JPWO2019232276A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019232276A5
JPWO2019232276A5 JP2021516852A JP2021516852A JPWO2019232276A5 JP WO2019232276 A5 JPWO2019232276 A5 JP WO2019232276A5 JP 2021516852 A JP2021516852 A JP 2021516852A JP 2021516852 A JP2021516852 A JP 2021516852A JP WO2019232276 A5 JPWO2019232276 A5 JP WO2019232276A5
Authority
JP
Japan
Prior art keywords
metal
oxalate
particles
compound particles
oxalate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021516852A
Other languages
Japanese (ja)
Other versions
JP7384904B2 (en
JP2021525833A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/034752 external-priority patent/WO2019232276A1/en
Publication of JP2021525833A publication Critical patent/JP2021525833A/en
Publication of JPWO2019232276A5 publication Critical patent/JPWO2019232276A5/ja
Application granted granted Critical
Publication of JP7384904B2 publication Critical patent/JP7384904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (60)

金属化合物粒子から少なくとも第1の希土類金属を含む微細金属粉末を製造するための方法において、
少なくとも第1の希土類金属の金属シュウ酸塩化合物の粒子を含む無水金属シュウ酸塩化合物粒子を分解温度に少なくとも2バールの分解圧力下で加熱し、前記無水金属シュウ酸塩化合物粒子を分解ガス下に保持する工程であって、前記分解ガス及び前記分解温度は、前記無水金属シュウ酸塩化合物粒子を分解し、気体状シュウ酸塩副生成物を形成するのに十分である工程と、
前記気体状シュウ酸塩副生成物が形成されているときに、前記気体状シュウ酸塩副生成物を前記無水金属シュウ酸塩化合物粒子から分離し、それによって中間金属生成物粒子が形成される工程と、
前記中間金属生成物粒子を前記分解温度よりも高く少なくとも約750℃である精製温度に加熱し、前記中間金属生成物粒子を前記精製温度及び精製ガス組成物下に保持する工程であって、前記中間金属生成物粒子中の不純物の濃度を低減し、前記少なくとも第1の希土類金属を含む微細金属粉末を形成する工程と、を備える、方法。
In a method for producing a fine metal powder containing at least a first rare earth metal from metal compound particles.
Anhydrous metal oxalate compound particles containing at least particles of the first rare earth metal metal oxalate compound are heated to a decomposition temperature under a decomposition pressure of at least 2 bar to decompose the anhydrous metal oxalate compound particles. The step of holding underneath is that the decomposition gas and the decomposition temperature are sufficient to decompose the anhydrous metal oxalate compound particles to form gaseous oxalate by-products. ,
When the gaseous oxalate by-product is formed, the gaseous oxalate by-product is separated from the anhydrous metal oxalate compound particles, thereby forming intermediate metal product particles . Process and
The step of heating the intermediate metal product particles to a purification temperature higher than the decomposition temperature and at least about 750 ° C., and holding the intermediate metal product particles under the purification temperature and the purification gas composition. A method comprising a step of reducing the concentration of impurities in the intermediate metal product particles to form a fine metal powder containing the at least the first rare earth metal .
