JPWO2019208356A1 - Sample introduction device and analyzer - Google Patents

Sample introduction device and analyzer Download PDF

Info

Publication number
JPWO2019208356A1
JPWO2019208356A1 JP2020516267A JP2020516267A JPWO2019208356A1 JP WO2019208356 A1 JPWO2019208356 A1 JP WO2019208356A1 JP 2020516267 A JP2020516267 A JP 2020516267A JP 2020516267 A JP2020516267 A JP 2020516267A JP WO2019208356 A1 JPWO2019208356 A1 JP WO2019208356A1
Authority
JP
Japan
Prior art keywords
sample
flow path
introduction device
chamber
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020516267A
Other languages
Japanese (ja)
Other versions
JP7016186B2 (en
Inventor
彦北 朱
彦北 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2019208356A1 publication Critical patent/JPWO2019208356A1/en
Application granted granted Critical
Publication of JP7016186B2 publication Critical patent/JP7016186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/26Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

試料である粉体物を簡易に分析する。分析装置は、試料導入装置(10)と、試料導入装置(10)から粉体物(P)が導入される分析機器を備えている。試料導入装置(10)は、試料供給部(14)と流路(16)を備えている。試料供給部(14)は、粉体物(P)を蓄える試料室(18)と、試料室(18)から粉体物(P)を受け取り、この粉体物(P)を流路(16)に導入する試料運搬室(22)と、試料室(18)と流路(16)で露出している回転体(20)を備えている。回転体(20)の回転によって、試料運搬室(22)は、試料室(18)に連通された状態と、流路(16)に連通された状態とを断続して繰り返す。試料供給部(14)は、断続して定量の粉体物(P)を流路(16)に供給する。試料供給部(14)から供給された粉体物(P)と、入口(16a)から導入されたキャリアガスが、分析機器に向けて出口(16b)から排出される。A simple analysis of the powdered material as a sample. The analyzer includes a sample introduction device (10) and an analysis device in which the powder (P) is introduced from the sample introduction device (10). The sample introduction device (10) includes a sample supply unit (14) and a flow path (16). The sample supply unit (14) receives the powder (P) from the sample chamber (18) for storing the powder (P) and the sample chamber (18), and passes the powder (P) through the flow path (16). ), A rotating body (20) exposed in the sample chamber (18) and the flow path (16). Due to the rotation of the rotating body (20), the sample transport chamber (22) intermittently repeats the state of being communicated with the sample chamber (18) and the state of being communicated with the flow path (16). The sample supply unit (14) intermittently supplies a fixed amount of powder (P) to the flow path (16). The powder (P) supplied from the sample supply unit (14) and the carrier gas introduced from the inlet (16a) are discharged from the outlet (16b) toward the analytical instrument.

Description

本願は、試料である粉体物を分析機器に導入するための試料導入装置と、この試料導入装置を用いた分析装置に関する。 The present application relates to a sample introduction device for introducing a powdery substance as a sample into an analysis device, and an analysis device using this sample introduction device.

食の安全を確保するため、食品中の栄養成分または有害成分などを分析して、食品の品質を管理することが必要である。また、製薬業界においては、薬剤の品質管理のため、有効成分または有害成分などを分析しなければならない。さらに、原材料の組成が製品の性能を左右するため、原材料の化学分析も欠かせない。マイクロ波を利用した酸分解または抽出によって試料である粉体物を溶液化し、この溶液を分析機器に導入して、粉体物を化学分析する手法が広く利用されている(非特許文献1)。 In order to ensure food safety, it is necessary to analyze the nutritional components or harmful components in foods and control the quality of foods. Moreover, in the pharmaceutical industry, active ingredients or harmful ingredients must be analyzed for quality control of drugs. Furthermore, chemical analysis of raw materials is indispensable because the composition of raw materials affects the performance of products. A method of solubilizing a powder product as a sample by acid decomposition or extraction using microwaves, introducing this solution into an analytical instrument, and chemically analyzing the powder product is widely used (Non-Patent Document 1). ..

