the following formula is used. In addition, “En” (n is an integer) in the aspherical data column indicates “× 10 −n ”.
S (y) = (y 2 / R) / {1+ (1−κy 2 / R 2 ) 1/2 }
+ A2y 2 + A4y 4 + A6y 6 + A8y 8 + A10y 10

(各種データ)において、fは焦点距離、f1は第1レンズ群G1の焦点距離、f2は第2レンズ群G2の焦点距離、FNOはFナンバー、2ωは画角(単位:「°」)、Yは像高、TLはレンズ全長、Bfは無限遠物体合焦状態におけるバックフォーカスをそれぞれ表している。   (Various data), f is the focal length, f1 is the focal length of the first lens group G1, f2 is the focal length of the second lens group G2, FNO is the F number, 2ω is the angle of view (unit: “°”), Y represents the image height, TL represents the total lens length, and Bf represents the back focus in the infinite object focusing state.

(可変間隔データ)において、fは焦点距離、βは倍率、d0は物体面と最も物体側のレンズ面(第1面)との間隔、dnは第n面と第n+1面との可変の面間隔、Bfはバックフォーカスを表している。   In (variable distance data), f is the focal length, β is the magnification, d0 is the distance between the object surface and the most object side lens surface (first surface), and dn is the variable surface between the nth surface and the (n + 1) th surface. The interval, Bf, represents the back focus.

(条件式対応値)は、条件式(1)の対応値を示す。   (Conditional Expression Corresponding Value) indicates the corresponding value of conditional expression (1).

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used.

以上の記号の説明は、以降の他の実施例においても同様とし、説明を省略する。
[表1]
(面データ)
面番号 r d nd νd
1) 250.00000 1.10000 1.516800 64.12
2) 22.04133 2.90101
3) 24.69454 2.05000 1.804400 39.57
4) 59.72468 (可変)
5) 43.48003 2.15000 1.772500 49.61
6) -60.26903 0.22000
7) 10.48837 1.70000 1.788000 47.38
8) 23.75908 0.70000
9) 210.52488 1.00000 1.717970 31.06
10) 8.48357 1.70000
11)(絞り) ∞ 2.94591
12) -8.84352 1.00000 1.698950 30.13
13) 34.06068 2.55000 1.804000 46.58
14) -12.07920 0.50000
*15) 18.73806 1.85000 1.770350 47.07
16) -22.24228 0.21000
17) 800.00000 1.50000 1.804000 46.58
18) -102.42236 15.05797

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E+00 -1.25474E-05 1.28978E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-1132.95
f2 = 20.33
FNO= 1.88
2ω= 45.37
Y = 7.97
TL = 43.19
Bf = 15.06

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12482
d0 ∞ 157.1854
d4 4.05970 1.62059
Bf 15.05797 17.49758

(条件式対応値)
(1)-f1/f2 = 55.73
The description of the above symbols is the same in the other examples below, and the description is omitted.
[Table 1]
(Surface data)
Surface number r d nd νd
1) 250.00000 1.10000 1.516800 64.12
2) 22.04133 2.90101
3) 24.69454 2.05000 1.804400 39.57
4) 59.72468 (variable)
5) 43.48003 2.15000 1.772500 49.61
6) -60.26903 0.22000
7) 10.48837 1.70000 1.788000 47.38
8) 23.75908 0.70000
9) 210.52488 1.00000 1.717970 31.06
10) 8.48357 1.70000
11) (Aperture) ∞ 2.94591
12) -8.84352 1.00000 1.698950 30.13
13) 34.06068 2.55000 1.804000 46.58
14) -12.07920 0.50000
* 15) 18.73806 1.85000 1.770350 47.07
16) -22.24228 0.21000
17) 800.00000 1.50000 1.804000 46.58
18) -102.42236 15.05797

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E + 00 -1.25474E-05 1.28978E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -1132.95
f2 = 20.33
FNO = 1.88
2ω = 45.37
Y = 7.97
TL = 43.19
Bf = 15.06

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12482
d0 ∞ 157.1854
d4 4.05970 1.62059
Bf 15.05797 17.49758

(Values for conditional expressions)
(1) -f1 / f2 = 55.73

図2は、本第1実施例の光学系10の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12482)の諸収差をそれぞれ示す。   FIG. 2 is a diagram showing various aberrations of the optical system 10 of the first example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12482).

各収差図において、FNOはFナンバー、Aは半画角(単位:「°」)、NAは開口数、H0は物体高をそれぞれ示す。またdはd線(λ=587.6nm)を示す。そして球面収差図、非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、像高Y=7.97である。   In each aberration diagram, FNO is an F number, A is a half angle of view (unit: “°”), NA is a numerical aperture, and H0 is an object height. D represents the d line (λ = 587.6 nm). In the spherical aberration diagram and the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the image height Y = 7.97.

なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。   In the following examples, the same symbols are used, and the following description is omitted.

各収差図より本第1実施例に係る光学系10は、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、また球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   From the respective aberration diagrams, the optical system 10 according to the first example corrects various aberrations well from the time of focusing on an object at infinity to the time of focusing on an object at a short distance, and there is little short-range variation in spherical aberration and coma aberration. It can be seen that the imaging performance is excellent.

(第2実施例)
図3は、第2実施例に係る光学系20の無限遠物体合焦状態におけるレンズ構成図である。
(Second embodiment)
FIG. 3 is a lens configuration diagram of the optical system 20 according to the second example when the object at infinity is in focus.

本第2実施例に係る光学系20は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 20 according to the second example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、物体側に凸面を向けた正メニスカスレンズL23、両凹形状の負レンズL24、絞りS、両凹形状の負レンズと両凸形状の正レンズとの接合負レンズL25、像側に凸面を向けた正メニスカスレンズL26、両凸形状の正レンズL27から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a positive meniscus lens L23 having a convex surface facing the object side, and a biconcave negative lens. L24, stop S, a cemented negative lens L25 of a biconcave negative lens and a biconvex positive lens, a positive meniscus lens L26 having a convex surface facing the image side, and a biconvex positive lens L27. Have a refractive power of.

本第2実施例に係る光学系20において、無限遠物体から近距離物体への合焦は第2レンズG2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 20 according to the second example, focusing from an infinitely distant object to a close object is performed by moving the second lens G2 to the object side along the optical axis.