水和金属シュウ酸塩化合物粒子から水和水を除去すべく前記水和金属シュウ酸塩化合物粒子を脱水し、前記無水金属シュウ酸塩化合物粒子及び水蒸気を形成する工程をさらに備える、請求項1に記載の方法。 Claimed further comprising a step of dehydrating the hydrated metal oxalate compound particles to remove hydrated water from the hydrated metal oxalate compound particles to form the anhydrous metal oxalate compound particles and water vapor. Item 1. The method according to Item 1. 前記水和金属シュウ酸塩化合物粒子を脱水する工程が、前記水和金属シュウ酸塩化合物粒子を脱水温度に加熱する工程を備える、請求項2に記載の方法。 The method according to claim 2, wherein the step of dehydrating the hydrated metal oxalate compound particles comprises a step of heating the hydrated metal oxalate compound particles to a dehydration temperature. 前記脱水温度が少なくとも約240℃である、請求項3に記載の方法。 The method of claim 3, wherein the dehydration temperature is at least about 240 ° C. 前記脱水温度が約340℃以下である、請求項3又は4に記載の方法。 The method according to claim 3 or 4, wherein the dehydration temperature is about 340 ° C. or lower. 前記水和金属シュウ酸塩化合物粒子を脱水する工程の間に、前記水和金属シュウ酸塩化合物粒子か前記水蒸気を分離する工程をさらに備える、請求項2~5のいずれか一項に記載の方法。 Any one of claims 2 to 5, further comprising a step of separating the water vapor from the hydrated metal oxalate compound particles during the step of dehydrating the hydrated metal oxalate compound particles. The method described in. 前記水和金属シュウ酸塩化合物粒子から前記水蒸気を分離する工程が、前記水和金属シュウ酸塩化合物粒子を通して脱水ガスを移動させて、前記水和金属シュウ酸塩化合物粒子から前記水蒸気を分離する工程を備える、請求項6に記載の方法。 The step of separating the water vapor from the hydrated metal oxalate compound particles moves the dehydration gas through the hydrated metal oxalate compound particles to separate the water vapor from the hydrated metal oxalate compound particles. The method of claim 6, comprising a step. 前記脱水ガスが窒素を含有する、請求項7に記載の方法。 The method according to claim 7, wherein the dehydrated gas contains nitrogen. 前記脱水ガスが約0.1%以下の酸素を含有する、請求項7又は8に記載の方法。 The method according to claim 7 or 8, wherein the dehydrated gas contains oxygen of about 0.1% or less. 前記水和金属シュウ酸塩化合物粒子を脱水する工程が、前記水和金属シュウ酸塩化合物粒子から前記水和水の少なくとも約99.9%を除去する、請求項2~9のいずれか一項に記載の方法。 One of claims 2 to 9, wherein the step of dehydrating the hydrated metal oxalate compound particles removes at least about 99.9% of the hydrated water from the hydrated metal oxalate compound particles. The method described in. 前記分解温度が少なくとも約360℃である、請求項1~10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the decomposition temperature is at least about 360 ° C. 前記分解温度が約700℃以下である、請求項1~11のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, wherein the decomposition temperature is about 700 ° C. or lower. 前記分解ガスが約0.01%以下の酸素を含有する、請求項1~12のいずれか一項に記載の方法。 The method according to any one of claims 1 to 12, wherein the decomposition gas contains oxygen of about 0.01% or less. 前記分解ガスが少なくとも約50%の窒素を含有する、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the decomposition gas contains at least about 50% nitrogen. 前記分解ガスが水素を含有する、請求項1~14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 14, wherein the decomposition gas contains hydrogen. 前記分解ガスが約20%以下の水素を含有する、請求項15に記載の方法。 The method according to claim 15, wherein the decomposition gas contains about 20% or less of hydrogen. 