JPWO2020017017A1 - 光計測装置および試料観察方法 - Google Patents

光計測装置および試料観察方法 Download PDF

Info

Publication number
JPWO2020017017A1
JPWO2020017017A1 JP2020530835A JP2020530835A JPWO2020017017A1 JP WO2020017017 A1 JPWO2020017017 A1 JP WO2020017017A1 JP 2020530835 A JP2020530835 A JP 2020530835A JP 2020530835 A JP2020530835 A JP 2020530835A JP WO2020017017 A1 JPWO2020017017 A1 JP WO2020017017A1
Authority
JP
Japan
Prior art keywords
light
measuring device
optical measuring
signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020530835A
Other languages
English (en)
Other versions
JP7175982B2 (ja
Inventor
隆之 小原
隆之 小原
賢太郎 大澤
賢太郎 大澤
智也 桜井
智也 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2020017017A1 publication Critical patent/JPWO2020017017A1/ja
Application granted granted Critical
Publication of JP7175982B2 publication Critical patent/JP7175982B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

光計測装置は、光源と、光源から出射された光を参照光と信号光とに分岐する光分岐部と、信号光を照射して測定対象物を走査する走査部と、測定対象物によって反射または散乱された信号光と参照光とを合波し、干渉光を生成する光学系と、光学系で生成された干渉光を受光して電気信号に変換する光検出部と、光検出部によって変換された電気信号に基づいて信号光の強度を算出する信号処理部と、を備える光計測装置であって、光検出部は、信号光の照射領域と重なる複数の測定領域のそれぞれと対応づけられた複数の光検出素子によって信号光を検出し、信号処理部は、複数の光検出素子のそれぞれが検出した信号光の強度を算出し、走査部は、測定対象物に照射する信号光の照射領域を、第1の時点における複数の測定領域の一部が第2の時点における複数の測定領域の別の一部と重なるように移動させて測定対象物を走査する。

