JPWO2020009248A1 - Composition for suppressing fibrosis of eye tissue - Google Patents

Composition for suppressing fibrosis of eye tissue Download PDF

Info

Publication number
JPWO2020009248A1
JPWO2020009248A1 JP2020529077A JP2020529077A JPWO2020009248A1 JP WO2020009248 A1 JPWO2020009248 A1 JP WO2020009248A1 JP 2020529077 A JP2020529077 A JP 2020529077A JP 2020529077 A JP2020529077 A JP 2020529077A JP WO2020009248 A1 JPWO2020009248 A1 JP WO2020009248A1
Authority
JP
Japan
Prior art keywords
tissue
fibrosis
pharmaceutical composition
eye
obp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020529077A
Other languages
Japanese (ja)
Other versions
JPWO2020009248A5 (en
Inventor
盛夫 上野
盛夫 上野
千恵 外園
千恵 外園
羽室 淳爾
淳爾 羽室
木下 茂
茂 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Oncolys Biopharma Inc
Original Assignee
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Oncolys Biopharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, Oncolys Biopharma Inc filed Critical KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Publication of JPWO2020009248A1 publication Critical patent/JPWO2020009248A1/en
Publication of JPWO2020009248A5 publication Critical patent/JPWO2020009248A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Abstract

複数の眼組織の線維化を抑制する物質を含むことを特徴とする医薬組成物。A pharmaceutical composition comprising a substance that suppresses fibrosis of a plurality of eye tissues.

Description

本発明は、眼組織の線維化抑制用組成物に関する。 The present invention relates to a composition for suppressing fibrosis of eye tissue.

肺、肝臓等、生命活動に重要な臓器が損傷を受け、修復過程でI型コラーゲンなどの膠原繊維が集積した場合に、当該臓器が弾性を失って硬化し正常機能を表現できない機能不全状態になる線維症は、肺、心臓、肝臓、腎臓、皮膚等々、重要な臓器で広汎に起こる疾患である。実質臓器(肝,心,肺,腎,消化管など)にみられる線維症は、放置すればいずれも死の機転をとる重篤な慢性疾患である。生命予後の改善が求められる疾病でありながら、研究は著しく立ち遅れ、有効な医薬品は皆無である。これまでの臓器線維化に関する研究は、組織増殖因子TGFβの作用を中心に、免疫機能とコラーゲン産生能の獲得という点に主に注がれてきた。 When organs important for vital activities such as lungs and liver are damaged and collagen fibers such as type I collagen accumulate during the repair process, the organs lose their elasticity and become hardened, resulting in a dysfunctional state in which normal function cannot be expressed. Collagen fibrosis is a disease that occurs widely in important organs such as lungs, heart, liver, kidneys, and skin. Fibrosis in parenchymal organs (liver, heart, lungs, kidneys, gastrointestinal tract, etc.) is a serious chronic disease that causes death if left untreated. Despite being a disease that requires improved prognosis, research has been significantly delayed and no effective drug is available. Research on organ fibrosis so far has been focused mainly on the acquisition of immune function and collagen-producing ability, focusing on the action of the tissue growth factor TGFβ.

組織の線維化は、コラーゲンを中心とする細胞外マトリックス(ECM)が組織に過剰に産生・蓄積されることにより生じる。組織は、酸化ストレス、低酸素状態、炎症、アポトーシスなどの細胞への多様なストレス刺激により当該細胞が損傷を受けた場合、損傷組織を細胞外マトリックスで置換して修復を図るが、損傷が重度の場合や、慢性炎症などストレス刺激が長期にわたり慢性化した場合には、細胞外マトリックスの蓄積が過剰となり、組織の本来機能が生理的均衡維持のための閾値を下回る病的状態を招来する。 Tissue fibrosis occurs when the extracellular matrix (ECM) centered on collagen is excessively produced and accumulated in the tissue. When a cell is damaged by various stress stimuli such as oxidative stress, hypoxia, inflammation, and apoptosis, the damaged tissue is replaced with extracellular matrix to repair it, but the damage is severe. In this case, or when stress stimuli such as chronic inflammation become chronic for a long period of time, the accumulation of extracellular matrix becomes excessive, leading to a pathological state in which the original function of the tissue falls below the threshold for maintaining physiological balance.

線維化には筋線維芽細胞等のコラーゲン産生細胞が病態に関与していると考えられる。しかしながら、多種にわたる細胞、複雑な細胞間相互作用の関与が病態の実態と推定される。その病態の分子実態は未だ明らかでなく、創薬における大きな隘路となっている。例えば、線維化期に患部に集まるマクロファージ(Mps)が線維症の発症に関与していることを、発明者の一人は2002年に報告し、Mpsを標的とした薬剤開発により、これまで有効な治療法のなかった線維症に対する創薬が可能になることを示唆している。また発明者らは、線維症の発症に係るMpsの機能抑制の方法と組織線維化と密接に関連する慢性炎症を抑制する技術を長年研究している。 Collagen-producing cells such as myofibroblasts are considered to be involved in the pathophysiology of fibrosis. However, the involvement of various cells and complex cell-cell interactions is presumed to be the actual condition of the pathological condition. The molecular reality of the pathology is still unclear, and it is a major bottleneck in drug discovery. For example, one of the inventors reported in 2002 that macrophages (Mps) that gather in the affected area during the fibrosis stage are involved in the development of fibrosis, and the development of drugs targeting Mps has been effective so far. It suggests that drug discovery will be possible for fibrosis for which there was no cure. In addition, the inventors have been studying a method for suppressing the function of Mps related to the onset of fibrosis and a technique for suppressing chronic inflammation closely related to tissue fibrosis for many years.

炎症が持続し、炎症部位の線維化(組織リモデリング)、血管の新生、特定の免疫細胞の集積などが顕著な病態が「慢性炎症」とされる。原因も病態も多様な慢性炎症であり、個体に対する内的・外的環境ストレスは、免疫系や内分泌系などを介する生体防御としての炎症を惹起する。炎症が持続または繰り返すことで、自覚症状を伴わない未病状態を経て、細胞・組織に機能障害を伴う異常な慢性炎症としての適応状態が定着し、本慢性炎症状態の持続により、組織線維化が起こり、臓器の機能異常が不可逆化する。このような疾患の形成過程を組織・臓器レベルで考えると組織構成細胞と浸潤免疫細胞や活性状態の異なる不均質で多様な細胞間の相互作用の変化、非生理的な代謝応答、細胞外基質・液性因子ネットワークなどの乱れなど多様な要素の関与により組織恒常性の破綻が起きる。 "Chronic inflammation" is a condition in which inflammation persists and fibrosis of the inflamed site (tissue remodeling), angiogenesis, and accumulation of specific immune cells are prominent. Chronic inflammation has various causes and pathological conditions, and internal and external environmental stress on an individual causes inflammation as a biological defense via the immune system and endocrine system. When inflammation continues or repeats, it goes through a non-diseased state without subjective symptoms, and then the adaptive state as abnormal chronic inflammation with dysfunction in cells and tissues is established, and due to the continuation of this chronic inflammatory state, tissue fibrosis Occurs, and the dysfunction of the organ becomes irreversible. Considering the formation process of such diseases at the tissue / organ level, changes in interactions between tissue-constituting cells and infiltrating immune cells and heterogeneous and diverse cells with different active states, non-physiological metabolic responses, and extracellular matrix・ Disruption of tissue homeostasis occurs due to the involvement of various factors such as disturbance of the humoral factor network.

眼は免疫学的に特別な機能的閉鎖臓器であり、「免疫特権部位(immune privileged site)」といわれる。免疫特権は、そもそも生体が備えた自己防御機構である。免疫特権は、通常の免疫炎症反応が起こっては、かえって組織障害・機能障害が強くなるような臓器において、その機能を守るために存在する恒常性維持機構と解釈できる。しかし一旦限度を超えた炎症が起こると、免疫特権機構は失われ眼炎症は増悪する。損傷を受けた眼組織は、その機能回復が困難である。 The eye is an immunologically special functional closed organ and is referred to as the "immune privileged site". Immune privilege is a self-defense mechanism that living organisms have in the first place. Immune privilege can be interpreted as a homeostatic mechanism that exists to protect the function of an organ in which tissue damage / dysfunction becomes stronger when a normal immunoinflammatory reaction occurs. However, once inflammation occurs beyond the limit, the immune privilege mechanism is lost and eye inflammation is exacerbated. Damaged eye tissue has difficulty recovering its function.

免疫反応は、大きくTリンパ球を中心とした「獲得免疫」と、より早期に反応する「自然免疫」に分類される。自然免疫細胞群は様々な眼疾患の重要な起炎症性細胞である。近年、いわゆる「自然免疫」を担うMps・NKT細胞・γδ型T細胞などが眼の恒常性・透明性維持に不可欠な存在であることが認知されつつある。 Immune responses are broadly classified into "acquired immunity" centered on T lymphocytes and "innate immunity" that responds earlier. The innate immune cell population is an important pro-inflammatory cell for various eye diseases. In recent years, it has been recognized that Mps, NKT cells, γδ type T cells, etc., which are responsible for so-called “innate immunity”, are indispensable for maintaining eye homeostasis and transparency.

加齢黄斑変性(AMD)に代表される実際の脈絡膜新生血管病の臨床病態のうち、脈絡膜血管新生(CNV)に関する研究はその形成機序に関するものが多いが、実際の臨床病態ではCNVからの出血後に生じる黄斑部の瘢痕治癒過程に関わる炎症反応が重要である。近年CNV形成過程を抑制するものとしてベバシズマブ等の抗VEGF抗体硝子体腔内投与、またすでに形成されたCNVに対してはベルテポルフィンを用いた光線力学的療法等の新しい治療が始まり、一定の治療効果が認められている。しかし、新治療の著効時期は発症前期・発症期にほぼ限定され、実用性の点からは不十分なものである。 Among the actual clinical pathologies of choroidal neovascularization represented by age-related macular degeneration (AMD), many studies on choroidal neovascularization (CNV) relate to the formation mechanism, but in the actual clinical pathology, CNV is used. The inflammatory response involved in the macular scar healing process that occurs after bleeding is important. In recent years, new treatments such as intracavitary administration of anti-VEGF antibody such as bevacizumab to suppress the CNV formation process, and photodynamic therapy using verteporfin for already formed CNV have started, and a certain therapeutic effect has been achieved. Is recognized. However, the effective period of the new treatment is almost limited to the early onset stage and the onset stage, which is insufficient from the viewpoint of practicality.

加齢黄斑変性(AMD)は加齢や酸化ストレスなどの環境因子により黄斑部の網膜色素上皮細胞(RPE)が変性し、脈絡膜血管新生(CNV)を起こす疾患である。高齢者の重篤な視力障害疾患の1つとなっている。現在、AMDに対する治療の主流は、上述のCNVを標的にした抗VEGF抗体による血管除去療法である。 Age-related macular degeneration (AMD) is a disease in which retinal pigment epithelial cells (RPE) in the macula are degenerated by environmental factors such as aging and oxidative stress, causing choroidal neovascularization (CNV). It is one of the serious visual impairment diseases of the elderly. Currently, the mainstream of treatment for AMD is the above-mentioned CNV-targeted anti-VEGF antibody devascularization therapy.

脈絡膜新生血管病の臨床病態は、「多くの患者は黄斑部出血後視力が低下し初めて病気に気がつくのであるが、すでに視力回復という観点からは回復が難しい時期にさしかかっており、すでに形成された組織瘢痕化は回復しない」ということになる(非特許文献3)。脈絡膜新生血管病の治療ターゲットとして、CNVからの出血・滲出後に生じる黄斑部の機能障害(瘢痕治癒)過程も重要と考えられる。CNVの形成病態に加えて、CNVからの血液成分の出血・滲出により二次的に形成される網脈絡膜瘢痕病態の抑制も重要である。 The clinical condition of choroidal neovascularization is that "many patients only notice the disease after bleeding in the macula, but it is already difficult to recover from the viewpoint of visual recovery, and it has already been formed. Tissue scarring does not recover "(Non-Patent Document 3). As a therapeutic target for choroidal neovascularization, the process of dysfunction (scar healing) of the yellow spot that occurs after bleeding / exudation from CNV is also considered to be important. In addition to the pathological condition of CNV formation, it is also important to suppress the pathological condition of retinochoroidal scar that is secondarily formed by bleeding and exudation of blood components from CNV.

現在広範に用いられている抗VEGF療法には様々な問題点が存在する。(1)治療に抵抗を示す無反応症例や、経過途中に効果がなくなる耐性症例が多くの割合で出現する。(2)抗VEGF療法は、病態進行抑制を目的とするため視機能の改善効果は余り期待できない。(3)長期複数回投与が不可欠で合併症や副作用(眼圧上昇、視力低下、眼痛、網膜出血)の危険性がある。(4)医療費が高額となり治療を中断してしまうケースも見られる。これら多くの問題点から、抗VEGF療法に代わる新規のAMD治療法が臨床現場で強く求められている。 There are various problems with the currently widely used anti-VEGF therapy. (1) A large proportion of non-responsive cases that show resistance to treatment and resistant cases that become ineffective during the course of treatment appear. (2) Since anti-VEGF therapy aims at suppressing the progression of pathological conditions, the effect of improving visual function cannot be expected so much. (3) Long-term multiple administration is indispensable, and there is a risk of complications and side effects (increased intraocular pressure, decreased visual acuity, eye pain, retinal hemorrhage). (4) In some cases, medical expenses are high and treatment is interrupted. Due to these many problems, there is a strong demand in clinical practice for a new AMD treatment method that replaces anti-VEGF therapy.

抗VEGF抗体抵抗性の原因として、(i)CNV形成以前に起きる組織線維化との関連が指摘されている(Diegoら2013)。また、永続的な視力低下の原因としても、CNV発育のための土台として生じ、血管除去後も(ii)瘢痕組織として残存する線維性組織、また、(iii)CNVそのものが必ずしもVEGFのみにより形成されるのではなく、他の多くの血管新生因子や血管新生抑制因子の関与が挙げられる。抗VEGF療法はこの(i)〜(iii)に対し全く効果を示し得ない。 It has been pointed out that the cause of anti-VEGF antibody resistance is (i) related to tissue fibrosis that occurs before CNV formation (Diego et al. 2013). In addition, as a cause of permanent deterioration of vision, fibrotic tissue that occurs as a basis for CNV development and remains as (ii) scar tissue after removal of blood vessels, and (iii) CNV itself is not necessarily formed only by VEGF. Rather than being involved, many other angiogenic and inhibitory factors are involved. Anti-VEGF therapy cannot show any effect on these (i) to (iii).

網膜瘢痕組織においては、発明者らにより、マウス網膜下腔への活性型マクロファージの注入による局所瘢痕化の誘導が報告されている(非特許文献1)。
AMD等の脈絡膜新生血管病の臨床病態は、図38のように進行する。AMD患者網膜下増殖組織は増殖・遊走したRPEとMpsが混在しており、病態形成にはMpsとRPEが重要と考えられている。本発明者らは、MpsとRPEの共培養系で前炎症性サイトカイン産生が増強されること、C3、CFBなど補体活性化遺伝子の発現が増強され、補体活性化抑制因子CFH、CD59、Clusterinなどの発現は減弱すること、VEGF発現は増強され、血管新生抑制因子PEDF発現は減弱することを報告した(非特許文献2)。Mpsと共培養したRPEに細胞内αSMAが上昇し,網膜下注入によって、網膜下瘢痕形成に至る。本発明者は、Mps、その仲間の樹状細胞の産生する炎症性サイトカインの産生を抑制する物質を長年探求し、組織線維化に係る線維化病態増悪因子の存在下でも効果を保持する物質を見出し、本発明の端緒とした。
In retinal scar tissue, the inventors have reported the induction of local scarring by injecting active macrophages into the subretinal space of mice (Non-Patent Document 1).
The clinical pathology of choroidal neovascularization such as AMD progresses as shown in FIG. 38. The subretinal proliferative tissue of AMD patients contains a mixture of proliferated and migrated RPE and Mps, and it is considered that Mps and RPE are important for pathological condition formation. The present inventors enhanced pre-inflammatory cytokine production in a co-culture system of Mps and RPE, enhanced expression of complement activating genes such as C3 and CFB, and complement activation inhibitor CFH, CD59, It was reported that the expression of Crustin and the like was attenuated, the expression of VEGF was enhanced, and the expression of the angiogenesis inhibitor PEDF was attenuated (Non-Patent Document 2). Intracellular αSMA is elevated in RPE co-cultured with Mps, and subretinal injection leads to subretinal scar formation. The present inventor has been searching for a substance that suppresses the production of inflammatory cytokines produced by Mps and its fellow dendritic cells for many years, and has been searching for a substance that retains its effect even in the presence of a fibrotic pathological exacerbation factor related to tissue fibrosis. The heading was used as the beginning of the present invention.

本発明が対象とする今一つの重要な眼組織疾患である緑内障は、視神経に障害が起こり、視野が狭くなる等の特徴的変化を有する疾患である。抗緑内障薬によっても眼圧下降が不十分である場合、眼圧を低下させるために線維柱帯切除術(トラベクレクトミー(TLE);線維柱帯を切除し、房水を眼外に排出して眼圧を下降させる手術)を実施する。あるいは、流出路再建術では線維柱帯切開術、緑内障治療用インプラント挿入術なども実施される。緑内障手術の予後改善は重要なメディカルニーズである。 Glaucoma, another important ocular tissue disease targeted by the present invention, is a disease having characteristic changes such as damage to the optic nerve and narrowing of the visual field. Trabeculectomy (Traveculectomy (TLE); excision of trabeculectomy and drainage of aqueous humor out of the eye to reduce intraocular pressure if anti-glaucoma drugs do not reduce intraocular pressure (Surgery to reduce intraocular pressure) is performed. Alternatively, outflow tract reconstruction includes trabecular meshwork, glaucoma treatment implant insertion, and the like. Improving the prognosis of glaucoma surgery is an important medical need.

緑内障手術、例えば、線維柱帯切除術により、線維柱帯切除部から強膜弁下を通過して眼外に房水が排出され、結膜下に濾過胞が形成される。しかし、手術後に組織の炎症、癒着、瘢痕化などにより濾過胞が縮小・消失してしまうと眼圧が再び上昇し、緑内障が悪化する恐れがある。線維柱帯切除術では感染のリスクがあり、濾過胞の形成及び維持が困難である、長期間の眼圧コントロールが困難であるといった問題がある。 By glaucoma surgery, for example, trabeculectomy, aqueous humor is drained from the trabeculectomy through the subscleral flap to the outside of the eye, and filter blebs are formed under the conjunctiva. However, if the filter follicles shrink or disappear due to tissue inflammation, adhesion, scarring, etc. after surgery, the intraocular pressure may rise again and glaucoma may worsen. Trabeculectomy poses a risk of infection, difficulty in forming and maintaining filter vesicles, and difficulty in long-term intraocular pressure control.

そこで、濾過胞形成が広範囲に及び、結膜の血管性状を維持し、術後長期にわたる眼圧下降効果を有する緑内障手術が望まれる。
術後の炎症、癒着、瘢痕化を防ぐためにはマイトマイシンC(MMC)が術中に塗布される。しかしMMCの副作用により、結膜が菲薄化し、結膜から房水が漏出したり、濾過胞の感染症を引き起こすなどの問題点があった。現状のMMCを使用したトラベクレクトミーには問題点がある。過剰な創傷治癒により、濾過胞の周囲に分厚い結合組織が生じ、長期間の眼圧コントロールが困難である。さらに濾過胞の無血管化、菲薄化を生じ、前房水漏出を介した濾過胞感染のリスクが高まることが広く知られている。
Therefore, glaucoma surgery is desired, in which filtration bleb formation is widespread, the vascular properties of the conjunctiva are maintained, and the intraocular pressure is lowered for a long period of time after surgery.
Mitomycin C (MMC) is applied intraoperatively to prevent postoperative inflammation, adhesions and scarring. However, due to the side effects of MMC, there are problems such as thinning of the conjunctiva, leakage of aqueous humor from the conjunctiva, and infection of filter vesicles. There is a problem with the current trabeculectomy using MMC. Excessive wound healing creates thick connective tissue around the filter bleb, making long-term intraocular pressure control difficult. Furthermore, it is widely known that the filter vesicles become avascularized and thinned, and the risk of filter bleb infection through anterior chamber water leakage increases.

線維化を抑制するための基礎的な研究において、ヒストン脱アセチル化酵素(HDAC)阻害剤が検討されているが、実用には程遠く、大きな隘路があり開発には至っていない。眼科領域では、HDAC阻害剤SAHAを用いたウサギ濾過手術で結膜の抗線維化作用が報告されているが、投与量が本発明の化合物よりも1000倍以上の多量を要し、作用域濃度の薬剤の患部到達性などの点で、実用には程遠く開発には至っていない。実用の域に達する作用濃度で副作用の少ない化合物の見出されていないこと、薬剤特性が作用局所への作用濃度域での到達を充足していないためであり、AMDのような慢性組織炎症では、病態対象が時空間的に明確にされておらず、局所薬剤効果を発揮するための薬剤適用時期、経路の適格性が不明確で、医療ニーズとの間に大きな乖離のあるためである。また、線維化、血管新生、組織瘢痕化を網羅的に抑制する実用性のある効果は期待し得ない。また、本発明になる低分子化合物による薬理効果は、HDAC阻害活性のみでは得られないことを確認している。 Histone deacetylase (HDAC) inhibitors have been investigated in basic research for suppressing fibrosis, but they are far from practical use and have a large bottleneck and have not been developed yet. In the field of ophthalmology, the antifibrotic effect of the conjunctiva has been reported in rabbit filtration surgery using the HDAC inhibitor SAHA, but the dose is 1000 times or more higher than that of the compound of the present invention, and the concentration in the working area is high. In terms of the reachability of the drug to the affected area, it is far from practical use and has not yet been developed. This is because no compound with few side effects has been found at an action concentration that reaches a practical level, and the drug properties do not satisfy the reach of the action concentration range at the action site, and in chronic tissue inflammation such as AMD. This is because the target of the pathological condition has not been clarified spatiotemporally, the timing of drug application for exerting the local drug effect, and the eligibility of the route are unclear, and there is a large gap with medical needs. In addition, a practical effect of comprehensively suppressing fibrosis, angiogenesis, and tissue scarring cannot be expected. In addition, it has been confirmed that the pharmacological effect of the small molecule compound according to the present invention cannot be obtained only by HDAC inhibitory activity.

特許第3554707号Patent No. 3554707

Invest Ophthalmol Vis Sci 52:6089−6095 (2011)Invest Opthalmol Vis Sci 52: 6089-6095 (2011) Invest Ophthalmol Vis Sci 57:5945−5953 (2016)Invest Opthalmol Vis Sci 57: 5945-5953 (2016) 福岡醫學雜誌.99(7),pp.137−143,2008−07−25.福岡医学会Fukuoka Medical Journal. 99 (7), pp. 137-143, 2008-07-25. Fukuoka Medical Association

本発明は、眼組織の線維化抑制効果を有する物質を提供することを目的とする。
また本発明は、一つに、高眼圧症あるいは緑内障の処置方法、さらに詳しくは、効果が相乗的に向上し、副作用の低下を可能とした処置方法を提供すること、並びに、今一つの目的として、AMDの増悪病態を改善するための処置方法やAMD発症の予期される患者への処置方法を提供することを目的とする。
An object of the present invention is to provide a substance having an effect of suppressing fibrosis of eye tissue.
Another object of the present invention is to provide a treatment method for ocular hypertension or glaucoma, and more specifically, a treatment method capable of synergistically improving the effect and reducing side effects. , It is an object of the present invention to provide a treatment method for improving the exacerbation of AMD and a treatment method for a patient who is expected to develop AMD.