前記分解ガスが一酸化炭素を含有する、請求項1~16のいずれか一項に記載の方法。 The method according to any one of claims 1 to 16, wherein the decomposition gas contains carbon monoxide. 前記分解ガスが少なくとも約2%の一酸化炭素を含有し、約20%以下の一酸化炭素を含有する、請求項17に記載の方法。 17. The method of claim 17, wherein the decomposition gas contains at least about 2% carbon monoxide and about 20% or less carbon monoxide. 前記分解ガスが窒素、水素及び一酸化炭素を含有する、請求項1~18のいずれか一項に記載の方法。 The method according to any one of claims 1 to 18, wherein the decomposition gas contains nitrogen, hydrogen and carbon monoxide. 前記分解ガスがアンモニアを含有する、請求項1~19のいずれか一項に記載の方法。 The method according to any one of claims 1 to 19, wherein the decomposition gas contains ammonia. 前記分解ガスがアンモニア、一酸化炭素及び窒素を含有する、請求項20に記載の方法。 The method according to claim 20, wherein the decomposition gas contains ammonia, carbon monoxide and nitrogen. 前記分解圧力が約6バール以下である、請求項1~21のいずれか一項に記載の方法。 The method according to any one of claims 1 to 21 , wherein the decomposition pressure is about 6 bar or less. 前記気体状シュウ酸塩副生成物を前記無水金属シュウ酸塩化合物粒子から分離する工程が、前記無水金属シュウ酸塩化合物粒子を通して前記分解ガスを移動させる工程を備える、請求項1~22のいずれか一項に記載の方法。 Any of claims 1 to 22 , wherein the step of separating the gaseous oxalate by-product from the anhydrous metal oxalate compound particles comprises the step of moving the decomposition gas through the anhydrous metal oxalate compound particles. The method described in item 1 . 前記精製温度が少なくとも約800℃である、請求項1~23のいずれか一項に記載の方法。 The method according to any one of claims 1 to 23 , wherein the purification temperature is at least about 800 ° C. 前記精製温度が約1300℃以下である請求項1~24のいずれか一項に記載の方法。 The method according to any one of claims 1 to 24 , wherein the purification temperature is about 1300 ° C. or lower . 前記精製ガス組成物が約0.01%以下の酸素を含有する、請求項1~25のいずれか一項に記載の方法。 The method according to any one of claims 1 to 25, wherein the purified gas composition contains about 0.01% or less oxygen. 前記精製ガス組成物が少なくとも約50%の窒素を含有する、請求項1~26のいずれか一項に記載の方法。 The method according to any one of claims 1 to 26, wherein the purified gas composition contains at least about 50% nitrogen. 前記精製ガス組成物が水素を含有する、請求項1~27のいずれか一項に記載の方法。 The method according to any one of claims 1 to 27 , wherein the purified gas composition contains hydrogen. 前記精製ガス組成物が約20%以下の水素を含有する、請求項28に記載の方法。 28. The method of claim 28 , wherein the purified gas composition contains about 20% or less hydrogen. 前記精製ガス組成物が一酸化炭素を含有する、請求項1~29のいずれか一項に記載の方法。 The method according to any one of claims 1 to 29 , wherein the purified gas composition contains carbon monoxide. 前記精製ガス組成物が少なくとも約2%の一酸化炭素を含有し、約20%以下の一酸化炭素を含有する、請求項30に記載の方法。 30. The method of claim 30 , wherein the purified gas composition contains at least about 2% carbon monoxide and about 20% or less carbon monoxide. 前記精製ガス組成物が窒素、水素及び一酸化炭素を含有する、請求項1~31のいずれか一項に記載の方法。 The method according to any one of claims 1 to 31, wherein the purified gas composition contains nitrogen, hydrogen and carbon monoxide. 前記精製ガス組成物がアンモニアを含有する、請求項1~32のいずれか一項に記載の方法。 The method according to any one of claims 1 to 32 , wherein the purified gas composition contains ammonia. 