Description

本開示は、光計測装置およびそれを用いた試料観察方法に関する。
光計測装置は非破壊的に測定対象の表面構造や内部構造を反映した情報を取得しうる装置であり、幅広い分野で用いられている。このような光計測装置の一種として、光コヒーレンストモグラフィー(OCT:Optical Coherence Tomography)がある。
OCTは人体に対する侵襲性を持たないことから、特に医療分野や生物学分野への応用が期待されており、眼科分野においては眼底や角膜等の画像を形成する装置が用いられている。OCTでは光源からの光を、測定対象に照射する信号光と測定対象に照射せずに参照光ミラーで反射させる参照光とに二分岐し、測定対象から反射された信号光を参照光と合波させ干渉させることにより信号を得る。
また、最近では、OCTを応用して測定対象の経時変化情報を取得する技術が注目されている。経時変化情報の取得を利用した光計測装置の一例として血管造影OCTがある。特許文献1には、光源から出射された光を独立な二つの偏光ビームに分け、該二つの偏光ビームをガルバノ鏡により、走査方向に沿ったライン上の異なる二部位に同時に照射しながら走査を行い、反射光を垂直成分と水平成分に分離し、二つの検出器で同時に検出し、時間の異なる同じ部位の二枚の断層画像を、一回の上記走査によって取得し、該二枚の断層画像により、上記同じ部位についての位相の時間変化量を計測する、走査型のOCT装置が開示されている。この装置によれば、人体の組織中の時間変化量の大きい部位である、血管を可視化することができる。
上に述べたような走査型の光計測装置では、測定対象物の所定部位の経時変化情報を取得するために、当該所定部位を時間δtをおいて複数回測定し、得られた複数回の測定結果から時間変化量δSを得て、δtとδSを用いて当該所定部位の経時変化情報を取得する。このとき測定の間隔δtが、経時変化情報の時間分解能となる。より高い時間分解能で測定することで、より多くの情報を取得することができる。
国際公開第2010/143601号
走査型のOCTを含めた走査型の光計測装置において、多くの経時変化情報を得るためには時間分解能を高める必要がある。しかしながら、時間分解能は走査周期に依存するため、走査周期より短い時間分解能を得ることが難しい。また、走査周期の短い高価な走査機構を用いると装置が高価で複雑になる。
特許文献1の血管造影OCTでは、ビームの走査周期よりも短い時間分解能で経時変化情報を得るため、測定対象物に二つの信号光ビームを照射するOCTが記載されている。上記のOCTでは、偏光状態の異なる二つの偏光ビームを異なる二部位に照射し、異なる二部位の情報を別々に検出するために、偏光状態に応じて二つのビームを分離する。このため、特許文献1に記載されたOCTはビーム分離機構が必要である他、さらに各ビームに対して独立した検出機構が必要であり、装置サイズが大きくなる。また、特許文献1に記載されたOCTでは、ビームを分離するために偏光状態の異なる二つのビームを利用する。それ故、二つのビームで取得した情報の間に偏光状態の違いによる差異が生じ、経時変化情報の測定誤差となる可能性がある。
本開示は、上記の点に鑑みてなされたものであり、低コストで走査周期よりも短い時間分解能で経時変化情報を測定できる技術を提供する。
本開示は上記課題を解決する手段として、例えば、光源と、前記光源から出射された光を参照光と信号光とに分岐する光分岐部と、前記信号光を照射して測定対象物を走査する走査部と、前記測定対象物によって反射または散乱された信号光と前記参照光とを合波し、干渉光を生成する光学系と、前記光学系で生成された前記干渉光を受光して電気信号に変換する光検出部と、前記光検出部によって変換された前記電気信号に基づいて前記信号光の強度を算出する信号処理部と、を備える光計測装置であって、前記光検出部は、前記信号光の照射領域と重なる複数の測定領域のそれぞれと対応づけられた複数の光検出素子によって前記信号光を検出し、前記信号処理部は、前記複数の光検出素子のそれぞれが検出した前記信号光の強度を算出し、前記走査部は、前記測定対象物に照射する前記信号光の前記照射領域を、第1の時点における前記複数の測定領域の一部が第2の時点における前記複数の測定領域の別の一部と重なるように移動させて前記測定対象物を走査する、光計測装置を提供する。
また、例えば、光干渉断層像を取得する光計測装置を用いる試料観察方法であって、測定対象物に信号光を照射し、反射または散乱された信号光と参照光とを合成して干渉光を生成するステップと、前記信号光の照射領域と重なる複数の測定領域のそれぞれに対応した複数の光検出素子によって第1の時点における前記干渉光の信号強度を検出するステップと、前記第1の時点における前記複数の測定領域の一部と第2の時点における前記複数の測定領域の別の一部とが重なるように前記照射領域を移動させるステップと、前記複数の測定領域のそれぞれに対応した前記複数の光検出素子によって前記第2の時点における前記干渉光の信号強度を検出するステップと、を含む試料観察方法を提供する。
本開示によれば、低コストで走査周期よりも短い時間分解能で経時変化情報を測定できる。上記以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。
本開示による光計測装置の基本的な実施形態を示す模式図である。 実施例1の光計測装置の動作状態における、ビームスポットと差動検出回路の配置との対応関係を示す模式図である。 測定対象物上に照射されたビームスポットが移動する様子を示す模式図である。 測定領域の位置の経時的変化と時間分解能との関係を示した模式図である。 上で述べたビーム径を拡大する参照光学系の構成を示す模式図である。 実施例2に係る光計測装置の基本的な構成例を示す図である。 実施例3の光計測装置の構成を示す模式図である。 実施例4の光計測装置の構成を示す模式図である。 測定対象物上のビームスポットの移動の様子を示す模式図である 測定領域がx方向およびy方向の両方向に複数の測定領域が定義された走査方法を示す図である。
以下、添付図面を参照して本開示の種々の実施例について説明する。ただし、これらの実施例は本開示を実現するための一例に過ぎず、本開示の技術的範囲を限定するものではない。また、各図において共通の構成については同一の参照番号が付されている。
<実施例1>
以下、実施例1の光計測装置を図1〜5を参照しながら説明する。
図1は、本開示による光計測装置1の基本的な実施形態を示す模式図である。図1において、図の上下方向がz方向、左右方向がx方向、紙面に垂直な方向がy方向である。
光計測装置1は、光源部190、偏光ビームスプリッタ106、参照光学系191、走査部159、試料ステージ139、カバーガラス114、干渉光学系132、フォトダイオードアレイ(124、125、130および131)、差動検出回路(134および135)、信号処理部136および制御部116を備える。
光源部190は、光源101、コリメートレンズ102、ビーム整形プリズム103、ND(Neutral Density)フィルタ104および光学軸方向を調整可能なλ/2板105を備える。光源101から出射された単一の波長成分からなるレーザ光は、コリメートレンズ102によって平行光に変換される。続いて、平行光に変換されたレーザ光は、ビーム整形プリズム103によってビーム断面形状が、y方向がx方向よりも長い楕円形に整形される。その後、レーザ光は、NDフィルタ104によって強度が減少され、光学軸方向を調整可能なλ/2板105によって偏光方向を回転させられた後、偏光ビームスプリッタ106によって信号光と参照光とに二分岐される。
走査部159は、2次元スキャナ107、λ/4板112、レンズ113およびレンズアクチュエータ117を備える。信号光は、走査部159内に設けられた光学系に進入し、2次元スキャナ107を通過し、光学軸方向がxz平面に対して約22.5度に設定されたλ/4板112を透過して偏光状態がs偏光から円偏光に変換される。その後、信号光は、開口数が0.3以上のレンズ113によって集光されつつカバーガラス114を透過して測定対象物115に照射され、集光位置にビームスポット140を形成する。
ここで、レンズ113に入射するビームの断面形状はy方向がx方向より長い楕円形であるため、集光時の開口数はy方向がx方向より大きくなる。そのため、ビームスポット140のxy平面上における形状は、x方向がy方向より長い楕円形となる。
ビームスポット140は、走査部159によってその位置をx、y、z方向の何れかの方向に移動される。レンズ113は、制御部116がレンズアクチュエータ117を制御することにより、少なくともz方向へ移動され、それにより、レンズ113による信号光の集光位置(測定位置)の移動がなされる。
また、信号光の集光位置のxy方向への移動は、信号光の光路中に設けられた、二つのガルバノミラー108および109とレンズ110および111を含む2次元スキャナ107とによってなされ、それにより、信号光の集光位置による測定対象物の走査がなされる。