以下の[表2]に、本第2実施例に係る光学系20の諸元値を掲げる。
[表2]
(面データ)
面番号 r d nd νd
1) 300.0000 1.1000 1.516800 64.12
2) 22.3761 2.8065
3) 25.7918 2.0500 1.806100 40.94
4) 66.7414 (可変)
5) 23.5000 1.9000 1.772500 49.61
6) -134.8647 0.2500
7) 17.0000 1.4000 1.772500 49.61
8) 24.4940 0.2500
9) 26.1647 1.3000 1.772500 49.61
10) 35.8034 0.5000
11) -134.4830 1.0000 1.698950 30.13
12) 12.2117 1.7000
13> (絞り) ∞ 1.5082
14) -7.6843 1.0000 1.698950 30.13
15) 62.9634 2.5500 1.772500 49.61
16) -10.6688 0.5000
*17) -48.8533 1.8500 1.770350 47.07
18) -19.2644 0.2100
19) 40.0000 1.5000 1.804000 46.58
20) -153.6009 18.2462

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E+00 -1.25488E-05 -1.10771E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-1132.95
f2 = 20.33
FNO= 1.87
2ω= 45.24
Y = 7.97
TL = 43.78
Bf = 15.81

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12485
d0 ∞ 157.1390
d4 4.59548 2.15564
Bf 15.80612 18.24615

(条件式対応値)
(1)−f1/f2 = 55.73
The following [Table 2] lists specification values of the optical system 20 according to the second example.
[Table 2]
(Surface data)
Surface number r d nd νd
1) 300.0000 1.1000 1.516800 64.12
2) 22.3761 2.8065
3) 25.7918 2.0500 1.806100 40.94
4) 66.7414 (variable)
5) 23.5000 1.9000 1.772500 49.61
6) -134.8647 0.2500
7) 17.0000 1.4000 1.772500 49.61
8) 24.4940 0.2500
9) 26.1647 1.3000 1.772500 49.61
10) 35.8034 0.5000
11) -134.4830 1.0000 1.698950 30.13
12) 12.2117 1.7000
13> (Aperture) ∞ 1.5082
14) -7.6843 1.0000 1.698950 30.13
15) 62.9634 2.5500 1.772500 49.61
16) -10.6688 0.5000
* 17) -48.8533 1.8500 1.770350 47.07
18) -19.2644 0.2100
19) 40.0000 1.5000 1.804000 46.58
20) -153.6009 18.2462

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E + 00 -1.25488E-05 -1.10771E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -1132.95
f2 = 20.33
FNO = 1.87
2ω = 45.24
Y = 7.97
TL = 43.78
Bf = 15.81

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12485
d0 ∞ 157.1390
d4 4.59548 2.15564
Bf 15.80612 18.24615

(Values for conditional expressions)
(1) -f1 / f2 = 55.73

図4は、第2実施例に係る光学系20の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12485)の諸収差を示す。   FIG. 4 is a diagram illustrating various aberrations of the optical system 20 according to the second example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12485).

各収差図より本第2実施例に係る光学系20は、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   From each aberration diagram, in the optical system 20 according to the second example, various aberrations are satisfactorily corrected from the time of focusing on an object at infinity to the time of focusing on a short distance object, and there are few short distance fluctuations in spherical aberration and coma aberration, It can be seen that the imaging performance is excellent.

(第3実施例)
図5は、第3実施例に係る光学系30の無限遠物体合焦状態におけるレンズ構成図である。
(Third embodiment)
FIG. 5 is a lens configuration diagram of the optical system 30 according to the third example in an infinite object focusing state.

本第3実施例に係る光学系30は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 30 according to the third example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凸面を向けた正メニスカスレンズと両凹形状の負レンズとの接合負レンズL23、絞りS、物体側に凹面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズとの接合負レンズL24、像側に凸面を向けた正メニスカスレンズL25、両凸形状の正レンズL26から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the image side, and a biconcave negative lens. A cemented negative lens L23, a stop S, a cemented negative lens L24 of a negative meniscus lens having a concave surface facing the object side and a positive meniscus lens having a convex surface facing the image side, a positive meniscus lens L25 having a convex surface facing the image side, both Consists of a convex positive lens L26, and has a positive refractive power as a whole.

本第3実施例に係る光学系30において、無限遠物体から近距離物体への合焦は第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 30 according to the third example, focusing from an object at infinity to an object at a short distance is performed by moving the second lens group G2 to the object side along the optical axis.

以下の[表3]に、本第3実施例に係る光学系30の諸元値を掲げる。
[表3]
(面データ)
面番号 r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.5402
3) 30.6186 1.9000 1.834000 37.17
4) 106.1683 (可変)
5) 25.0150 1.7000 1.804400 39.57
6) -111.6746 0.5000
7) 15.9861 1.4000 1.772500 49.61
8) 26.5966 0.6000
9) -187.4504 1.6000 1.755000 52.29
10) -15.6534 1.0000 1.698950 30.13
11) 12.0617 1.7000
12> (絞り)∞ 1.9154
13) -7.2000 1.0000 1.688930 31.06
14) -76.3077 2.5500 1.788000 47.38
15) -9.8284 0.5000
*16) -59.9243 1.7000 1.773770 47.18
17) -28.2656 0.2100
18) 50.0000 1.5000 1.741000 52.67
19) -40.7797 16.1076

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
16) 1.0000 0.00000E+00 -1.25488E-05 -1.10771E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-1132.95
f2 = 20.33
FNO= 1.87
2ω= 45.17
Y = 7.97
TL = 43.39
Bf = 16.11

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12483
d0 ∞ 157.1390
d4 3.86831 1.42846
Bf 16.10759 18.54734

(条件式対応値)
(1)−f1/f2 = 55.73
The following [Table 3] lists specification values of the optical system 30 according to the third example.
[Table 3]
(Surface data)
Surface number r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.5402
3) 30.6186 1.9000 1.834000 37.17
4) 106.1683 (variable)
5) 25.0150 1.7000 1.804400 39.57
6) -111.6746 0.5000
7) 15.9861 1.4000 1.772500 49.61
8) 26.5966 0.6000
9) -187.4504 1.6000 1.755000 52.29
10) -15.6534 1.0000 1.698950 30.13
11) 12.0617 1.7000
12> (Aperture) ∞ 1.9154
13) -7.2000 1.0000 1.688930 31.06
14) -76.3077 2.5500 1.788000 47.38
15) -9.8284 0.5000
* 16) -59.9243 1.7000 1.773770 47.18
17) -28.2656 0.2100
18) 50.0000 1.5000 1.741000 52.67
19) -40.7797 16.1076

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
16) 1.0000 0.00000E + 00 -1.25488E-05 -1.10771E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -1132.95
f2 = 20.33
FNO = 1.87
2ω = 45.17
Y = 7.97
TL = 43.39
Bf = 16.11

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12483
d0 ∞ 157.1390
d4 3.86831 1.42846
Bf 16.10759 18.54734

(Values for conditional expressions)
(1) -f1 / f2 = 55.73

図6は、本第3実施例に係る光学系30の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12483)の諸収差を示す。   FIG. 6 is a diagram illustrating various aberrations of the optical system 30 according to the third example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12483).