しかしながら、マイクロ波を利用した酸分解または抽出による粉体物の溶液化は、数時間程度の長い時間がかかるうえ、溶液化過程における化学成分の汚染または目減りのリスクがある。また、粉体物をいったんデスク状に固めて、レーザーアブレーションによって微粉末化して分析機器に導入する手法も報告されている(非特許文献2)。しかしながら、非特許文献2に記載された分析方法では、粉体物をいったんデスク状にする必要がある。また、レーザーアブレーション装置は高価である。 However, solvation of powders by acid decomposition or extraction using microwaves takes a long time of about several hours, and there is a risk of contamination or loss of chemical components in the solution process. In addition, a method of once solidifying a powder into a desk shape, pulverizing it by laser ablation, and introducing it into an analytical instrument has also been reported (Non-Patent Document 2). However, in the analysis method described in Non-Patent Document 2, it is necessary to once make the powder into a desk shape. Also, laser ablation equipment is expensive.

"Microwave-assisted sample preparation in analytical chemistry", Talanta, 1996, 43, 1207-1268."Microwave-assisted sample preparation in analytical chemistry", Talanta, 1996, 43, 1207-1268. "Quantitative analysis of the elements in powder samples by LA-ICP-MS with PMMA powder as the binder and Cs as the internal standard", J. Anal. At. Spectrom., 2013, 28, 301-306."Quantitative analysis of the elements in powder samples by LA-ICP-MS with PMMA powder as the binder and Cs as the internal standard", J. Anal. At. Spectrom., 2013, 28, 301-306.

本願の課題は、溶液化またはデスク状処理を必要とせず、粉体物を分析機器に直接導入できる試料導入装置と、この試料導入装置を用いた分析装置を提供することである。 An object of the present application is to provide a sample introduction device capable of directly introducing a powder into an analysis device without requiring solution formation or desk-like processing, and an analysis device using this sample introduction device.

本願の試料導入装置は、試料供給部と、流路とを有し、試料である粉体物を分析機器に導入するための試料導入装置であって、試料供給部が、断続して定量の粉体物を流路に供給し、流路が、キャリアガスが導入される入口と、試料供給部から供給された粉体物および入口から導入されたキャリアガスを分析機器に向けて排出する出口を備えている。 The sample introduction device of the present application has a sample supply unit and a flow path, and is a sample introduction device for introducing a powder product as a sample into an analytical instrument, and the sample supply unit intermittently quantitatively measures the sample. An inlet for supplying the powder material to the flow path and the flow path for introducing the carrier gas, and an outlet for discharging the powder material supplied from the sample supply unit and the carrier gas introduced from the inlet toward the analytical instrument. It has.

本願の分析装置は、本発明の試料導入装置と、試料導入装置から粉体物が導入される分析機器と、流路にキャリアガスを導入するガスボンベを有する。 The analyzer of the present application includes the sample introduction device of the present invention, an analysis device in which powder is introduced from the sample introduction device, and a gas cylinder for introducing a carrier gas into a flow path.

本願の試料導入装置および分析装置を用いることにより、試料である粉体物が簡易に分析できる。 By using the sample introduction device and the analyzer of the present application, the powdery substance as a sample can be easily analyzed.

第一実施形態の試料導入装置の上面図。Top view of the sample introduction device of the first embodiment. (a)図1の試料導入装置のA−A線断面模式図、(b)図1の試料導入装置のB−B線断面模式図。FIG. 1A is a schematic cross-sectional view taken along line AA of the sample introduction device of FIG. 1, and FIG. 1B is a schematic cross-sectional view taken along line BB of the sample introduction device of FIG. 第一実施形態の試料導入装置の動作を示す断面模式図で、(a)は図1のA−A線断面模式図、(b)は図1のB−B線断面模式図。A schematic cross-sectional view showing the operation of the sample introduction device of the first embodiment, (a) is a schematic cross-sectional view taken along line AA of FIG. 1, and (b) is a schematic cross-sectional view taken along line BB of FIG. 第一実施形態の試料導入装置の動作を示す断面模式図。The cross-sectional schematic diagram which shows the operation of the sample introduction apparatus of 1st Embodiment. 第二実施形態の試料導入装置の断面模式図。The cross-sectional schematic diagram of the sample introduction apparatus of 2nd Embodiment. 第三実施形態の試料導入装置の断面模式図。FIG. 6 is a schematic cross-sectional view of the sample introduction device of the third embodiment. 実施例で分析した茶葉の元素分析スペクトル。Elemental analysis spectrum of tea leaves analyzed in Examples. 実施例で分析した茶葉の元素分析スペクトル。Elemental analysis spectrum of tea leaves analyzed in Examples. 実施例で分析した茶葉の元素分析スペクトル。Elemental analysis spectrum of tea leaves analyzed in Examples.