測定対象物から反射または散乱された信号光は、レンズ113によって平行光(ビーム)に変換される。その後、信号光は、λ/4板112によって偏光状態を円偏光からp偏光に変換され、偏光ビームスプリッタ106へ入射する。試料ステージ139の移動によって測定対象物115を移動させることによって、信号光の集光位置の測定対象物115中での位置のおおまかな移動がなされる。
一方、参照光はλ/4板118を透過して、偏光状態がp偏光から円偏光に変換される。その後、参照光は、位置が固定されたミラー119に入射して反射された後、再度λ/4板118を透過して偏光状態が円偏光からs偏光へ変換され、偏光ビームスプリッタ106へ入射する。
信号光と参照光とは、偏光ビームスプリッタ106で合波され、合成光が生成される。合成光は、ハーフビームスプリッタ120、λ/2板(121および127)、λ/4板126、集光レンズ(122および128)、偏光ビームスプリッタ(123および129)から成る干渉光学系132へ導かれる。
干渉光学系132へ入射した合成光は、ハーフビームスプリッタ120によって透過光と反射光とに二分岐される。透過光は、光学軸がxz平面に対して約22.5度に設定されたλ/2板121を透過した後、集光レンズ122によって集光される。その後、透過光は、偏光ビームスプリッタ123によって二分岐されて、互いに位相関係が180度異なる第1の干渉光144と第2の干渉光145とが生成される。
第1の干渉光144は、集光レンズ122によって集光されて、フォトダイオードアレイ124の位置にビームスポット140の像153を結ぶ。フォトダイオードアレイ124は、ビームスポット140の像153に複数の光検出素子(フォトダイオード)148が重なるように配置される。
同様に、第2の干渉光145は、集光レンズ122によって集光されて、フォトダイオードアレイ125の位置にビームスポット140の像154を結ぶ。フォトダイオードアレイ125は、それぞれが光検出器として機能する複数の光検出素子149からなっており、ビームスポット140の像154に複数の光検出素子149が重なるように配置される。
第1の干渉光144および第2の干渉光145のそれぞれは、フォトダイオードアレイ124、125および差動検出回路134によって、複数の光検出素子148および複数の光検出素子149の互いに対応する素子の出力同士が組み合わされて電流差動検出され、二つの干渉光の強度の差に比例した信号137が出力される。ここで、複数の光検出素子148および複数の光検出素子149の互いに対応する素子とは、例えば、図1に示された例では、複数の光検出素子148の最も下方に位置する光検出素子と複数の光検出素子149の最も左側に位置する光検出素子とが互いに対応する素子となる。
一方、ハーフビームスプリッタ120において反射した反射光は、光学軸がxz平面に対して約45度に設定されたλ/4板126を透過した後、光学軸がxz平面に対して約22.5度に設定されたλ/2板127を透過し、集光レンズ128によって集光される。その後、反射光は、偏光ビームスプリッタ129によって二分岐され、互いに位相関係が180度異なる第三の干渉光と第四の干渉光とが生成される。第三の干渉光および第四の干渉光のそれぞれは、フォトダイオードアレイ131、130および差動検出回路135によって、電流差動検出され、二つの干渉光の強度の差に比例した信号138が出力される。
第三の干渉光146は、集光レンズ128によって集光されて、フォトダイオードアレイ131の位置にビームスポット140の像155を結ぶ。フォトダイオードアレイ131は、ビームスポット140の像155に複数の光検出素子(フォトダイオード)150が重なるように配置される。
同様に、第四の干渉光147は、集光レンズ128によって集光されて、フォトダイオードアレイ130の位置にビームスポット140の像156を結ぶ。フォトダイオードアレイ130は、それぞれが光検出器として機能する複数の光検出素子151からなっており、ビームスポット140の像156に複数の光検出素子151が重なるように配置される。
第三の干渉光146および第四の干渉光147のそれぞれは、フォトダイオードアレイ130、131および差動検出回路135によって、複数の光検出素子150および複数の光検出素子151の互いに対応する素子の出力同士が組み合わされて電流差動検出され、二つの干渉光の強度の差に比例した信号138が出力される。“互いに対応する素子”の意味については、上で説明したとおりである。
上記のようにして生成された信号137および信号138が、信号処理部136に入力されて演算されることにより信号光の振幅に比例した信号が得られる。具体的には、合成光が干渉光学系132へ入射する時点での信号光成分の振幅をEsig、参照光成分の振幅をEref、信号137の強度をI、信号138の強度をQとして、信号処理部136にて以下の式1の演算を行うことにより、位相に依存しない、信号光の振幅の絶対値に比例した信号が得られる。
|Esig|・|Eref|={I+Q1/2 ・・・(式1)
ここで信号137および信号138は、各フォトダイオードアレイ124、125、130、131の複数の光検出素子148、149、150、151の素子数だけ出力されているので、式1の演算もその数だけ行われ、それに応じた数の信号光の振幅に比例した信号が得られる(図1に示された例では四つ)。本実施例では位相関係が異なる三つ以上の干渉光を検出するため、これらの検出信号に対して演算を行うことで、干渉位相に依存しない安定した信号を取得することができる。
図2は、実施例1の光計測装置1の動作状態における、ビームスポット140と差動検出回路134との対応関係を示す模式図である。
測定対象物115上のビームスポット140のxy平面上での形状は、先述のとおり、x方向がy方向より長い楕円形である。測定対象物115において反射された信号光は、参照光と合波されて干渉光144、145、146、147となり、装置の光学系を介してフォトダイオードアレイ124、125、130、131の受光面上に、像153、154、155、156としてそれぞれ結ばれる。
図2には、第1の干渉光および第2の干渉光に対応するフォトダイオードアレイ124、125と像153、154の位置関係が示されている。第3の干渉光および第4の干渉光に対応するフォトダイオードアレイ130、131と像155、156の位置関係も第1の干渉光および第2の干渉光の場合と同様である。
干渉光144の形成する像153は、フォトダイオードアレイ124の4つの光検出素子148(D11、D12、D13、D14)の並ぶ方向301に長い楕円形である。像153は、四つの光検出素子148にまたがっており、各光検出素子は干渉光144のうち各検出素子に照射される成分の強度に比例した電流を出力する。図2では、四つの光検出素子148の並ぶ方向301は、像153上において測定対象物115上でのx方向に対応する方向と一致させて描かれている。
干渉光145の形成する像154は、フォトダイオードアレイ125の4つの光検出素子149(D21、D22、D23、D24)の並ぶ方向302に長い楕円形である。像154は、四つの光検出素子149にまたがっており、各光検出素子は干渉光145のうち各検出素子に照射される成分の強度に比例した電流を出力する。図2では、四つの光検出素子149の並ぶ方向302は、像154上において測定対象物115上でのx方向に対応する方向と一致させて描かれている。
像153と四つの光検出素子148との相対的な位置関係は、像154と四つ光検出素子149との相対的な位置関係と一致させてあり、四つの光検出素子148(D11、D12、D13、D14)と四つの光検出素子149(D21、D22、D23、D24)は、ともに、測定対象物115上の四つの測定領域303(A、A、A、A)と光学的に共役な位置となっている。ここで、各光検出素子の間隔をδx、光学系の倍率をMとすると、四つの測定領域303の間隔δx’は、δx’=M×δxとなっている。
四つの光検出素子148(D11、D12、D13、D14)と四つの光検出素子149(D21、D22、D23、D24)の電流出力は、対応する光検出素子同士(D11とD21、D12とD22、D13とD23、D14とD24)の出力が組み合わされた四組の信号がそれぞれ差動検出回路304、305、306、307に入力されて差動検出され、四つの信号の集合である信号137として信号処理部136に入力される。
第3の干渉光および第4の干渉光についても、第1の干渉光および第2の干渉光と同様に、四つの光検出素子150および四つの光検出素子151は、ともに、測定対象物115上の四つの測定領域303(A、A、A、A)と光学的に共役な位置となっている。対応する光検出素子同士の出力は組み合わされ、四組の信号がそれぞれ四つの差動検出回路に入力されて差動検出される。その結果、四つの信号の集合である信号138が、信号処理部136に入力される。