本第3実施例に係る光学系30は、各収差図より、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system 30 according to the third example, various aberrations are satisfactorily corrected from the time of focusing on an object at infinity to the time of focusing on an object at a short distance, and near-field fluctuations in spherical aberration and coma are small. It can be seen that the imaging performance is excellent.

(第4実施例)
図7は、第4実施例に係る光学系40の無限遠物体合焦状態におけるレンズ構成図である。
(Fourth embodiment)
FIG. 7 is a lens configuration diagram of the optical system 40 according to the fourth example in an infinite object focusing state.

本第4実施例に係る光学系40は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 40 according to the fourth example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凹面を向けた負メニスカスレンズL23、絞りS、両凹形状の負レンズと両凸形状の正レンズとの接合負レンズL24、像側に凸面を向けた正メニスカスレンズL25、両凸形状の正レンズL26から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a negative meniscus lens L23 having a concave surface facing the image side, an aperture S, and a biconcave shape. The negative lens L24 is a cemented negative lens L24 of a biconvex positive lens, a positive meniscus lens L25 having a convex surface facing the image side, and a biconvex positive lens L26, and has a positive refractive power as a whole.

本第4実施例に係る光学系40において、無限遠物体から近距離物体への合焦は第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 40 according to the fourth example, focusing from an infinitely distant object to a close object is performed by moving the second lens group G2 to the object side along the optical axis.

以下の[表4]に、本第4実施例に係る光学系40の諸元値を掲げる。
[表4]
(面データ)
面番号 r d nd νd
1) 250.00000 1.10000 1.516800 64.12
2) 22.76286 2.90101
3) 25.05946 2.05000 1.804400 39.57
4) 61.26452 (可変)
5) 28.67573 2.15000 1.772500 49.61
6) -97.94982 0.22000
7) 10.88659 1.70000 1.788000 47.38
8) 20.71988 0.70000
9) 97.40188 1.00000 1.688930 31.06
10) 8.46008 1.70000
11> (絞り) ∞ 2.50056
12) -8.45787 1.00000 1.698950 30.13
13) 30.24804 2.55000 1.804000 46.58
14) -12.11614 0.50000
*15) -194.85196 1.85000 1.770350 47.07
16) -26.44353 0.21000
17) 800.00000 1.50000 1.804000 46.58
18) -33.60327 15.16426

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E+00 -8.11530E-06 -3.39061E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-3049.18
f2 = 20.32
FNO= 1.84
2ω= 45.32
Y = 7.97
TL = 42.89
Bf = 15.16

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12434
d0 ∞ 157.4128
d4 4.0962 1.66799
Bf 15.1643 17.59070

(条件式対応値)
(1)−f1/f2 = 150.06
The following [Table 4] lists specification values of the optical system 40 according to the fourth example.
[Table 4]
(Surface data)
Surface number r d nd νd
1) 250.00000 1.10000 1.516800 64.12
2) 22.76286 2.90101
3) 25.05946 2.05000 1.804400 39.57
4) 61.26452 (variable)
5) 28.67573 2.15000 1.772500 49.61
6) -97.94982 0.22000
7) 10.88659 1.70000 1.788000 47.38
8) 20.71988 0.70000
9) 97.40188 1.00000 1.688930 31.06
10) 8.46008 1.70000
11> (Aperture) ∞ 2.50056
12) -8.45787 1.00000 1.698950 30.13
13) 30.24804 2.55000 1.804000 46.58
14) -12.11614 0.50000
* 15) -194.85196 1.85000 1.770350 47.07
16) -26.44353 0.21000
17) 800.00000 1.50000 1.804000 46.58
18) -33.60327 15.16426

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E + 00 -8.11530E-06 -3.39061E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -3049.18
f2 = 20.32
FNO = 1.84
2ω = 45.32
Y = 7.97
TL = 42.89
Bf = 15.16

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12434
d0 ∞ 157.4128
d4 4.0962 1.66799
Bf 15.1643 17.59070

(Values for conditional expressions)
(1) -f1 / f2 = 150.06

図8は、本第4実施例に係る光学系40の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=−0.12434)の諸収差を示す。   FIG. 8 is a diagram illustrating various aberrations of the optical system 40 according to the fourth example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12434).

本第4実施例に係る光学系40は、各収差図より、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system 40 according to the fourth example, various aberrations are satisfactorily corrected from the time of focusing on an object at infinity to the time of focusing on a short distance object, and the short-range fluctuations in spherical aberration and coma aberration are small, as shown in each aberration diagram. It can be seen that the imaging performance is excellent.

(第5実施例)
図9は、第5実施例に係る光学系50の無限遠物体合焦状態におけるレンズ構成図である。
(5th Example)
FIG. 9 is a lens configuration diagram of the optical system 50 according to the fifth example in the state of focusing on an object at infinity.

本第5実施例に係る光学系50は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 50 according to the fifth example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸形状の正レンズL13とから成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side, a positive meniscus lens L12 having a convex surface facing the object side, and a biconvex positive lens L13. As negative power.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、両凹形状の負レンズL23、絞りS、両凹形状の負レンズと両凸形状の正レンズとの接合負レンズL24、両凸形状の正レンズL25、及び両凸形状の正レンズL26から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a biconcave negative lens L23, an aperture S, and a biconcave negative lens. It consists of a cemented negative lens L24 with a biconvex positive lens, a biconvex positive lens L25, and a biconvex positive lens L26, and has a positive refractive power as a whole.