図面を参照しながら、実施形態と実施例に基づいて、本願の試料導入装置および分析装置を説明する。図面は、本願の試料導入装置および分析装置、これらの構成部材、ならびにこれらの周辺部材を模式的に表したものである。したがって、図面上の寸法および寸法比は、実物の寸法および寸法比と必ずしも一致しない。また、同様の部材には同じ符号を付与することがある。なお、重複説明は適宜省略する。 The sample introduction apparatus and the analyzer of the present application will be described with reference to the drawings, based on the embodiments and examples. The drawings schematically represent the sample introduction device and analyzer of the present application, their constituent members, and their peripheral members. Therefore, the dimensions and dimensional ratios on the drawings do not always match the actual dimensions and dimensional ratios. Further, the same reference numerals may be given to similar members. The duplicate description will be omitted as appropriate.

図1は、本願の第一実施形態の試料導入装置10の上面を示している。図2(a)は、図1のA−A線断面を示している。図2(b)は、図1のB−B線断面を示している。試料導入装置10は、試料である粉体物Pを分析機器(不図示。以下同じ)に導入するための装置である。試料導入装置10は、本体12と、試料供給部14と、流路16を備えている。本体12は樹脂製であり、直方体形状を備えている。本体12の内部に、試料供給部14と流路16が設けられている。 FIG. 1 shows the upper surface of the sample introduction device 10 of the first embodiment of the present application. FIG. 2A shows a cross section taken along line AA of FIG. FIG. 2B shows a cross section taken along line BB of FIG. The sample introduction device 10 is a device for introducing the powder material P, which is a sample, into an analytical instrument (not shown, the same applies hereinafter). The sample introduction device 10 includes a main body 12, a sample supply unit 14, and a flow path 16. The main body 12 is made of resin and has a rectangular parallelepiped shape. A sample supply unit 14 and a flow path 16 are provided inside the main body 12.

試料供給部14は、断続して、例えば質量1mg未満の定量の粉体物Pを流路16に供給する。試料供給部14は、試料室18と、回転体20と、試料運搬室22を備えている。粉体物Pを蓄える試料室18は、本体12の上部がくり抜ぬかれて形成された空間で、円柱形状を備えている。回転体20は、流路16と試料室18で露出しており、流路16の上に、かつ試料室18の下に設けられている。 The sample supply unit 14 intermittently supplies a fixed amount of powder P having a mass of less than 1 mg to the flow path 16. The sample supply unit 14 includes a sample chamber 18, a rotating body 20, and a sample transport chamber 22. The sample chamber 18 for storing the powder material P is a space formed by hollowing out the upper part of the main body 12, and has a cylindrical shape. The rotating body 20 is exposed in the flow path 16 and the sample chamber 18, and is provided above the flow path 16 and below the sample chamber 18.

回転体20は、樹脂製で、円柱形状を備えている。回転体20は、中心に設けられた軸Lを回転軸として、図2(a)と図2(b)に矢印で示した方向に回転する。軸Lには駆動機構(不図示)が接続されており、この駆動機構が軸Lを回転させ、それに伴って回転体20も回転する。回転体20の回転によって、試料運搬室22が、試料室18と連通した状態と、流路16と連通した状態を断続して繰り返す。すなわち、試料運搬室22は、試料室18から粉体物Pを断続して受け取り、この粉体物Pを流路16に断続して導入する。なお、回転体20の形状は球体であってもよい。 The rotating body 20 is made of resin and has a cylindrical shape. The rotating body 20 rotates in the direction indicated by the arrow in FIGS. 2 (a) and 2 (b) with the axis L provided at the center as the rotation axis. A drive mechanism (not shown) is connected to the shaft L, and this drive mechanism rotates the shaft L, and the rotating body 20 also rotates accordingly. Due to the rotation of the rotating body 20, the sample transport chamber 22 intermittently repeats the state of communicating with the sample chamber 18 and the state of communicating with the flow path 16. That is, the sample transport chamber 22 receives the powder material P intermittently from the sample chamber 18, and intermittently introduces the powder material P into the flow path 16. The shape of the rotating body 20 may be a sphere.