信号処理部136は、信号137および信号138を入力とした上記式1の演算を四回実行し、四つの測定領域303(A、A、A、A)で反射された信号光の各成分の振幅に比例した四つの信号(S、S、S、S)が算出される。上記のとおり、四つの測定領域303(A、A、A、A)についての信号の測定は同時に実施可能である。
以下、本実施例の光計測装置1がビームスポット140で測定対象物115を走査しながら経時変化情報を取得する際の動作を、図3および図4を参照しながら説明する。
図3は、測定対象物115上に照射されたビームスポット140、157、158が移動する様子を示す模式図である。
ビームスポット140で測定対象物115を走査する際、測定対象物115上のビームスポット140は、x方向に一定の速度で移動する。図3は走査方向152に一定の走査速さvで移動しているビームスポット140の時刻tにおける位置と、同時刻の四つの測定領域303(A、A、A、A)の位置を示している。四つの測定領域303(A、A、A、A)の間隔は、上で述べたように光検出素子の間隔と光学系の特性で決まる値(δx’)で、ここでは時刻によらず一定である。図1中には、時刻tよりδt後と、2×δt後の時刻における、ビームスポット140の予定位置をそれぞれ符号157および符号158で示した。ここで、時間δtは次式で与えられる値である。
δt=δx’/v・・・(式2)
言い換えると、時間δtでのビームスポット140の移動距離はv・δt=δx’であり、測定領域同士の間隔に等しい。
図4は、測定領域の位置の経時的変化と時間分解能(即ち、サンプリング間隔)との関係を示した模式図である。図4のグラフにおいて、横軸が時間tを示し、縦軸が測定領域303のx方向の位置を示す。図4には、四つの測定領域303(A、A、A、A)の位置が、それぞれ、トレース401、402、403、404として示されている。各トレースの実線部分は測定期間、破線部分は測定せずに単に移動している期間を表す。図4に示された例では、測定領域303がxの正の方向に移動している間のみ測定し、xの負の方向に移動している(走査の開始位置に戻る)間は測定していない。
時刻tにおいて測定領域303の1つAの位置はxであり、他の三つA、A、Aの位置はそれぞれ、x−δx’、x−2δx’、x−3δx’、である。この後、測定領域303は速さvで移動するため、各測定領域303が位置xに到達する時刻は、それぞれ以下のとおりとなる。
: t+δt
: t+2δt
: t+3δt
よって、四つの測定領域303で得られた四つの信号(S、S、S、S)について、n番目の測定領域の時刻tにおける信号値をS(t)と書き表すと、S(t)、S(t+δt)、S(t+2δt)、S(t+3δt)は、時刻tから時間δt毎に取得した位置xの時系列測定値となる。
より一般的には、ある時刻tにm番目の測定領域が通過する位置xの時系列測定値Y(x,n)は、Sm+n(t+n・δt)として得られ、この時系列測定値を用いて位置xの経時変化情報を取得できる。さらに、位置xから正方向にx’だけ離れた位置の時系列測定値Y(x0+x’,n)は、Sm+n(t+x’/v+n・δt)として得られる。このように、四つの測定領域303で測定対象115上の一つの走査線上を一度走査しただけで、当該走査線上の各点で時間δt毎の時系列測定値を取得することができる。
ここで、測定領域303のx方向の走査振幅をX、走査周期405をTとすると、走査時の移動は一定速度なのでX=v・Tとなる。また測定領域同士の間隔に対して走査振幅は十分大きい(δx’<<X)ため、δt=δx’/v=(δx’/X)・T<<Tとなる。つまり、本実施例の光計測装置1は、上記の動作を実行することにより、測定対象物115上のある位置の経時変化情報を取得可能であり、その時間分解能δtは走査周期405Tより十分に短くすることができる。
また、差動検出回路134、135やフォトダイオードアレイ124、125、130、131の時間分解能(AD変換周波数や応答周波数)を上記δtと同程度以下とすることで、意図した時点での測定値を得ることができる。さらに、望ましくは上記時間分解能をδt/2以下とすることで、サンプリング定理を満足して意図した時間分解能での情報を得ることができる。また、上記時間分解能をδt/10以下とすることで、測定の隣り合う時点における測定対象物115の状態に影響を受けない測定が可能となり、経時変化情報を精度よく検出することができる。
以上のように、本開示によれば、走査方向に対応する方向に設けられた複数の検出器によって、測定対象物の所定部位を異なる時刻に測定でき、得られた複数の測定結果によって当該所定部位の経時変化情報を取得することができる。つまり、本開示の光計測装置1は、二つの信号光ビームを用いることなく、走査周期よりも短い時間分解能で経時変化情報を測定できる。
実施例1の光計測装置1では、フォトダイオードアレイ148、149、150、151について、各アレイ上の光検出素子の数は二個以上であり、これによって二つ以上の時点間の信号を取得し、経時変化量を算出することができる。また、より好ましくは各フォトダイオードアレイ上の光検出素子の数は三個以上である。この場合には、時間分解能を可変にするか、複数の時間分解能での情報を一度に取得することができる。具体的には、三つの光検出素子を持つフォトダイオードアレイを用いて取得した三つの信号S、S、Sのうち、S、Sを用いれば時間分解能δtの情報を取得可能で、S、Sを用いれば時間分解能2δtの情報を取得可能となる。
本実施例の光計測装置1では、フォトダイオードアレイ148、149、150、151について、各フォトダイオードアレイ上の任意の光検出素子間の間隔の最小値δxmin、最大値δxmax、光学系の倍率をM、ビームスポット140の走査速さをvとすると、(δxmin/M)/v≦δt≦(δxmax/M)/vの範囲の時間分解能δtで経時変化情報を取得することが可能である。ここで、最小値δxminは、例えば、隣り合う光検出素子同士の間隔であり、最大値δxmaxは、例えば、(光検出素子の個数−1)×δxminである。
また、図3において、ビームスポット140の形状は、複数の測定領域303に収まるような大きさとして説明した。ビームスポット140の形状(照射領域)は、測定領域303を含む形状であってもよい。そのようにすると、各測定領域(A、A、A、A)に照射される信号光の強度を均一にすることができ、経時変化情報の精度を向上させることができる。
また、図3に示されているように、ビームスポット140の形状を楕円形状とした場合、複数の測定領域303の両端と中央とで信号光の照射量に差がでる可能性がある。その場合、複数の測定領域303の両端と中央との照射量の差(信号強度の差)を予め計測し、信号処理部136は、複数の測定領域303のそれぞれに対応する信号光の強度をキャリブレーションして算出してもよい。このようにすると、測定対象物115の経時変化情報の測定精度が向上する。
続いて、測定対象物115の2次元像および3次元像を取得するための走査方法について述べる。測定対象物115の2次元像(zx像)は、ビームスポット140で測定対象物115の2次元領域を走査することで得られる。例えば、制御部116によって走査部159を構成する2次元スキャナ107を制御し、ガルバノミラー108(第1の走査部)を動かしてx方向に繰り返し走査しつつ、ガルバノミラー108が折り返し位置に到達する度に、制御部116によってレンズアクチュエータ117を作動させてz方向に所定の量(集光されたビームスポット140のz方向径程度)だけレンズ113(第2の走査部)を移動させることによって、2次元像(zx像)を得ることができる。なお、例えば、x方向への走査は、z方向への走査よりも高速にビームスポット140(照射領域)を移動させる。
測定対象の3次元像は、上記の走査方法でzx像を取得した後にレンズ113をy方向に所定量(集光された信号光のスポット径程度)移動させるという手順を繰り返すことにより取得することができる。または、ガルバノミラー108およびレンズ113の走査によりzx像を取得した後に、測定対象物115もしくは光計測装置1全体を電動ステージ等によりy方向へ移動させるという手順を繰り返してもよい。なお、本実施例においてはレンズ113を走査することによりzスキャンを行っているが、例えばレンズ113の手前に少なくとも1枚レンズをさらに挿入し、当該レンズを走査することにより集光位置を走査することとしてもよく、また2次元スキャナ107によってy方向への移動を行っても良い。
上記のとおり、本開示の光計測装置1は、レンズアクチュエータ117と2次元スキャナ107を用いることで、2次元領域または3次元領域を走査して、当該領域の経時変化情報を取得することができ、取得した経時変化量を各ピクセルの輝度値に持つ2次元または3次元の画像として出力することもできる。