本第5実施例に係る光学系50において、無限遠物体から近距離物体への合焦は第1レンズ群G1及び第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 50 according to the fifth example, focusing from an object at infinity to a near object is performed by moving the first lens group G1 and the second lens group G2 to the object side along the optical axis.

[表5]
(面データ)
面番号 r d nd νd
1) 180.00000 1.10000 1.516800 64.12
2) 18.66048 1.80000
3) 49.46062 1.50000 1.834000 37.17
4) 96.12153 0.50000
5) 100.00000 1.20000 1.801000 34.96
6) -762.40928 (可変)
7) 14.28157 21.15000 1.788000 47.38
8) -643.32049 0.22000
9) 20.09827 1.70000 1.755000 52.29
10) 37.79394 0.70000
11) -106.82524 1.00000 1.688930 31.06
12) 9.96568 1.70000
13> (絞り) ∞ 3.18700
14) -8.09088 1.00000 1.717360 29.52
15) 58.73823 2.55000 1.788000 47.38
16) -11.12450 0.50000
*17) 66.97250 1.85000 1.770350 47.07
18) -27.20457 0.21000
19) 500.00000 1.50000 1.788000 47.38
20) -75.89832 16.10823

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E+00 -2.07017E-05 6.86547E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-149.13
f2 = 20.42
FNO= 2.01
2ω= 45.26
Y = 7.97
TL = 42.89
Bf = 15.16

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12729
d0 ∞ 152.4260
d6 4.38690 3.55712
Bf 16.10823 18.61763

(条件式対応値)
(1)−f1/f2 = 7.3
[Table 5]
(Surface data)
Surface number r d nd νd
1) 180.00000 1.10000 1.516800 64.12
2) 18.66048 1.80000
3) 49.46062 1.50000 1.834000 37.17
4) 96.12153 0.50000
5) 100.00000 1.20000 1.801000 34.96
6) -762.40928 (variable)
7) 14.28157 21.15000 1.788000 47.38
8) -643.32049 0.22000
9) 20.09827 1.70000 1.755000 52.29
10) 37.79394 0.70000
11) -106.82524 1.00000 1.688930 31.06
12) 9.96568 1.70000
13> (Aperture) ∞ 3.18700
14) -8.09088 1.00000 1.717360 29.52
15) 58.73823 2.55000 1.788000 47.38
16) -11.12450 0.50000
* 17) 66.97250 1.85000 1.770350 47.07
18) -27.20457 0.21000
19) 500.00000 1.50000 1.788000 47.38
20) -75.89832 16.10823

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E + 00 -2.07017E-05 6.86547E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -149.13
f2 = 20.42
FNO = 2.01
2ω = 45.26
Y = 7.97
TL = 42.89
Bf = 15.16

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12729
d0 ∞ 152.4260
d6 4.38690 3.55712
Bf 16.10823 18.61763

(Values for conditional expressions)
(1) -f1 / f2 = 7.3

図10は、本第5実施例に係る光学系50の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12729)の諸収差を示す。   FIG. 10 is a diagram illustrating various aberrations of the optical system 50 according to the fifth example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12729).

本第5実施例に係る光学系50は、各収差図より、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system 50 according to the fifth example, various aberrations are satisfactorily corrected from the time of focusing on an object at infinity to the time of focusing on a short distance object, and the short-range variation in spherical aberration and coma aberration is small. It can be seen that the imaging performance is excellent.

(第6実施例)
図11は、第6実施例に係る光学系60の無限遠物体合焦状態におけるレンズ構成図である。
(Sixth embodiment)
FIG. 11 is a lens configuration diagram of the optical system 60 according to the sixth example in a state where an object at infinity is in focus.

本第6実施例に係る光学系60は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 60 according to the sixth example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凸面を向けた正メニスカスレンズと両凹形状の負レンズとの接合負レンズL23、絞りS、物体側に凹面を向けた負メニスカスレンズL24、像側に凸面を向けた正メニスカスレンズL25、物体側に凸面を向けた正メニスカスレンズL26、及び両凸形状の正レンズL27から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the image side, and a biconcave negative lens. A negative meniscus lens L24 having a concave surface facing the object side, a positive meniscus lens L25 having a convex surface facing the image side, a positive meniscus lens L26 having a convex surface facing the object side, and a biconvex shape It consists of a positive lens L27 and has a positive refractive power as a whole.

本第6実施例に係る光学系60において、無限遠物体から近距離物体への合焦は第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 60 according to the sixth example, focusing from an object at infinity to an object at a short distance is performed by moving the second lens group G2 to the object side along the optical axis.

以下の[表6]に、本第6実施例に係る光学系60の諸元値を掲げる。
[表6]
(面データ)
面番号 r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.6557
3) 28.4249 1.9000 1.834000 37.17
4) 83.0586 (可変)
5) 31.9503 1.7000 1.804400 39.57
6) -83.2747 0.5000
7) 14.0487 1.4000 1.772500 49.61
8) 28.0420 0.6000
9) -432.2897 1.6000 1.772960 52.29
10) -20.6227 1.0000 1.698950 30.13
11) 10.8748 1.7000
12> (絞り) ∞ 1.8599
13) -7.7000 1.0000 1.717360 29.52
14) -83.3241 0.3000
15) -132.8653 2.4000 1.788000 47.38
16) -11.0078 0.4000
*17)-120.9163 1.6000 1.794360 47.18
18) -20.6253 0.2100
19) 60.0000 1.5000 1.741000 52.67
20) -113.7695 15.8682

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
17)1.0000 0.00000E+00 -1.25488E-05 -1.10771E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-1132.95
f2 = 20.33
FNO= 1.86
2ω= 45.26
Y = 7.97
TL = 43.40
Bf = 15.87

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12483
d0 ∞ 157.1390
d4 4.11107 1.67122
Bf 16.10823 18.30791