本発明者は、上記課題を解決するために鋭意検討を行った結果、過剰な線維化を抑制し、健常な結膜組織修復を促し、長期的な低眼圧維持効果を維持する緑内障手術技術を提供し、並びにレーザー照射動物モデルで、RPEを含む脈絡膜組織の線維化に対し極めて低濃度、投与量で有効性を示すとともに、組織線維化に係る複数の遺伝子に対し包括的に抑制効果を示し、かつ、線維化のみならず、血管新生に関与するVEGFやPDGF、更にはCollagenを架橋し瘢痕形成に関わるLOX等、組織線維化、血管新生、組織瘢痕化に係る複数の遺伝子の発現に対して抑制効果を示し、AMD患者の時空間的に多段階からなる病態に対し、網羅的に高い治療効果が期待される低分子化合物を見出し、動物モデルで有効性を確認することに成功し、本発明を完成するに至った。独自のAMD分子病態理論に依拠した新規CNV抑制機序と瘢痕組織形成抑制効果を併せ持つ新規AMD治療薬の開発を目指し、鋭意研究を続け本発明の一つをを完成したものである。 As a result of diligent studies to solve the above problems, the present inventor has developed a glaucoma surgery technique that suppresses excessive fibrosis, promotes healthy conjunctival tissue repair, and maintains a long-term low tonic pressure maintenance effect. Provided and in a laser-irradiated animal model, it is effective against fibrosis of choroidal tissue including RPE at extremely low concentration and dose, and comprehensively suppresses multiple genes involved in tissue fibrosis. In addition to fibrosis, for expression of multiple genes involved in tissue fibrosis, angiogenesis, and tissue scarring, such as VEGF and PDGF involved in angiogenesis, and LOX involved in scar formation by cross-linking Collagen. We have found a low-molecular-weight compound that shows a suppressive effect and is expected to have a comprehensively high therapeutic effect on pathological conditions consisting of multiple stages in spatio-temporal conditions in AMD patients, and succeeded in confirming its effectiveness in an animal model. The present invention has been completed. Aiming at the development of a novel therapeutic agent for AMD having both a novel mechanism for suppressing CNV and an effect for suppressing scar tissue formation based on an original AMD molecular pathology theory, we have continued diligent research and completed one of the present inventions.

発明者は以上の大きく2つのUnmet Needsに応える本発明を完成したが、本内容は本明細書に示す実施例を超えて、他の眼組織疾患、他の臓器疾患にも適用される可能性を提供する。 Although the inventor has completed the present invention in response to the above two major Unmet Needs, the present content may be applied to other eye tissue diseases and other organ diseases beyond the examples shown in the present specification. I will provide a.

すなわち、本発明は以下の通りである。
(1)
眼組織の線維化を抑制する物質を含む医薬組成物。
(2)
眼組織の線維化を抑制する物質が、眼組織において、in vivoで、線維化、血管新生及び瘢痕形成の3段階の各々に係る病態増悪因子遺伝子発現を各段階につき少なくも1種ずつは阻害する物質である、1に記載の医薬組成物。
(3)
病態増悪因子遺伝子が、collagen 1A、collagen 3A1、collagen 4A1、TIMP 2、TIMP 3、TIMP 4、Thrombospondin 1、Thrombospondin 2、LOX、Loxl2、TGFb2、TGFb3、CTGF、VEGF、PDGF及びSerpinからなる群から選ばれる、2に記載の医薬組成物。
(4)
眼組織の線維化を100pg/kg〜3000pg/kgの投与量で抑制する物質を含む、1〜3のいずれか1項に記載の医薬組成物。
(5)
眼組織の線維化を2pg/eye〜9000pg/eyeの投与量で抑制する物質を含む、1〜3のいずれか1項に記載の医薬組成物。
That is, the present invention is as follows.
(1)
A pharmaceutical composition containing a substance that suppresses fibrosis of eye tissue.
(2)
A substance that suppresses fibrosis of ocular tissue inhibits at least one type of exacerbating factor gene expression in each of the three stages of fibrosis, angiogenesis, and scar formation in vivo in ocular tissue. The pharmaceutical composition according to 1, which is a substance to be used.
(3)
Disease exacerbation factor genes consist of collagen 1A, collagen 3A1, collagen 4A1, TIMP 2, TIMP 3, TIMP 4, Thrombospondin 1, Thrombospondin 2, LOX, Loxl2, TGFb2, TGFb2, TGFb2, 2. The pharmaceutical composition according to 2.
(4)
The pharmaceutical composition according to any one of 1 to 3, which comprises a substance that suppresses fibrosis of eye tissue at a dose of 100 pg / kg to 3000 pg / kg.
(5)
The pharmaceutical composition according to any one of 1 to 3, which comprises a substance that suppresses fibrosis of eye tissue at a dose of 2 pg / eye to 9000 pg / eye.

(6)
眼組織の線維化を抑制する物質が、眼組織培養細胞の線維化様相転移を抑制する物質である、1〜5のいずれか1項に記載の医薬組成物。
(7)
眼組織培養細胞の線維化様相転移を10nM以下の濃度で抑制する物質を含む、1〜6のいずれか1項に記載の医薬組成物。
(8)
眼組織細胞のHDAC活性の阻害作用がIC50=10nM以下の濃度である物質を含む、1〜7のいずれか1項に記載の医薬組成物。
(9)
眼組織の線維化抑制物質が、濾過胞維持効果、又は緑内障手術の予後向上効果を有する物質である1〜8のいずれか1項に記載の医薬組成物。
(10)
眼組織の線維化抑制物質が、線維化抑制効果及び/又は血管新生抑制効果と、瘢痕形成抑制効果とを併せ持つ物質を含むことを特徴とする1〜9のいずれか1項に記載の医薬組成物。
(6)
The pharmaceutical composition according to any one of 1 to 5, wherein the substance that suppresses fibrosis of eye tissue is a substance that suppresses fibrosis-like metastasis of cultured eye tissue cells.
(7)
The pharmaceutical composition according to any one of 1 to 6, which comprises a substance that suppresses fibrosis-like metastasis of cultured ocular tissue cells at a concentration of 10 nM or less.
(8)
The pharmaceutical composition according to any one of 1 to 7, which comprises a substance having an inhibitory effect on HDAC activity of ocular histiocytes at a concentration of IC50 = 10 nM or less.
(9)
The pharmaceutical composition according to any one of 1 to 8, wherein the fibrosis-inhibiting substance of eye tissue is a substance having an effect of maintaining a filter bleb or an effect of improving the prognosis of glaucoma surgery.
(10)
The pharmaceutical composition according to any one of 1 to 9, wherein the fibrosis inhibitory substance of the eye tissue contains a substance having both a fibrosis inhibitory effect and / or an angiogenesis inhibitory effect and a scar formation inhibitory effect. thing.

(11)
次式I:

Figure 2020009248
又は次式II:
Figure 2020009248
(式中、R1〜R3は独立して水素原子、メチル基、エチル基、R4は水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基又はイソブチル基、R5〜R8はそれぞれ独立して水素原子、メチル基、エチル基又はイソプロピル基、R8は水素原子、メチル基又は保護基、R10及びR11は、独立して水素原子、メチル基又は保護基を表す。)
で示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、1〜10のいずれか1項に記載の医薬組成物。(11)
Equation I:
Figure 2020009248
Or the following equation II:
Figure 2020009248
(In the formula, R1 to R3 are independently hydrogen atom, methyl group, ethyl group, R4 is hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, sec-butyl group or isobutyl group, R5 to R8. Independently represent a hydrogen atom, a methyl group, an ethyl group or an isopropyl group, R8 represents a hydrogen atom, a methyl group or a protective group, and R10 and R11 independently represent a hydrogen atom, a methyl group or a protective group).
The pharmaceutical composition according to any one of 1 to 10, which comprises the depsipeptide compound represented by (1) or a pharmaceutically acceptable salt thereof.

(12)
次式III:

Figure 2020009248
(式中、R4はイソプロピル基、sec−ブチル基又はイソブチル基を表す。)
で示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、11に記載の医薬組成物。(12)
Equation III:
Figure 2020009248
(In the formula, R4 represents an isopropyl group, a sec-butyl group or an isobutyl group.)
11. The pharmaceutical composition according to 11, comprising the depsipeptide compound represented by or a pharmaceutically acceptable salt thereof.

(13)
R4がイソプロピル基である、12に記載の医薬組成物。
(14)
眼組織が、緑内障関連組織、結膜関連組織及び網膜関連組織からなる群から選ばれる少なくとも1つである、1〜13のいずれか1項に記載の医薬組成物。
(15)
緑内障関連組織が、線維柱帯、又は眼圧の制御が可能な組織である14に記載の医薬組成物。
(16)
網膜関連組織が、網膜色素上皮、脈絡膜新生血管、又は加齢黄斑変性に係る組織である14に記載の医薬組成物。
(17)
結膜関連組織が、濾過胞組織である14に記載の医薬組成物。
(13)
12. The pharmaceutical composition according to 12, wherein R4 is an isopropyl group.
(14)
The pharmaceutical composition according to any one of 1 to 13, wherein the eye tissue is at least one selected from the group consisting of glaucoma-related tissue, conjunctiva-related tissue, and retina-related tissue.
(15)
14. The pharmaceutical composition according to 14, wherein the glaucoma-related tissue is a trabecular meshwork or a tissue capable of controlling intraocular pressure.
(16)
The pharmaceutical composition according to 14.
(17)
14. The pharmaceutical composition according to 14, wherein the conjunctiva-related tissue is a filtered vesicle tissue.

本発明により、過剰な線維化を抑制し、健常な結膜組織修復を促し、長期的な低眼圧維持効果を維持することが可能な性質を有する化合物が提供される。更に一方では、現在のAMD治療に求められておりながら提供されていない、線維化抑制効果及び/又は血管新生抑制効果と、瘢痕形成抑制効果とを併せ持つ化合物が初めて提供され、当該分野の革新的な治療に有益な手段の手教に繋がる。 INDUSTRIAL APPLICABILITY The present invention provides a compound having properties capable of suppressing excessive fibrosis, promoting healthy conjunctival tissue repair, and maintaining a long-term low intraocular pressure maintenance effect. On the other hand, for the first time, a compound having both a fibrosis-suppressing effect and / or angiogenesis-suppressing effect and a scar formation-suppressing effect, which are required for the current AMD treatment but are not provided, is provided, and is innovative in the field. It leads to the teaching of useful means for various treatments.

かかる化合物は、一つには、線維柱帯細胞に対して緑内障手術後の創傷治癒過程を促進し、房水動態を正常にする。
他方では、脈略膜組織の線維化に対し極めて低濃度、投与量で有効性を示すとともに、組織線維化に係るものや前駆病変に係る複数の遺伝子に対し網羅的に抑制効果を示す。多くの既存線維化抑制候補物質は、TGFβ誘導性線維化には有効でも、慢性炎症組織に係るTGFβ+TNFαでの複合作用による線維化には無効である。本発明の医薬組成物は、本複合病態に対しても著効を示し、患者の視力保持に最も重要な、視細胞および網膜色素上皮細胞の障害(線維化を含む)を直接抑制する可能性が高い。
Such compounds, in part, promote the wound healing process after glaucoma surgery on trabecular meshwork cells and normalize aqueous humor dynamics.
On the other hand, it is effective against fibrosis of vein membrane tissue at extremely low concentration and dose, and comprehensively suppresses multiple genes related to tissue fibrosis and precursor lesions. Many existing candidates for suppressing fibrosis are effective for TGFβ-induced fibrosis, but are ineffective for fibrosis due to the combined action of TGFβ + TNFα in chronically inflamed tissues. The pharmaceutical composition of the present invention is also highly effective against the present complex pathology, and may directly suppress damage (including fibrosis) of photoreceptor cells and retinal pigment epithelial cells, which are most important for maintaining the eyesight of patients. Is high.

200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときの、30日目までの眼圧の測定結果を示す図である。It is a figure which shows the measurement result of the intraocular pressure up to the 30th day when 200 μl of 10nM OBP-801 was administered on the 0th, 1st, 3rd, 5th, 7th, and 9th days after the operation. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときの、7日目及び30日目のblebを示す図である。It is a figure which shows the bleb of the 7th day and the 30th day when 200 μl of 10nM OBP-801 was administered on the 0th, 1st, 3rd, 5th, 7th, and 9th days after the operation. コントロールとしてBSSを術後0,1,3,5,7,9日目に投与したときの、7日目及び30日目のbleb(濾過胞)を示す図である。It is a figure which shows the bleb (filter cell) of the 7th day and the 30th day when BSS was administered as a control on the 0th, 1st, 3rd, 5th, 7th, and 9th days after the operation. OBP−801を術後0,1,3,5,7,9日目に投与したときの、14日目のBlebを示す図である。It is a figure which shows the Bleb on the 14th day when OBP-801 was administered on the 0th, 1st, 3rd, 5th, 7th, and 9th days after the operation. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときと、術後0,1,3,5日目に投与したときの30日目までの眼圧の測定結果を示す図である。Eyes up to 30 days after administration of 200 μl of 10 nM OBP-801 on days 0, 1, 3, 5, 7 and 9 after surgery and on days 0, 1, 3, 5 after surgery It is a figure which shows the measurement result of the pressure. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときと、術後3,5,7日目に投与したときの30日目までの眼圧の測定結果を示す図である。Intraocular pressure up to 30 days when 200 μl of 10 nM OBP-801 was administered on days 0, 1, 3, 5, 7, and 9 after surgery and on days 3, 5, and 7 after surgery. It is a figure which shows the measurement result. 200μlの10nM,1μM及び100μM OBP−801を、それぞれ術後0,1,3,5,7,9日目に投与したときの15日目までの眼圧の測定結果を示す図である。It is a figure which shows the measurement result of the intraocular pressure up to the 15th day when 200 μl of 10 nM, 1 μM and 100 μM OBP-801 were administered on the 0th, 1st, 3rd, 5th, 7th and 9th days after the operation, respectively. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときと、200μlの100μM OBP−801を術後0日目に投与したときの15日目までの眼圧を測定結果をを示す図である。Up to day 15 when 200 μl of 10 nM OBP-801 was administered on days 0, 1, 3, 5, 7, and 9 after surgery and when 200 μl of 100 μM OBP-801 was administered on day 0 after surgery. It is a figure which shows the measurement result of the intraocular pressure. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときの、14日目におけるαSMAの発現量を示す図である。It is a figure which shows the expression level of αSMA on day 14 when 200 μl of 10 nM OBP-801 was administered on day 0,1,3,5,7,9 after surgery. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときの、14日目におけるコラーゲンの発現量を示す図である。It is a figure which shows the expression level of collagen on the 14th day when 200 μl of 10 nM OBP-801 was administered on the 0th, 1st, 3rd, 5th, 7th, and 9th days after the operation. 200μlの10nM OBP−801を術後0,1,3,5,7,9日目に投与したときの、30日目におけるコラーゲンの発現量を示す図である。It is a figure which shows the expression level of collagen on day 30 when 200 μl of 10 nM OBP-801 was administered on day 0,1,3,5,7,9 after surgery. TGF+TNFにより線維化誘導されたHconFにおいて、OBP−801を投与したときのαSMA発現抑制効果を示す図である。It is a figure which shows the αSMA expression suppressing effect at the time of administration of OBP-801 in HconF which was induced fibrosis by TGF + TNF. TGF+TNFにより線維化誘導されたHconFにおいて、OBP−801を投与したときのコラーゲン及びLOX発現抑制効果を示す図である。It is a figure which shows the collagen and LOX expression suppressing effect at the time of administration of OBP-801 in HconF which was induced fibrosis by TGF + TNF. TGF+TNFによりHconFを線維化誘導する前及び/又は後にOBP−801を投与したときのαSMA、col1,col4の発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of αSMA, col1, col4 when OBP-801 is administered before and / or after inducing fibrosis of HconF by TGF + TNF. TGF+TNFによりHconFを線維化誘導する前に異なる濃度と処理時間でOBP−801を処理したときの、αSMAの発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of αSMA when OBP-801 was treated with different concentration and treatment time before inducing fibrosis of HconF by TGF + TNF. OBP−801処理による細胞数の経時的変化を示す図である。It is a figure which shows the time-dependent change of the cell number by the OBP-801 treatment. TGF+TNFによりHconFを線維化誘導した場合のHDAC及びHAT活性を示す図である。It is a figure which shows the HDAC and HAT activity at the time of inducing fibrosis of HconF by TGF + TNF. OBP−801によりHconFを処理した場合のアセチル化ヒストン量の経時的変化を示す図である。It is a figure which shows the time-dependent change of the amount of acetylated histones when HconF was treated with OBP-801. 線維柱帯切除術後2日目に発現量が大きく変化した遺伝子とOBP−801による当該遺伝子の発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of a gene whose expression level was significantly changed on the 2nd day after trabeculectomy and OBP-801. 線維柱帯切除術後12日目に発現量が大きく変化した遺伝子とOBP−801による当該遺伝子の発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of a gene whose expression level was significantly changed and OBP-801 on the 12th day after trabeculectomy. 線維柱帯切除術後30日目に発現量が大きく変化した遺伝子とOBP−801による当該遺伝子の発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of a gene whose expression level was significantly changed 30 days after trabeculectomy and OBP-801. OBP−801とSAHAとのHconFの線維化抑制効果を示す図である。It is a figure which shows the fibrosis inhibitory effect of HconF of OBP-801 and SAHA. OBP−801とSAHAとのHconFの細胞増殖抑制効果を示す図である。It is a figure which shows the cell proliferation inhibitory effect of HconF of OBP-801 and SAHA. OBP−801がHTMCの筋線維芽細胞化を阻害することを示す図である。It is a figure which shows that OBP-801 inhibits myofibroblast formation of HTMC. TGF+TNFにより線維化誘導されたHTMCにおいて、OBP−801を投与したときのコラーゲン及びLOX発現抑制効果を示す図である。It is a figure which shows the collagen and LOX expression suppressing effect at the time of administration of OBP-801 in the HTMC which was induced fibrosis by TGF + TNF. OBP−801投与によるCNV抑制効果を示す図である。It is a figure which shows the CNV suppression effect by administration of OBP-801. OBP−801投与によるCNV抑制効果を示す図である。It is a figure which shows the CNV suppression effect by administration of OBP-801. OBP−801投与によるCNV抑制効果を示す図である。It is a figure which shows the CNV suppression effect by administration of OBP-801. OBP−801投与によるCollagen Iの発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of Collagen I by administration of OBP-801. OBP−801投与によるαSMAの発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of αSMA by administration of OBP-801. OBP−801投与によるαSMAの発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of αSMA by administration of OBP-801. OBP−801投与によるCD31の発現抑制効果を示す図である。It is a figure which shows the expression-suppressing effect of CD31 by administration of OBP-801. OBP−801によるRPE細胞の線維化阻害効果を示す図である。It is a figure which shows the fibrosis inhibitory effect of RPE cell by OBP-801. OBP−801による線維化関連遺伝子発現への影響を示す図である。It is a figure which shows the influence on the fibrosis-related gene expression by OBP-801. OBP−801のHDAC阻害活性との関係を示す図である。It is a figure which shows the relationship with the HDAC inhibitory activity of OBP-801. OBP−801のHAT阻害活性との関係を示す図である。It is a figure which shows the relationship with the HAT inhibitory activity of OBP-801. OBP−801のCD44発現への影響を示す図である。It is a figure which shows the influence of OBP-801 on the expression of CD44. ドルーゼンのAMD病態進行及びレーザー誘致CNVモデルを示す図である。It is a figure which shows the AMD pathology progression of Drusen and the laser attracted CNV model. OBP−801により術後30日目のcollagen 1の発現が抑制されたことを示す図である。It is a figure which shows that the expression of collagen 1 was suppressed 30 days after the operation by OBP-801. OBP−801により術後30日目のTGFβ2、SERPINH1の発現が抑制されたことを示す図である。It is a figure which shows that the expression of TGFβ2 and SERPINH1 was suppressed 30 days after the operation by OBP-801. ECM及びECMリモデリング酵素の発現を示す図である。It is a figure which shows the expression of ECM and ECM remodeling enzyme. 炎症性サイトカイン及びケモカインの発現を示す図である。It is a figure which shows the expression of an inflammatory cytokine and a chemokine. TGFβスーパーファミリーの発現を示す図である。It is a figure which shows the expression of the TGFβ superfamily. 転写因子の発現を示す図である。It is a figure which shows the expression of a transcription factor. リアルタイムRT−PCRの結果を示す図である。It is a figure which shows the result of real-time RT-PCR. リアルタイムRT−PCRの結果を示す図である。It is a figure which shows the result of real-time RT-PCR. OBP−801の点眼による眼圧抑制結果を示す図である。It is a figure which shows the intraocular pressure suppression result by instillation of OBP-801. 眼圧維持に関与していると思われる遺伝子群の発現を示す図である。It is a figure which shows the expression of the gene cluster which seems to be involved in the maintenance of intraocular pressure. ウサギ結膜組織WB解析を示す図である。It is a figure which shows the rabbit conjunctival tissue WB analysis. ウサギ濾過胞組織のHE染色の術後30日目の結果を示す図である。It is a figure which shows the result of 30 days after the operation of HE staining of a rabbit filter bleb tissue. ウサギ濾過胞組織免疫染色による術後30日目のαSMAの発現の結果を示す図であるIt is a figure which shows the result of the expression of αSMA 30 days after the operation by the rabbit filter bleb tissue immunostaining. ウサギ濾過胞組織免疫染色による術後30日目のCollagenIの発現の結果を示す図であるIt is a figure which shows the result of the expression of Collagen I 30 days after the operation by the rabbit filter bleb tissue immunostaining. ヒト結膜組織の眼圧維持に関与すると考えられる遺伝子の解析結果を示す図である。It is a figure which shows the analysis result of the gene which is considered to be involved in the maintenance of intraocular pressure of human conjunctival tissue. ヒト結膜組織の眼圧維持に関与すると考えられる遺伝子の解析結果を示す図である。It is a figure which shows the analysis result of the gene which is considered to be involved in the maintenance of intraocular pressure of human conjunctival tissue. ヒト結膜組織の眼圧維持に関与すると考えられる遺伝子の解析結果を示す図である。It is a figure which shows the analysis result of the gene which is considered to be involved in the maintenance of intraocular pressure of human conjunctival tissue. ヒト結膜組織の眼圧維持に関与すると考えられる遺伝子の解析結果を示す図である。It is a figure which shows the analysis result of the gene which is considered to be involved in the maintenance of intraocular pressure of human conjunctival tissue.

1.概要
本発明は、眼関連線維化組織から正常眼組織を復元したり、正常眼組織が線維化によりその本来機能を消失することを抑制するための医薬組成物および方法に関する。
本発明者らは、上記課題を解決すべく眼組織における線維化モデルにおいて、(1)時空間的にどのような遺伝子発現が病態に関って発現するか鋭意研究を続け、限局された特定の線維化刺激のみならず、(2)線維化に係る慢性炎症を含む多くの刺激による当該複数遺伝子群が同時に抑制される物質を鋭意探求してきた。(3)また、線維化誘導作用としてよく知られる因子の存在下に、炎症性サイトカインの作用が重層する慢性炎症組織類似の細胞ストレス下でも作用することを選択基準に掲げた。こうした取り組みは従前全く知られていないものである。
1. 1. Outline The present invention relates to a pharmaceutical composition and method for restoring normal eye tissue from eye-related fibrotic tissue and suppressing the loss of the original function of normal eye tissue due to fibrosis.
In order to solve the above problems, the present inventors have continued diligent research on (1) what kind of gene expression is expressed in relation to the pathological condition in a fibrosis model in eye tissue, and have localized identification. We have been eagerly searching for a substance in which the plurality of genes are simultaneously suppressed by many stimuli including (2) chronic inflammation related to fibrosis as well as the stimulus of fibrosis. (3) In addition, in the presence of a factor well known as a fibrosis-inducing action, the selection criterion is that the action of inflammatory cytokines acts under cell stress similar to that of chronic inflammatory tissue in which layers are layered. These efforts have never been known before.