なお、信号光を集光して測定対象物115中にビームスポット140を形成するレンズ113の開口数は0.3が望ましい。また、レンズ113の開口数を0.4以上と大きくした場合、高いZ方向分解能が得られる。また、レンズ113の開口数を0.3〜0.4とした場合、レンズの焦点深度を深く取ることができるため、測定対象物115中の測定可能な深さの範囲を広げることができる。
また、光源101には、出射されるレーザ光のコヒーレンス長が、レンズ113の光軸方向の走査により発生する信号光の光路長変化よりも長いレーザ光源を用いる。こうすると、レンズ113を光軸方向に走査した場合に信号光と参照光とで光路長差が発生しても、干渉振幅の低下を抑制することができる。そのため、レンズ113をz方向に駆動することでビームスポット140の位置をz方向に移動することが可能となり、参照ミラー119を駆動する方式に比べて簡素でコンパクトな装置を実現できる。
ビームスポット140の形状は、円形、楕円形、線状、矩形などでよい。円形のビームスポット140を用いる場合は、通常の光学系構成を用いることができるため、光計測装置1の装置構成を簡素に構築できる。線状または矩形のビームスポットは、シリンドリカルレンズ等を用いて実現でき、ビームスポット140中の信号光強度が、x方向についてほぼ変化しないため、走査時に安定した信号が得やすい。
また、ビームスポット140のx方向の大きさは、フォトダイオードアレイ148、149、150、151上に光学系によって結ばれた像において、x方向に対応する方向の大きさが、それぞれ少なくとも二つ以上の光検出素子を含む大きさである。すなわち、光学系の倍率をM、各フォトダイオードアレイにおいて検出に使用する光検出素子のうち最も離れた素子間の距離をLmax、ビームスポット140のx方向の大きさをDとして、D≧Lmax/Mである。
また、ビームスポット140のy方向の大きさは、x方向の大きさより小さくてよい。望ましくは、y方向の大きさは、フォトダイオードアレイ148、149、150、151上に光学系によって結ばれた像において、y方向に対応する方向の大きさが、光検出素子の受光面に収まる大きさである。すなわち、光学系の倍率をM、光検出素子のy方向に対応する方向の幅をL、ビームスポット140のy方向の大きさをDとして、D≦L/Mである。この場合、信号光の強度に関する情報はあますところなく検出される信号に寄与するため、SN比の高い信号が得られる。
このような楕円形のビームスポット140は、断面形状が楕円形のビームとして信号光をレンズ113に入射することで得られる。レンズ113に入射するビームの断面形状はy方向がx方向より長い楕円形であれば、集光時の開口数はy方向がx方向より大きくなり、ビームスポット140のxy平面上での形状はx方向がy方向より長い楕円形となる。信号光の楕円ビームのy方向の径およびx方向の径を変更することで、ビームスポット140の楕円形のx方向の径およびy方向の径を変更することもできる。楕円ビーム形状の調整は、信号光の光路に挿入されたビーム整形プリズム103によって可能となる。
また、光源101として半導体レーザなど、楕円形ビームを出力する素子を用いれば、ビーム整形プリズム103を省略することも可能である。また、この方式によって楕円形のビームスポット140を形成した場合、ビームスポット140のx方向を大きくしても、ビームスポットのz方向へのデフォーカスを抑制することができ、ビームスポットを大きくすることによって生じる測定時の空間分解能の劣化を最低限に抑えることができる。
測定対象物115に入射して反射された信号光は、理想的には入射時の信号光と同じ径を持つビームになるが、実際には測定対象物115の光学的な不均一性などにより、入射時より大きな径のビームとなる可能性がある。参照光のビーム径を信号光のビーム径より大きくしておくことで、このような場合にも反射された信号光の全成分が干渉および信号の生成に寄与するようにできる。その結果、信号光量の増加によるSN比向上と実効開口数の増大による分解能向上が達成される。
<実施例1の変形例>
図5は、上で述べたビーム径を拡大する参照光学系500の構成を示す模式図である。図5において、上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。光源101から出射されたレーザ光は、偏光ビームスプリッタ501でs偏光の信号光とp偏光の参照光とに二分岐される。参照光は、二枚のレンズ502、503からなるビームエクスパンダ506によってビーム径が拡大され、ミラー504、505で反射されて向きを変え、λ/2板507によってp偏光からs偏光へ変換され、偏光ビームスプリッタ106へ入射する。信号光は偏光ビームスプリッタ106を透過した後は、図1と同様の光学系を経て戻り、偏光ビームスプリッタ106にて参照光と合波され、合成光を生じる。以降の動作は図1と同様であるので説明を省略する。
<実施例2>
図6は、実施例2に係る光計測装置2の基本的な構成例を示す図である。図6において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。
実施例2の光計測装置2は、光源101から出射されたレーザ光が、信号光と参照光とに二分岐され、再び合波されることにより合成光が生成されるまでの構成は実施例1と同様である。実施例2の光計測装置2では、複数の光検出素子が一列に並んだフォトダイオードアレイ607を用いて干渉光の強度に比例した電流を出力する点が実施例1の光計測装置1とは異なる。
実施例2の光計測装置2では、生成された合成光は、まず回折格子602によって±1次の回折光に分岐され、第1の分岐合成光と第2の分岐合成光とが生成される。これらの合成光は、第1の分岐合成光のs偏光成分およびp偏光成分の位相差と、第2の分岐合成光のs偏光成分およびp偏光成分の位相差が90度異なるように配置された位相板603を通過する。
その後、第1の分岐合成光および第2の分岐合成光は、xz平面に対して約22.5度に設定されたλ/2板604にて偏光方向が回転され、ウォラストンプリズム605によって偏光分離されることにより、互いに干渉の位相がほぼ90度ずつ異なる四つの干渉光が生成される。これらの干渉光は集光レンズ606によって集光され、フォトダイオードアレイ607上のそれぞれ複数の光検出素子からなる四つの領域608、609、610、611にビームスポット140の像を結ぶ。その結果、干渉光のそれぞれは各光検出素子により電流に変換され、位相関係が180度異なる干渉光に対応する領域からの電流の対が差動検出回路134、135によって差動検出される。
検出信号は信号処理部136で演算され、位相に依存しない、信号光の振幅の絶対値に比例した信号が得られる。干渉光学系601の機能は実施例1の干渉光学系132と同様であるため、ここでは説明を省略する。以上のように、干渉位相の異なる四つの干渉光のうち複数を、1つのフォトダイオードアレイ607で受光して検出する構成とすることにより、部品点数を少なくすることができる。
つまり、実施例2の光計測装置2は、実施例1の光計測装置1に比べて干渉光学系の部品点数が少なく小型であるため、実施例1の光計測装置1よりも装置全体が小さくなる。
<実施例3>
図7は、実施例3の光計測装置3の構成を示す模式図である。図7において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向としている。なお、図2に示した部材と同じ部材には同じ符号を付し、説明を省略する。
実施例3の光計測装置3は、実施例1のOCT装置とは種類が異なり、低コヒーレンス光源を用いるタイプのOCT装置に本開示の技術を適用したものである。SLD(Super Luminescence Diode)等の低コヒーレンス光源である光源701から出射された光は、コリメートレンズ702によって平行光に変換され、ビーム整形プリズム703によってビーム断面形状をy方向がx方向より長い楕円形に整形され、ビームスプリッタ706で信号光と参照光とに二分岐される。
信号光は、レンズ713で集光され、試料ステージ739に保持された測定対象物115上の集光位置に楕円形のビームスポット740を形成する。ここで、レンズ713に入射するビームの断面形状はy方向がx方向より長い楕円形であるため、集光時の開口数はy方向がx方向より大きくなり、ビームスポット740のxy平面上での形状はx方向がy方向より長い楕円形となる。
測定対象物715で反射または拡散された信号光は、レンズ713でビームにされてビームスプリッタ706に戻る。参照光はミラー719で反射されて同じくビームスプリッタ706に戻り、信号光と合波されて干渉し、合成光を生成する。合成光は集光レンズ722で集光され、フォトダイオードアレイ724上にビームスポット740の像753を結ぶ。像753はフォトダイオードアレイ724の複数の光検出素子748で検出され、検出された複数の信号737は信号処理部736に送られる。