前記精製ガス組成物がアンモニア、一酸化炭素及び窒素を含む、請求項33に記載の方法。 33. The method of claim 33 , wherein the purified gas composition comprises ammonia, carbon monoxide and nitrogen. 精製組成物は、前記分解ガスと実質的に同じである、請求項1~34のいずれか一項に記載の方法。 The method according to any one of claims 1 to 34 , wherein the purified composition is substantially the same as the decomposition gas. 前記中間金属生成物粒子を加熱する工程が、高い精製圧力で実施される、請求項1~35のいずれか一項に記載の方法。 The method according to any one of claims 1 to 35, wherein the step of heating the intermediate metal product particles is carried out at a high purification pressure. 前記精製圧力が少なくとも約2バールである、請求項36に記載の方法。 36. The method of claim 36 , wherein the purification pressure is at least about 2 bar. 前記精製圧力が約6バール以下である、請求項36又は37に記載の方法。 36 or 37. The method of claim 36 or 37 , wherein the purification pressure is about 6 bar or less. 前記微細金属粉末が約2%以下の非金属不純物を含有する、請求項1~38のいずれか一項に記載の方法。 The method according to any one of claims 1 to 38, wherein the fine metal powder contains about 2% or less of non-metal impurities. 前記微細金属粉末が約1%以下の非金属不純物を含有する、請求項39に記載の方法。 39. The method of claim 39 , wherein the fine metal powder contains about 1% or less of non-metal impurities. 前記微細金属粉末が約0.1%以下の酸素を含有する、請求項1~40のいずれか一項に記載の方法。 The method according to any one of claims 1 to 40, wherein the fine metal powder contains about 0.1% or less oxygen. 前記金属シュウ酸塩化合物の粒子は少なくとも第2の希土類金属の金属シュウ酸塩化合物の粒子を含み、前記微細金属粉末はさらに少なくとも前記第2の希土類金属を含有する、請求項1~41のいずれか一項に記載の方法。 The particles of the metal oxalate compound include at least particles of the metal oxalate compound of the second rare earth metal, and the fine metal powder further contains at least the second rare earth metal . The method described in any one of the items . 前記金属シュウ酸塩化合物の粒子は少なくとも第1の卑金属の金属シュウ酸塩化合物の粒子を含み、前記微細金属粉末は少なくとも前記第1の卑金属を含有する、請求項1~42のいずれか一項に記載の方法。 One of claims 1 to 42 , wherein the particles of the metal oxalate compound contain at least particles of the metal oxalate compound of the first base metal, and the fine metal powder contains at least the first base metal . The method described in. 前記第1の希土類金属はネオジムであり、前記微細金属粉末はさらに鉄及びホウ素を含有する、請求項43に記載の方法。 The method of claim 43 , wherein the first rare earth metal is neodymium , and the fine metal powder further contains iron and boron. 前記第1の希土類金属はサマリウムであり、前記微細金属粉末はさらにコバルトを含有する、請求項43に記載の方法。 The method according to claim 43 , wherein the first rare earth metal is samarium , and the fine metal powder further contains cobalt. 前記第1の希土類金属はジスプロシウムであり、前記微細金属粉末はさらに鉄を含有する、請求項1~41のいずれか一項に記載の方法。 The method according to any one of claims 1 to 41, wherein the first rare earth metal is dysprosium , and the fine metal powder further contains iron. 前記第1の希土類金属はニオブであり、前記微細金属粉末はさらに鉄を含有する、請求項1~41のいずれか一項に記載の方法。 The method according to any one of claims 1 to 41, wherein the first rare earth metal is niobium , and the fine metal powder further contains iron. 前記第1の希土類金属はスカンジウムであり、前記微細金属粉末はさらにアルミニウムを含有する、請求項1~41のいずれか一項に記載の方法。 The method according to any one of claims 1 to 41, wherein the first rare earth metal is scandium , and the fine metal powder further contains aluminum. 