また、遺伝子発現抑制のために細胞内に浸透し作用を発現する疎水性化合物は、余程作用濃度が低値でなければ薬剤到達性の点からin vivoではその効果が極めて微弱であり、抗線維化剤としての有効性は全く期待し得ない。事実、前述のSAHAの限界に見られるように、現在までに実用に耐えうる抗線維化剤は全く見出されてない。発明者らはこの点にも注目し、(4)作用濃度が、研究されてきている類縁化合物の千分の一の濃度で効果を発揮する、即ち、in vivoでも実用に耐えうる投薬経路の期待できるという厳しい選択基準を満たす化合物を鋭意探求してきた。 In addition, hydrophobic compounds that permeate into cells and exert their actions to suppress gene expression have extremely weak effects in vivo from the viewpoint of drug reachability unless the action concentration is too low, and anti-vibrosis. Its effectiveness as a fibrotic agent cannot be expected at all. In fact, as seen in the limitations of SAHA mentioned above, no practical anti-fibrotic agent has been found to date. The inventors also paid attention to this point, and (4) the action concentration exerted an effect at a concentration of one-thousandth of the related compounds being studied, that is, a route of administration that could be put to practical use even in vivo. We have been eagerly searching for compounds that meet the strict selection criteria of expectation.

以上の(1)〜(4)の条件を充足する化合物が、多様な線維化刺激を継続して受けている眼科関連組織において、組織に蓄積したCollagenなどのECMを実験モデル動物並びにヒト眼組織関連細胞で低減させ得ることを見出し、本発明を完成させた。複数の線維化ストレス刺激に慢性的に暴露されている眼関連線維化組織において、細胞硬化に係るECMを低減させ得ることはこれまで知られておらず、斬新な知見である。 In ophthalmology-related tissues in which compounds satisfying the above conditions (1) to (4) continuously receive various fibrotic stimuli, ECM such as collagen accumulated in the tissues is subjected to experimental model animals and human eye tissues. We have found that it can be reduced in related cells and completed the present invention. It has not been known so far that ECM related to cell sclerosis can be reduced in eye-related fibrotic tissues chronically exposed to a plurality of fibrotic stress stimuli, which is a novel finding.

CNV形成以前に起きる組織線維化抑制効果を持つ化合物は、CNV形成前からの早期治療を可能にし、視力低下の回避が期待できる。また、前述の抗VEGF抵抗性に対しても線維化形成阻害効果を介した治療効果が期待できる。本発明では、AMD病態進行の中で、網膜色素上皮細胞(RPE)のepigeneticな調節機構の破綻を引き金とした機能的相転移である線維化に注目している。本発明の医薬組成物の有効成分は、RPEを含む脈絡膜組織の線維化に対し極めて低濃度、投与量で有効性を示すとともに、組織線維化に係る複数の遺伝子に対し包括的に抑制効果を示す初めての化合物であることを見出している。さらに、線維化のみならず、血管新生に関与するVEGFやPDGF、更には、Collagenを架橋し瘢痕形成に関わるLOX等、病態形成に係る重要な3段階の各々に関連する、複数の遺伝子発現に対しても抑制効果を確認でき、AMD患者の多様な病態に対し高い治療効果が期待される。実際、CNVモデルマウスでは、本発明になる医薬組成物により早期線維化と新生血管形成の両方に顕著な阻害効果を認めている。 A compound having an inhibitory effect on tissue fibrosis that occurs before CNV formation enables early treatment before CNV formation, and can be expected to avoid deterioration of visual acuity. In addition, a therapeutic effect can be expected through the fibrosis formation inhibitory effect on the above-mentioned anti-VEGF resistance. The present invention focuses on fibrosis, which is a functional phase transition triggered by the disruption of the epigenetic regulatory mechanism of retinal pigment epithelial cells (RPE) in the progression of AMD pathology. The active ingredient of the pharmaceutical composition of the present invention is effective against fibrosis of choroidal tissue containing RPE at an extremely low concentration and at a dose, and has a comprehensive inhibitory effect on a plurality of genes involved in tissue fibrosis. It has been found to be the first compound to be shown. Furthermore, not only fibrosis, but also VEGF and PDGF involved in angiogenesis, and LOX involved in scar formation by cross-linking collagen, etc., are involved in the expression of multiple genes related to each of the three important stages involved in pathogenesis. On the other hand, the inhibitory effect can be confirmed, and a high therapeutic effect is expected for various pathological conditions of AMD patients. In fact, in CNV model mice, the pharmaceutical composition according to the present invention has been found to have a remarkable inhibitory effect on both early fibrosis and neovascularization.

本発明の医薬組成物は、網膜組織の線維化および血管新生モデルマウスを使用し、晩期におけるCollagen線維架橋抑制、抗血管新生作用を超え、抗VEGF療法耐性と相関するレーザー照射後早期の線維芽細胞の筋線維芽細胞への形質転換の抑制という斬新な作用特性を保有し、既療法に対する優位性が確認されている。LOX、THBS1、Serpin、MMPなど線維化に係る複数の遺伝子発現を同時に抑制することは本化合物の薬剤特性を特徴づける。 The pharmaceutical composition of the present invention uses a model mouse for fibrosis and angiogenesis of retinal tissue, and is used to suppress Collagen fibrosis in the late stage and anti-angiogenic effect, and correlates with anti-VEGF therapy resistance. It possesses a novel action characteristic of suppressing the transformation of cells into myofibroblasts, and its superiority over existing therapies has been confirmed. Simultaneous suppression of the expression of multiple genes involved in fibrosis such as LOX, THBS1, Serpin, and MMP characterizes the drug properties of this compound.

AMDをモデル対象疾患とする第一の理由は、臨床的に抗血管新生抑制作用としての抗VEGF抗体療法の限界が明らかになって来ているからである。この抗体療法は、発症・病態増悪後の表現型の一つに過ぎない血管新生抑制を標的にするに過ぎず、患者の視力保持に最も重要な、視細胞および網膜色素上皮細胞(RPE)の障害(線維化を含む)を直接抑制することはできない。本発明の医薬組成物による線維化抑制は網膜色素上皮細胞と視細胞機能を正常に維持・修復し得る。 The first reason for using AMD as a model target disease is that the limits of anti-VEGF antibody therapy as an anti-angiogenic inhibitory effect have been clinically clarified. This antibody therapy only targets the suppression of angiogenesis, which is only one of the phenotypes after the onset and exacerbation of the condition, and is the most important for maintaining the patient's visual acuity, that is, the photoreceptor cells and retinal pigment epithelial cells (RPE). Disorders (including fibrosis) cannot be suppressed directly. The suppression of fibrosis by the pharmaceutical composition of the present invention can normally maintain and repair the functions of retinal pigment epithelial cells and photoreceptor cells.

以上に述べた網膜組織に係る先駆的知見に基づき、発明者らは眼組織における線維化抑制に係る本発明の一部をさらに緑内障に係る眼組織においても鋭意研究展開し、眼組織に広く適用可能で実用性に優れる技術を見出した。 Based on the pioneering findings relating to the retinal tissue described above, the inventors have diligently developed a part of the present invention relating to suppression of fibrosis in the eye tissue further in the eye tissue relating to glaucoma, and widely applied it to the eye tissue. We have found a technology that is possible and has excellent practicality.

2.線維化抑制物質
本発明は、網膜組織、結膜組織など複数の眼組織の線維化を抑制する化合物を含有する医薬である。組織は、酸化ストレス、低酸素状態、炎症、アポトーシスなど、多様な細胞へのストレス刺激により細胞外マトリックスを蓄積することにより組織を修復しようとする。こうした組織へのストレスを抑制し、網膜、結膜組織などの眼組織の線維化が原因となって発生する疾患を処置するために、本発明の医薬組成物を用いることができる。また、本発明の医薬組成物は、こうした細胞への多様なストレスによって生じるコラーゲンなどの細胞外マトリックス物質の産生を抑制するために用いることが出来る。
2. Fibrosis Inhibitor The present invention is a drug containing a compound that suppresses fibrosis in a plurality of eye tissues such as retinal tissue and conjunctival tissue. Tissue attempts to repair tissue by accumulating extracellular matrix due to stress stimuli to various cells such as oxidative stress, hypoxia, inflammation, and apoptosis. The pharmaceutical composition of the present invention can be used to suppress stress on such tissues and to treat diseases caused by fibrosis of eye tissues such as retina and conjunctival tissue. In addition, the pharmaceutical composition of the present invention can be used to suppress the production of extracellular matrix substances such as collagen caused by various stresses on such cells.

また、眼組織の線維化を抑制する物質として、眼組織細胞の線維化様相転移を抑制する物質も、本発明に含まれる。「眼組織細胞の線維化様相転移」とは、網膜、結膜組織などの眼組織が外的もしくは内在する細胞ストレス(加齢などに基づく)により細胞の機能が変性し組織の恒常性が破綻する状況を示す。細胞変性には線維芽細胞様の細胞形態への転移や上皮間葉系移行(EMT)と称される細胞の機能変化、アポトーシスの亢進、オートファジーの異常、細胞外マトリックス成分産生の亢進、間質を構成するコラーゲン、エラスチンなどのタンパク間の異常架橋形成など、組織を構成する細胞の機能変化による組織の硬組織化などが含まれ、本発明の物質は、これらを抑制する。 Further, as a substance that suppresses fibrosis of eye tissue, a substance that suppresses fibrosis-like metastasis of eye tissue cells is also included in the present invention. "Fibrotic phase transition of ocular histiocytes" means that cell function is degenerated and tissue homeostasis is disrupted due to external or internal cell stress (based on aging, etc.) of ocular tissues such as retina and conjunctival tissue. Show the situation. Cell degeneration includes transfer to fibroblast-like cell morphology, cell functional changes called epithelial-mesenchymal transition (EMT), increased apoptosis, abnormal autophagy, increased extracellular matrix component production, and interstitial The substance of the present invention suppresses tissue hardening due to functional changes of cells constituting the tissue, such as abnormal cross-linking formation between proteins such as collagen and elastin that constitute the quality.

さらに、眼組織の線維化を抑制する物質として、濾過胞維持効果、又は緑内障手術の予後向上効果を有する物質も本発明に含まれる。
上記病態の処置のための医薬として、コラーゲン、α−SMAの産生抑制、TGF又はTNF産生阻害剤、TGF又はTNFシグナル伝達阻害、HDAC阻害などの作用を示す化合物がある。より好ましくは、眼組織の線維化モデルにおいて(1)時空間的に関連遺伝子の発現量を変化させる、(2)線維化にかかる多くの刺激による当該複数遺伝子群を同時に抑制する、(3)同時に線維化誘導作用の良く知られた因子の存在下に炎症性サイトカインの作用が重層する慢性炎症組織類似の細胞ストレス下でも作用するという化合物である。デプシペプチド化合物又はその製薬学的に許容可能な塩、さらに好ましくは、OBP−801(詳細は後述する。)が(4)各組織における細胞内への浸透が良好で、十分に低い作用濃度で抗線維化作用、抗瘢痕化作用を示す化合物として適している。
Further, as a substance that suppresses fibrosis of eye tissue, a substance having an effect of maintaining a filter cell or an effect of improving the prognosis of glaucoma surgery is also included in the present invention.
As a drug for treating the above pathological conditions, there are compounds showing actions such as inhibition of collagen and α-SMA production, TGF or TNF production inhibitor, TGF or TNF signal transduction inhibition, and HDAC inhibition. More preferably, in a fibrosis model of eye tissue, (1) the expression level of related genes is changed spatiotemporally, (2) the plurality of genes caused by many stimuli involved in fibrosis are simultaneously suppressed, and (3). At the same time, it is a compound that acts even under cell stress similar to chronic inflammatory tissue in which the action of inflammatory cytokines is layered in the presence of a well-known factor that induces fibrosis. The depsipeptide compound or a pharmaceutically acceptable salt thereof, more preferably OBP-801 (details will be described later), (4) has good penetration into cells in each tissue and is resistant at a sufficiently low concentration of action. It is suitable as a compound showing fibrotic and anti-scarring effects.

3.病態憎悪因子遺伝子発現抑制物質
また、別の形態として、本発明は病態増悪因子遺伝子の発現を調節又は制御することができる化合物を含有する医薬である。
・哺乳動物における結膜関連組織、線維柱帯細胞、網膜色素上皮細胞又は脈絡膜新生血管、脈絡膜組織において発現する病態憎悪因子遺伝子
・ヒト又はウサギの結膜関連組織、線維柱帯細胞、網膜色素上皮細胞又は脈絡膜新生血管脈絡膜組織において発現する病態憎悪因子遺伝子
・ヒト又はウサギの線維化関連遺伝子
・ヒトまたはウサギ緑内障手術によって発現変動する病態憎悪因子遺伝子
3. 3. Pathological Exacerbation Factor Gene Expression Inhibitor As another form, the present invention is a medicament containing a compound capable of regulating or controlling the expression of a pathological exacerbation factor gene.
・ Pathological exacerbation factor genes expressed in conjunctival-related tissues, trabecular meshwork cells, retinal pigment epithelial cells or choroidal neovascularization, choroidal tissue in mammals ・ Human or rabbit conjunctival-related tissues, trabecular meshwork cells, retinal pigment epithelial cells or Choroidal neovascular pathological exacerbation factor genes expressed in choroidal tissue ・ Human or rabbit fibrosis-related genes ・ Pathological exacerbation factor genes whose expression fluctuates due to human or rabbit glaucoma surgery

前記、病態憎悪因子遺伝子には、線維化誘導遺伝子、血管新生関連遺伝子、瘢痕化関連遺伝子、ECM関連遺伝子などがある。前記遺伝子の発現を制御し、眼組織の線維化、ECMの蓄積を制御することで濾過胞維持、低眼圧維持効果、血管新生阻害効果、瘢痕形成抑制効果が期待できる。例えば、眼組織において、in vivoで、線維化、血管新生及び瘢痕形成の3段階の各々に係る病態増悪因子遺伝子発現を各段階につき少なくも1種ずつは阻害する。前記病態憎悪因子遺伝子として、collagen 1A、collagen 3A1、collagen 4A1、TIMP 2、TIMP 3、TIMP 4、Thrombospondin 1、Thrombospondin 2、LOX、Loxl2、TGFb2、TGFb3、CTGF、VEGF、PDGF及びSerpinが挙げられ、本発明の医薬組成物により、発現を制御することが可能である。 The pathological aggravation factor genes include fibrosis-inducing genes, angiogenesis-related genes, scarring-related genes, ECM-related genes, and the like. By controlling the expression of the gene and controlling the fibrosis of the eye tissue and the accumulation of ECM, the effect of maintaining the filter bleb, the effect of maintaining low intraocular pressure, the effect of inhibiting angiogenesis, and the effect of suppressing scar formation can be expected. For example, in ocular tissue, in vivo, at least one species of exacerbating factor gene expression for each of the three stages of fibrosis, angiogenesis and scarring is inhibited. Collagen 1A, collagen 3A1, collagen 4A1, TIMP 2, TIMP 3, TIMP 4, Thrombospondin 1, Thrombospondin 2, LOX, Loxl2, TGFb2, TGFb2, TGFb2, TGFb2 Expression can be controlled by the pharmaceutical composition of the present invention.

また、本発明は、眼組織細胞において、in vivoで、線維化抑制効果及び/又は血管新生抑制効果、並びに瘢痕形成の各段階を少なくも二つ合わせ抑制する医薬組成物である、各段階に係る増悪因子遺伝子のうち少なくとも一種の遺伝子の発現を阻害する物質を含む、医薬組成物である。病態増悪因子関連遺伝子の発現に係るハブ遺伝子の活性制御物質も、本発明に含まれる。 In addition, the present invention is a pharmaceutical composition that suppresses at least two stages of fibrosis-suppressing effect and / or angiogenesis-suppressing effect and scar formation in vivo in ocular histiocytes. It is a pharmaceutical composition containing a substance that inhibits the expression of at least one of the exacerbating factor genes. A substance for controlling the activity of a hub gene related to the expression of a disease-exacerbating factor-related gene is also included in the present invention.

このような物質のより好ましい形態としてデプシペプチド化合物、更に好ましくは、OBP−801がある。OBP−801は、組織線維化に係る複数の遺伝子に対し包括的に抑制効果を示す初めての化合物であることを見出している。さらに、OBP−801は、線維化のみならず、血管新生に関与するVEGFやPDGF、更には、Collagenを架橋し瘢痕形成に関わるLOX等、複数の遺伝子発現に対しても抑制効果を確認でき、AMD患者の多様な病態に対し高い治療効果が期待される。 A more preferred form of such a substance is a depsipeptide compound, more preferably OBP-801. It has been found that OBP-801 is the first compound to comprehensively exert an inhibitory effect on a plurality of genes involved in tissue fibrosis. Furthermore, OBP-801 can be confirmed to have an inhibitory effect not only on fibrosis but also on the expression of multiple genes such as VEGF and PDGF involved in angiogenesis, and LOX involved in scar formation by cross-linking collagen. High therapeutic effect is expected for various pathological conditions of AMD patients.

上記遺伝子の発現を阻害するためには、これらの遺伝子に対する阻害性核酸、例えばアンチセンス核酸、デコイ核酸、マイクロRNA、shRNA又はsiRNAなどを使用することもできる。
阻害の対象となる遺伝子の塩基配列は公知であり、それぞれ配列情報を入手することができる。各遺伝子のGenBankアクセッション番号を以下に示す。
Inhibiting nucleic acids against these genes, such as antisense nucleic acids, decoy nucleic acids, microRNAs, shRNAs, siRNAs, etc., can also be used to inhibit the expression of the genes.
The nucleotide sequence of the gene to be inhibited is known, and sequence information can be obtained for each. The GenBank accession numbers for each gene are shown below.

COL1A1:NM_000088
COL4A2:NM_001846
COL16A1:NM_001856
ITGA2:NM_002203
ITGA5:NM_002205
ITGB3:NM_000212
ITGAV:NM_002210
LAMA1:NM_005559
VCAN:NM_004385
TIMP1:NM_003254
CTGF:NM_001901
COL1A1: NM_0000808
COL4A2: NM_001846
COL16A1: NM_001856
ITGA2: NM_002203
ITGA5: NM_002205
ITGB3: NM_000212
ITGAV: NM_002210
LAMA1: NM_005559
VCAN: NM_004385
TIMP1: NM_003254
CTGF: NM_001901

LOX発現阻害の病理学的意義としては抗線維化学療法が知られている。レーザー照射手術によるのCNV後の瘢痕形成にLOX及びLOX2遺伝子発現レベルが上昇し、両者の抗体を導入することによって、線維化を抑制することが出来るという報告がある。 Anti-fibrotic chemotherapy is known as a pathological significance of LOX expression inhibition. It has been reported that the LOX and LOX2 gene expression levels are increased in scar formation after CNV by laser irradiation surgery, and fibrosis can be suppressed by introducing antibodies of both.

また、抗LOX抗体および抗LOXL2抗体の投与を行うと、A−1タイプI型コラーゲン(COL1A1)の転写レベルが著しく減少することが報告されている。また、緑内障出術後のTenon鞘と結膜において、LOX及びLOX2遺伝子の発現が促進される。 It has also been reported that administration of anti-LOX antibody and anti-LOXL2 antibody significantly reduces the transcription level of A-1 type I collagen (COL1A1). In addition, the expression of LOX and LOX2 genes is promoted in the Tenon sheath and conjunctiva after glaucoma.

4.濾過胞維持効果を有する物質
また、別の形態として、本発明は濾過胞維持効果を有する化合物を含有する医薬である。
緑内障手術後の眼組織の緑内障関連組織、結膜関連組織には術後の炎症などによる創傷治癒が生じ、線維柱帯細胞(HTMC)、結膜線維芽細胞(HconF)の線維化または瘢痕化が生じる。緑内障術後には結膜線維芽細胞にはTGF+TNFによる線維化刺激が生じ、濾過胞維持の妨げとなることが知られている。術後の濾過胞における結膜下組織の創傷治癒過程では、炎症期、増殖期、瘢痕期などの一連の治癒過程を経て、形態上、機能上の変化となって現れる。
4. A substance having a filter cell maintenance effect In addition, as another form, the present invention is a drug containing a compound having a filter cell maintenance effect.
Wound healing occurs in ocular glaucoma-related tissues and conjunctival-related tissues after glaucoma surgery due to postoperative inflammation, etc., resulting in fibrosis or scarring of trabecular meshwork cells (HTMC) and conjunctival fibroblasts (HconF). .. It is known that after glaucoma, conjunctival fibroblasts are stimulated with fibrosis by TGF + TNF, which hinders the maintenance of filter vesicles. In the wound healing process of subconjunctival tissue in the postoperative filter bleb, it appears as a morphological and functional change through a series of healing processes such as an inflammatory stage, a proliferative stage, and a scarring stage.

ウサギ緑内障手術では、前眼部観察において、濾過胞において、限局化し、無血管になりやすいなどの形態上の変化が観察される。この変化の過程においては、線維化関連遺伝子、瘢痕化関連遺伝子、ECMの増加の関連因子などの発現亢進が見られている。前記遺伝子として、collagen 1A、collagen 3A1、collagen 4A1、TIMP 2、TIMP 3、TIMP 4、Thrombospondin 1、Thrombospondin 2、LOX、Loxl2、TGFb2、TGFb3、CTGF、VEGF、PDGF及びSerpinなどの遺伝子がある。
これらの遺伝子の発現が制御されることにより、結膜線維芽細胞の線維化が抑制され、濾過胞の形態及び機能が維持される。濾過胞の正常な形態及び機能が維持された場合には眼圧を正常に保持することが出来る。
In rabbit glaucoma surgery, morphological changes such as localization and tendency to become avascular are observed in the filter bleb in the anterior segmental observation. In the process of this change, upregulation of fibrosis-related genes, scarring-related genes, factors related to an increase in ECM, etc. has been observed. The genes include collagen 1A, collagen 3A1, collagen 4A1, TIMP 2, TIMP 3, TIMP 4, Thrombospondin 1, Thrombospondin 2, LOX, Luxl2, TGFb2, TGFb3, CTGF, and the like.
By controlling the expression of these genes, the fibrosis of conjunctival fibroblasts is suppressed, and the morphology and function of the filter vesicles are maintained. If the normal morphology and function of the filter bleb is maintained, the intraocular pressure can be maintained normally.

5.緑内障手術の予後向上効果を有する物質
また、別の形態として、本発明は緑内障手術の予後向上効果を有する化合物を含有する医薬である。
緑内障は、視神経と視野に特徴的変化を伴う所見を有し、機能的構造的異常を特徴とする疾患である。通常、眼圧を十分に下降させることにより、視神経障害を改善又は抑制することができる。
5. A substance having an effect of improving the prognosis of glaucoma surgery Further, as another form, the present invention is a drug containing a compound having an effect of improving the prognosis of glaucoma surgery.
Glaucoma is a disease characterized by functional and structural abnormalities with findings with characteristic changes in the optic nerve and visual field. Usually, by sufficiently lowering the intraocular pressure, the optic nerve disorder can be improved or suppressed.

この疾患を処置するためには、通常、以下に列挙する外科的治療が行われる。すなわち、前期手術として、線維柱帯切開術などの流出路再建術、線維柱帯切除術などの濾過手術、緑内障治療用インプラント挿入術(プレート有り、無し)の外科的手術を施し、眼組織の構造を正常な状態に戻す治療が通常行なわれている。
線維柱帯切除術は結膜から房水を吸収し、表面から蒸散させながら、人工的な房水流出路を再建する方法である。生体の本来の自然回復力に逆らった強い侵襲を伴い、生体組織への持続的なストレスがかかるため、創傷治癒の遅延につながり、眼圧の下降が遅れ、眼圧のコントロールが困難となる場合が多い。TLEの濾過胞は限局化しやすく、無血管になりやすいという欠点がある。こうした状況における長期間の眼圧コントロール及び健全な濾過胞形成、濾過胞の感染リスクの低下が望まれている。濾過胞形成が広範囲に及び、結膜の血管性状を維持し、術後長期にわたる眼圧下降効果を有するTLEが望まれている。また、緑内障手術には、Ex−PRESS、INNFOCUS、Baerveldt Glaucoma Implant、Ahmed Glaucoma Valve、XEN Implant、Hydrus Microstentなどが含まれる。
To treat this disease, the surgical treatments listed below are usually performed. That is, as early surgery, outflow tract reconstruction such as trabeculectomy, filtration surgery such as trabeculectomy, and surgical operation of implant insertion for glaucoma treatment (with or without plate) are performed, and the ocular tissue is operated. Treatment to restore the structure to normal is usually done.
Trabeculectomy is a method of reconstructing an artificial aqueous humor outflow tract while absorbing aqueous humor from the conjunctiva and transpiring it from the surface. When it is accompanied by a strong invasion against the natural resilience of the living body and continuous stress is applied to the living tissue, which leads to a delay in wound healing, a delay in the decrease in intraocular pressure, and difficulty in controlling the intraocular pressure. There are many. TLE filter vesicles have the disadvantage of being prone to localization and avascularization. Long-term intraocular pressure control, healthy filtration bleb formation, and reduction of the risk of filtration bleb infection in such situations are desired. There is a demand for TLE, which has a wide range of filtration bleb formation, maintains the vascular properties of the conjunctiva, and has an intraocular pressure lowering effect for a long period of time after surgery. In addition, glaucoma surgery includes Ex-PRESS, INNFOCUS, Baerveldt Glaucoma Implant, Ahmed Glaucoma Valve, XEN Implant, Hydrus Microsent and the like.