実施例3の光計測装置3では、低コヒーレンス光源を用い、信号光に含まれる成分のうち参照光と光路長が一致する成分のみが干渉して信号737を与えるため、測定対象物715の特定のz位置を測定点とした情報を取得できる。光計測装置3は、測定時に制御部716によりアクチュエータ760を駆動してミラー719を走査することにより、測定点のz走査を行う。また、光計測装置3は、制御部716によって制御された2次元スキャナ759によってxy走査を行う。上記の操作を組み合わせて測定対象物715の2次元像や3次元像を取得できる。
実施例3の光計測装置3では、測定時に2次元スキャナ759によってx方向の走査を行い、実施例1と同様に複数の光検出素子からの信号を比較することで、x方向の走査の走査周期より短い時間分解能で経時変化情報を取得することができる。また、実施例3の光計測装置3は、実施例1の光計測装置1と比較してより少ない部品点数で実施例1と同様の機能を達成でき、より小型の装置を提供することができる。
<実施例4>
図8は、実施例4の光計測装置4の構成を示す模式図である。図8において、図の上下方向をz方向、左右方向をx方向、紙面に垂直な方向をy方向とする。なお、図2に示した部材と同じ部材には同じ符号を付し、説明を省略する。
図8に示されているように、実施例4の光計測装置4は、光観察ユニット801と光検出ユニット804とが偏波保持光ファイババンドル803によって接続されている点が実施例1の光計測装置1とは異なる。偏波保持光ファイババンドル803は、光観察ユニット801のファイバ接続部807と、光検出ユニット804のファイバ接続部808に着脱自在に固定されている。
実施例4の光計測装置4は、光源101から出射されたレーザ光が二分岐され、再び合波されることにより合成光が生成されるまでの構成および機能が実施例1と同様である。生成された合成光は、集光レンズ802によって偏波保持光ファイババンドル803の入射端で像809を結び、偏波保持光ファイババンドル803に結合される。合成光の像809の空間分布情報は、偏波保持光ファイババンドル803によって光検出ユニット804へ伝送され、偏波保持光ファイババンドル803の出射端に像810として提示される。像810から発せられた合成光はコリメートレンズ805によって平行光に変換された後、干渉光学系132へ入射する。その後の構成および機能は実施例1と同じであるため説明を省略する。
上記のとおり、実施例4の光計測装置4では、光検出ユニット804と光観察ユニット801とが偏波保持ファイババンドル803によって接続されている。そのため、人体などの大きな測定対象を測定する場合に、光観察ユニット801だけを測定対象115に近づけることで測定が容易になる。また、偏波保持光ファイババンドル803は容易に着脱可能である。そのため、例えば光検出ユニット804が故障した際には光検出ユニット804だけを交換することが可能であり、装置全体を交換する必要がない。したがって、光計測装置4のランニングコストが減少する。
<実施例5>
図9は、測定対象物上のビームスポット940、957、958の移動の様子を示す模式図である。図1に示した部材と同じ要素には同じ符号を付し、説明を省略する。
実施例5の光計測装置は、実施例1の光計測装置1と同じ部材構成で実現されるが、ビーム整形プリズム103の設置角度を90度回転させて用いる点が実施例1とは異なる。この場合、レンズ113に入射するビームの断面形状はx方向がy方向より長い楕円形となる。そのため、集光時の開口数はx方向がy方向より大きくなり、図9に示されているように測定対象物115中でのビームスポット940のxy平面上での形状はy方向がx方向より長い楕円形となる。
ビームスポット940は測定対象物115の2次元領域を走査し、測定対象物115の2次元像(xy像)を取得する。走査方向152に一定の走査速さv、走査周期Tで繰り返し走査しつつ、走査方向152の折り返し位置901に到達すると、副走査方向952、ここではy方向にビームスポット940を走査線幅δyだけ移動させる。この結果、ビームスポット940は軌跡902をたどる。軌跡902の実線部分は測定しながら走査する区間、破線は測定せずに走査する区間を表す。時刻tに斜線部の位置にあるビームスポット940は、時刻t+Tに予定位置957、時刻t+2Tには予定位置958に位置する。このように、実施例5の走査方法では、走査周期T毎に同じx位置(ここではx)に戻る。
図9に示された例では、走査線幅δyと四つの測定領域903の間隔δx’とが一致するように走査している。この場合、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、時刻t+2Tには測定領域のAが、それぞれ測定することとなり、時間分解能が走査周期Tと等しい経時変化情報を取得できる。さらにこの場合、例えば、時刻tの測定領域のAの測定結果と、時刻t+2Tの測定領域のAの測定結果を比較することで、走査周期Tのn倍に等しい経時変化情報を取得することもできる。
なお、走査線幅δyと四つの測定領域903の間隔δx’が、δy=δx’/mであるとき、時刻tに測定領域のAが測定した位置を測定領域のAが再び測定する時刻は、時刻t+mTとなり、時間分解能はmTとなる。
走査線幅δyと四つの測定領域903の間隔δx’が、δy=δx’×m(=2)である場合、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、時刻tに測定領域のAが測定した位置は、時刻t+Tには測定領域のAが、それぞれ測定することとなり、時間分解能はTであるが、δyがm倍と大きくできるため、所定の面積を走査して測定するのに要する時間を短くできる。
以上のように、走査方向152と垂直な方向に長い径を持つビームスポット940と、同じく走査方向152と垂直な方向に対応する方向に設けられた複数の検出器を用いることで、走査周期Tより長い時間分解能での情報を取得することができる。
また、楕円の長軸方向を走査方向152に対して傾ける(例えば45度)ように配置することで、走査周期Tの整数倍以外の時間分解能を得ることも可能である。
<実施例5の変形例>
図10は、測定領域がx方向およびy方向の両方向に複数の測定領域が定義された走査方法を示す図である。図10には、ビームスポット1040のx方向およびy方向の両方に対応する方向にそれぞれ複数の検出器を設けた場合の測定領域1003(A11、A12、A13、A14、A21、A22、A23、A24)が示されている。上で説明した走査と同様の走査を実施することによって、この例では、走査周期Tより短い時間分解能と長い時間分解能の両方の経時変化情報を同時に取得することができる。
101、701 光源
102、702 コリメートレンズ
103、703 ビーム整形プリズム
104 NDフィルタ
105 λ/2板
106、706 偏光ビームスプリッタ
107 2次元スキャナ
108、109 ガルバノミラー
110、111 レンズ
112、118 λ/4板
113、713 レンズ
114 カバーガラス
115、715 測定対象物
116、716 制御部
117 レンズアクチュエータ
119、719 ミラー
120 ハーフビームスプリッタ
121、127 λ/2板
122、128、722 集光レンズ
123、129 偏光ビームスプリッタ
124、125、130、131、724 フォトダイオードアレイ
126 λ/4板
132 干渉光学系
134、135 差動検出回路
136、736 信号処理部
137、138、737 信号
139、739 試料ステージ
140、740、940、1040 ビームスポット
141 信号光
142 反射された信号光
143、743 参照光
144、145、146、147 干渉光
148、149、150、151、748 光検出素子
152 走査方向
153、154、155、156、753 像
157、158、957、958、1057、1058 将来のビームスポットの予定位置
159、759 走査部
190、790 光源部
191、791 参照光学系
301、302 光検出素子の並ぶ方向
303、903、1003 測定領域
304、305、306、307 差動検出回路
401、302、403、404 測定領域位置のトレース
500 ビーム径を拡大する参照光学系
501 偏光ビームスプリッタ
502、503 レンズ
504、505 ミラー
506 ビームエクスパンダ
507 λ/2板
601 干渉光学系
602 回折格子
603 位相板
604 λ/2板
605 ウォラストンプリズム
606 集光レンズ
607 フォトダイオードアレイ
608、609、610、611 複数の光検出素子からなる領域
760 アクチュエータ
801 光観察ユニット
802 集光レンズ
803 偏波保持光ファイババンドル
804 光検出ユニット
805 コリメートレンズ
807 ファイバ接続部
809、810 像