(条件式対応値)
(1)−f1/f2 = 55.73
Table 6 below lists specification values of the optical system 60 according to the sixth example.
[Table 6]
(Surface data)
Surface number r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.6557
3) 28.4249 1.9000 1.834000 37.17
4) 83.0586 (variable)
5) 31.9503 1.7000 1.804400 39.57
6) -83.2747 0.5000
7) 14.0487 1.4000 1.772500 49.61
8) 28.0420 0.6000
9) -432.2897 1.6000 1.772960 52.29
10) -20.6227 1.0000 1.698950 30.13
11) 10.8748 1.7000
12> (Aperture) ∞ 1.8599
13) -7.7000 1.0000 1.717360 29.52
14) -83.3241 0.3000
15) -132.8653 2.4000 1.788000 47.38
16) -11.0078 0.4000
* 17) -120.9163 1.6000 1.794360 47.18
18) -20.6253 0.2100
19) 60.0000 1.5000 1.741000 52.67
20) -113.7695 15.8682

(Aspherical data)
Surface number κ A2 A4 A6 A8 A10
17) 1.000 0.00000E + 00 -1.25488E-05 -1.10771E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -1132.95
f2 = 20.33
FNO = 1.86
2ω = 45.26
Y = 7.97
TL = 43.40
Bf = 15.87

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12483
d0 ∞ 157.1390
d4 4.11107 1.67122
Bf 16.10823 18.30791

(Values for conditional expressions)
(1) -f1 / f2 = 55.73

図12は、本第6実施例に係る光学系60の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12483)の諸収差図を示す。   FIG. 12 is a diagram illustrating various aberrations of the optical system 60 according to the sixth example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12483).

本第6実施例に係る光学系60は、各収差図より、無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system 60 according to the sixth example, various aberrations are satisfactorily corrected from the time of focusing on an object at infinity to the time of focusing on a short distance object, and there are few short distance fluctuations in spherical aberration and coma aberration from each aberration diagram. It can be seen that the imaging performance is excellent.

(第7実施例)
図13は、第7実施例に係る光学系70の無限遠物体合焦状態におけるレンズ構成図である。
(Seventh embodiment)
FIG. 13 is a lens configuration diagram of the optical system 70 according to the seventh example in the state of focusing on an object at infinity.

本第7実施例に係る光学系70は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 70 according to the seventh example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface facing the image side and a positive meniscus lens L12 having a convex surface facing the object side, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凸面を向けた正メニスカスレンズと両凹形状の負レンズとの接合負レンズL23、絞りS、物体側に凹面を向けた負メニスカスレンズと像側に凸面を向けた正メニスカスレンズとの接合負レンズL24、像側に凸面を向けた正メニスカスレンズL25、像側に凸面を向けた正メニスカスレンズL26、及び両凸形状の正レンズL27から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a biconvex positive lens L21, a positive meniscus lens L22 having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the image side, and a biconcave negative lens. A cemented negative lens L23, a stop S, a cemented negative lens L24 of a negative meniscus lens having a concave surface facing the object side and a positive meniscus lens having a convex surface facing the image side, a positive meniscus lens L25 having a convex surface facing the image side, an image It consists of a positive meniscus lens L26 with a convex surface facing side, and a biconvex positive lens L27, and has a positive refractive power as a whole.

本第7実施例に係る光学系70において、無限遠物体から近距離物体への合焦は第1レンズ群G1を光軸に沿って像側へ移動させ、第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 70 according to the seventh example, focusing from an object at infinity to an object at a short distance moves the first lens group G1 to the image side along the optical axis, and uses the second lens group G2 as the optical axis. This is done by moving it along the object side.

以下の[表7]に、本第7実施例に係る光学系70の諸元値を掲げる。
[表7]
(面データ)
面番号 r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.7047
3) 27.5888 1.9000 1.834000 37.17
4) 76.0351 (可変)
5) 28.5040 1.7000 1.804400 39.57
6) -66.1238 0.5000
7) 14.3967 1.4000 1.772500 49.61
8) 25.9880 0.6000
9) -83.2542 1.6000 1.755000 52.29
10) -13.2621 1.0000 1.698950 30.13
11) 11.4588 1.7000
12> (絞り) ∞ 1.5880
13) -7.7000 1.0000 1.698950 30.13
14) -26.1860 1.3000 1.755000 52.29
15) -13.2239 0.3500
16) -23.0650 1.3500 1.788000 47.38
*17) -14.1807 0.4000
18) -202.6503 1.7000 1.773770 47.18
19) -18.4062 0.2100
20) 288.0000 1.5000 1.741000 52.67
21) -92.6867 15.4346

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E+00 -1.25488E-05 -1.10771E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.50
f1 =-1132.95
f2 = 20.33
FNO= 1.85
2ω= 44.86
Y = 7.97
TL = 43.58
Bf = 15.43

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.498 -0.12538
d0 ∞ 158.2000
d4 4.54712 0.45648
Bf 15.43461 17.88900

(条件式対応値)
(1)−f1/f2 = 55.73
Table 7 below lists specification values of the optical system 70 according to the seventh example.
[Table 7]
(Surface data)
Surface number r d nd νd
1) 230.0000 1.1000 1.516800 64.12
2) 21.8705 2.7047
3) 27.5888 1.9000 1.834000 37.17
4) 76.0351 (variable)
5) 28.5040 1.7000 1.804400 39.57
6) -66.1238 0.5000
7) 14.3967 1.4000 1.772500 49.61
8) 25.9880 0.6000
9) -83.2542 1.6000 1.755000 52.29
10) -13.2621 1.0000 1.698950 30.13
11) 11.4588 1.7000
12> (Aperture) ∞ 1.5880
13) -7.7000 1.0000 1.698950 30.13
14) -26.1860 1.3000 1.755000 52.29
15) -13.2239 0.3500
16) -23.0650 1.3500 1.788000 47.38
* 17) -14.1807 0.4000
18) -202.6503 1.7000 1.773770 47.18
19) -18.4062 0.2100
20) 288.0000 1.5000 1.741000 52.67
21) -92.6867 15.4346

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
17) 1.0000 0.00000E + 00 -1.25488E-05 -1.10771E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.50
f1 = -1132.95
f2 = 20.33
FNO = 1.85
2ω = 44.86
Y = 7.97
TL = 43.58
Bf = 15.43

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.498 -0.12538
d0 ∞ 158.2000
d4 4.54712 0.45648
Bf 15.43461 17.88900

(Values for conditional expressions)
(1) -f1 / f2 = 55.73

図14は、本第7実施例に係る光学系70の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12538)の諸収差を示す。   FIG. 14 is a diagram illustrating various aberrations of the optical system 70 according to the seventh example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12538).