試料運搬室22は、回転体20の表面に形成されている。より具体的には、試料運搬室22は、回転体20の円柱の側面の一部がくり抜かれて形成されている。後述するように、本実施形態では、流路16と重なったときに流路16の一部となるように、試料運搬室22が回転体20に形成されている。なお、断続して定量の粉体物Pを流路16に供給できれば、試料運搬室22の形状は特に制限がない。 The sample transport chamber 22 is formed on the surface of the rotating body 20. More specifically, the sample transport chamber 22 is formed by hollowing out a part of the side surface of the cylinder of the rotating body 20. As will be described later, in the present embodiment, the sample transport chamber 22 is formed in the rotating body 20 so as to become a part of the flow path 16 when it overlaps with the flow path 16. The shape of the sample transport chamber 22 is not particularly limited as long as the quantitative powder P can be intermittently supplied to the flow path 16.

試料運搬室22の形状は、円柱形状、半球形状、角柱形状、錐体形状、または溝形状などであってもよい。また、試料運搬室22は、回転体20の表面に複数形成されていてもよい。例えば、2個の試料運搬室22を設ける場合は、回転体20の側面に中心角180°毎に試料運搬室22を形成すればよく、4個の試料運搬室22を設ける場合は、回転体20の側面に中心角90°毎に試料運搬室22を形成すればよい。 The shape of the sample transport chamber 22 may be a cylinder shape, a hemispherical shape, a prism shape, a cone shape, a groove shape, or the like. Further, a plurality of sample transport chambers 22 may be formed on the surface of the rotating body 20. For example, when two sample transport chambers 22 are provided, the sample transport chambers 22 may be formed on the side surface of the rotating body 20 at every 180 ° central angle, and when four sample transport chambers 22 are provided, the rotating body may be provided. A sample transport chamber 22 may be formed on the side surface of the 20 at every 90 ° central angle.

試料室18の開口にはキャップ24が設けられている。キャップ24の下方には、バネ26を介して押圧板28が設けられている。押圧板28によって、試料室18に充填された粉体物Pが下方に押圧される。このため、試料室18に充填された粉体物Pは、試料運搬室22に定量で投入される。バネ26と押圧板28の代わりに、圧力センサーを備え、定圧で粉体物Pを試料運搬室22に供給する機構を使用してもよい。 A cap 24 is provided at the opening of the sample chamber 18. A pressing plate 28 is provided below the cap 24 via a spring 26. The pressing plate 28 presses the powder material P filled in the sample chamber 18 downward. Therefore, the powder material P filled in the sample chamber 18 is charged into the sample transport chamber 22 in a fixed amount. Instead of the spring 26 and the pressing plate 28, a mechanism provided with a pressure sensor and supplying the powder material P to the sample transport chamber 22 at a constant pressure may be used.

流路16は、本体12が円柱状にくり抜かれて形成されている。流路16は、外から管が接続できる入口16aと出口16bを備えている。入口16aはHe、N、またはAr等のキャリアガスのガスボンベ(不図示。以下同じ)と接続されており、入口16aから流路16にキャリアガスが導入される。出口16bは分析機器と接続されており、試料供給部14から流路16に供給された粉体物Pと、入口16aから流路16に導入されたキャリアガスを、分析機器に向けて排出する。つまり、分析機器には、キャリアガスと、断続的な定量の粉体物Pが導入される。また、試料導入装置10を複数台併用することによって、連続的な定量の粉体物導入システムを構築することができる。The flow path 16 is formed by hollowing out the main body 12 into a columnar shape. The flow path 16 includes an inlet 16a and an outlet 16b to which a pipe can be connected from the outside. Inlet 16a is He, gas cylinder carrier gas N 2 or Ar, etc., are connected (not shown. Hereinafter the same) as the carrier gas is introduced from the inlet 16a to the flow channel 16. The outlet 16b is connected to the analytical instrument, and discharges the powder P supplied from the sample supply unit 14 to the flow path 16 and the carrier gas introduced into the flow path 16 from the inlet 16a toward the analytical instrument. .. That is, the carrier gas and the intermittently quantitative powder P are introduced into the analytical instrument. Further, by using a plurality of sample introduction devices 10 in combination, a continuous quantitative powder introduction system can be constructed.