前記微細金属粉末が、約10μm以下のメジアン(D50)粒子サイズを有する、請求項1~48のいずれか一項に記載の方法。 The method according to any one of claims 1 to 48, wherein the fine metal powder has a median (D50) particle size of about 10 μm or less. 前記微細金属粉末が、約5μm以下のメジアン(D50)粒子サイズを有する、請求項49に記載の方法。 49. The method of claim 49 , wherein the fine metal powder has a median (D50) particle size of about 5 μm or less . 前記微細金属粉末が、少なくとも約1μmのメジアン(D50)粒子サイズを有する、請求項1~50のいずれか一項に記載の方法。 The method according to any one of claims 1 to 50, wherein the fine metal powder has a median (D50) particle size of at least about 1 μm. 少なくとも、前記無水金属シュウ酸塩化合物粒子を加熱する工程と、前記気体状シュウ酸塩副生成物を分離する工程と、前記中間金属生成物粒子を加熱する工程とが、前記無水金属シュウ酸塩化合物粒子及び前記中間金属生成物粒子を攪拌しながら実施される、請求項1~51のいずれか一項に記載の方法。 At least, the step of heating the anhydrous metal oxalate compound particles, the step of separating the gaseous oxalate by-product, and the step of heating the intermediate metal product particles are the steps of forming the anhydrous metal oxalate. The method according to any one of claims 1 to 51, which is carried out while stirring the compound particles and the intermediate metal product particles . 前記無水金属シュウ酸塩化合物粒子及び前記中間金属生成物粒子の攪拌が流動床反応器内で行われる、請求項52に記載の方法。 52. The method of claim 52 , wherein the anhydrous metal oxalate compound particles and the intermediate metal product particles are stirred in a fluidized bed reactor. 前記無水金属シュウ酸塩化合物粒子から分離された前記気体状シュウ酸塩副生成物が回収され、再利用される、請求項1~53のいずれか一項に記載の方法。 The method according to any one of claims 1 to 53, wherein the gaseous oxalate by-product separated from the anhydrous metal oxalate compound particles is recovered and reused. 前記気体状シュウ酸塩副生成物がシュウ酸を含有する、請求項1~54のいずれか一項に記載の方法。 The method according to any one of claims 1 to 54, wherein the gaseous oxalate by -product contains oxalic acid. 前記気体状シュウ酸塩副生成物がシュウ酸アンモニウムを含有する、請求項1~55のいずれか一項に記載の方法。 The method according to any one of claims 1 to 55, wherein the gaseous oxalate by -product contains ammonium oxalate. 捕捉された前記気体状シュウ酸塩副生成物が凝縮及び結晶化され、次いで非シュウ酸塩金属化合物粒子と接触して金属シュウ酸塩化合物粒子を形成する、請求項54~56のいずれか一項に記載の方法。 Any one of claims 54-56 , wherein the captured gaseous oxalate by-product is condensed and crystallized and then contacted with the non-oxalate metal compound particles to form metal oxalate compound particles. The method described in the section . 前記非シュウ酸塩金属化合物粒子が、金属塩化物化合物、金属酸化物化合物、金属硫酸化合物及び金属炭酸化合物からなる群から選択される金属化合物を含有する、請求項57に記載の方法。 58. The method of claim 57 , wherein the non-oxalate metal compound particles contain a metal compound selected from the group consisting of metal chloride compounds, metal oxide compounds, metal sulfate compounds and metal carbonate compounds. 酸素が実質的に存在しない状態で前記微細金属粉末を冷却する工程を備える、請求項1~58のいずれか一項に記載の方法。 The method according to any one of claims 1 to 58 , comprising a step of cooling the fine metal powder in a state where oxygen is substantially absent. 前記微細金属粉末が約0.1重量%以下の炭素不純物を含有する、請求項1~59のいずれか一項に記載の方法。 The method according to any one of claims 1 to 59, wherein the fine metal powder contains carbon impurities of about 0.1% by weight or less.