6.化合物
本発明は、下記式I又はIIで示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、医薬組成物を提供する。
6. Compounds The present invention provides pharmaceutical compositions comprising a depsipeptide compound represented by the following formula I or II or a pharmaceutically acceptable salt thereof.

次式I:

Figure 2020009248
又は次式II:
Figure 2020009248
(式中、R1〜R3は独立して水素原子、メチル基、エチル基、R4は水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基又はイソブチル基、R5〜R8はそれぞれ独立して水素原子、メチル基、エチル基又はイソプロピル基、R8は水素原子、メチル基又は保護基、R10及びR11は、独立して水素原子、メチル基又は保護基を表す。)Equation I:
Figure 2020009248
Or the following equation II:
Figure 2020009248
(In the formula, R1 to R3 are independently hydrogen atom, methyl group, ethyl group, R4 is hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, sec-butyl group or isobutyl group, R5 to R8. Independently represent a hydrogen atom, a methyl group, an ethyl group or an isopropyl group, R8 represents a hydrogen atom, a methyl group or a protective group, and R10 and R11 independently represent a hydrogen atom, a methyl group or a protective group).

また本発明は、次式III:

Figure 2020009248
(式中、R4はイソプロピル基、sec−ブチル基又はイソブチル基を表す。)
で示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、医薬組成物も提供する。
上記式IIIに示す化合物のうち、R4がイソプロピル基のものが好ましい。OBP−801は、R4がイソプロピル基の化合物である。Further, the present invention has the following equation III:
Figure 2020009248
(In the formula, R4 represents an isopropyl group, a sec-butyl group or an isobutyl group.)
Also provided are pharmaceutical compositions comprising the depsipeptide compound represented by or a pharmaceutically acceptable salt thereof.
Among the compounds represented by the above formula III, those having R4 having an isopropyl group are preferable. OBP-801 is a compound in which R4 is an isopropyl group.

7.OBP−801
上記、線維化抑制物質、病態憎悪因子遺伝子発現抑制物質、濾過胞維持効果を有する物質、AMD患者の病態増悪抑制のための医療、脈絡膜における血管新生に始まる失明に至る病態の防止、緑内障手術の予後向上効果を有する物質としてOBP−801を含有する医薬が実施形態として好ましい。
7. OBP-801
The above-mentioned fibrosis inhibitor, pathological aggravating factor gene expression inhibitor, filter bleb maintenance effect substance, medical treatment for suppressing exacerbation of pathological condition in AMD patients, prevention of pathological condition leading to blindness starting from angiogenesis in choroid, glaucoma surgery A medicine containing OBP-801 as a substance having a prognosis improving effect is preferable as an embodiment.

OBP−801は、組織線維化に係る複数の遺伝子に対し包括的に抑制効果を示す初めての化合物であることを見出している。さらに、OBP−801は、線維化のみならず、血管新生に関与するVEGF、PDGF、Collagenを架橋し瘢痕形成に関わるLOX等、複数の遺伝子発現に対しても抑制効果を確認でき、AMD患者の多様な病態に対し高い治療効果が期待される。
OBP−801はSAHAに比べてより強力な抗線維化作用を有し、より術後の線維化を抑制する可能性がある。また、OBP−801は、細胞内に浸透し、作用を発現するのに十分に低い作用濃度で抗線維化作用を示す化合物の一つである。OBP−801はSAHAに比べて1000分の1の濃度で効果を示すことが本発明により明らかになった。OBP−801は、SAHAに比べてより低濃度で効果を示すため、毒性の心配が無く、結膜保護の観点でさらに安全な可能性がある。
本化合物の製造方法は公知方法(特許文献1)に準ずる。実施の形態についても前記特許文献を包含する。
It has been found that OBP-801 is the first compound to comprehensively exert an inhibitory effect on a plurality of genes involved in tissue fibrosis. Furthermore, OBP-801 can be confirmed to have an inhibitory effect not only on fibrosis but also on the expression of multiple genes such as VEGF, PDGF and Collagen involved in angiogenesis and LOX involved in scar formation. High therapeutic effect is expected for various pathological conditions.
OBP-801 has a stronger antifibrotic effect than SAHA and may suppress postoperative fibrosis more. In addition, OBP-801 is one of the compounds that permeates into cells and exhibits an antifibrotic action at a concentration of action sufficiently low to exert the action. It has been clarified by the present invention that OBP-801 is effective at a concentration of 1/1000 of that of SAHA. Since OBP-801 is effective at a lower concentration than SAHA, there is no concern about toxicity, and it may be safer from the viewpoint of conjunctival protection.
The method for producing this compound conforms to a known method (Patent Document 1). The patent documents are also included in the embodiments.

8.医薬組成物
(1)製剤
本発明の医薬組成物は、点眼、塗布、徐放剤、挿入剤、注射剤、軟膏などの形態で用いることができる。
8. Pharmaceutical Composition (1) Preparation The pharmaceutical composition of the present invention can be used in the form of eye drops, application, sustained-release agent, insert, injection, ointment and the like.

点眼剤は、塩化ナトリウム、濃グリセリンなどの等張化剤;リン酸ナトリウム、酢酸ナトリウム、などの緩衝化剤;ポリオキシエチレンソルビタンモノオレート、ステアリン酸ポリオキシル40、ポリオキシエチレン硬化ヒマシ油等の界面活性剤;クエン酸ナトリウム、エデト酸ナトリウム等の安定化剤;塩化ベンザルコニウム、パラベン等の防腐剤等から必要に応じて選択して用い、調製することができ、pHは眼科製剤に許容される範囲内にあればよいが、通常4〜8の範囲が好ましい。また、眼軟膏は、白色ワセリン、流動パラフィン等の汎用される基剤を用い、調製することができる。 The eye drops are isotonic agents such as sodium chloride and concentrated glycerin; buffering agents such as sodium phosphate and sodium acetate; interfaces such as polyoxyethylene sorbitan monooleate, polyoxyl 40 stearate, and polyoxyethylene hydrogenated castor oil. Activator; Stabilizer such as sodium citrate, sodium edetate; Preservatives such as benzalkonium chloride, paraben, etc. can be selected and used as necessary to prepare, and pH is acceptable for ophthalmic preparations. The range may be within the above range, but usually the range of 4 to 8 is preferable. In addition, the eye ointment can be prepared by using a general-purpose base such as white petrolatum and liquid paraffin.

本発明において、化合物又は薬学的に許容されるその塩は、ゲル、クリーム、及びローションの形態で使用することができる。例えば、眼における、皮膚及び粘膜への局部又は局所適用のために、また眼への適用向けに製剤化することが出来る。局所用医薬組成物は、その形態は限定されるものではなく、例えば、溶液、クリーム、軟膏、ゲル、ローション、乳液、洗浄剤、保湿剤、スプレー、皮膚パッチなどが挙げられる。
溶液は、適切な塩で、0.01%〜10%の等張溶液、pH5〜7として製剤化される。また、本発明の化合物または薬学的に許容されるその塩は、経皮投与用に経皮パッチとして製剤化することも出来る。
In the present invention, the compound or pharmaceutically acceptable salt thereof can be used in the form of gels, creams, and lotions. For example, it can be formulated for local or topical application to the skin and mucous membranes in the eye, and for application to the eye. The form of the topical pharmaceutical composition is not limited, and examples thereof include solutions, creams, ointments, gels, lotions, emulsions, detergents, moisturizers, sprays, and skin patches.
The solution is formulated with a suitable salt as a 0.01% to 10% isotonic solution, pH 5-7. The compound of the present invention or a pharmaceutically acceptable salt thereof can also be formulated as a transdermal patch for transdermal administration.

本発明において、化合物又は薬学的に許容されるその塩を含む局所用医薬組成物には、たとえば、水、アルコール、アロエベラゲル、アラントイン、グリセリン、ビタミンA及びEオイル、鉱油、プロピレングリコール、PPG−2ミリスチルプロピオネートなどの、当業界で周知のさまざまな担体材料を混合することが出来る。
局所用担体に使用するのに適する他の材料としては、例えば、皮膚軟化剤、溶媒、保水剤、増粘剤、及び粉末が挙げられる。単独で、または1種又は複数種の材料の混合物として使用することの出来る、こうしたタイプの材料それぞれの例は、以下の通りである。
In the present invention, topical pharmaceutical compositions containing a compound or a pharmaceutically acceptable salt thereof include, for example, water, alcohol, aloe vera gel, allantin, glycerin, vitamins A and E oils, mineral oils, propylene glycol, PPG-. Various carrier materials well known in the art, such as 2 mythylpropionate, can be mixed.
Other materials suitable for use in topical carriers include, for example, emollients, solvents, water retention agents, thickeners, and powders. Examples of each of these types of materials, which can be used alone or as a mixture of one or more materials, are as follows.

代表的な塗布もしくは皮膚軟膏剤としては、ステアリルアルコール、モノリシノール酸グリセリル、モノステアリン酸グリセリル、プロパン−1,2−ジオール、ブタン−1,3−ジオール、ミンク油、セチルアルコール、イソステアリン酸iso−プロピル、ステアリン酸、パルミチン酸iso−ブチル、ステアリン酸イソセチル、オレイルアルコール、ラウリン酸イソプロピル、ラウリン酸ヘキシル、オレイン酸デシル、オクタデカン−2−オール、イソセチルアルコール、パルミチン酸セチル、ジメチルポリシロキサン、セバシン酸ジ−n−ブチル、ミリスチン酸iso−プロピル、パルミチン酸iso−プロピル、ステアリン酸iso−プロピル、ステアリン酸ブチル、ポリエチレングリコール、トリエチレングリコール、ラノリン、ゴマ油、ヤシ油、ラッカセイ油、ヒマシ油、アセチル化ラノリンアルコール、石油、鉱油、ミリスチン酸ブチル、イソステアリン酸、パルミチン酸、リノール酸イソプロピル、乳酸ラウリル、乳酸ミリスチル、オレイン酸デシル、およびミリスチン酸ミリスチル;噴射剤、たとえば、プロパン、ブタン、iso−ブタン、ジメチルエーテル、二酸化炭素、および亜酸化窒素;溶媒、たとえば、エチルアルコール、塩化メチレン、iso−プロパノール、ヒマシ油、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン;保水剤、たとえば、グリセリン、ソルビトール、2−ピロリドン−5−カルボン酸ナトリウム、可溶性コラーゲン、フタル酸ジブチル、およびゼラチン;ならびに散剤、たとえば、チョーク、タルク、フラー土、カオリン、デンプン、ゴム、コロイド状二酸化ケイ素、ポリアクリル酸ナトリウム、テトラアルキルアンモニウムスメクタイト、トリアルキルアリールアンモニウムスメクタイト、化学修飾ケイ酸マグネシウムアルミニウム、有機修飾モンモリロナイト粘土、水和ケイ酸アルミニウム、ヒュームドシリカ、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、およびエチレングリコールモノステアレートが挙げられる。 Typical applications or skin ointments include stearyl alcohol, glyceryl monolysinolate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, minced oil, cetyl alcohol, iso-iso-stearate. Propyl, stearic acid, iso-butyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecane-2-ol, isosetyl alcohol, cetyl palmitate, dimethylpolysiloxane, sebacic acid Di-n-butyl, iso-propyl myristate, iso-propyl palmitate, iso-propyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, palm oil, lacquer oil, castor oil, acetylation Lanolin alcohol, petroleum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, and myristyl myristate; propellants such as propane, butane, iso-butane, dimethyl ether , Carbon dioxide, and nitrogen sulfite; solvents such as ethyl alcohol, methylene chloride, iso-propanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethylsulfoxide, dimethylformamide, tetrahydrofuran; water retention. Agents such as glycerin, sorbitol, sodium 2-pyrrolidone-5-carboxylate, soluble collagen, dibutyl phthalate, and gelatin; and powders such as choke, talc, fuller soil, kaolin, starch, rubber, colloidal silicon dioxide. , Sodium polyacrylate, tetraalkylammonium smectite, trialkylarylammonium smectite, chemically modified magnesium aluminum silicate, organically modified montmorillonite clay, hydrated aluminum silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, and ethylene glycol Monostearate can be mentioned.

徐放剤または挿入剤は、生体分解性ポリマー、例えばヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシビニルポリマー、ポリアクリル酸等の生体分解性ポリマーを本化合物とともに粉砕混合し、この粉末を圧縮成形することにより、調製することができ、必要に応じて、賦形剤、結合剤、安定化剤、pH調製剤を用いることができる。眼内インプラント用製剤は、生体分解性ポリマー、例えばポリ乳酸、ポリグリコール酸、乳酸・グリコール酸共重合体、ヒドロキシプロピルセルロース等の生体分解性のポリマーを用い、調製することが出来る。 The sustained-release agent or excipient is a biodegradable polymer such as hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxyvinyl polymer, polyacrylic acid, etc., which is pulverized and mixed together with this compound, and this powder is compression-molded. , And if necessary, excipients, binders, stabilizers, and pH adjusters can be used. The preparation for an intraocular implant can be prepared by using a biodegradable polymer such as polylactic acid, polyglycolic acid, lactic acid / glycolic acid copolymer, and hydroxypropyl cellulose.

注射剤は、塩化ナトリウム等の等張化剤;リン酸ナトリウム等の緩衝化剤;ポリオキシエチレンソルビタンモノオレート等の界面活性剤;メチルセルロース等の増粘剤等から必要に応じて選択して用い、調製することができる。
本発明の組成物は、溶液、乳液または懸濁液等の液体、またはゲル、眼軟膏等の半固体の形態をとることができる。
The injection is used by selecting from isotonic agents such as sodium chloride; buffering agents such as sodium phosphate; surfactants such as polyoxyethylene sorbitan monooleate; thickeners such as methyl cellulose, etc. as necessary. , Can be prepared.
The compositions of the present invention can take the form of liquids such as solutions, emulsions or suspensions, or semi-solids such as gels and eye ointments.

水性の溶液剤、懸濁剤用希釈剤としては蒸留水、生理食塩水が含まれる。非水性の溶液剤、懸濁剤用希釈剤としては、植物油、流動パラフィン、鉱物油、プロピレングリコール、p−オクチルドデカノール等がある。また、涙液と等張にすることを目的として塩化ナトリウム、ホウ酸、クエン酸ナトリウム等の等張化剤、pHを例えば5.0〜8.0程度に一定に保持することを目的として、ホウ酸、緩衝液、リン酸緩衝液等の緩衝剤を加えることができる。さらに、亜硫酸ナトリウム、プロピレングリコール等の安定剤、エデト酸ナトリウム等のキレート剤、グリセリン、カルボキシメチルセルロース、カルボキシビニルポリマー等の増粘剤、メチルパラペン、ピロピルパラペン等の防腐剤を含んでいてもよい。これらは例えば細菌保留フィルターを濾過、過熱滅菌等によって無菌化される。 Distilled water and physiological saline are included as aqueous solution and diluent for suspension. Examples of the non-aqueous solution and diluent for suspension include vegetable oil, liquid paraffin, mineral oil, propylene glycol, p-octyldodecanol and the like. Further, an tonicity agent such as sodium chloride, boric acid, or sodium citrate for the purpose of making it isotonic with the tear fluid, and for the purpose of keeping the pH constant at, for example, about 5.0 to 8.0. A buffer such as boric acid, buffer, or phosphate buffer can be added. Further, it may contain a stabilizer such as sodium sulfite and propylene glycol, a chelating agent such as sodium edetate, a thickener such as glycerin, carboxymethyl cellulose and carboxyvinyl polymer, and a preservative such as methylparaben and pyropyruparapen. These are sterilized by, for example, filtering a bacterial retention filter, superheat sterilization, or the like.

眼軟膏は、ワセリン、セレン50、プラスチベース、マクロゴール等を基剤とし、親水性を高めることを目的として、界面活性剤を加えることができる。また、カルボキシメチルセルロース、メチルセルロース、カルボキシビニルポリマーなどのゼリー剤等を含んでいても良い。 The eye ointment is based on petrolatum, selenium 50, plastibase, macrogol and the like, and a surfactant can be added for the purpose of increasing hydrophilicity. Further, a jelly agent such as carboxymethyl cellulose, methyl cellulose, or carboxyvinyl polymer may be contained.

9.用法及び用量
本化合物の投与量は、剤型、投与すべき患者の症状の軽重、年齢、体重、医師の判断、等に応じて適宜変えることができるが、点眼の場合、一般には、成人に対し1日あたり以下の通りである。
注射剤の場合:10nM 200μl 結膜下注射 1日1回(0、1、3、5日)
点眼剤又は挿入剤の場合:100nM 80μl 1日2回 点眼(0,1,2,3,4,5,6,7日)
9. Dosage and administration The dose of this compound can be appropriately changed according to the dosage form, the severity of the patient's symptoms to be administered, age, weight, doctor's judgment, etc., but in the case of eye drops, it is generally given to adults. On the other hand, it is as follows per day.
For injection: 10 nM 200 μl subconjunctival injection once daily (0, 1, 3, 5 days)
For eye drops or inserts: 100 nM 80 μl Twice daily (0,1,2,3,4,5,6,7 days)

また、本発明の医薬組成物は、例えばOBP−801の場合は2pg/eye〜9000pg/eye、又は100pg/kg〜3000pg/kgであり、結膜注射及び点眼の形態により以下の用法・用量で使用することができる。 The pharmaceutical composition of the present invention is, for example, 2 pg / eye to 9000 pg / eye or 100 pg / kg to 3000 pg / kg in the case of OBP-801, and is used in the following dosage and administration depending on the form of conjunctival injection and eye drops. can do.

・結膜の線維化抑制(結膜注射)の場合
OBP−801濃度10nM、液量200μlとすると、注入OBP−801量は、100pg/kg〜3000pg/kg、好ましくは100pg/kg〜500pg/kg、さらに好ましくは200pg/kg〜400pg/kg、さらに好ましくは315pg/kgを1回とし、術前30分前、術後1、3及び5日に結膜下注射にて投与する(計4回投与)。
あるいは、2pg/eye〜9000pg/eye、好ましくは2pg/eye〜1500pg/eye、さらに好ましくは4pg/eye〜1200pg/eye、さらに好ましくは944pg/eyeを1回とし、術前30分前、術後1、3及び5日に結膜下注射にて投与する(計4回投与)。
-In the case of suppression of conjunctival fibrosis (conjunctival injection) When the OBP-801 concentration is 10 nM and the liquid volume is 200 μl, the injected OBP-801 volume is 100 pg / kg to 3000 pg / kg, preferably 100 pg / kg to 500 pg / kg, and further. The dose is preferably 200 pg / kg to 400 pg / kg, more preferably 315 pg / kg, and is administered by subconjunctival injection 30 minutes before the operation and 1, 3 and 5 days after the operation (4 times in total).
Alternatively, 2 pg / eye to 9000 pg / eye, preferably 2 pg / eye to 1500 pg / eye, more preferably 4 pg / eye to 1200 pg / eye, further preferably 944 pg / eye once, 30 minutes before the operation and after the operation. Administer by subconjunctival injection on days 1, 3 and 5 (4 doses in total).

・結膜の線維化抑制(点眼)の場合
OBP−801濃度100nM、液量80μlとすると、注入OBP−801量は、100pg/kg〜3000pg/kg、好ましくは2000pg/kg〜3000pg/kg、さらに好ましくは2500pg/kg〜3000pg/kg、さらに好ましくは2517pg/kgを1回とし、術前30分前、術後1、2、3、4、5、6、7日に、朝、夕の計15回投与する。
-In the case of suppression of conjunctival fibrosis (eye drops) Assuming that the OBP-801 concentration is 100 nM and the liquid volume is 80 μl, the injected OBP-801 volume is 100 pg / kg to 3000 pg / kg, preferably 2000 pg / kg to 3000 pg / kg, more preferably. 2500 pg / kg to 3000 pg / kg, more preferably 2517 pg / kg once, 30 minutes before the operation, 1, 2, 3, 4, 5, 6 and 7 days after the operation, a total of 15 in the morning and evening. Administer once.

あるいは、6pg/eye〜27000pg/eye、好ましくは5000pg/eye〜10000pg/eye、さらに好ましくは7000pg/eye〜8000pg/eye、さらに好ましくは7552pg/eyeを1回とし、術前30分前、術後1、2、3、4、5、6、7日に、朝、夕の計15回投与する。 Alternatively, 6 pg / eye to 27,000 pg / eye, preferably 5000 pg / eye to 10000 pg / eye, more preferably 7000 pg / eye to 8000 pg / eye, further preferably 7552 pg / eye, 30 minutes before the operation and after the operation. Administer 15 times in the morning and evening on the 1st, 2nd, 3rd, 4th, 5th, 6th and 7th.

・CNV抑制(硝子体注射)の場合:
OBP−801濃度10nM、液量0.5μlとすると、注入OBP−801量は、100pg/kg〜3000pg/kg、好ましくは100pg/kg〜500pg/kg、さらに好ましくは100pg/kg〜200pg/kg、さらに好ましくは118pg/kgを1回とし、1日に計1〜10回投与する。
あるいは、2pg/eye〜9000pg/eye、好ましくは2pg/eye〜1500pg/eye、さらに好ましくは2pg/eye〜10pg/eye、さらに好ましくは2.36pg/eyeを1回とし、1日に計1〜10回投与する。
・眼組織培養細胞の場合:
眼組織培養細胞の線維化様相転移を10nM以下の濃度で抑制する。また、眼組織細胞のHDAC活性の阻害作用は、IC50=10nM以下の濃度である。
・ For CNV suppression (vitreous injection):
Assuming that the OBP-801 concentration is 10 nM and the liquid volume is 0.5 μl, the injected OBP-801 volume is 100 pg / kg to 3000 pg / kg, preferably 100 pg / kg to 500 pg / kg, and more preferably 100 pg / kg to 200 pg / kg. More preferably, 118 pg / kg is administered once, and a total of 1 to 10 times a day is administered.
Alternatively, 2 pg / eye to 9000 pg / eye, preferably 2 pg / eye to 1500 pg / eye, more preferably 2 pg / eye to 10 pg / eye, further preferably 2.36 pg / eye once, for a total of 1 to 1 day. Administer 10 times.
・ For cultured eye tissue cells:
Fibrosis-like metastasis of cultured ocular tissue cells is suppressed at a concentration of 10 nM or less. In addition, the inhibitory effect on HDAC activity of eye tissue cells is at a concentration of IC50 = 10 nM or less.

10.対象
(1)眼組織の線維化抑制
定義:
眼組織:結膜関連組織、緑内障関連組織、網膜関連組織、角膜組織、結膜組織、強膜組織、水晶体組織、隅角線維柱帯組織、網脈絡膜組織、視神経組織、硝子体組織
線維化:結膜線維芽細胞(HconF)及び線維柱帯細胞(HTMC)の細胞増殖が進み、TGF、TNFなどの線維化誘導遺伝子及び、col1、col3、col4、col6などの過剰な発現により細胞外基質の異常な架橋が生じる。その結果として、線維が細胞や実質の生理機能が低下する。
10. Subject (1) Inhibition of fibrosis in ocular tissue Definition:
Ocular tissue: conjunctival tissue, glaucoma-related tissue, retina-related tissue, corneal tissue, conjunctival tissue, strong membrane tissue, crystalline tissue, corner trabecular meshwork tissue, retinochoroid tissue, optic nerve tissue, vitreous tissue fibrosis: conjunctival fiber Cell proliferation of blast cells (HconF) and trabecular meshwork cells (HTMC) progresses, and abnormal cross-linking of extracellular substrates due to overexpression of fibrosis-inducing genes such as TGF and TNF and col1, col3, col4, col6, etc. Occurs. As a result, the fibers are impaired in cell and parenchymal physiology.