本第7実施例の光学系は、各収差図より無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system of the seventh embodiment, various aberrations are corrected well from the time of focusing on an object at infinity to the time of focusing on an object at a short distance from each aberration diagram, and the near-field fluctuations in spherical aberration and coma are small and excellent. It can be seen that it has imaging performance.

(第8実施例)
図15は、第8実施例に係る光学系80の無限遠物体合焦状態におけるレンズ構成図である。
(Eighth embodiment)
FIG. 15 is a lens configuration diagram of the optical system 80 according to the eighth example when the object at infinity is in focus.

本第8実施例に係る光学系80は、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2から成る。   The optical system 80 according to the eighth example includes a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power.

第1レンズ群G1は、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、両凸形状の正メニスカスレンズL12から成り、全体として負の屈折力を有する。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a concave surface directed toward the image side, and a biconvex positive meniscus lens L12, and has a negative refractive power as a whole.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL21、物体側に凸面を向けた正メニスカスレンズL22、像側に凹面を向けた負メニスカスレンズL23、絞りS,両凹形状の負レンズと両凸形状の正レンズとの接合負レンズL24、両凸形状の正レンズL25、及び両凸形状の正レンズL26から成り、全体として正の屈折力を有する。   The second lens group G2 includes, in order from the object side, a positive meniscus lens L21 having a convex surface directed toward the object side, a positive meniscus lens L22 having a convex surface directed toward the object side, a negative meniscus lens L23 having a concave surface directed toward the image side, and an aperture S , A cemented negative lens L24 of a biconcave negative lens and a biconvex positive lens, a biconvex positive lens L25, and a biconvex positive lens L26, and has a positive refractive power as a whole.

本第8実施例に係る光学系80において、無限遠物体から近距離物体への合焦は第2レンズ群G2を光軸に沿って物体側へ移動させることによって行う。   In the optical system 80 according to the eighth example, focusing from an infinitely distant object to a close object is performed by moving the second lens group G2 to the object side along the optical axis.

以下の[表8]に、本第8実施例に係る光学系80の諸元値を掲げる。
[表8]
(面データ)
面番号 r d nd νd
1) 470.0000 1.1000 1.516800 64.12
2) 20.8093 1.4742
3) 42.0000 2.0500 1.804400 39.57
4) -423.1263 (可変)
5) 25.0000 2.1000 1.772500 49.61
6) 450.7962 0.2200
7) 10.0000 1.7000 1.788000 47.38
8) 17.3727 0.5500
9) 27.5035 1.0000 1.717360 29.52
10) 7.5682 2.0000
11>(絞り) ∞ 3.0661
12) -7.8287 1.0000 1.688930 31.06
13) 27.2200 2.5500 1.804000 46.58
14) -11.0005 0.3000
*15) 120.0000 2.0000 1.770350 47.07
16) -20.7020 0.2100
17) 800.0000 1.5000 1.741000 52.67
18) -349.1614 15.3007

(非球面データ)
面番号 κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E+00 -2.08396E-05 1.84288E-08 0.00000E+00 0.00000E+00

(各種データ)
f = 19.68
f1 =-516.93
f2 = 20.35
FNO= 1.85
2ω= 44.91
Y = 7.97
TL = 42.61
Bf = 15.30

(可変間隔データ)
無限遠物体合焦状態 近距離物体合焦状態
f又はβ 19.68 -0.12671
d0 ∞ 157.3971
d4 4.48 1.9169
Bf 15.30 17.8102

(条件式対応値)
(1)−f1/f2 = 25.40
Table 8 below lists specification values of the optical system 80 according to the eighth example.
[Table 8]
(Surface data)
Surface number r d nd νd
1) 470.0000 1.1000 1.516800 64.12
2) 20.8093 1.4742
3) 42.0000 2.0500 1.804400 39.57
4) -423.1263 (variable)
5) 25.0000 2.1000 1.772500 49.61
6) 450.7962 0.2200
7) 10.0000 1.7000 1.788000 47.38
8) 17.3727 0.5500
9) 27.5035 1.0000 1.717360 29.52
10) 7.5682 2.0000
11> (Aperture) ∞ 3.0661
12) -7.8287 1.0000 1.688930 31.06
13) 27.2200 2.5500 1.804000 46.58
14) -11.0005 0.3000
* 15) 120.0000 2.0000 1.770350 47.07
16) -20.7020 0.2100
17) 800.0000 1.5000 1.741000 52.67
18) -349.1614 15.3007

(Aspheric data)
Surface number κ A2 A4 A6 A8 A10
15) 1.0000 0.00000E + 00 -2.08396E-05 1.84288E-08 0.00000E + 00 0.00000E + 00

(Various data)
f = 19.68
f1 = -516.93
f2 = 20.35
FNO = 1.85
2ω = 44.91
Y = 7.97
TL = 42.61
Bf = 15.30

(Variable interval data)
Infinite object in focus state Near object in focus state
f or β 19.68 -0.12671
d0 ∞ 157.3971
d4 4.48 1.9169
Bf 15.30 17.8102

(Values for conditional expressions)
(1) -f1 / f2 = 25.40

図16は、本第8実施例に係る光学系80の諸収差図である。(a)は無限遠物体合焦時、(b)は近距離物体合焦時(β=-0.12671)の諸収差を示す。   FIG. 16 is a diagram of various aberrations of the optical system 80 according to the eighth example. (A) shows various aberrations when focusing on an object at infinity, and (b) shows various aberrations when focusing on a short distance object (β = −0.12671).

第8実施例に係る光学系80は、各収差図より無限遠物体合焦時から近距離物体合焦時まで諸収差が良好に補正され、球面収差とコマ収差における近距離変動が少なく、優れた結像性能を有していることがわかる。   In the optical system 80 according to the eighth example, various aberrations are favorably corrected from the time of focusing on an object at infinity to the time of focusing on an object at short distance from each aberration diagram, and the near-field fluctuations in spherical aberration and coma are small and excellent. It can be seen that the imaging performance is excellent.

なお、上記各実施例は、本願発明の一具体例を示すものであり、本願発明はこれに限定されるものではない。   In addition, each said Example shows an example of this invention, and this invention is not limited to this.

以下の内容は、本願の光学系の光学性能を損なわない範囲で適宜採用することが可能である。   The following contents can be appropriately adopted as long as the optical performance of the optical system of the present application is not impaired.