JP2021516852A 2018-05-30 2019-05-30 Method for producing fine metal powder from metal compounds Active JP7384904B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862678247P 2018-05-30 2018-05-30
US62/678,247 2018-05-30
PCT/US2019/034752 WO2019232276A1 (en) 2018-05-30 2019-05-30 Methods for the production of fine metal powders from metal compounds

Publications (3)

Publication Number Publication Date
JP2021525833A JP2021525833A (en) 2021-09-27
JPWO2019232276A5 true JPWO2019232276A5 (en) 2022-06-07
JP7384904B2 JP7384904B2 (en) 2023-11-21

Family

ID=68696782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021516852A Active JP7384904B2 (en) 2018-05-30 2019-05-30 Method for producing fine metal powder from metal compounds

Country Status (10)

Country Link
US (1) US11607734B2 (en)
EP (1) EP3802893A4 (en)
JP (1) JP7384904B2 (en)
KR (1) KR20210012013A (en)
AU (1) AU2019278903A1 (en)
BR (1) BR112020024499A2 (en)
CA (1) CA3101795C (en)
CL (1) CL2020003109A1 (en)
WO (1) WO2019232276A1 (en)
ZA (1) ZA202007639B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230317369A1 (en) * 2020-06-01 2023-10-05 US Metals Refining Group, Inc. Production of magnetic materials
CN113751713B (en) * 2020-06-05 2024-02-09 江西金力永磁科技股份有限公司 Neodymium iron boron ultrafine powder recovery method
WO2022109489A1 (en) * 2020-11-23 2022-05-27 US Metals Refining Group, Inc. Methods for the production of fine metal powders
CN115747554B (en) * 2022-11-10 2023-10-03 郑州经纬科技实业有限公司 Environment-friendly aluminum alloy refining agent and preparation method thereof

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB419953A (en) 1933-05-22 1934-11-22 Telegraph Constr & Maintenance Manufacture of nickel iron alloys
GB477230A (en) 1935-12-18 1937-12-24 Henri Lawarree Manufacture of sodium hydroxide
GB517455A (en) 1938-07-28 1940-01-30 Ivor Laurance Clifford Improvements in or relating to the conversion of alkaline earth metal oxalates and the manufacture of alkali metal hydroxides
GB542145A (en) 1940-06-25 1941-12-29 Automatic Telephone & Elect Improvements in methods of producing nickel-iron powder
US3923496A (en) 1945-04-26 1975-12-02 Us Energy Nickel powder and a process for producing it
GB679172A (en) 1948-04-23 1952-09-17 Standard Telephones Cables Ltd Improvements in or relating to the production of metal or metal oxide powders and products therefrom
US2636892A (en) 1948-04-23 1953-04-28 Int Standard Electric Corp Production of metal oxalates
GB672354A (en) 1949-02-22 1952-05-21 Basf Ag Improvements in carrying out powder-metallurgical processes
US2660523A (en) 1952-01-25 1953-11-24 Lollis Nicholas J De Method of preparing nickel powder with large surface area
NL85333C (en) 1952-05-22
US2815264A (en) 1953-10-09 1957-12-03 George D Calkins Processing of monazite sand
NL293139A (en) 1962-05-23
BE642776A (en) 1963-01-21
NL124758C (en) 1963-02-28 1900-01-01
US3377160A (en) 1964-12-31 1968-04-09 Allis Chalmers Mfg Co Process of making a high surface area silver catalyst
GB1109890A (en) 1965-12-21 1968-04-18 Int Nickel Ltd Preparation of finely divided metals
US3574685A (en) 1969-01-14 1971-04-13 Ibm Manufacture of magnetic particles by reacting iron,cobalt,or nickel salts with oxalic acid salts in dialkyl sulfoxide
US3625779A (en) 1969-08-21 1971-12-07 Gen Electric Reduction-fusion process for the production of rare earth intermetallic compounds
DE2262868C3 (en) 1972-12-22 1979-03-29 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the production of pure monocarbides, mononitrides and carbonitrides
US3928089A (en) 1973-04-19 1975-12-23 Gen Electric Rare earth intermetallic compounds produced by a reduction-diffusion process
US3925114A (en) 1973-05-04 1975-12-09 Victor Company Of Japan Process for preparation of magnetic alloy powder
US4004917A (en) 1973-09-28 1977-01-25 Graham Magnetics Incorporated Acicular metallic powders produced from the organometallic salts
US3955961A (en) 1974-04-25 1976-05-11 Robert Kenneth Jordan Carboxylate metals process
US3965046A (en) 1974-09-26 1976-06-22 Graham Magnetics Incorporated Process of making metal powders and products produced thereby
US4438078A (en) 1982-12-20 1984-03-20 Allied Corporation Recovery of gadolinium and gallium oxides