抑制物質の種類:抗TGFb2抗体、siRNA(抗TGFb)、siRNA(抗TGFb2受容体)、トラニラスト、genistein、Suramin、アンジオテンシン変換酵素阻害剤、Chymase阻害剤、Smad7遺伝子導入、ROCK(Rho−associated kinase)阻害剤、Decorin、Ribozymes、Aptamaers(ARC 126 and ARC 127)、アデノウイルスによるp38MAPK遺伝子のドミナントネガティブ、Simvastatin、HMG−CoA還元酵素阻害剤、Lovastatin、Follistatin、MMC含有ハイドロゲル、5FU徐放剤、パクリタキセル、ブレオマイシン、Thiotepa(アルキル化剤)、レチノイン酸とその誘導体(ビタミンA)、IFN−α、レクチン、Saporin、細胞増殖抑制遺伝子p21、ベバシズマブ、ラニビズマブ、MMC、ステロイド、NSAIDS、5FU、、抗VEGF抗体、抗LOXL1抗体、抗LOX抗体 Types of inhibitors: anti-TGFb2 antibody, siRNA (anti-TGFb), siRNA (anti-TGFb2 receptor), tranilast, genistine, Suramin, angiotensin converting enzyme inhibitor, Chemase inhibitor, Smad7 gene transfer, ROCK (Rho-associated kine) Inhibitors, Decorin, Ribozymes, Aptamers (ARC 126 and ARC 127), dominant negative of p38MAPK gene by adenovirus, Simvastatin, HMG-CoA reductase inhibitor, Lovastatin, Follistatin, Follistatin, MMC , Breomycin, Thiotepa (alkylating agent), retinoic acid and its derivatives (vitamin A), IFN-α, lectin, Saporin, cell growth inhibitory gene p21, bevasizumab, ranibizumab, MMC, steroids, NSAIDS, 5FU, anti-VEGF antibody , Anti-LOXL1 antibody, anti-LOX antibody

(2)緑内障関連組織
緑内障関連組織としては、線維柱帯、線維柱帯細胞(HTMC)で構成される組織であり、房水の流水路を制御することにより眼圧を制御することが可能な組織を含む。
緑内障関連組織の種類:線維柱帯、シュレム管、集合管、上強膜静脈
(2) Glaucoma-related tissue The glaucoma-related tissue is a tissue composed of trabecular meshwork and trabecular meshwork cells (HTMC), and intraocular pressure can be controlled by controlling the flow path of aqueous humor. Including tissue.
Types of glaucoma-related tissues: trabecular meshwork, Schlemm's canal, collecting duct, superior scleral vein

(2−1)線維柱帯
線維柱帯は、眼内の前房にたまった房水の流出路に網の目状に位置し、濾過する役割を有する。正常の房水動態を保持するために、総房水量約0.3mL、1−2時間で房水を交換し、無血管組織の栄養補給、老廃物の運搬、眼内圧の恒常性を維持する。
(2-1) Trabecular meshwork The trabecular meshwork is located in a mesh pattern in the outflow path of aqueous humor accumulated in the anterior chamber of the eye and has a role of filtering. In order to maintain normal aqueous humor dynamics, the total aqueous humor volume is about 0.3 mL, and the aqueous humor is exchanged in 1-2 hours to nourish avascular tissue, transport waste products, and maintain intraocular pressure homeostasis. ..

(2−2)眼圧の制御が可能な組織
眼圧は眼球内を満たしている眼内液の圧力を指す。大気圧よりもわずかに高く、この大気圧との差を眼圧の値として表す。単位はmmHgで表す。眼圧は、眼球の前方を循環している房水の量によってコントロールされる。房水は毛様体で作られ、虹彩と水晶体の隙間(後房)を通って角膜のすぐ下の空間(前房)に流出される。その後、角膜と虹彩の付け根にあたる隅角と呼ばれる部分の線維柱帯を通過して、シュレム管で排出される。この流れが滞って房水の量が多くなると眼圧の上昇をきたす。眼圧が21mmHg以上のときに高眼圧と判定される。ただし日本人の場合、それ以下の眼圧なのに視神経乳頭が障害されてしまう正常眼圧緑内障の頻度が高いことが分かっている。
(2-2) Tissue in which intraocular pressure can be controlled Intraocular pressure refers to the pressure of the intraocular fluid that fills the inside of the eyeball. It is slightly higher than atmospheric pressure, and the difference from this atmospheric pressure is expressed as the value of intraocular pressure. The unit is mmHg. Intraocular pressure is controlled by the amount of aqueous humor circulating in front of the eye. Aqueous humor is made up of the ciliary body and flows through the gap between the iris and the crystalline lens (posterior chamber) into the space just below the cornea (anterior chamber). After that, it passes through the trabecular meshwork of the part called the angle of the cornea and the base of the iris, and is discharged by Schlemm's canal. When this flow is blocked and the amount of aqueous humor increases, the intraocular pressure rises. When the intraocular pressure is 21 mmHg or more, it is determined that the intraocular pressure is high. However, in the case of Japanese, it is known that the frequency of normal-tension glaucoma, in which the optic nerve head is damaged even though the intraocular pressure is lower than that, is high.

(3)結膜関連組織
結膜関連組織は、濾過胞組織、濾過胞の周囲の結合組織、房水組織で構成される構造を有する。その機能としては、結膜から房水を吸収し、表面から水を蒸散させると同時に、人工的な房水流出路を形成することにより、眼内の水の流出を制御し、眼圧を正常に保持する。
結膜関連組織の種類としては、結膜上皮、粘膜固有層、テノン嚢、上強膜、強膜などが挙げられる。
(3) Conjunctiva-related tissue The conjunctiva-related tissue has a structure composed of a filter bleb tissue, a connective tissue around the filter bleb, and an aqueous humor tissue. Its function is to absorb aqueous humor from the conjunctiva, evaporate water from the surface, and at the same time, form an artificial aqueous humor outflow channel to control the outflow of water in the eye and maintain normal intraocular pressure. do.
Types of conjunctival-related tissues include conjunctival epithelium, lamina propria, tenon sac, superior sclera, sclera and the like.

(4)網膜関連組織
網膜は脈絡膜の内側に存在し、1億個以上の視細胞が、0.2〜0.5ミリメートルの薄い膜を構成している。明暗や色を感じ取り、ものを見るために最も大事な部分と考えられている。網膜の中で瞳孔から入った光が眼底の正面にあたり、周辺の網膜よりもやや濃い黄色に見える部分が黄斑である。さらに黄斑には、中心部分に周辺の網膜よりも少し薄くなっている1点を中心窩といい、錐体細胞が密集しているほかは血管も無く、視力が最も敏感な1点である。また、黄斑よりも少し内側(鼻側)の眼底にあり、網膜上の視細胞につながっている神経線維が集まっている部位が視神経乳頭である。網膜で受けた光の情報は、ここから眼球を出て脳へ送られ映像となる。また、視神経乳頭は網膜内の血管の集合点でもあり、ここから網膜全体に網膜動脈、網膜静脈が広がる。
(4) Retina-related tissue The retina exists inside the choroid, and more than 100 million photoreceptor cells form a thin membrane of 0.2 to 0.5 mm. It is considered to be the most important part for feeling light and darkness and color and seeing things. In the retina, the light that enters from the pupil hits the front of the fundus, and the part that looks slightly darker yellow than the surrounding retina is the macula. Furthermore, in the macula, one point that is slightly thinner than the surrounding retina in the central part is called the fovea centralis, and there are no blood vessels other than dense pyramidal cells, and it is the one point that is most sensitive to visual acuity. The optic nerve head is located on the fundus of the eye, slightly inside (nasal side) of the macula, and where nerve fibers connected to photoreceptor cells on the retina are gathered. The information of the light received by the retina leaves the eyeball from here and is sent to the brain to become an image. The optic disc is also the gathering point of blood vessels in the retina, from which the retinal arteries and veins extend throughout the retina.

(4−1)網膜色素上皮
網膜色素上皮は、網膜10層の最外層に位置し、単層上皮細胞である。外節と呼ばれる先端部は、網膜色素上皮に恒常的に貪食され、新しいものと入れ替わっている。網膜色素上皮は、視細胞貪食や視物質(レチナールなど)再生能を持ち、血液網膜関門を構成する。また、加齢黄斑変性の主病巣となる。視細胞は網膜を構成する細胞の1つである。網膜色素上皮は光受容体といわれ、光エネルギーを電気エネルギーに変換する。網膜色素上皮組織の線維化は、眼内増殖性疾患に共通する重篤な病態であり、線維化抑制という共通の治療法で複数の疾患を対象に治療介入できる。加齢黄斑変性(AMD)、増殖性硝子帯網膜症、増殖糖尿病網膜症(PDR)は何れも加齢性疾患であり、後天的なエピジェネティック遺伝子変化に起因する疾患病態と考えられる。その一つが網膜色素上皮細胞組織(RPE)の線維化病態である。後眼部間質の線維化により視力予後の不良をきたすと、病態の悪性度が進行し、細胞の機能的相転移が生ずる。続いて、網膜色素上皮細胞組織(RPE)の細胞老化がさらに進むと、上皮間葉系移行から線維化が進行し、加齢加齢黄斑変性にいたる。
(4-1) Retinal pigment epithelium The retinal pigment epithelium is located in the outermost layer of the 10th layer of the retina and is a simple squamous epithelial cell. The tip, called the outer segment, is constantly phagocytosed by the retinal pigment epithelium and replaced with a new one. Retinal pigment epithelium has the ability to phagocytose photoreceptor cells and regenerate visual pigments (retinal, etc.) and constitutes the blood-retinal barrier. It is also the main lesion of age-related macular degeneration. Photoreceptors are one of the cells that make up the retina. Retinal pigment epithelium is called a photoreceptor and converts light energy into electrical energy. Fibrosis of retinal pigment epithelial tissue is a serious condition common to intraocular proliferative diseases, and it is possible to intervene in multiple diseases with a common treatment method of suppressing fibrosis. Age-related macular degeneration (AMD), proliferative macular retinopathy, and proliferative diabetic retinopathy (PDR) are all age-related diseases and are considered to be pathological conditions caused by acquired epigenetic gene changes. One of them is the fibrotic pathology of retinal pigment epithelial cell tissue (RPE). When fibrosis of the interstitium of the posterior segment causes poor visual acuity, the malignancy of the pathological condition progresses and functional phase transition of cells occurs. Subsequently, as the cellular senescence of the retinal pigment epithelial cell tissue (RPE) further progresses, fibrosis progresses from the epithelial-mesenchymal transition to age-related macular degeneration.

(4−2)脈絡膜新生血管
眼に入った光は、角膜、水晶体、硝子体を通して目の奥の眼底にある網膜上に像を結ぶ。網膜の中央部に黄斑が存在する。黄斑は網膜の中でも視力をつかさどる重要な細胞が集中している部位で、ものの形、大きさ、色、立体、距離など光の情報の大半を識別する。
黄斑の裏側に病的な破れやすい血管(脈絡膜新生血管)が新しく形成し、個々から血液や滲出が眼底に漏れ出す。その結果、黄斑が変性したり、傷ついたりして、中心視力が損なわれ、視力の低下をきたす。その病的な脈絡膜新生血管の発生、成長に血管内皮細胞増殖因子(VEGF)が大きく関与している。
(4-2) Choroidal neovascularization Light that enters the eye forms an image on the retina at the back of the eye through the cornea, crystalline lens, and vitreous body. The macula is present in the central part of the retina. The macula is the part of the retina where important cells that control vision are concentrated, and it identifies most of the light information such as the shape, size, color, solidity, and distance of things.
Pathologically fragile blood vessels (choroidal neovascularization) are newly formed on the back side of the macula, and blood and exudate leak from each individual to the fundus of the eye. As a result, the macula is degenerated or damaged, and the central visual acuity is impaired, resulting in a decrease in visual acuity. Vascular Endothelial Growth Factor (VEGF) is greatly involved in the development and growth of pathological choroidal neovascularization.

(4−3)加齢黄斑変性へ移行する組織
加齢黄斑変性を発症する組織として、網膜関連組織、血液網膜関門を構成する網膜、網膜色素上皮、網膜を構成する細胞である、視細胞などがある。また、網膜の中央部には黄斑が存在し、黄斑は網膜の中でも視力をつかさどる重要な細胞が集中している部位で、黄斑の裏側に病的な破れやすい血管(脈絡膜新生血管)が新しく形成し、ここから血液が滲出し、眼底にあふれ出す。その結果、黄斑が変性もしくは傷などにより前記疾患を発症し中心視力が損なわれ、視力の低下などの症状をきたす。
(4-3) Tissues that transition to age-related macular degeneration As tissues that develop age-related macular degeneration, retina-related tissues, retinas that make up the blood-retinal barrier, retinal pigment epithelium, cells that make up the retina, photoreceptor cells, etc. There is. In addition, the macula exists in the central part of the retina, and the macula is the part of the retina where important cells that control visual acuity are concentrated. However, blood oozes from here and overflows to the bottom of the eye. As a result, the macula develops the disease due to degeneration or injury, the central visual acuity is impaired, and symptoms such as deterioration of visual acuity occur.

(5)対象疾患
本発明の医薬組成物が上記組織を対象としていることから、本発明の医薬組成物を投与する対象となる疾患としては、線維化に関連する疾患、炎症に関連する疾患、血管新生に関連する疾患のいずれにも適用することができる。
典型的には、例えば、緑内障、糖尿病黄斑浮腫(DME)、加齢黄斑変性(AMD)(特に滲出型もしくは非滲出型の加齢黄斑変性症)、白内障、感染性もしくは非感染性ブドウ膜炎、強膜炎、角膜手術、非感染性角膜炎、虹彩炎、脈絡網膜炎症、眼の網膜を損傷する炎症性疾患、並びに網膜症、特に糖尿病性網膜症、動脈高血圧誘発性高血圧性網膜症、放射線誘発性網膜症、日光誘発性日光網膜症、外傷誘発性網膜症、例えば、プルチェル網膜症、未熟児網膜症(ROP)及び過粘稠度関連網膜症から選択される眼の炎症性疾患などの眼内炎症性疾患が挙げられる。また、別の対象疾患の例としては、例えば前眼部/後眼部手術後、例えば、白内障手術、レーザー眼科手術、緑内障手術、屈折矯正手術、角膜手術、硝子体−網膜手術、眼筋手術、眼形成手術、眼腫瘍手術、翼状片を含む結膜手術、及び/又は涙器含む手術の後、特に、複雑な眼の手術、外傷後の手術後及び/又は複雑ではない眼の手術の後の眼内炎症などの疾患にも適用することができる。特に眼組織の疾患として、ブドウ膜炎、特に、前眼部、中間部及び/又は後眼部ブドウ膜炎、交感性ブドウ膜炎及び/又は全ブドウ膜炎;一般的な強膜炎、特に、前眼部強膜炎、角膜辺縁性強膜炎、後部強膜炎、及び角膜障害を伴う強膜炎;一般的な上強膜炎、特に、一過性周期性上強膜炎及び結節性上強膜炎;網膜炎;角膜手術;粘液膿性結膜炎、アトピー性結膜炎、中毒性結膜炎、偽膜性結膜炎、漿液性結膜炎、慢性結膜炎、巨大乳頭結膜炎、濾胞性結膜炎、春季結膜炎、眼瞼結膜炎、及び/又は瞼裂斑炎;一般的な非感染性角膜炎、特に、角膜潰瘍、表層角膜炎、黄斑角膜炎、糸状角膜炎、雪眼炎、点状角膜炎、例えば、ドライアイ症候群(乾性角結膜炎)、神経栄養性角結膜炎、結節性眼炎、フリクテン性角結膜炎、春季角結膜炎及び他の角結膜炎、間質性結膜炎及び深層角膜炎、硬化性角膜炎、角膜血管新生及び他の角膜炎;一般的な虹彩毛様体炎、特に、急性虹彩毛様体炎、亜急性虹彩毛様体炎及び慢性虹彩毛様体炎、原発性虹彩毛様体炎、再発性虹彩毛様体炎及び続発性虹彩毛様体炎、水晶体起因性虹彩毛様体炎、フックス虹彩異色性毛様体炎、フォークト・小柳症候群;虹彩炎;一般的な脈絡網膜炎症、特に、限局性脈絡網膜炎症及び播種性脈絡網膜炎症、脈絡網膜炎、脈絡膜炎、網膜炎、網膜脈絡膜炎、後部毛様体炎、原田病、感染症及び寄生虫疾患における脈絡網膜炎症;前眼部及び/又は後部手術の後、例えば、白内障手術、レーザー眼科手術(例えば、レーザー原位置角膜切開反転術(LASIK))、緑内障手術、屈折矯正手術、角膜手術、硝子体−網膜手術、眼筋手術、眼形成手術、眼腫瘍手術、翼状片を含む結膜手術、及び涙器を含む手術の後の眼の術後炎症、好ましくは、眼内炎症、特に、術後眼内炎症、好ましくは、複雑な眼の手術及び/又は複雑ではない眼の手術の後の術後眼内炎症、例えば、処置後のブレブの炎症;眼の網膜を損傷する炎症性疾患;網膜血管炎、特に、イールズ病及び網膜血管周囲炎;一般的な網膜症、特に、糖尿病性網膜症、(動脈高血圧誘発性)高血圧性網膜症、滲出性網膜症、放射線誘発性網膜症、日光誘発性日光網膜症、外傷誘発性網膜症、例えば、プルチェル網膜症、未熟児網膜症(ROP)及び/又は過粘稠度関連網膜症、非糖尿病性増殖性網膜症、及び/又は増殖性硝子体網膜症;濾過胞炎;眼内炎;交感性眼炎;麦粒腫;霰粒腫;眼瞼炎;まぶたの皮膚炎及び他の炎症;涙腺炎;涙管炎、特に、急性及び慢性涙小管炎;涙嚢炎;眼窩の炎症、特に、眼窩の蜂巣炎、眼窩の骨膜炎、眼窩のテノン嚢炎、眼窩の肉芽腫及び眼窩筋炎;化膿性内眼球炎及び寄生虫性眼内炎から選択される眼の炎症性及び非炎症性疾患などが挙げられるが、これらに限定されるものではない。
(5) Target Diseases Since the pharmaceutical composition of the present invention targets the above tissues, the target diseases to which the pharmaceutical composition of the present invention is administered include fibrosis-related diseases and inflammation-related diseases. It can be applied to any disease associated with angiogenesis.
Typically, for example, glaucoma, diabetic retinopathy (DME), age-related retinopathy (AMD) (particularly exudative or non-exudative age-related retinopathy), retinopathy, infectious or non-infectious uveitis. , Uveitis, corneal surgery, non-infectious keratitis, irisitis, choroidal retinal inflammation, inflammatory diseases that damage the retinopathy of the eye, and retinopathy, especially diabetic retinopathy, arterial hypertension-induced hypertensive retinopathy, Radiation-induced retinopathy, sunlight-induced sunlight retinopathy, trauma-induced retinopathy, such as uveitis of prematurity, retinopathy of prematurity (ROP), and inflammatory diseases of the eye selected from hyperviscosity-related retinopathy. Intraocular inflammatory disease. Examples of other target diseases include, for example, after anterior / posterior ocular surgery, for example, cataract surgery, laser eye surgery, glaucoma surgery, refractive correction surgery, corneal surgery, vitreous-retinal surgery, eye muscle surgery. After eye surgery, eye tumor surgery, conjunctival surgery including winged pieces, and / or surgery involving the lacrimal organ, especially after complex eye surgery, post-traumatic surgery and / or uncomplicated eye surgery It can also be applied to diseases such as intraocular inflammation. Uveitis, especially anterior, intermediate and / or posterior uveitis, sympathetic uveitis and / or total uveitis; general uveitis, especially as diseases of the eye tissue. , Anterior uveitis, corneal marginal uveitis, posterior uveitis, and uveitis with corneal disorders; general uveitis, especially transient periodic uveitis and Nodular supraveitis; retinitis; corneal surgery; muciny purulent conjunctivitis, atopic conjunctivitis, addictive conjunctivitis, pseudomembranous conjunctivitis, serous conjunctivitis, chronic conjunctivitis, giant papillary conjunctivitis, follicular conjunctivitis, spring conjunctivitis, uveitis , And / or uveitis; common non-infectious uveitis, especially corneal ulcer, superficial keratitis, uveitis, filamentous keratitis, snow eye inflammation, punctate keratitis, eg, dry eye syndrome ( Iridocyclitis), neurotrophic uveitis, nodular ophthalmitis, frictenous uveitis, spring uveitis and other uveitis, interstitial uveitis and deep uveitis, sclerosing uveitis, corneal angiogenesis and others Uveitis; general iridocyclitis, especially acute iridocyclitis, subacute iridocyclitis and chronic iridocyclitis, primary iridocyclitis, recurrent iridocyclitis Flame and secondary iridocyclitis, crystal-induced iridocyclitis, Fuchs iridocyclitis, Vogt-Koyanagi syndrome; irisitis; general choroidal retinal inflammation, especially localized chorioretinitis And disseminated chorioretinitis, chorioretinitis, choroiditis, retinitis, retinal uveitis, posterior uveitis, Harada's disease, choroidal retinal inflammation in infectious and parasitic diseases; Later, for example, cataract surgery, laser ophthalmic surgery (eg, laser in-situ corneal incision reversal (LASIK)), glaucoma surgery, refractive correction surgery, corneal surgery, vitreous-retinal surgery, ocular muscle surgery, ocular plastic surgery, eye Postoperative inflammation of the eye after tumor surgery, uveitis including uveitis, and uveitis, preferably intraocular inflammation, particularly postoperative intraocular inflammation, preferably complex eye surgery and / Or postoperative intraocular inflammation after uncomplicated eye surgery, eg, post-treatment uveitis; inflammatory diseases that damage the retina of the eye; retinal vasculitis, especially Eelz's disease and peri-retinal inflammation; general Iridocyclitis, especially diabetic retinopathy, (arterial hypertension-induced) hypertensive retinopathy, uveitis, radiation-induced retinopathy, sunlight-induced sunlight retinopathy, trauma-induced retinopathy, eg, Pulcher Retinopathy, premature infant retinopathy (ROP) and / or hyperviscosity-related retinopathy, non-diabetic proliferative retinopathy, and / or proliferative uveitis; uveitis; endocyclitis; sympathetic eye Flame; wheat granuloma; iridocyclitis; uveitis; eyelids Dermatitis and other inflammations; lacrimal adenitis; lacrimal ductitis, especially acute and chronic lacrimal ductitis; lacrimal pouchitis; orbital inflammation, especially orbital honeycombitis, orbital osteoporitis, orbital tenon pouchitis, orbital Granulomas and orbital myopathy; inflammatory and non-inflammatory diseases of the eye selected from, but not limited to, purulent endophthalmitis and parasite endophthalmitis.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
[実施例1]
(線維柱帯切除術後の濾過胞維持効果に関するin vivo試験)
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to these examples.
[Example 1]
(In vivo test on the effect of maintaining filter cells after trabeculectomy)

1.方法
◆カニューラを用いた緑内障濾過手術ウサギモデル、OBP−801投与、観察
OBP−801を眼灌流液(BSS:Balanced Salt Solution)で希釈し、投与群に投与するための医薬組成物を調製した。
1. 1. METHODS: Glaucoma filtration surgery using a cannula Rabbit model, OBP-801 administration, observation OBP-801 was diluted with an ocular perfusate (BSS: Balanced Salt Solution) to prepare a pharmaceutical composition for administration to the administration group.