本願の光学系の数値実施例として2群構成のものを示したが、本願発明はこれに限られず、その他の群構成(例えば、3群等の)の光学系を構成することができる。具体的には、本願の光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、本明細書、及び特許請求の範囲において、レンズ群とは、空気間隔で分離された少なくとも1つのレンズを有する部分をいう。   Although a two-group configuration is shown as a numerical example of the optical system of the present application, the present invention is not limited to this, and an optical system of another group configuration (for example, three groups) can be configured. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the optical system of the present application may be used. In the present specification and claims, a lens group refers to a portion having at least one lens separated by an air interval.

本願の光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群を合焦レンズとすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   The optical system of the present application moves in the direction of the optical axis using a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group in order to focus from an object at infinity to a near object. A configuration may be adopted. In particular, the second lens group is preferably a focusing lens. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

本願の光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ブレ等によって生じる像ブレを補正する構成とすることもできる。特に、本願の光学系では第2レンズ群G2の少なくとも一部を防振レンズ群とすることが望ましい。   In the optical system of the present application, either a whole lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis. By moving (swinging), it is also possible to correct the image blur caused by camera shake or the like. In particular, in the optical system of the present application, it is desirable that at least a part of the second lens group G2 is an anti-vibration lens group.

本願の光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としても良い。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成形したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれであっても良い。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。   The lens surface of the lens constituting the optical system of the present application may be a spherical surface, a flat surface, or an aspherical surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, it can be either an aspherical surface by grinding, a glass-molded aspherical surface in which glass is molded into an aspherical shape, or a composite aspherical surface in which a resin provided on the glass surface is formed into an aspherical shape. There may be. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

本願の光学系において、開口絞りは、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としても良い。   In the optical system of the present application, the aperture stop may be configured to substitute the role of a lens frame without providing a member as the aperture stop.

本願の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。   An antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の光学系を備えたカメラを図17に基づいて説明する。図17は本願の光学系を備えたカメラの概略断面図である。図17に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る光学系10を備えたレンズ交換式のいわゆるミラーレスカメラである。   Next, a camera equipped with the optical system of the present application will be described with reference to FIG. FIG. 17 is a schematic sectional view of a camera provided with the optical system of the present application. As shown in FIG. 17, the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the optical system 10 according to the first embodiment as the photographing lens 2.

本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系は、諸収差を良好に補正し、近距離変動を少なくしている。したがって、本カメラ1は、諸収差を良好に補正し、近距離変動の少ない、良好な光学性能を実現することができる。なお、上記第2実施例ないし第8実施例に係る光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the optical system according to the first embodiment mounted on the camera 1 as the photographing lens 2 corrects various aberrations satisfactorily and reduces short-distance fluctuations. Therefore, this camera 1 can correct various aberrations satisfactorily and realize good optical performance with little short-distance fluctuation. It should be noted that the same effects as those of the camera 1 can be obtained even if a camera in which the optical system according to the second to eighth embodiments is mounted as the taking lens 2 is configured. In addition, even when the optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject using a finder optical system, the same effects as the camera 1 can be obtained.

最後に、本願の光学系の製造方法の概略を図18に基づいて説明する。
図18に示す本願の光学系の製造方法は、以下のステップS1及びS2を含むものである。
ステップS1:最も物体側のレンズを像面に凹面を向けた負レンズとし、物体側から2枚目のレンズを正レンズとした第1のレンズ群を配置する。
ステップS2:該第1のレンズ群よりも像側に、最も物体側のレンズを正の屈折力を有する単レンズとし、少なくとも1個の接合レンズを設けた第2レンズ群を配置する。
Finally, the outline of the manufacturing method of the optical system of the present application will be described with reference to FIG.
The manufacturing method of the optical system of the present application shown in FIG. 18 includes the following steps S1 and S2.
Step S1: A first lens group in which a lens closest to the object side is a negative lens with a concave surface facing the image surface and a second lens from the object side is a positive lens is disposed.
Step S2: On the image side of the first lens group, a lens on the most object side is a single lens having a positive refractive power, and a second lens group provided with at least one cemented lens is disposed.

斯かる本願の光学系の製造方法によれば、歪曲収差を良好に補正した光学系を製造することができる。   According to such an optical system manufacturing method of the present application, an optical system in which distortion is favorably corrected can be manufactured.

1 カメラ
2 撮影レンズ
3 撮像部
4 EVF
G1 第1レンズ群
G2 第2レンズ群
S 開口絞り
I 像面
1 Camera 2 Shooting Lens 3 Imaging Unit 4 EVF
G1 First lens group G2 Second lens group S Aperture stop I Image surface

Claims (6)

物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、
無限遠物体から有限距離物体への合焦に際して前記第1レンズ群と前記第2レンズ群との間隔を変化させ、
前記第1レンズ群は、最も物体側のレンズが像側に凹面を向けた負レンズ、物体側から2枚目のレンズが正レンズであり、
前記第2レンズ群は、最も物体側のレンズが正の屈折力を有する単レンズであり、少なくとも1個の接合レンズを有することを特徴とする光学系。
In order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power,
When focusing from an object at infinity to an object at a finite distance, the distance between the first lens group and the second lens group is changed,
In the first lens group, the most object side lens is a negative lens with a concave surface facing the image side, and the second lens from the object side is a positive lens,
In the optical system, the second lens group is a single lens in which the lens closest to the object side has a positive refractive power, and has at least one cemented lens.
以下の条件を満足することを特徴とする請求項1に記載の光学系。
6<−f1/f2
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
The optical system according to claim 1, wherein the following condition is satisfied.
6 <-f1 / f2
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
前記第2レンズ群は、物体側から順に、正の屈折力を有する前群、絞り、正の屈折力を有する後群で構成されており、
前記接合レンズが前記後群中に配置されていることを特徴とする請求項1又は2に記載の光学系。
The second lens group includes, in order from the object side, a front group having a positive refractive power, a stop, and a rear group having a positive refractive power.
The optical system according to claim 1, wherein the cemented lens is disposed in the rear group.
前記第2レンズ群は、少なくとも1面以上の非球面を有することを特徴とする請求項1ないし3のいずれか一項に記載の光学系。   The optical system according to any one of claims 1 to 3, wherein the second lens group has at least one aspheric surface. 請求項1ないし4のいずれか一項に記載の光学系を備えることを特徴とする光学装置。   An optical apparatus comprising the optical system according to any one of claims 1 to 4. 最も物体側のレンズを像面に凹面を向けた負レンズとし、物体側から2枚目のレンズを正レンズとした第1のレンズ群を配置し、
該第1のレンズ群よりも像側に、最も物体側のレンズを正の屈折力を有する単レンズとし、少なくとも1個の接合レンズを設けた第2レンズ群を配置することを特徴とする光学系の製造方法。
A first lens group in which the lens closest to the object side is a negative lens with the concave surface facing the image surface, and the second lens from the object side is a positive lens;
An optical system characterized in that a lens closest to the object side is a single lens having a positive refractive power and a second lens group provided with at least one cemented lens is disposed closer to the image side than the first lens group. Manufacturing method.
JP2012160747A 2012-07-19 2012-07-19 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD Active JP5924172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160747A JP5924172B2 (en) 2012-07-19 2012-07-19 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160747A JP5924172B2 (en) 2012-07-19 2012-07-19 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2014021329A true JP2014021329A (en) 2014-02-03
JP5924172B2 JP5924172B2 (en) 2016-05-25