Claims (14)

  1. 光源と、
    前記光源から出射された光を参照光と信号光とに分岐する光分岐部と、
    前記信号光を照射して測定対象物を走査する走査部と、
    前記測定対象物によって反射または散乱された信号光と前記参照光とを合波し、干渉光を生成する光学系と、
    前記光学系で生成された前記干渉光を受光して電気信号に変換する光検出部と、
    前記光検出部によって変換された前記電気信号に基づいて前記信号光の強度を算出する信号処理部と、
    を備える光計測装置であって、
    前記光検出部は、前記信号光の照射領域と重なる複数の測定領域のそれぞれと対応づけられた複数の光検出素子によって前記信号光を検出し、
    前記信号処理部は、前記複数の光検出素子のそれぞれが検出した前記信号光の強度を算出し、
    前記走査部は、前記測定対象物に照射する前記信号光の前記照射領域を、第1の時点における前記複数の測定領域の一部が第2の時点における前記複数の測定領域の別の一部と重なるように移動させて前記測定対象物を走査する、
    光計測装置。
  2. 請求項1に記載の光計測装置において、
    前記走査部は、前記複数の測定領域のそれぞれが配列される方向に沿って前記測定対象物を走査し、
    前記複数の光学素子のそれぞれは、前記複数の測定領域と光学的に共役の位置関係で配列されている、
    光計測装置。
  3. 請求項1に記載の光計測装置において、
    前記信号処理部は、前記第1の時点における前記複数の測定領域の一部に対応する光検出素子で検出した前記信号光の強度と前記第2の時点における前記複数の測定領域の別の一部に対応する光検出素子で検出した前記信号光の強度とを前記測定対象物の同一箇所の時系列情報として処理する、
    光計測装置。
  4. 請求項3に記載の光計測装置において、
    前記第1の時点と前記第2の時点との時間間隔は、前記複数の測定領域の一部と前記複数の測定領域の別の一部の間隔を、前記走査部が前記照射領域を移動させる速度で除した値である、
    光計測装置。
  5. 請求項2に記載の光計測装置において、
    前記走査部は、前記測定対象物を第1の方向に走査する第1の走査部と、前記測定対象物を第1の方向とは異なる第2の方向に走査する第2の走査部と、を備え、
    前記第1の走査部は、前記第2の走査部よりも高速に前記照射領域を移動させる、
    光計測装置。
  6. 請求項1に記載の光計測装置において、
    前記照射領域の形状は、前記測定対象物を走査する走査方向の径が、前記走査方向に垂直な方向の径よりも大きい形状である、
    光計測装置。
  7. 請求項6に記載の光計測装置において、
    前記走査部における光路上の少なくとも一点において、前記信号光のビームの形状は、前記走査方向の径が前記走査方向に垂直な方向の径よりも小さい、
    光計測装置。
  8. 請求項1に記載の光計測装置において、
    前記照射領域は前記複数の測定領域を含む、
    光計測装置。
  9. 請求項1に記載の光計測装置において、
    前記信号処理部は、前記複数の測定領域のそれぞれに対応する前記信号光の強度をキャリブレーションして算出する、
    光計測装置。
  10. 請求項1に記載の光計測装置において、
    複数の前記光検出部と、
    前記干渉光を互いに干渉位相が異なる三つ以上の干渉光に分光する干渉光学系と、
    を備え、
    前記三つ以上の干渉光の前記複数の光検出部における前記信号光と前記参照光との干渉位相の位相差は、互いに略90度の整数倍であり、前記位相差が略180度異なる干渉光に対応する出力電流の対が電流差動検出を行う差動検出回路に入力される、
    光計測装置。
  11. 請求項10に記載の光計測装置において、
    前記光検出部の個数は四個であり、
    前記干渉光学系は、前記干渉光を前記干渉位相が異なる四つの干渉光に分光し、
    二組の前記干渉位相の位相差が略180度である干渉光の対のそれぞれが前記差動検出回路に入力される、
    光計測装置。
  12. 請求項1に記載の光計測装置において、
    光ファイババンドルをさらに備え、
    前記干渉光を生成する光学系は、合成した前記干渉光を前記光ファイババンドルの一端が接続される光ファイバ接続部に入射させる、
    光計測装置。
  13. 請求項1に記載の光計測装置において、
    前記光検出部は、三つ以上の前記光検出素子によって前記信号光を検出する、
    光計測装置。
  14. 光干渉断層像を取得する光計測装置を用いる試料観察方法であって、
    測定対象物に信号光を照射し、反射または散乱された信号光と参照光とを合成して干渉光を生成するステップと、
    前記信号光の照射領域と重なる複数の測定領域のそれぞれに対応した複数の光検出素子によって第1の時点における前記干渉光の信号強度を検出するステップと、
    前記第1の時点における前記複数の測定領域の一部と第2の時点における前記複数の測定領域の別の一部とが重なるように前記照射領域を移動させるステップと、
    前記複数の測定領域のそれぞれに対応した前記複数の光検出素子によって前記第2の時点における前記干渉光の信号強度を検出するステップと、
    を含む試料観察方法。
JP2020530835A 2018-07-20 2018-07-20 光計測装置および試料観察方法 Active JP7175982B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027268 WO2020017017A1 (ja) 2018-07-20 2018-07-20 光計測装置および試料観察方法