家兎(日本白色種、雌、体重2.5〜2.99kg)に対して点眼麻酔後に眼内灌流液、MMCもしくはOBP−801を結膜下注射30分後に、全身麻酔下(筋肉注射。ketamine(50mg/kg)xylazine(10mg/kg)混注)にて6−0ナイロンを12時角膜に縫合、牽引し、術野を露出。円蓋部基底結膜弁を作成、角膜輪部後方15mmまで鈍的に結膜下組織と強膜を剥離し、強膜を露出した。角膜輪部後方4mmからMVR Lance(20g)を用いて半層強膜トンネルを前房の角膜実質まで視認できるまで作成した。静脈カニューラを強膜トンネル内に挿入し、前房内に刺入した。 Intraocular perfusate, MMC or OBP-801 after eye drop anesthesia for domestic rabbits (Japanese white species, female, weight 2.5 to 2.99 kg) 30 minutes after subconjunctival injection, under general anesthesia (intramuscular injection. Ketamine) 6-0 nylon was sewn and pulled to the 12 o'clock conjunctiva with (50 mg / kg) xylazine (10 mg / kg) mixed injection) to expose the surgical field. A basal conjunctival valve of the fornix was prepared, and the subconjunctival tissue and the sclera were bluntly exfoliated up to 15 mm behind the corneal ring to expose the sclera. A half-layer scleral tunnel was created using an MVR Lance (20 g) from 4 mm behind the corneal ring until the corneal stroma of the anterior chamber was visible. A venous cannula was inserted into the scleral tunnel and inserted into the anterior chamber.

カニューレを強膜に縫合・固定した後に結膜を縫合し、アトロピン点眼、リンデロンA軟膏を注入し、手術を終了する。手術後は抗菌剤とステロイド剤の局所投与を行う。手術後1,3,5日目にOBP−801の結膜下投与を行う。1〜30日目に2〜3日に1回の頻度で術後診察に準じて、眼炎症の程度、前房深度、結膜濾過胞の性状を観察し、濾過胞の大きさの測定と眼圧測定を行う。さらには麻酔薬等の過剰投与により苦痛を与えることなく安楽死させた後に眼球を摘出し眼内環流液、MMCおよびOBP−801の濾過胞維持効果を組織学的に調査する。なお、急激な体重減少などの異常を認めた場合には、ペントバルビタールの過剰投与により安楽死させ、人道的エンドポイントとする。上記の1ヶ月間の実験を1クールとした。 After suturing and fixing the cannula to the sclera, the conjunctiva is sutured, atropine instillation and Linderon A ointment are injected, and the operation is completed. Topical administration of antibacterial agents and steroids is performed after surgery. Subconjunctival administration of OBP-801 is performed 1, 3 and 5 days after surgery. On the 1st to 30th days, observe the degree of intraocular inflammation, the depth of the anterior chamber, and the properties of the conjunctival filter vesicles once every 2 to 3 days according to the postoperative examination, and measure the size of the filter blebs and the eye. Make a pressure measurement. Furthermore, after euthanasia without causing pain due to overdose of an anesthetic or the like, the eyeball is removed and the effect of maintaining the filtration bleb of intraocular reflux fluid, MMC and OBP-801 is histologically investigated. If abnormalities such as rapid weight loss are observed, euthanasia is performed by overdose of pentobarbital, which is used as a humanitarian endpoint. The above one-month experiment was defined as one course.

◆眼圧測定方法
両眼ともにトノベットにて3回測定し、中央値を測定値とした。
◆ウエスタンブロッティング
液体窒素で凍結させた組織を乳鉢で粉砕し、RIPA buffer(+Protease inhibiter)を組織10mgにつきbuffer30μl加えた。続いて、vortex、超音波(5min30sec間隔)破砕、4℃ローテーション(数時間)にて溶解し、10,000g 4℃ 20min溶け残りを沈殿除去、上清を回収した。この資料中のタンパク定量(BCA kit)を行なうため、SDS−pageで電気泳動:30μg/lane[iBlot 4−12% Bis−Tris Plus Gellし、PVDFメンブレンに転写[iBlot PVDFトランスファースタックレギュラー]した。ブロッキング及び抗体反応[iBind Western System]はECL化学発光 [NOVEX ECL CHEMI SUBSTRATE]により検出 [LAS3000(Fuji filme)]した。
◆ Intraocular pressure measurement method Both eyes were measured three times with Tonobet, and the median value was used as the measured value.
◆ Western blotting The tissue frozen in liquid nitrogen was crushed in a mortar, and 30 μl of RIPA buffer (+ Protease inhibiter) was added per 10 mg of the tissue. Subsequently, it was dissolved by vortex, ultrasonic (5 min, 30 sec interval) crushing, and 4 ° C. rotation (several hours), 10,000 g, 4 ° C., 20 min, and the undissolved residue was removed by precipitation, and the supernatant was recovered. In order to carry out protein quantification (BCA kit) in this document, electrophoresis was performed on SDS-page: 30 μg / lane [iBlot 4-12% Bis-Tris Plus Gel] and transferred to a PVDF membrane [iBlot PVDF transfer stack regular]. Blocking and antibody reaction [iBind Western System] was detected by ECL chemiluminescence [NOVEX ECL CHEMI Substrate] [LAS3000 (Fuji film)].

◆組織染色
クリオスタット切片(10−μm厚)に2%シラン(3−aminopropyltriethoxysilane)でコートしスライドガラスに切片を回収した。Cold Methanol(−30℃)を用いて15minの間固定化を行なった後、風乾した。続いて、ブロッキング:1% ウシアルブミンを含有する反応液を用いて、室温で約30〜60分間反応させた。
一次抗体反応:4℃ O/N、二次抗体反応:室温で60分間反応させた後、DAPI入り封入剤(VECTASHELS with DAPI)で封入した。周りをマニキュアで封入した後、ピクロシリウスレッド染色を行い、蛍光顕微鏡を用いて観察した。
◆ Tissue staining Cryostat sections (10-μm thick) were coated with 2% silane (3-aminopropanolthoxysilane), and the sections were collected on a slide glass. Immobilization was performed for 15 minutes using Cold Methanol (-30 ° C.), and then air-dried. Subsequently, a reaction solution containing blocking: 1% bovine albumin was used to react at room temperature for about 30-60 minutes.
Primary antibody reaction: 4 ° C. O / N, secondary antibody reaction: After reacting at room temperature for 60 minutes, the mixture was encapsulated with a DAPI-containing mounting medium (VECTASHELS with DAPI). After encapsulating the surroundings with nail polish, picrosirius red staining was performed and observed using a fluorescence microscope.

2.結果
〔OBP−801の薬理効果〕
(1)OBP−801投与による低眼圧維持効果
OBP−801群、BSS群ともに術直後は眼圧下降を認めた。
OBP−801投与群では術後30日において手術前に比して眼圧が低く維持されていた。(図1、図2)。
一方、BSS投与群では術後15日以降には眼圧が上昇し、OBP−801投与群と比較して眼圧を長期間低く維持することができなかった(図1、図3)。
2. Results [Pharmacological effect of OBP-801]
(1) Low intraocular pressure maintenance effect by administration of OBP-801 In both the OBP-801 group and the BSS group, a decrease in intraocular pressure was observed immediately after the operation.
In the OBP-801 administration group, the intraocular pressure was maintained low 30 days after the operation as compared with that before the operation. (Figs. 1 and 2).
On the other hand, in the BSS-administered group, the intraocular pressure increased after 15 days after the operation, and the intraocular pressure could not be maintained low for a long period of time as compared with the OBP-801-administered group (FIGS. 1 and 3).

(2)濾過胞の結膜充血の抑制
術後14日目にはBSS投与群では濾過胞部の結膜に強い充血を認めた。一方、OBP−801投与では濾過胞に結膜充血は軽度であった。(図4)。
(3)OBP−801の投与回数
OBP−801の投与回数は、6回(術直前,術後1,3,5,7,9日)から4回(術直前,術後1,3,5日)まで減らしても術後30日まで同程度に低眼圧を維持することができた(図5)。
(2) Suppression of conjunctival hyperemia in the filter bleb On the 14th day after the operation, strong conjunctival hyperemia in the conjunctiva of the filter bleb was observed in the BSS-administered group. On the other hand, when OBP-801 was administered, conjunctival hyperemia was mild in the filtered follicles. (Fig. 4).
(3) Number of administrations of OBP-801 The number of administrations of OBP-801 is from 6 times (immediately before surgery, 1,3,5,7,9 days after surgery) to 4 times (immediately before surgery, 1,3,5 postoperatively). Even if it was reduced to (day), the same low intraocular pressure could be maintained until 30 days after the operation (Fig. 5).

(4)OBP−801の投与時期
OBP−801は効果相投与のみ(術後3,5,7日)でも術後30日まで低眼圧を維持できた(図6)。効果相のみの投与(術後3,5,7日)に加え、周術期の投与(術直前、術後1日)を行うことで、より低い眼圧を維持できた(図6)。
(5)OBP−801の投与量
10nM OBP−801を200μl結膜下注射したときの方が、1μM OBP−801や100μM OBP−801を同量投与するよりも、より低い眼圧を維持できる(図7)。
(4) Administration time of OBP-801 OBP-801 was able to maintain low intraocular pressure until 30 days after the operation even when only the effect phase was administered (3, 5 and 7 days after the operation) (Fig. 6). In addition to administration of only the effect phase (3, 5 and 7 days after surgery), administration during the perioperative period (immediately before surgery and 1 day after surgery) was able to maintain lower intraocular pressure (Fig. 6).
(5) Dosage of OBP-801 A lower intraocular pressure can be maintained when 200 μl of 10 nM OBP-801 is injected subconjunctivally than when the same amount of 1 μM OBP-801 or 100 μM OBP-801 is administered (Fig. 7).

(6)投与法
1回投与量を増やしたとき(100μM OBP−801を100μl結膜下注射時)に比べ、適量の投与量(10nM OBP−801を200μl結膜下注射)を複数回に分けて投与したときの方がより低い眼圧を維持すること示された(図8)。
(6) Administration method Compared to when the single dose was increased (100 μM OBP-801 was injected 100 μl subconjunctival), an appropriate dose (10 nM OBP-801 was injected 200 μl subconjunctival) was administered in multiple doses. It was shown to maintain lower intraocular pressure when injected (Fig. 8).

〔OBP−801の作用特性〕
(7)眼圧低下とαSMA発現量との関連性
術後14日で眼圧の低下が認められた3匹のウサギにおいて、免疫組織化学にて、濾過胞組織におけるαSMAの発現量を検討した。αSMAの発現量は個体ごとに異なり、眼圧下降効果とαSMA発現量とは関連性が低いことが示唆された(図9)。
(8)眼圧低下と術後14日のコラーゲン発現量との関連性
ピクロシリウスレッド染色にてI型コラーゲンとIII型コラーゲン線維の発現量を解析した。術後14日で眼圧の低下が認められたウサギと低下が認められなかったウサギにおいて、同程度のコラーゲンが発現していたことから、眼圧低下と術後14日のコラーゲン発現量とは関係性が不明である(図10)。
[Operating characteristics of OBP-801]
(7) Relationship between the decrease in intraocular pressure and the expression level of αSMA In three rabbits in which the decrease in intraocular pressure was observed 14 days after the operation, the expression level of αSMA in the filtered vesicle tissue was examined by immunohistochemistry. .. The expression level of αSMA was different for each individual, and it was suggested that the effect of lowering intraocular pressure and the expression level of αSMA were low (Fig. 9).
(8) Relationship between decreased intraocular pressure and collagen expression level 14 days after surgery The expression levels of type I collagen and type III collagen fibers were analyzed by picrosirius red staining. Since the same level of collagen was expressed in rabbits that showed a decrease in intraocular pressure 14 days after surgery and rabbits that did not, what is the decrease in intraocular pressure and the amount of collagen expressed 14 days after surgery? The relationship is unknown (Fig. 10).

(9)眼圧低下と術後30日目のコラーゲン発現量との関連性
ピクロシリウスレッド染色にてI型コラーゲンとIII型コラーゲン線維の発現量を解析した。30日目時点で眼圧の低下が認められたウサギと低下が認められなかったウサギにおいて、眼圧の低下が認めれたウサギでは濾過胞におけるコラーゲンの発現量が低く、眼圧の低下が認められなかったウサギではコラーゲンの発現量が高かったため、眼圧とコラーゲンの発現量との間には相関があると考えられた(図11)。
[実施例2]
(線維柱帯切除術後の濾過胞維持効果に関するin vitro試験)
(9) Relationship between decreased intraocular pressure and collagen expression level 30 days after surgery The expression levels of type I collagen and type III collagen fibers were analyzed by picrosirius red staining. In rabbits with decreased intraocular pressure and those without decreased intraocular pressure at the 30th day, the expression level of collagen in the filter bleb was low in the rabbits with decreased intraocular pressure, and decreased intraocular pressure was observed. Since the expression level of collagen was high in the rabbits that did not have it, it was considered that there was a correlation between the intraocular pressure and the expression level of collagen (Fig. 11).
[Example 2]
(In vitro test on filtration bleb maintenance effect after trabeculectomy)

1.方法
◆細胞培養、OBP−801添加(パルス含む)、観察
結膜線維芽細胞(HconF)(P1)はScienCell (#6570)から購入した。
◆培養(手順書通りに培養):
培地:Fibroblast Medium(#2301)に付属の培地添加物、抗生物質、FBSを添加した。
Poly−l−lysineコートした培養容器に5x10cells/cmで播種した。
すべての実験は継代数Passage(P)3で行なった。
1. 1. Methods ◆ Cell culture, OBP-801 addition (including pulse), observation Conjunctival fibroblasts (HconF) (P1) were purchased from ScienCell (# 6570).
◆ Culture (culture according to the procedure manual):
Medium: Fibroblast Medium (# 2301) was supplemented with the attached medium additives, antibiotics, and FBS.
The cells were seeded at 5x10 3 cells / cm 2 in a Poly-l-lysine-coated culture vessel.
All experiments were performed with passage number Passage (P) 3.

◆薬剤処理
OBP−801をDMSO(Dimethyl sulfoxide)で10μMの濃度に溶解したストック溶液として使用し、培地を用いて希釈し、投与群に投与するための医薬組成物を調製した。
80〜90% confluent時にFBS抜きの培地に交換しOBP−801(0〜5nM)を添加し、0〜24時間後にTGFβ(20ng/ml)TNFα(10ng/ml)を添加し24時間曝露した。
◆観察
生細胞は位相差顕微鏡にて観察した。
◆免疫染色
培地を除去した後、PBSで洗浄5min x 3回繰り返した後に、Cold Methanol(−30℃)15min固定化した。これを風乾させ、ブロッキング:1%ウシアルブミンを含む反応液を室温で約30〜60分間させた。一次抗体反応は4℃ O/N PBSで洗浄5min x 3回繰り返し、二次抗体反応を室温で60分間反応させた。5μg/ml DAPI室温15分で核染色を行い、PBSで洗浄5min x 3回繰り返し、PBSを入れた状態で蛍光顕微鏡にて観察を行なった。
◆ Drug Treatment OBP-801 was used as a stock solution dissolved in DMSO (Dimethyl sulfoxide) at a concentration of 10 μM, diluted with a medium, and a pharmaceutical composition for administration to the administration group was prepared.
At 80-90% confluent, the medium was replaced with an FBS-free medium, OBP-801 (0 to 5 nM) was added, and after 0 to 24 hours, TGFβ (20 ng / ml) and TNFα (10 ng / ml) were added and exposed for 24 hours.
◆ Observation Live cells were observed with a phase-contrast microscope.
◆ Immunostaining After removing the medium, washing with PBS was repeated 5 min x 3 times, and then fixed with Cold Methanol (-30 ° C) for 15 min. This was air dried and the reaction containing blocking: 1% bovine albumin was allowed to cool at room temperature for about 30-60 minutes. The primary antibody reaction was washed with 4 ° C. O / N PBS and repeated 5 min x 3 times, and the secondary antibody reaction was reacted at room temperature for 60 minutes. Nuclear staining was performed at 5 μg / ml DAPI room temperature for 15 minutes, washed with PBS 5 min x 3 times, and observed with a fluorescence microscope in the state of containing PBS.

◆ウエスタンブロッティング
抽出試薬:SDS−HBS;1%SDS,150mM NaCl in 10mM Hepes(pH.7.4)を50μl使用し、35mm−dish中で、boil 3min、及びSonication 5min(15sec−10sec pause)を行なった。タンパク定量(BCA kit)にはSDS−page電気泳動:30μg/lane[iBlot 4−12% Bis−Tris Plus Gellを行なった後に、PVDFメンブレンに転写[iBlot PVDFトランスファースタックレギュラー]し、ブロッキング及び抗体反応[iBind Western System]を行なった後に、ECL化学発光 [NOVEX ECL CHEMI SUBSTRATE]により検出 [LAS3000(Fuji filme)]した。
◆HDAC活性測定
EpiQuik Nuclear Extraction Kit I(Epigenetic #OP−0002)を用いて核抽出した。
EpiQuik HDAC Activity/Inhibition Direct Assay Kit(Epigenetic #P−4034)を用いた。
プレートにコートしてあるアセチル化ヒストン基質と,サンプルとを反応させた後,脱アセチル化されなかった基質を抗アセチル化ヒストン抗体で検出した。
◆ Western blotting Extraction reagent: SDS-HBS; using 50 μl of 1% SDS, 150 mM NaCl in 10 mM Hepes (pH 7.4), boil 3 min and Sonication 5 min (15 sec-10 sec pause) in 35 mm-dis. I did. For protein quantification (BCA kit), SDS-page electrophoresis: 30 μg / lane [iBlot 4-12% Bis-Tris Plus Gel] was performed, and then transferred to a PVDF membrane [iBlot PVDF transfer stack regular], blocking and antibody reaction. After performing [iBind Western System], it was detected by ECL chemiluminescence [NOVEX ECL CHEMI SUBSTRATE] [LAS3000 (Fuji film)].
◆ Measurement of HDAC activity Nuclei were extracted using EpiQuik Nuclear Extension Kit I (Epigenetic # OP-0002).
EpiQuik HDAC Activity / Inhibition Direction Assay Kit (Epigenetic # P-4034) was used.
After reacting the acetylated histone substrate coated on the plate with the sample, the substrate that was not deacetylated was detected with an antiacetylase histone antibody.

◆HAT活性測定
EpiQuik Nuclear Extraction Kit I(Epigenetic #OP−0002)を用いて核抽出した。
EpiQuik HAT Activity/Inhibition Direct Assay Kit(Epigenetic #P−4003)を用いた。
プレートにコートしてある脱アセチル化基質と,サンプルとを反応させた後,アセチル化された基質を抗アセチル化抗体で検出した。
◆PCRアレイ
以下の操作はkitのプロトコールに準じて実施した。
RNA抽出:RNeasy mini kit(QIAGEN #74104)
逆転写反応:RT2 First Strand Kit(QIAGEN #330401)
PCR反応:RT SYBR Green ROX qPCR Mastermix(QIAGEN #330522)
RT ProfilerTM PCR Array Rabbit Fibrosis](QIAGEN #PANZ−120ZC)
◆ Measurement of HAT activity Nuclei were extracted using EpiQuik Nuclear Exhibition Kit I (Epigenetic # OP-0002).
EpiQuik HAT Activity / Inhibition Direction Assay Kit (Epigenetic # P-4003) was used.
After reacting the deacetylated substrate coated on the plate with the sample, the acetylated substrate was detected with an anti-acetylated antibody.
◆ PCR array The following operations were performed according to the kit protocol.
RNA extraction: RNeasy mini kit (QIAGEN # 74104)
Reverse transcription reaction: RT2 First Strand Kit (QIAGEN # 330401)
PCR reaction: RT 2 SYBR Green ROX qPCR Mastermix (QIAGEN # 330522)
RT 2 Profiler TM PCR Array Rabbit Fibrosis] (QIAGEN # PANZ-120ZC)

2.結果
OBP−801の薬剤特性
(1)HconFの筋線維化誘導のOBP−801による阻害
結膜繊維芽細胞(HconF)において、TGF+TNF刺激によりαSMA、Type IV Collagen(col4)の発現を誘導することが示された(図12、図13)。HconF培養系は濾過胞における線維化組織形成モデルとして利用できると考えられる。
OBP−801により、TGF+TNF刺激により誘導されたαSMA、Type IV Collagen LOX l2の発現阻害効果を確認した(図12、図13)。OBP−801が緑内障手術における濾過胞維持に有効である可能性を示唆している。
(2)線維化誘導とOBP−801投与の順番
線維化誘導の前にOBP−801を投与したときの方が、線維化誘導の後にOBP−801を投与したときよりも、αSMAの発現に対する強い抑制効果を示した(図14)。
2. Results Drug characteristics of OBP-801 (1) Inhibition of HconF muscle fibrosis induction by OBP-801 It was shown that TGF + TNF stimulation induces the expression of αSMA and Type IV collagen (col4) in conjunctival fibroblasts (HconF). (FIGS. 12 and 13). The HconF culture system could be used as a model for fibrotic tissue formation in filter vesicles.
OBP-801 confirmed the expression inhibitory effect of αSMA and Type IV Collagen LOX l2 induced by TGF + TNF stimulation (FIGS. 12 and 13). It suggests that OBP-801 may be effective in maintaining filtration blebs in glaucoma surgery.
(2) Order of induction of fibrosis and administration of OBP-801 When OBP-801 was administered before the induction of fibrosis, it was stronger against the expression of αSMA than when OBP-801 was administered after the induction of fibrosis. It showed an inhibitory effect (Fig. 14).

(3)OBP−801の濃度及び処理時間
線維化誘導の前に5nM OBP−801により5時間処理した場合、αSMAの発現に対する強い抑制効果を示した(図15)。
(4)細胞数の変化
線維化誘導の前に5nM OBP−801により5時間処理した場合、細胞数の減少は見られなかった(図16)。
(3) Concentration and treatment time of OBP-801 When treated with 5nM OBP-801 for 5 hours before the induction of fibrosis, a strong inhibitory effect on the expression of αSMA was shown (FIG. 15).
(4) Changes in cell number When treated with 5nM OBP-801 for 5 hours before inducing fibrosis, no decrease in cell number was observed (FIG. 16).

(5)HDAC阻害活性との関係性
HconFをTGF+TNF刺激により線維化誘導する前と後で比較しても、HDAC活性及びHAT活性に変化は見られなかった。したがって、OBP−801による薬理効果は、HDAC阻害活性に依存するものではないことが示唆された(図17)。
HconFをOBP−801で処理した後、2日目まではアセチル化ヒストンの量が増加するが、7日目には半減した。前述のように、OBP−801による薬理効果は術後30日目まで持続することから、OBP−801の薬理効果は、HDAC阻害活性に依存するものではないことが示唆された(図18)。
(5) Relationship with HDAC inhibitory activity Even when HconF was compared before and after inducing fibrosis by TGF + TNF stimulation, no change was observed in HDAC activity and HAT activity. Therefore, it was suggested that the pharmacological effect of OBP-801 does not depend on HDAC inhibitory activity (Fig. 17).
After treating HconF with OBP-801, the amount of acetylated histones increased by day 2, but halved by day 7. As described above, the pharmacological effect of OBP-801 lasts until 30 days after the operation, suggesting that the pharmacological effect of OBP-801 does not depend on the HDAC inhibitory activity (FIG. 18).

(6)ウサギ線維柱帯切除術後の線維化関連遺伝子の発現変化の網羅的解析
線維柱帯切除術後の線維化関連遺伝子の発現のピークは、遺伝子によって異なっていた。発現時期により大きく3つに分類し、図19〜図21に示す。図中で赤のプロットはOBP−801投与群、青のプロットはコントロール群を示す。
OBP−801は、細胞対細胞における相互作用、細胞対細胞外マトリックスにおける相互作用、線維形成、細胞増殖、創傷治癒に関わる複数遺伝子を抑制することが示された(図19〜図21)。また、遺伝子の発現時期に関わらず、複数遺伝子を抑制していた(図19〜図21)。
(6) Comprehensive analysis of changes in expression of fibrosis-related genes after trabeculectomy in rabbits The peaks of expression of fibrosis-related genes after trabeculectomy differed depending on the gene. It is roughly classified into three types according to the time of onset, and is shown in FIGS. 19 to 21. In the figure, the red plot shows the OBP-801 administration group, and the blue plot shows the control group.
OBP-801 has been shown to suppress multiple genes involved in cell-to-cell interactions, cell-to-extracellular matrix interactions, fibrosis, cell proliferation, and wound healing (FIGS. 19-21). In addition, a plurality of genes were suppressed regardless of the expression time of the genes (FIGS. 19 to 21).