Family

ID=50196246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160747A Active JP5924172B2 (en) 2012-07-19 2012-07-19 OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5924172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119252A1 (en) * 2014-02-10 2015-08-13 株式会社ニコン Imaging lens, optical device provided with same, and imaging lens production method
JP2015152812A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
JP2015169707A (en) * 2014-03-05 2015-09-28 株式会社リコー Imaging optical system, stereo camera, and on-vehicle camera device
JP2016126277A (en) * 2015-01-08 2016-07-11 株式会社タムロン Optical system and image capturing device
CN110609380A (en) * 2019-09-12 2019-12-24 浙江大华技术股份有限公司 Lens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212608A (en) * 1990-01-18 1991-09-18 Konica Corp Zoom lens
JPH04191718A (en) * 1990-11-27 1992-07-10 Konica Corp Front wide converter
JPH05264901A (en) * 1992-03-16 1993-10-15 Konica Corp Front wide converter lens
JPH0943512A (en) * 1995-07-31 1997-02-14 Canon Inc Photographic lens
JPH09113800A (en) * 1995-10-13 1997-05-02 Nikon Corp Retrofocus type lens
JPH1130743A (en) * 1997-07-11 1999-02-02 Canon Inc Retrofocus type lens
JP2001166203A (en) * 1999-12-10 2001-06-22 Fuji Photo Optical Co Ltd Objective lens for endoscope of observation distance variable type
JP2001264614A (en) * 2000-03-15 2001-09-26 Fuji Photo Optical Co Ltd Zoom lens
JP2006098961A (en) * 2004-09-30 2006-04-13 Canon Inc Zoom lens and imaging apparatus having same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212608A (en) * 1990-01-18 1991-09-18 Konica Corp Zoom lens
JPH04191718A (en) * 1990-11-27 1992-07-10 Konica Corp Front wide converter
JPH05264901A (en) * 1992-03-16 1993-10-15 Konica Corp Front wide converter lens
JPH0943512A (en) * 1995-07-31 1997-02-14 Canon Inc Photographic lens
JPH09113800A (en) * 1995-10-13 1997-05-02 Nikon Corp Retrofocus type lens
JPH1130743A (en) * 1997-07-11 1999-02-02 Canon Inc Retrofocus type lens
JP2001166203A (en) * 1999-12-10 2001-06-22 Fuji Photo Optical Co Ltd Objective lens for endoscope of observation distance variable type
JP2001264614A (en) * 2000-03-15 2001-09-26 Fuji Photo Optical Co Ltd Zoom lens
JP2006098961A (en) * 2004-09-30 2006-04-13 Canon Inc Zoom lens and imaging apparatus having same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119252A1 (en) * 2014-02-10 2015-08-13 株式会社ニコン Imaging lens, optical device provided with same, and imaging lens production method
JP2015152812A (en) * 2014-02-17 2015-08-24 株式会社ニコン Optical system, optical device, and method for manufacturing the optical system
JP2015169707A (en) * 2014-03-05 2015-09-28 株式会社リコー Imaging optical system, stereo camera, and on-vehicle camera device
JP2016126277A (en) * 2015-01-08 2016-07-11 株式会社タムロン Optical system and image capturing device
CN110609380A (en) * 2019-09-12 2019-12-24 浙江大华技术股份有限公司 Lens
CN110609380B (en) * 2019-09-12 2022-02-15 浙江大华技术股份有限公司 Lens

Also Published As

Publication number Publication date
JP5924172B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US7777974B2 (en) Macro lens, optical apparatus, and method for manufacturing the macro lens
US8503110B2 (en) Lens system, wide-angle lens, optical apparatus equipped with lens system, and method for manufacturing lens system
US8908283B2 (en) Optical system, imaging apparatus, and method for forming image by the optical system
US8107175B2 (en) Wide-angle lens, optical apparatus, and method for manufacturing wide-angle lens
JP5493308B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
WO2016024412A1 (en) Optical system, imaging device provided therewith, and method for manufacturing optical system
JP5891912B2 (en) Optical system, optical device
JP5396888B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5887708B2 (en) Zoom lens, imaging device
JP5924172B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2015152851A (en) Optical system, imaging device including the optical system, and method for manufacturing optical system
JP5768522B2 (en) Telephoto lens, optical apparatus, and telephoto lens manufacturing method
JP5545064B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP5458586B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
JP2017161876A (en) Optical system, optical device and method for manufacturing optical system
JP5510114B2 (en) Zoom lens, imaging device, and zoom lens manufacturing method
JP6554759B2 (en) Photographic lens, optical apparatus equipped with the photographic lens, and method of manufacturing photographic lens
US20220244502A1 (en) Optical system, optical apparatus, and method for manufacturing optical system
JP5682715B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
WO2016024411A1 (en) Optical system, imaging device provided therewith, and method for manufacturing optical system
JP5825109B2 (en) Zoom lens and optical equipment
JP5338345B2 (en) Wide angle lens, imaging device, and manufacturing method of wide angle lens
WO2015119252A1 (en) Imaging lens, optical device provided with same, and imaging lens production method
JP5974719B2 (en) Zoom lens, optical device, and zoom lens manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250