本発明の実施形態に係る分析装置は、試料導入装置10と、試料導入装置10から粉体物Pが導入される分析機器と、流路16にキャリアガスを導入するガスボンベを備えている。本実施形態では、分析機器が誘導結合プラズマ質量分析装置(ICP−MS)であるが、分析機器は、誘導結合プラズマ分光分析装置、原子吸光や発光などの元素分析装置、または化合物分析のための有機分析用装置などであってもよい。 The analyzer according to the embodiment of the present invention includes a sample introduction device 10, an analysis device in which the powder material P is introduced from the sample introduction device 10, and a gas cylinder for introducing a carrier gas into the flow path 16. In this embodiment, the analytical instrument is an inductively coupled plasma mass spectrometer (ICP-MS), but the analytical instrument is an inductively coupled plasma spectrometric analyzer, an elemental analyzer such as atomic absorption spectrophotometer or luminescence, or a compound analyzer. It may be an organic analyzer or the like.

分析装置の動作について説明する。図3および図4は、流路16から分析機器に接続された試料導入装置10の動作を示している。図3(a)と図4(a)は、図2(a)に対応する断面模式図であり、図3(b)と図4(b)は、図2(b)に対応する断面模式図である。回転台20は、図2(a)、図2(b)、図3(a)、図3(b)、図4(a)、および図4(b)の矢印で示す向きに等速回転している。また、流路16の入口16aから出口16bに向かって、キャリアガスが流れている。キャリアガスは分析機器の分析部に供給されている。そして、図2(a)に示すように、試料室18が試料運搬室22と連通される位置になったら、試料室18に充填されている粉体物Pは、押圧板28で下方に押圧され、試料運搬室22に定量で投入される。 The operation of the analyzer will be described. 3 and 4 show the operation of the sample introduction device 10 connected to the analytical instrument from the flow path 16. 3 (a) and 4 (a) are schematic cross-sectional views corresponding to FIG. 2 (a), and FIGS. 3 (b) and 4 (b) are schematic cross-sections corresponding to FIG. 2 (b). It is a figure. The turntable 20 rotates at a constant speed in the directions indicated by the arrows in FIGS. 2 (a), 2 (b), 3 (a), 3 (b), 4 (a), and 4 (b). doing. Further, the carrier gas flows from the inlet 16a of the flow path 16 toward the outlet 16b. The carrier gas is supplied to the analysis section of the analytical instrument. Then, as shown in FIG. 2A, when the sample chamber 18 is in a position where it communicates with the sample transport chamber 22, the powder material P filled in the sample chamber 18 is pressed downward by the pressing plate 28. Then, it is charged into the sample transport chamber 22 in a fixed amount.

つぎに、図3(a)および図3(b)に示すように、回転体20が図2(a)および図2(b)の位置から90°回転し、さらに回転体20が90°回転したら、図4(a)および図4(b)に示すように、試料運搬室22が流路16と連通される。このとき、粉体物Pは、試料運搬室22から流路16に落下する。流路16に落下した粉体物Pは、キャリアガスとともに分析機器に導入される。分析機器に導入された粉体物Pは、分析機器によって各種分析される。なお、キャリアガスの圧力が約0.1MPa以上あれば、粉体物Pが漏れることなく試料導入装置10から分析機器に導入される。 Next, as shown in FIGS. 3A and 3B, the rotating body 20 rotates 90 ° from the positions of FIGS. 2A and 2B, and the rotating body 20 further rotates 90 °. Then, as shown in FIGS. 4A and 4B, the sample transport chamber 22 communicates with the flow path 16. At this time, the powder material P falls from the sample transport chamber 22 into the flow path 16. The powder material P that has fallen into the flow path 16 is introduced into the analytical instrument together with the carrier gas. The powder material P introduced into the analytical instrument is analyzed in various ways by the analytical instrument. If the pressure of the carrier gas is about 0.1 MPa or more, the powder P is introduced into the analytical instrument from the sample introduction device 10 without leaking.