EP0170372B1 (en) 1984-07-03 1988-08-17 General Motors Corporation Metallothermic reduction of rare earth oxides with calcium metal
US4578242A (en) 1984-07-03 1986-03-25 General Motors Corporation Metallothermic reduction of rare earth oxides
US4680055A (en) 1986-03-18 1987-07-14 General Motors Corporation Metallothermic reduction of rare earth chlorides
US4751070A (en) 1986-04-15 1988-06-14 Martin Marietta Corporation Low temperature synthesis
US4992096A (en) 1989-06-09 1991-02-12 The Dow Chemical Company Metallothermic reduction or rare earth metals
US5314526A (en) 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
US5250101A (en) 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
DE19544107C1 (en) 1995-11-27 1997-04-30 Starck H C Gmbh Co Kg Metal powder granules, process for its preparation and its use
US5759230A (en) 1995-11-30 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Nanostructured metallic powders and films via an alcoholic solvent process
US5776264A (en) 1996-04-12 1998-07-07 Rutgers University Method for producing amorphous based metals
US6830823B1 (en) 1997-02-24 2004-12-14 Superior Micropowders Llc Gold powders, methods for producing powders and devices fabricated from same
JPH11241104A (en) * 1997-12-25 1999-09-07 Nichia Chem Ind Ltd Samarium-iron-nitrogen series alloy powder and its production
FR2794672B1 (en) 1999-06-10 2001-09-07 Asb Aerospatiale Batteries PROCESS FOR THE PREPARATION OF METAL POWDERS, METAL POWDERS THUS PREPARED AND COMPACTS INCLUDING SUCH POWDERS
DE19962015A1 (en) 1999-12-22 2001-06-28 Starck H C Gmbh Co Kg Compound powder mixtures used, e.g., for particle blasting, are produced using one powder type of a metal with a high melting point, hard material or ceramic together with a bonding metal
JP2003524069A (en) 2000-02-22 2003-08-12 オーエムジー アメリカズ, インコーポレイテッド Rapid conversion of metal-containing compounds to form metals or metal oxides
US6743395B2 (en) 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
US6679938B1 (en) 2001-01-26 2004-01-20 University Of Maryland Method of producing metal particles by spray pyrolysis using a co-solvent and apparatus therefor
FR2825296B1 (en) 2001-05-30 2003-09-12 Toulouse Inst Nat Polytech PROCESS FOR PRODUCING SUPPORTED METAL NANOPARTICLES IN A FLUIDIZED BED
US6676729B2 (en) 2002-01-02 2004-01-13 International Business Machines Corporation Metal salt reduction to form alloy nanoparticles
US20040050207A1 (en) 2002-07-17 2004-03-18 Wooldridge Margaret S. Gas phase synthesis of nanoparticles in a multi-element diffusion flame burner
US6974493B2 (en) 2002-11-26 2005-12-13 Honda Motor Co., Ltd. Method for synthesis of metal nanoparticles
CA2637618C (en) * 2006-02-16 2015-03-31 Brigham Young University Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys
JP2007254781A (en) * 2006-03-21 2007-10-04 Toyota Central Res & Dev Lab Inc Metallic particle and method for producing the same
US7758668B1 (en) 2006-04-18 2010-07-20 Chemnano, Inc. Process of manufacturing metallic nano-scale powders
CN101781186A (en) 2009-01-21 2010-07-21 尤米科尔公司 Cobalt oxalate powder and its application for producing co powder with superior cold compression and sintering characters
US9255337B2 (en) 2010-12-05 2016-02-09 Infinium, Inc. Methods and apparatus for processing of rare earth metal ore
US20120156116A1 (en) 2010-12-15 2012-06-21 Basf Corporation Process For Metal Recovery From Catalyst Waste
US20120207656A1 (en) 2011-02-11 2012-08-16 Emc Metals Corporation System and Method for Recovery of Scandium Values From Scandium-Containing Ores
FR2974740B1 (en) 2011-05-02 2014-01-10 Commissariat Energie Atomique COMPOSITION FOR THE SYNTHESIS OF BIMETALLIC NANOPARTICLES IN AN IONIC LIQUID AND ASSOCIATED METHOD
GB201203430D0 (en) 2012-02-28 2012-04-11 Univ Leicester Chemical reaction
US20140341790A1 (en) 2013-01-18 2014-11-20 Rare Element Resources Ltd. Extraction of metals from metallic compounds
US20160002751A1 (en) 2013-01-18 2016-01-07 Rare Element Resources Ltd. Selective extraction of cerium from other metals
WO2014144463A1 (en) 2013-03-15 2014-09-18 The University Of Houston System Methods and systems for recovering rare earth elements
MX2017000918A (en) 2014-08-15 2017-08-07 Rare Earth Salts Separation And Refining Llc Method for extraction and separation of rare earth elements.