(7)HDAC阻害剤SAHAとの比較
OBP−801は、1nMでSAHA 1μMと同程度の線維化抑制効果を有する(図22)。
TGFβ及びTNFαを投与し、筋線維化誘導されたHconF細胞に対し、OBP−801は細胞増殖抑制効果を有することが示された(図23)。
OBP−801は、0.25nMでSAHA 0.25μMと同程度の細胞増殖抑制効果を有する。Col16発現抑制効果と合わせ過剰な線維化瘢痕形成抑制により低眼圧維持効果が期待できる(図23)。
[実施例3]
(緑内障抑制効果に関するin vitro試験)
(7) Comparison with HDAC Inhibitor SAHA OBP-801 has a fibrosis-suppressing effect at 1 nM, which is comparable to that of SAHA 1 μM (FIG. 22).
It was shown that OBP-801 has a cell proliferation inhibitory effect on HconF cells in which muscle fibrosis was induced by administration of TGFβ and TNFα (FIG. 23).
OBP-801 has a cell proliferation inhibitory effect at 0.25 nM, which is comparable to that of SAHA 0.25 μM. A low intraocular pressure maintenance effect can be expected by suppressing excessive fibrotic scar formation in addition to the Col16 expression suppressing effect (FIG. 23).
[Example 3]
(In vitro test on glaucoma suppression effect)

OBP−801をDMSO(Dimethyl sulfoxide)で10μMの濃度に溶解したストック溶液として使用し、培地を用いて希釈し、投与群に投与するための医薬組成物を調製した。
(1)OBP−801はTGF+TNFにより線維化誘導されたHTMCにおいて、αSMA、コラーゲン、LOX遺伝子の発現を抑制しており、HTMCの筋線維芽細胞化を阻害することが示された(図24、図25)。
[実施例4]
(加齢黄斑変性抑制効果に関するin vivo試験)
OBP-801 was used as a stock solution dissolved in DMSO (Dimethyl sulfoxide) at a concentration of 10 μM, diluted with a medium, and a pharmaceutical composition for administration to the administration group was prepared.
(1) OBP-801 suppressed the expression of αSMA, collagen, and LOX genes in TGF + TNF-induced fibrosis-induced HTMC, and was shown to inhibit the myofibroblastization of HTMC (Fig. 24, FIG. FIG. 25).
[Example 4]
(In vivo test on the effect of suppressing age-related macular degeneration)

1.方法
<レーザー照射CNV誘導マウスモデル、OBP−801投与、観察>
■レーザー照射
マウスの麻酔:ケタラール9mg/ml+セラクタール1mg/mlを0.15ml i.p.により行なった。
散瞳:ミドリンP点眼液を一滴点眼し、約5分後にマウスに処置可能となった状態のところへ乾燥しないようPBSを適時点眼しレーザー照射を行なった。
レーザー照射:スコピゾール点眼、カバーガラスを装着し、以下の条件で行なった。
照射:Red、200mW、100ms、50μm片眼のみに、乳頭から離れた部位に、3、6、9、12時方向へ照射を行なった。
1. 1. Method <Laser irradiation CNV-guided mouse model, OBP-801 administration, observation>
■ Laser Irradiation Mouse Anesthesia: Ketalal 9 mg / ml + Ceractal 1 mg / ml 0.15 ml i. p. Was done by.
Mydriasis: A drop of Midorin P ophthalmic solution was instilled, and after about 5 minutes, PBS was instilled in a timely manner so as not to dry the mouse to a state where it could be treated, and laser irradiation was performed.
Laser irradiation: Scopizol eye drops and a cover glass were attached, and the procedure was performed under the following conditions.
Irradiation: Only one eye of Red, 200 mW, 100 ms, and 50 μm was irradiated in the direction of 3, 6, 9, and 12 o'clock at a site away from the nipple.

■OBP−801投薬
Control(1ml PBS+1μl DMSO)及び実験群(1ml PBS+1μl 10μM OBP−801)に対して硝子体注射を行い、22.5°スリットナイフを用い、毛様体付近の強膜を切開(切開幅は30G針の直径程度)した。切開創に32Gをベベルアップで挿入し、1μl溶液を注入した。水晶体はよけて、ベベルアップ挿入箇所の液量や漏出も考慮し、0.5μl目盛より少し多めに、刺入した針が少し視認できた位置で網膜に達しない位置で注入した。
■ OBP-801 Dosing Control (1 ml PBS + 1 μl DMSO) and experimental group (1 ml PBS + 1 μl 10 μM OBP-801) were injected vitreous, and the sclera near the ciliary body was incised using a 22.5 ° slit knife (1 ml PBS + 1 μl 10 μM OBP-801). The incision width was about the diameter of a 30 G needle). 32G was beveled up into the incision and a 1 μl solution was injected. The crystalline lens was avoided, and in consideration of the amount of liquid and leakage at the bevel-up insertion point, the injection was performed at a position slightly larger than the 0.5 μl scale and at a position where the inserted needle was slightly visible and did not reach the retina.

◆Isolectin B4染色
マウスを安楽死させた後眼球を摘出し、4%PFA/PBS中、室温で1時間ほど保持し、前眼部、強膜を切除し、網膜flatmountを作成した。−20℃メタノールを用いて10min間固定した後、4%PFA/PBS(室温10min)でPBS洗浄後、ブロッキング(1% fetal calf serum,0.1% Triton X−100 in PBS RT,1h振盪)を行なった。
Alx594−conjugated isolectin B4(1:100)(Invitrogen #I21413)を4℃で一晩振盪し、4%PFA/PBSを用いて温で10min間固定した。DAPI入り封入剤(VECTASHELD)により処理した後、蛍光顕微鏡にて観察、撮影を行なった。
◆ Isolectin B4 staining After euthanizing the mouse, the eyeball was removed and kept in 4% PFA / PBS at room temperature for about 1 hour, and the anterior segment and sclera were excised to prepare a retinal flatmount. After fixing for 10 minutes with -20 ° C methanol, washing with PBS with 4% PFA / PBS (room temperature 10 min) and then blocking (1% fetal calf serum, 0.1% Triton X-100 in PBS RT, 1h shaking). Was done.
Alx594-conjugated isolectin B4 (1: 100) (Invitrogen # I21413) was shaken overnight at 4 ° C. and fixed with 4% PFA / PBS at warm temperature for 10 min. After treatment with a DAPI-containing encapsulant (VECTASHELD), observation and imaging were performed with a fluorescence microscope.

◆脈絡膜Flat−mount
マウスを安楽死させた後眼球を摘出し、1%PFA/PBS中で室温で2時間保持した。前眼部、水晶体を除去した後、4箇所に切れ込みを入れ放射状に開き、網膜除去した。
免疫染色(脈絡膜flat−mount):
組織をPBS緩衝液中で室温30min間振盪(500μl/well 48wells plate)した。その後、ブロッキング(5% BSA/PBS)中、室温で1時間振盪(200μl/well 48wells plate)した。その後、第一の抗体を4℃で一晩振盪(100μl/well 48wells plate)しながら反応させ、0.1% TX100/PBSによる洗浄を3回行なった。次に、第二の抗体を室温で1時間(100μl/well 48wells plate)反応させ、0.1%TX100/PBSを用いた洗浄を3回繰り返した。その後、封入(VECTASHELD with DAPI)し、共焦点レーザー顕微鏡にて観察、撮影した。
◆ Choroid Flat-mount
After euthanizing the mice, the eyeballs were removed and kept in 1% PFA / PBS at room temperature for 2 hours. After removing the anterior segment of the eye and the crystalline lens, cuts were made in four places and the retina was removed radially.
Immunostaining (choroid flat-mount):
Tissues were shaken in PBS buffer for 30 min at room temperature (500 μl / well 48 wells plate). Then, it was shaken (200 μl / well 48wells plate) for 1 hour at room temperature in blocking (5% BSA / PBS). Then, the first antibody was reacted at 4 ° C. with shaking (100 μl / well 48 wells plate) overnight, and washed with 0.1% TX100 / PBS three times. Next, the second antibody was reacted at room temperature for 1 hour (100 μl / well 48 wells plate), and washing with 0.1% TX100 / PBS was repeated 3 times. Then, it was enclosed (VECTASHELD with DAPI) and observed and photographed with a confocal laser scanning microscope.

2.結果
〔OBP−801の薬理効果〕
(1)OBP−801投与によるCNV抑制効果(Isolectin B4染色)
マウス硝子体にレーザー照射して35日後、脈絡膜側の網膜に新生血管が確認でき、CNVモデルとして利用できることが示された(図26、control)。レーザー照射直後に1μl/1eyeで10nM OBP−801を投与した場合、新生血管が確認されず、CNVが抑制された(図26、OBP−801処置群)。
2. Results [Pharmacological effect of OBP-801]
(1) CNV inhibitory effect by administration of OBP-801 (Isolectin B4 staining)
35 days after laser irradiation of the mouse vitreous, new blood vessels were confirmed in the retina on the choroidal side, indicating that it can be used as a CNV model (Fig. 26, control). When 10 nM OBP-801 was administered at 1 μl / 1 eye immediately after laser irradiation, no new blood vessels were confirmed and CNV was suppressed (FIG. 26, OBP-801 treatment group).

(2)OBP−801投与によるCNV抑制効果(フルオレセイン蛍光眼底造影)
マウス硝子体にレーザー照射して9日後、観察5分前に血管に投与した色素の漏洩が観察された(図27)。
一方で、ウサギ硝子体にレーザー照射後にOBP−801を投与した場合、観察5分前に血管に投与した色素の漏洩が抑制された(図28)。
(3)Collagen Iの発現抑制効果
Contorolマウスでは全てのレーザー照射部周辺にcollagen Iのシグナルが見られたが、OBP−801処理マウスではcollagen Iのシグナルが低下していた(図29)
(2) CNV inhibitory effect by administration of OBP-801 (fluorescein fluorescence fundus angiography)
Nine days after laser irradiation of the mouse vitreous body, leakage of the dye administered to the blood vessel was observed 5 minutes before the observation (Fig. 27).
On the other hand, when OBP-801 was administered to the rabbit vitreous body after laser irradiation, leakage of the dye administered to the blood vessel 5 minutes before the observation was suppressed (FIG. 28).
(3) Effect of suppressing collagen I expression In Control mice, collagen I signal was observed around all laser-irradiated areas, but in OBP-801 treated mice, collagen I signal was decreased (Fig. 29).

(4)αSMAの発現抑制効果
Contorolマウスでは全てのレーザー照射部周辺にαSMAのシグナルが見られたが、OBP−801処理マウスではαSMAのシグナルが低下していた(図30、図31)。
(5)CD31の発現抑制効果
Contorolマウスでは全てのレーザー照射部周辺にCD31のシグナルが見られたが、OBP−801処理マウスではCD31のシグナルが低下していた(図32)。
[実施例5]
(加齢黄斑変性抑制効果に関するin vitro試験)
(4) Effect of suppressing αSMA expression In Control mice, αSMA signal was observed around all laser-irradiated parts, but in OBP-801-treated mice, αSMA signal was decreased (FIGS. 30 and 31).
(5) Effect of suppressing the expression of CD31 In Control mice, the signal of CD31 was observed around all the laser-irradiated parts, but in the OBP-801-treated mouse, the signal of CD31 was decreased (FIG. 32).
[Example 5]
(In vitro test on the effect of suppressing age-related macular degeneration)

1.方法
<細胞培養、OBP−801添加、観察>
◆ヒト網膜色素上皮細胞株はARPE−19(ATCC CRL−2302(登録商標)、Lot.60279299)(P19)を購入した。
培養(手順書通りに培養)
培地:DMEM/F12(Invitrogen:11330−032)に10% FBS、抗生物質を添加した。
すべての実験は継代数P23〜26で行なった。
◆ヒト網膜色素上皮細胞(H−RPE:00194987 LONZA)(P2)を購入し、以下の処理を行なった。
培養:培地は、Growth medium:RtEGM(200ml)、Plating medium:Growth medium+2% FBSを用いた。
すべての実験は継代数P3〜5で行なった。
1. 1. Method <Cell culture, addition of OBP-801, observation>
◆ As a human retinal pigment epithelial cell line, ARPE-19 (ATCC CRL-2302®, Lot. 60279299) (P19) was purchased.
Culturing (culturing according to the procedure manual)
Medium: DMEM / F12 (Invitrogen: 11330-032) was supplemented with 10% FBS and antibiotics.
All experiments were performed on passage numbers P23-26.
◆ Human retinal pigment epithelial cells (H-RPE: 001994987 LONZA) (P2) were purchased and treated as follows.
Culture: As the medium, Growth medium: RtEGM (200 ml) and Plating medium: Growth medium + 2% FBS were used.
All experiments were performed with passage numbers P3-5.

◆薬剤処理
OBP−801をDMSO(Dimethyl sulfoxide)で10μMの濃度に溶解したストック溶液として使用し、培地を用いて希釈し、投与群に投与するための医薬組成物を調製した。
80〜90% confluent時にFBS抜きの培地に交換しOBP−801(0〜1nM)を添加した。
24時間後にTGFβ(20ng/ml)TNFα(10ng/ml)を添加し48時間曝露した。
◆観察
生細胞は位相差顕微鏡にて観察した。
◆免疫染色
培地を除去し、PBSで5minの洗浄を3回行なった。Cold Methanol(−30℃)中で15min固定し、風乾した。ブロッキング:1% ウシアルブミン溶液中で室温で約30〜60分程反応を行なった。一次抗体反応させ、4℃で一晩反応させ、PBSで5minの洗浄を3回行なった。二次抗体反応を室温で60分間反応行なった。5μg/ml DAPIを用いて室温15分で核染色を行った。PBSで5min間の洗浄を3回行なった。PBSを入れた状態で蛍光顕微鏡にて観察した。
◆ Drug Treatment OBP-801 was used as a stock solution dissolved in DMSO (Dimethyl sulfoxide) at a concentration of 10 μM, diluted with a medium, and a pharmaceutical composition for administration to the administration group was prepared.
At 80-90% confluence, the medium was replaced with FBS-free medium and OBP-801 (0-1 nM) was added.
After 24 hours, TGFβ (20 ng / ml) TNFα (10 ng / ml) was added and exposed for 48 hours.
◆ Observation Live cells were observed with a phase-contrast microscope.
◆ Immunostaining The medium was removed and washed with PBS for 5 minutes three times. It was fixed in Cold Methanol (-30 ° C.) for 15 minutes and air-dried. Blocking: The reaction was carried out in a 1% bovine albumin solution at room temperature for about 30 to 60 minutes. The reaction was carried out with a primary antibody, reacted at 4 ° C. overnight, and washed with PBS for 5 minutes three times. The secondary antibody reaction was carried out at room temperature for 60 minutes. Nuclear staining was performed using 5 μg / ml DAPI at room temperature for 15 minutes. Washing with PBS for 5 minutes was performed 3 times. It was observed with a fluorescence microscope with PBS in it.

◆ウエスタンブロッティング
タンパク抽出試薬(SDS−HBS;1%SDS,150mM NaCl in 10mM Hepes(pH.7.4)を調製し3min間沸騰させ、5min(15sec−10sec pause)のSonicationを行なった。タンパク定量にはBCA kitを用いた。SDS−page電気泳動(30μg/lane[iBlot 4−12% Bis−Tris Plus Gell])を行い、PVDFメンブレンに転写[iBlot PVDFトランスファースタックレギュラー]した。ブロッキング及び抗体反応[iBind Western System]を行なった後、ECL化学発光 [NOVEX ECL CHEMI SUBSTRATE]させ、検出した[LAS3000(Fuji film)]。
◆ Western blotting A protein extraction reagent (SDS-HBS; 1% SDS, 150 mM NaCl in 10 mM Hepes (pH 7.4)) was prepared, boiled for 3 minutes, and quantified for 5 min (15 sec-10 sec pace). SDS-page electrophoresis (30 μg / lane [iBlot 4-12% Bis-Tris Plus Gel]) was performed and transferred to a PVDF membrane [iBlot PVDF transfer stack regular]. Blocking and antibody reaction. After performing [iBind Western System], ECL chemical emission [NOVEX ECL CHEMI SUBSTRATE] was performed and detected [LAS3000 (Fuji film)].

◆HDAC活性測定
EpiQuik Nuclear Extraction Kit I(Epigenetic #OP−0002)を用いて、核抽出を行なった。
EpiQuik HDAC Activity/Inhibition Direct Assay Kit(Epigenetic #P−4034)を用いて、プレートにコートしてあるアセチル化ヒストン基質と,サンプルとを反応させた後,脱アセチル化されなかった基質を抗アセチル化ヒストン抗体で検出した。
◆HAT活性測定
EpiQuik Nuclear Extraction Kit I(Epigenetic #OP−0002)を用いて、核抽出を行なった。
EpiQuik HAT Activity/Inhibition Direct Assay Kit(Epigenetic #P−4003)を用いて、プレートにコートしてある脱アセチル化基質と、サンプルとを反応させた後、アセチル化された基質を抗アセチル化抗体で検出した。
◆ HDAC activity measurement Nuclear extraction was performed using EpiQuik Nuclear Extension Kit I (Epigenetic # OP-0002).
EpiQuik HDAC Activity / Inhibition Direction Kit (Epigenetic # P-4034) was used to react the acetylated histone substrate coated on the plate with the sample and then anti-acetylate the non-deacetylated substrate. Detected with histone antibodies.
◆ Measurement of HAT activity Nuclear extraction was performed using EpiQuik Nuclear Exhibition Kit I (Epigenetic # OP-0002).
Using EpiQuik HAT Activity / Inhibition Assay Kit (Epigenetic # P-4003), the deacetylated substrate coated on the plate was reacted with the sample, and then the acetylated substrate was reacted with an anti-acetylation antibody. Detected.

◆PCRアレイ
RNA抽出はRNeasy mini kit(QIAGEN #74104)を用い、次に、逆転写反応をRT2 First Strand Kit(QIAGEN #330401)を用いて行ない、PCR反応はRT SYBR Green ROX qPCR Mastermix(QIAGEN #330522)を用い、RT ProfilerTM PCR Array Human Fibrosis(QIAGEN #PAHS−120ZC)を用いて行なった。
◆ PCR array RNA extraction is performed using RNeasy mini kit (QIAGEN # 74104), then reverse transcription reaction is performed using RT2 First Strand Kit (QIAGEN # 330401), and PCR reaction is performed using RT 2 SYBR Green ROX qPCR Master. # 330522) was used, and RT 2 Profiler TM PCR Array Human Fibrosis (QIAGEN # PAHS-120ZC) was used.

2.結果
〔OBP−801の薬剤特性〕
(1)OBP−801によるRPE細胞の線維化阻害効果
1nMのOBP−801により、RPE細胞をTGFβ単独、TNFα単独、又はTGFβ+TNFαすることで発現が増加したZO−1及びαSMAの発現が抑制され、OBP−801がRPE細胞の線維化を阻害することが示された(図33)。
(2)OBP−801による線維化関連遺伝子発現への影響
OBP−801により、RPE細胞をTGFβ単独、TNFα単独、又はTGFβ+TNFαすることで発現が増加したMMP9、CD44、及びαSMAの発現が抑制された。特に、OBP−801のMMP9及びCD44に対する発現抑制効果はTSAよりも高かった(図34)。
2. Result [Drug characteristics of OBP-801]
(1) Inhibitory effect of OBP-801 on fibrosis of RPE cells 1 nM of OBP-801 suppressed the expression of ZO-1 and αSMA whose expression was increased by TGFβ alone, TNFα alone, or TGFβ + TNFα in RPE cells. It was shown that OBP-801 inhibits fibrosis of RPE cells (Fig. 33).
(2) Effect of OBP-801 on fibrosis-related gene expression OBP-801 suppressed the expression of MMP9, CD44, and αSMA whose expression was increased by TGFβ alone, TNFα alone, or TGFβ + TNFα in RPE cells. .. In particular, the expression-suppressing effect of OBP-801 on MMP9 and CD44 was higher than that of TSA (Fig. 34).

(3)HDAC阻害活性との関係性
RPE細胞を線維化誘導しても、HDAC活性は影響を受けなかった。線維化誘導の前でも後でも、OBP−801は同程度にHDAC活性を阻害した。したがって、OBP−801による薬理効果は、HDAC阻害活性に依存するものではないことが示唆された(図35)
RPE細胞を線維化誘導した場合、HAT活性の減少が見られた。線維化誘導の前でも後でも、OBP−801はHAT活性を阻害しなかった。したがって、OBP−801による薬理効果は、HDAC阻害活性に依存するものではないことが示唆された(図36)
また、CD44発現への影響を調べた結果、OBP−801による抑制効果が見られた。(図37)。
[実施例6]
OBP−801による眼圧抑制試験及び遺伝子発現試験
(3) Relationship with HDAC inhibitory activity HDAC activity was not affected by inducing fibrosis of RPE cells. OBP-801 inhibited HDAC activity to the same extent before and after the induction of fibrosis. Therefore, it was suggested that the pharmacological effect of OBP-801 does not depend on HDAC inhibitory activity (Fig. 35).
When RPE cells were induced to fibrosis, a decrease in HAT activity was observed. OBP-801 did not inhibit HAT activity before or after the induction of fibrosis. Therefore, it was suggested that the pharmacological effect of OBP-801 does not depend on HDAC inhibitory activity (Fig. 36).
Moreover, as a result of investigating the influence on the expression of CD44, the inhibitory effect by OBP-801 was observed. (Fig. 37).
[Example 6]
Intraocular pressure suppression test and gene expression test by OBP-801

1. 方法
◆カニューラを用いた緑内障濾過手術ウサギモデル、マイトマイシン投与、OBP−801投与、観察
マイトマイシンC(MMC)は術前30分前に注射用水に溶かして0.02%(w/v)を100μl投与する。緑内障手術、OBP−801,眼内灌流液投与は前述のとおり行った。
RNAを採取する目的のため、術後2、5、12、30日に濾過胞部の球結膜上皮、および粘膜固有層、テノン嚢を採取した。
1. 1. Method ◆ Glaucoma filtration surgery using cannula Rabbit model, mitomycin administration, OBP-801 administration, observation Mitomycin C (MMC) was dissolved in water for injection 30 minutes before surgery and 100 μl of 0.02% (w / v) was administered. do. Glaucoma surgery and OBP-801, intraocular perfusate administration were performed as described above.
For the purpose of collecting RNA, the bulbar conjunctival epithelium of the filtered vesicle, the lamina propria, and the tenon sac were collected 2, 5, 12, and 30 days after the operation.

◆PCRアレイ
以下の操作はkitのプロトコールに準じて実施した。
RNA抽出にはRNeasy mini kit(QIAGEN #74104)を使用した。
逆転写反応にはRT2 First Strand Kit(QIAGEN #330401)を使用した。
PCR反応にはRT SYBR Green ROX qPCR Mastermix(QIAGEN #330522)を使用した。
RT Profiler(登録商標)PCR Array Rabbit Fibrosis(QIAGEN #PANZ−120ZC)を使用した。
◆ PCR array The following operations were performed according to the kit protocol.
An RNAy mini kit (QIAGEN # 74104) was used for RNA extraction.
RT2 First Strand Kit (QIAGEN # 330401) was used for the reverse transcription reaction.
RT 2 SYBR Green ROX qPCR Mastermix (QIAGEN # 330522) was used for the PCR reaction.
RT 2 Profiler® PCR Array Rabbit Fibrosis (QIAGEN # PANZ-120ZC) was used.