Publications (2)

Publication Number Publication Date
JPWO2020017017A1 true JPWO2020017017A1 (ja) 2021-07-01
JP7175982B2 JP7175982B2 (ja) 2022-11-21

Family

ID=69163671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530835A Active JP7175982B2 (ja) 2018-07-20 2018-07-20 光計測装置および試料観察方法

Country Status (2)

Country Link
JP (1) JP7175982B2 (ja)
WO (1) WO2020017017A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324244A (zh) * 2021-12-31 2022-04-12 浙江大学嘉兴研究院 基于弱相干干涉的生物膜胶原束取向光学检测方法和***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3103894A1 (fr) 2019-12-03 2021-06-04 Damae Medical Dispositifs et procédés de microscopie à balayage linéaire
JP7134509B2 (ja) * 2021-01-27 2022-09-12 シンクランド株式会社 光干渉断層撮影システム
CN112587086A (zh) * 2021-03-04 2021-04-02 季华实验室 一种双模式偏振光学相干成像***及其成像方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157710A (ja) * 2006-12-22 2008-07-10 Naohiro Tanno 光コヒーレンストモグラフィー装置
WO2008081653A1 (ja) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha 光プローブ
JP2017140302A (ja) * 2016-02-12 2017-08-17 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339259B1 (ko) * 2000-03-16 2002-06-01 양연식 안구 망막의 3차원 실시간 영상화 장치
JP4522724B2 (ja) * 2004-03-16 2010-08-11 株式会社トプコン 光画像計測装置
US7460248B2 (en) * 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
US20140276684A1 (en) * 2013-03-15 2014-09-18 Volcano Corporation Atherectomy methods using coregistered sets of data
JP6227449B2 (ja) * 2014-03-14 2017-11-08 株式会社日立エルジーデータストレージ 光断層観察装置
JP6586615B2 (ja) * 2015-01-30 2019-10-09 株式会社トーメーコーポレーション 眼科装置及びその制御方法
JP6606846B2 (ja) * 2015-03-31 2019-11-20 株式会社ニデック Oct信号処理装置、およびoct信号処理プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157710A (ja) * 2006-12-22 2008-07-10 Naohiro Tanno 光コヒーレンストモグラフィー装置
WO2008081653A1 (ja) * 2006-12-28 2008-07-10 Terumo Kabushiki Kaisha 光プローブ
JP2017140302A (ja) * 2016-02-12 2017-08-17 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324244A (zh) * 2021-12-31 2022-04-12 浙江大学嘉兴研究院 基于弱相干干涉的生物膜胶原束取向光学检测方法和***
CN114324244B (zh) * 2021-12-31 2023-11-07 浙江大学嘉兴研究院 基于弱相干干涉的生物膜胶原束取向光学检测方法和***

Also Published As

Publication number Publication date
JP7175982B2 (ja) 2022-11-21
WO2020017017A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
US8204300B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
US7488070B2 (en) Optical measuring system and optical measuring method
US9658054B2 (en) Optical measuring apparatus
JP7175982B2 (ja) 光計測装置および試料観察方法
RU2532992C2 (ru) Устройство для оптической томографии (варианты)
JP5637730B2 (ja) 撮像装置及びその撮像方法
US9441950B2 (en) Optical measurement apparatus and optical measurement method
US9625380B2 (en) Optical coherence tomography with homodyne-phase diversity detection
JP4852651B2 (ja) 多重化スペクトル干渉光コヒーレンストモグラフィー
JP2005351839A (ja) 断層映像装置
JP6887350B2 (ja) 光画像計測装置
WO2019131298A1 (ja) 光ビーム制御器およびこれを用いた光干渉断層撮像器
JP6720051B2 (ja) 光画像計測装置、光画像計測方法
JP5828811B2 (ja) 撮像装置及びその制御方法
JP3934131B2 (ja) 同軸型空間光干渉断層画像計測装置
JP2020086204A (ja) 光画像計測装置、光画像計測方法
US20110242649A1 (en) Wavefront measurement method, wavefront measurement apparatus, and microscope
JP2010117372A (ja) 多重化スペクトル干渉光コヒーレンストモグラフィー
JP5454769B2 (ja) 分光立体形状測定装置及び分光立体形状測定方法
JP2014074620A (ja) 計測装置及び計測方法
JP2763271B2 (ja) 透過光測定装置
JP7201007B2 (ja) 光干渉断層撮像装置、および光干渉断層画像の生成方法
JP2018185201A (ja) 光画像計測装置
JP2011127966A (ja) 干渉測定装置及び干渉測定方法
JP2014206505A (ja) 干渉計を用いた計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150