CN105483373B (en) 2014-09-19 2017-11-28 有研稀土新材料股份有限公司 A kind of leaching agent and leaching method for being used to leach ion adsorption type rare earth ore middle rare earth
AU2015329723A1 (en) * 2014-10-10 2017-04-27 Rare Element Resources, Ltd. Processing for the extraction of rare earth elements
CN106271554B (en) * 2016-08-29 2018-09-21 芜湖银星汽车零部件有限公司 One kind screwing bracing means
CN106270554B (en) 2016-09-28 2018-04-13 广州凯耀资产管理有限公司 A kind of preparation method of super-fine cobalt powder
CN106430278B (en) 2016-09-28 2017-08-25 益阳鸿源稀土有限责任公司 A kind of preparation method of high-pure anhydrous acetic acid scandium and High-purity Sc Oxide

Similar Documents

Publication Publication Date Title
JP7384904B2 (en) Method for producing fine metal powder from metal compounds
TW201134765A (en) Production method for trichlorosilane
JP2006232774A (en) Method for producing cyclohexanone oxime
JP5763744B2 (en) Method for producing oxalate ester by CO gas phase method
US3547919A (en) Processing offgas from the synthesis of melamine
JP5173897B2 (en) Acetonitrile production method
CN110803708A (en) Preparation method of electronic-grade boron trichloride
JPWO2019232276A5 (en)
JP2018076235A (en) PRODUCTION METHOD OF ε-CAPROLACTAM
CA2157885C (en) Process for making anhydrous magnesium chloride
CN114506818A (en) Preparation method of high-purity deuterated ammonia
JP2019048774A (en) Manufacturing method of methionine and/or 2-hydroxy-4-(methylthio)butanoic acid
JP2001247518A (en) Method of producing diaryl carbonate
US20110009630A1 (en) Process for the preparation of melamine
US3798314A (en) Process of manufacturing anhydrous magnesium chloride
RU2020143063A (en) METHODS FOR PRODUCING FINE METAL POWDERS FROM METAL COMPOUNDS
US8815191B2 (en) Process for preparing catalysts involving the regeneration of metal carbonate precipitants
CN113479910B (en) Method for sequentially releasing chlorine and ammonia by decomposing ammonium chloride
US2974012A (en) Preparation of beryllium oxide of high purity
US20230405676A1 (en) Methods for the production of fine metal powders
US3232982A (en) Urea synthesis
JP2856849B2 (en) Method for producing oxalyl fluoride
CN112608284A (en) Preparation method of 2, 4-dichloro-6- (4-methoxyphenyl) -1,3, 5-triazine
US2806070A (en) Process of producing polychloro benzenes from hexachloro cyclohexanes
US1955229A (en) Process for the manufacture of alkali metal cyanides