◆Real−Time PCR
以下の操作はkitのプロトコールに準じて実施した。
RNA抽出にはRNeasy mini kit(QIAGEN #74104)を使用した。
逆転写反応にはPrimeScript(登録商標)RT Master Mix(TAKARA #RR036A)を使用した。
PCR反応(インターカレーター)にはTB Green(登録商標)Premix Ex Taq(登録商標)II(TAKARA #RR820B)を使用した。Primersは、PDGFB、LOX、LOXL2、PDGFRA、PDGFRB(TAKARA設計及び購入)を使用した。PCR反応(蛍光標識プローブ)にはTaqMan Fast Advanced Master Mix(Invitrogen #4444963)を使用した。Primersは、Oc03398424_m1(TGFB2)、Oc03399251_m1(ACTA2)、Oc03396112_m1(COL1A2)、Oc03395687_g1(CTGF)(Applied Biosystems #4453320)を使用した。
◆ Real-Time PCR
The following operations were performed according to the kit protocol.
An RNAy mini kit (QIAGEN # 74104) was used for RNA extraction.
PrimeScript (registered trademark) RT Master Mix (TAKARA # RR030A) was used for the reverse transcription reaction.
TB Green® Premix Ex Taq® II (TAKARA # RR820B) was used for the PCR reaction (intercalator). Primers used PDGFB, LOX, LOXL2, PDGFRA, PDGFRB (designed and purchased by TAKARA). TaqMan Fast Advanced Master Mix (Invitrogen # 4444963) was used for the PCR reaction (fluorescent labeled probe). Primers used Occ03398424_m1 (TGFB2), Occ03399251_m1 (ACTA2), Occ03396112_m1 (COL1A2), Occ03395687_g1 (CTGF) (Applied Biosystems # 4453320).

◆点眼
OBP−801をDMSO(Dimethyl sulfoxide)で10μMの濃度に溶解したストック溶液として使用し、眼灌流液(BSS:Balanced Salt Solution)で希釈し、投与群に投与するための医薬組成物を調製した。
OBP−801量は100nMを20μl×4回(1回ごとに30秒あける)を1クールとして術前30分前に1クール、術後1,2,3,4,5,6,7日に朝、夕の計2クール投与術後1〜30日目に、2〜3日に1回の頻度で術後診察に準じて、眼炎症の程度、前房深度、結膜濾過胞の性状を観察し、濾過胞の大きさの測定と眼圧測定を行った。
◆ Eye drops OBP-801 is used as a stock solution dissolved in DMSO (Dimethyl sulfoxide) at a concentration of 10 μM, diluted with an ocular perfusate (BSS: Balanced Salt Solution), and a pharmaceutical composition for administration to the administration group is prepared. did.
The amount of OBP-801 is 100 nM 20 μl x 4 times (30 seconds for each time) as 1 course, 1 course 30 minutes before surgery, 1, 2, 3, 4, 5, 6 and 7 days after surgery. A total of 2 courses in the morning and evening were administered. On the 1st to 30th days after the operation, the degree of intraocular inflammation, the depth of the anterior chamber, and the properties of the conjunctival filter bleb were observed once every 2 to 3 days according to the postoperative examination. Then, the size of the filter bleb and the intraocular pressure were measured.

2.結果
(1)マイトマイシンCとの比較
現在の緑内障手術で使用されているマイトマイシンC(MMC)の線維柱帯切除術後における遺伝子発現に対する影響をOBP−801と比較した(図39〜図46)。
眼圧の再上昇に関与が示唆されているtype I Collagen(COL1A)の発現が術後30日では、OBP−801では抑制されているが、MMC群では大幅な増加が見られる。このことは長期(30日以上)の眼圧コントロールにおいて、MMCは不向きであることを示唆している(図39)。また、COL1A発現に関与していると思われる遺伝子(TGFB2、SERPINH1,αSMA,CTGF,PDGFB)においても、OBP−801はいずれも30日での発現を阻害しており、長期間の眼圧コントロールにおけるOBP−801の優位性を示している(図40、図45、図46)。
2. Results (1) Comparison with mitomycin C The effect of mitomycin C (MMC) used in current glaucoma surgery on gene expression after trabeculectomy was compared with OBP-801 (FIGS. 39 to 46).
The expression of type I collagen (COL1A), which has been suggested to be involved in the re-elevation of intraocular pressure, was suppressed by OBP-801 30 days after the operation, but a significant increase was observed in the MMC group. This suggests that MMC is unsuitable for long-term (30 days or more) intraocular pressure control (Fig. 39). In addition, OBP-801 also inhibits the expression of genes (TGFB2, SERPINH1, αSMA, CTGF, PDGFB) that are thought to be involved in COL1A expression in 30 days, and long-term intraocular pressure control. It shows the superiority of OBP-801 in (FIGS. 40, 45, 46).

さらに、線維柱帯切除術後の線維化関連遺伝子の発現に対するOBP−801とMMCの影響を網羅的解析、比較した。機能により大きく6つに分類し、図41〜図44に示す。
また、LOX、LOXL2は瘢痕組織形成に関与し、濾過胞の維持に抑制的に働くことが報告されている。BSS群では(Control)術後2日目に発現増加が見られたが、OBP−801とMMCの両方で発現阻害が見られた。しかし、術後30日ではOBP−801群でのみLOX,LOXL2両方の発現阻害効果を示した(図45、図46)。
Furthermore, the effects of OBP-801 and MMC on the expression of fibrosis-related genes after trabeculectomy were comprehensively analyzed and compared. They are roughly classified into 6 types according to their functions, and are shown in FIGS. 41 to 44.
In addition, it has been reported that LOX and LOXL2 are involved in scar tissue formation and act suppressively on the maintenance of filter vesicles. In the BSS group, increased expression was observed on the second day after (Control) operation, but expression inhibition was observed in both OBP-801 and MMC. However, 30 days after the operation, only the OBP-801 group showed an inhibitory effect on the expression of both LOX and LOXL2 (FIGS. 45 and 46).

(2)点眼による効果
OBP−801点眼群においては術後30日まで低眼圧を維持できたが、BSS結膜下注射群では術後15日より徐々に眼圧上昇が認められた。結膜下注射の10倍濃度の点眼でも効果を示した(図47)
また、OBP−801点眼の線維化関連遺伝子発現に対する影響を網羅的に解析し、OBP−801結膜下注射の結果と比較した。低眼圧維持に関与するCOL1A、COL1Aの発現に関与するTGFB3、SERPINH1、濾過胞維持に抑制的に働くLOX等の発現が、結膜下注射でも点眼でも抑制効果が見られた(図48)。
[実施例7]
ウサギ結膜及び濾過胞組織におけるOBP−801の遺伝子発現抑制効果
(2) Effect of instillation In the OBP-801 instillation group, low intraocular pressure could be maintained until 30 days after surgery, but in the BSS subconjunctival injection group, a gradual increase in intraocular pressure was observed from 15 days after surgery. It was also effective when instilled at a concentration 10 times higher than that of subconjunctival injection (Fig. 47).
In addition, the effect of OBP-801 eye drops on fibrosis-related gene expression was comprehensively analyzed and compared with the results of OBP-801 subconjunctival injection. The expression of COL1A involved in the maintenance of low intraocular pressure, TGFB3 and SERPINH1 involved in the expression of COL1A, and LOX, which suppresses the maintenance of filter bleb, was observed to have an inhibitory effect both by subconjunctival injection and instillation (Fig. 48).
[Example 7]
Gene expression inhibitory effect of OBP-801 in rabbit conjunctiva and filtered vesicle tissue

1.方法
◆ウエスタンブロッティング
ウサギ眼球から結膜組織および濾過胞組織を採取し、RIPA bufferによりタンパク抽出を行った。5min(15sec−10sec pause)のSonication、4℃ O/Nローテーションにて組織を溶解し、溶け残った組織を遠心(10,000g 10min)で除去した。タンパク定量にはBCA kitを用いた。SDS−page電気泳動(30μg/lane[iBlot 4−12% Bis−Tris Plus Gell])を行い、PVDFメンブレンに転写[iBlot PVDFトランスファースタックレギュラー]した。ブロッキング及び抗体反応[iBind Western System]を行なった後、ECL化学発光 [NOVEX ECL CHEMI SUBSTRATE]させ、検出した[LAS3000(Fuji film)]。
1. 1. Method ◆ Western blotting Conjunctival tissue and filtered vesicle tissue were collected from rabbit eyeballs, and protein was extracted by RIPA buffer. Tissues were lysed by 5 min (15 sec-10 sec pause) Sonication, 4 ° C. O / N rotation, and the undissolved tissue was removed by centrifugation (10,000 g, 10 min). BCA kit was used for protein quantification. SDS-page electrophoresis (30 μg / lane [iBlot 4-12% Bis-Tris Plus Gel]) was performed and transferred to a PVDF membrane [iBlot PVDF transfer stack regular]. After performing blocking and antibody reaction [iBind Western System], ECL chemiluminescence [NOVEX ECL CHEMI Substrate] was performed and detected [LAS3000 (Fujifilm)].

◆組織免疫染色
ウサギ眼球から結膜組織および濾過胞組織を採取し、コンパウンド(SurgiPath FSC 22)に包埋し液体窒素にて凍結した。クライオスタット(CM3050S:Leica)にて作成した切片(10−μm厚)を2%シラン(3−aminopropyltriethoxysilane)でコートしたスライドガラスに回収した。Cold Methanol(−30℃)を用いて15minの間固定化を行なった後、風乾した。続いて、ブロッキング:1% ウシアルブミンを含有する反応液を用いて、室温で約30〜60分間反応させた。一次抗体反応:4℃ O/N、二次抗体反応:室温で60分間反応させた後、DAPI入り封入剤(VECTASHELS with DAPI)で封入した。周りをマニキュアで封入した後、蛍光顕微鏡を用いて観察した。
◆ Tissue immunostaining Conjunctival tissue and filtered bleb tissue were collected from rabbit eyeballs, embedded in a compound (SurgiPath FSC 22), and frozen in liquid nitrogen. Sections (10-μm thick) prepared with a cryostat (CM3050S: Leica) were collected on slide glasses coated with 2% silane (3-aminopropanolthoxysilane). Immobilization was performed for 15 minutes using Cold Methanol (-30 ° C.), and then air-dried. Subsequently, a reaction solution containing blocking: 1% bovine albumin was used to react at room temperature for about 30-60 minutes. Primary antibody reaction: 4 ° C. O / N, secondary antibody reaction: After reacting at room temperature for 60 minutes, the mixture was encapsulated with a DAPI-containing mounting medium (VECTASHELS with DAPI). After enclosing the surroundings with nail polish, the observation was performed using a fluorescence microscope.

2.結果
(1)ウサギ結膜組織ウェスタンブロッティング解析(図49)
眼圧の再上昇が見られる術後30日の未処置(BSS)群ではtype I collagenとaSMAの発現増加が見られる。これらの発現が、OBP−801により抑制されている。RT−PCR(RNA発現)の結果と一致する。
(2)ウサギ濾過胞組織免疫染色(図50〜図52)
眼圧の再上昇が見られる術後30日の未処置(BSS)組織では濾過胞におけるcollagen Iとα−SMAの発現増加が見られる。OBP−801処置組織ではこれらの発現が抑制されている。また、MMC処置組織ではこれらの発現が大幅に増加している。
[実施例8]
ヒト結膜組織遺伝子解析結果
2. Results (1) Rabbit conjunctival tissue Western blotting analysis (Fig. 49)
In the untreated (BSS) group 30 days after the operation when the intraocular pressure re-elevated, the expression of type I collagen and aSMA was increased. These expressions are suppressed by OBP-801. Consistent with the results of RT-PCR (RNA expression).
(2) Rabbit filter bleb tissue immunostaining (FIGS. 50-52)
30 days after surgery, untreated (BSS) tissue with re-elevation of intraocular pressure shows increased expression of collagen I and α-SMA in the filter vesicles. The expression of these is suppressed in the OBP-801 treated tissue. In addition, their expression is significantly increased in MMC-treated tissues.
[Example 8]
Results of human conjunctival tissue gene analysis

1.方法
ヒト正常結膜下組織及び、ヒト濾過胞組織(緑内障再手術時)からそれぞれtotal RNAを抽出し、PCR arrayにより遺伝子発現解析を行った。
以下の操作はkitのプロトコールに準じて実施した。
RNA抽出にはRNeasy mini kit(QIAGEN #74104)を使用した。
逆転写反応にはRT2 First Strand Kit(QIAGEN #330401)を使用した。
PCR反応にはRT2 SYBR Green ROX qPCR Mastermix(QIAGEN #330522)を使用した。
RT2 Profiler(登録商標)PCR Array Human Fibrosis(QIAGEN #PAHS−120ZC)を使用した。
1. 1. Method Total RNA was extracted from normal human subconjunctival tissue and human filter bleb tissue (at the time of reoperation for glaucoma), and gene expression analysis was performed by PCR array.
The following operations were performed according to the kit protocol.
An RNAy mini kit (QIAGEN # 74104) was used for RNA extraction.
RT2 First Strand Kit (QIAGEN # 330401) was used for the reverse transcription reaction.
RT2 SYBR Green ROX qPCR Mastermix (QIAGEN # 330522) was used for the PCR reaction.
RT2 Profiler® PCR Array Human Fibrosis (QIAGEN # PAHS-120ZC) was used.

2.結果
再手術時のヒト濾過胞組織ではα−SMA、Collagenの増加が見られた(図53)。
ウサギの眼圧再上昇時(day30)濾過胞組織では未処置(day0)と比較し、TGFb2、3、TGFR、CTGF、PDGFA、SERPINH1等の発現増加が見られた。それに対し、再手術時のヒト濾過胞組織ではTGFb1、TGFb3、CTGF、SERPINH1の増加が見られた(図54)。
TNFの顕著な発現増加が見られた。IL1Aも顕著に増加しており、再手術時ヒト濾過胞組織に炎症が起きている可能性が考えられる(図55〜図56)。
2. Results An increase in α-SMA and collagen was observed in the human filter vesicle tissue at the time of reoperation (Fig. 53).
Increased expression of TGFb2, 3, TGFR, CTGF, PDGFA, SERPINH1 and the like was observed in the filtered vesicle tissue at the time of re-elevation of intraocular pressure (day30) in rabbits as compared with untreated (day0). In contrast, TGFb1, TGFb3, CTGF, and SERPINH1 increased in human filtered vesicle tissue at the time of reoperation (Fig. 54).
A marked increase in TNF expression was observed. IL1A is also significantly increased, suggesting that human filter bleb tissue may be inflamed during reoperation (FIGS. 55-56).

Claims (17)

眼組織の線維化を抑制する物質を含む医薬組成物。 A pharmaceutical composition containing a substance that suppresses fibrosis of eye tissue. 眼組織の線維化を抑制する物質が、眼組織において、in vivoで、線維化、血管新生及び瘢痕形成の3段階の各々に係る病態増悪因子遺伝子発現を各段階につき少なくも1種ずつは阻害する物質である、請求項1に記載の医薬組成物。 A substance that suppresses fibrosis of ocular tissue inhibits at least one type of exacerbating factor gene expression in each of the three stages of fibrosis, angiogenesis, and scar formation in vivo in ocular tissue. The pharmaceutical composition according to claim 1, which is a substance to be used. 病態増悪因子遺伝子が、collagen 1A、collagen 3A1、collagen 4A1、TIMP 2、TIMP 3、TIMP 4、Thrombospondin 1、Thrombospondin 2、LOX、Loxl2、TGFb2、TGFb3、CTGF、VEGF、PDGF及びSerpinからなる群から選ばれる、請求項2に記載の医薬組成物。 Disease exacerbation factor genes consist of collagen 1A, collagen 3A1, collagen 4A1, TIMP 2, TIMP 3, TIMP 4, Thrombospondin 1, Thrombospondin 2, LOX, Loxl2, TGFb2, TGFb2, TGFb2, The pharmaceutical composition according to claim 2. 眼組織の線維化を100pg/kg〜3000pg/kgの投与量で抑制する物質を含む、請求項1〜3のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, which comprises a substance that suppresses fibrosis of eye tissue at a dose of 100 pg / kg to 3000 pg / kg. 眼組織の線維化を2pg/eye〜9000pg/eyeの投与量で抑制する物質を含む、請求項1〜3のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, which comprises a substance that suppresses fibrosis of eye tissue at a dose of 2 pg / eye to 9000 pg / eye. 眼組織の線維化を抑制する物質が、眼組織培養細胞の線維化様相転移を抑制する物質である、請求項1〜5のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, wherein the substance that suppresses fibrosis of eye tissue is a substance that suppresses fibrosis-like metastasis of cultured eye tissue cells. 眼組織培養細胞の線維化様相転移を10nM以下の濃度で抑制する物質を含む、請求項1〜6のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, which comprises a substance that suppresses fibrosis-like metastasis of cultured ocular tissue cells at a concentration of 10 nM or less. 眼組織細胞のHDAC活性の阻害作用がIC50=10nM以下の濃度である物質を含む、請求項1〜7のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 7, which comprises a substance having an inhibitory effect on HDAC activity of ocular histiocytes at a concentration of IC50 = 10 nM or less. 眼組織の線維化抑制物質が、濾過胞維持効果、又は緑内障手術の予後向上効果を有する物質である請求項1〜8のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 8, wherein the fibrosis-inhibiting substance of eye tissue is a substance having an effect of maintaining a filter bleb or an effect of improving the prognosis of glaucoma surgery. 眼組織の線維化抑制物質が、線維化抑制効果及び/又は血管新生抑制効果と、瘢痕形成抑制効果とを併せ持つ物質を含むことを特徴とする請求項1〜9のいずれか1項に記載の医薬組成物。 The item according to any one of claims 1 to 9, wherein the fibrosis-suppressing substance of the eye tissue contains a substance having both a fibrosis-suppressing effect and / or an angiogenesis-suppressing effect and a scar formation-suppressing effect. Pharmaceutical composition. 次式I:
Figure 2020009248
又は次式II:
Figure 2020009248
(式中、R1〜R3は独立して水素原子、メチル基、エチル基、R4は水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基又はイソブチル基、R5〜R8はそれぞれ独立して水素原子、メチル基、エチル基又はイソプロピル基、R8は水素原子、メチル基又は保護基、R10及びR11は、独立して水素原子、メチル基又は保護基を表す。)
で示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、請求項1〜10のいずれか1項に記載の医薬組成物。
Equation I:
Figure 2020009248
Or the following equation II:
Figure 2020009248
(In the formula, R1 to R3 are independently hydrogen atom, methyl group, ethyl group, R4 is hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, sec-butyl group or isobutyl group, R5 to R8. Independently represent a hydrogen atom, a methyl group, an ethyl group or an isopropyl group, R8 represents a hydrogen atom, a methyl group or a protective group, and R10 and R11 independently represent a hydrogen atom, a methyl group or a protective group).
The pharmaceutical composition according to any one of claims 1 to 10, which comprises the depsipeptide compound represented by (1) or a pharmaceutically acceptable salt thereof.
次式III:
Figure 2020009248
(式中、R4はイソプロピル基、sec−ブチル基又はイソブチル基を表す。)
で示されるデプシペプチド化合物又はその製薬学的に許容可能な塩を含む、請求項11に記載の医薬組成物。
Equation III:
Figure 2020009248
(In the formula, R4 represents an isopropyl group, a sec-butyl group or an isobutyl group.)
The pharmaceutical composition according to claim 11, which comprises the depsipeptide compound represented by the above or a pharmaceutically acceptable salt thereof.
R4がイソプロピル基である、請求項12に記載の医薬組成物。 The pharmaceutical composition according to claim 12, wherein R4 is an isopropyl group. 眼組織が、緑内障関連組織、結膜関連組織及び網膜関連組織からなる群から選ばれる少なくとも1つである、請求項1〜13のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 13, wherein the eye tissue is at least one selected from the group consisting of glaucoma-related tissue, conjunctiva-related tissue, and retina-related tissue. 緑内障関連組織が、線維柱帯、又は眼圧の制御が可能な組織である請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, wherein the glaucoma-related tissue is a trabecular meshwork or a tissue capable of controlling intraocular pressure. 網膜関連組織が、網膜色素上皮、脈絡膜新生血管、又は加齢黄斑変性に係る組織である請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, wherein the retinal-related tissue is a tissue related to retinal pigment epithelium, choroidal neovascularization, or age-related macular degeneration. 結膜関連組織が、濾過胞組織である請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, wherein the conjunctiva-related tissue is a filtered vesicle tissue.
JP2020529077A 2018-07-04 2019-07-03 Composition for suppressing fibrosis of eye tissue Pending JPWO2020009248A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018127738 2018-07-04
JP2018127738 2018-07-04
PCT/JP2019/027233 WO2020009248A1 (en) 2018-07-04 2019-07-03 Composition for inhibiting fibrosis in ocular tissue

Publications (2)

Publication Number Publication Date
JPWO2020009248A1 true JPWO2020009248A1 (en) 2021-08-12
JPWO2020009248A5 JPWO2020009248A5 (en) 2022-08-09

Family

ID=69059196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529077A Pending JPWO2020009248A1 (en) 2018-07-04 2019-07-03 Composition for suppressing fibrosis of eye tissue

Country Status (2)

Country Link
JP (1) JPWO2020009248A1 (en)
WO (1) WO2020009248A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057142B (en) * 2021-03-30 2022-12-09 四川大学华西医院 Method for constructing intraretinal and/or subretinal fibrosis animal model
WO2023196555A1 (en) * 2022-04-08 2023-10-12 University Of North Texas Health Science Center At Fort Worth Treatment for ocular fibrosis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405274B2 (en) * 2003-06-04 2008-07-29 Fibrogen, Inc. Connective tissue growth factor antibodies
US7794713B2 (en) * 2004-04-07 2010-09-14 Lpath, Inc. Compositions and methods for the treatment and prevention of hyperproliferative diseases
KR101886898B1 (en) * 2011-01-06 2018-08-08 글락소 그룹 리미티드 Ligands that bind tgf-beta receptor ii
EP2799537B1 (en) * 2011-12-28 2021-09-22 Kyoto Prefectural Public University Corporation Normalization of culture of corneal endothelial cells
MX2016001457A (en) * 2013-07-30 2016-11-11 Kyoto Prefectural Public Univ Corp Corneal endothelium ecm therapeutic drug.
JP2016113379A (en) * 2014-12-11 2016-06-23 京都府公立大学法人 Concomitant drug for treatment and prevention of tumor using molecular target drug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMADA,J. ET AL.: "The role of cell senescence, Epithelial-Mesenchymal Transition, and fibrosis in the generation of vi", IOVS, vol. 54, no. 15, JPN6019033606, 2013, pages 360, ISSN: 0005076761 *

Also Published As

Publication number Publication date
WO2020009248A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
Janson et al. Glaucoma-associated corneal endothelial cell damage: a review
EP3441069B1 (en) Treatment of diabetic retinopathy using pharmaceutical agents that eliminate senescent cells
KR102496234B1 (en) Compositions and methods of using nintedanib to improve glaucoma surgery success
Mastropasqua et al. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma
CA2947067A1 (en) Compounds for treating ophthalmic diseases and disorders
JP2018521120A (en) Compositions and methods for treating pterygium
KR102307421B1 (en) Multiple kinase inhibitors and use in ocular fibrosis
US11865123B2 (en) Methods of inhibiting pathological angiogenesis
WO2010125416A1 (en) Drug delivery to the anterior and posterior segments of the eye
KR102177199B1 (en) Therapeutic agent for eyeground disease
Oatts et al. In vitro and in vivo comparison of two suprachoroidal shunts
JPWO2020009248A1 (en) Composition for suppressing fibrosis of eye tissue
KR20200123095A (en) Corneal protection composition
Bisen et al. Pirfenidone: A Promising Drug in Ocular Therapeutics
Liu et al. Minimal trephination penetrating keratoplasty for severe fungal keratitis complicated with hypopyon
Kanski Synopsis of ophthalmology
Plummer Chronic Diseases of the Eye and Adnexa
Fu et al. Cystoid macular edema
RU2815482C2 (en) Treatment of eye diseases such as macular degeneration, glaucoma and diabetic retinopathy with medications that eliminate aging cells
WO2023201312A2 (en) Methods of treating ocular fibrotic pathologies
Bandello et al. New perspectives in the management of post-surgical macular edema
Tananakina—ophthalmologist Zenlens scleral lenses for visual rehabilitation of patients with irregular cornea: a usage experience OO Alyaeva—Cand. Med. Sci., ophthalmologist, head of the scientific research department OI Ryabenko—ophthalmologist, chief physician
Oatts Intraocular Pressure, Aqueous Humor Dynamics, And Fibrosis Using A Novel Glaucoma Drainage Pathway

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240423