回転体20が図4(a)および図4(b)の位置からさらに180°回転したら、図2(a)および図2(b)に示すように、試料運搬室22が再び試料室18と連通される。これを繰り返すことによって、試料運搬室22の容量に応じた定量の粉体物Pが、断続的に分析機器に導入される。試料導入装置10を用いれば、数百μg程度の微量の粉体物Pが分析機器に導入でき、粉体物Pの組成等が分析できる。なお、試料運搬室22の容量を調整することによって、数μgから数mgの粉体物Pを分析機器に導入できる。 When the rotating body 20 is further rotated 180 ° from the positions of FIGS. 4 (a) and 4 (b), the sample transport chamber 22 becomes the sample chamber 18 again as shown in FIGS. 2 (a) and 2 (b). Be communicated. By repeating this, a fixed amount of powder P according to the capacity of the sample transport chamber 22 is intermittently introduced into the analytical instrument. By using the sample introduction device 10, a small amount of powder P of about several hundred μg can be introduced into the analytical instrument, and the composition of the powder P can be analyzed. By adjusting the volume of the sample transport chamber 22, powder P of several μg to several mg can be introduced into the analytical instrument.

本実施形態では、試料供給部14が回転式であるが、これに代えて、試料供給部14が平行移動式であってもよい。平行移動式の試料供給部を備える試料導入装置としては、例えば、以下のような構造が挙げられる。円柱状の試料移動通路を、流路16の上に流路16と平行に設け、試料移動通路の一部と流路16の一部を側面同士で連通させる。そして、中心軸を通り側面を貫通する穴が設けられ、この試料移動通路より短い円柱ピストンをこの試料移動通路内で往復させる。この円柱ピストンの往復運動のある過程で、試料室からこの穴に粉体物Pがいったん落下し、この円柱ピストンの往復運動の他の過程で、円柱ピストンの穴の中にある粉体物Pが流路16に落下する。 In the present embodiment, the sample supply unit 14 is a rotary type, but instead, the sample supply unit 14 may be a translation type. Examples of the sample introduction device provided with the parallel moving sample supply unit include the following structures. A columnar sample moving passage is provided on the flow path 16 in parallel with the flow path 16, and a part of the sample moving passage and a part of the flow path 16 are communicated with each other on the side surfaces. Then, a hole is provided that passes through the central axis and penetrates the side surface, and a cylindrical piston shorter than the sample moving passage is reciprocated in the sample moving passage. In the process of the reciprocating motion of the cylindrical piston, the powder material P once drops from the sample chamber into this hole, and in the other process of the reciprocating motion of the cylindrical piston, the powder material P in the hole of the cylindrical piston Fall into the flow path 16.

図5は、本願の第二実施形態の試料導入装置30の断面模式図である。試料導入装置30は、試料室18付近の本体12内に、超音波発振器32を備えている。なお、超音波発振器32の詳細構造の図示は省略した。本体12内に超音波発振器32を設けたので、粉体物Pの試料運搬室22への投入と、粉体物Pの試料運搬室22から流路16への落下が促進される。超音波発振器32は、複数設けてもよい。 FIG. 5 is a schematic cross-sectional view of the sample introduction device 30 of the second embodiment of the present application. The sample introduction device 30 includes an ultrasonic oscillator 32 in a main body 12 near the sample chamber 18. The detailed structure of the ultrasonic oscillator 32 is not shown. Since the ultrasonic oscillator 32 is provided in the main body 12, the charging of the powder material P into the sample transport chamber 22 and the dropping of the powder material P from the sample transport chamber 22 into the flow path 16 are promoted. A plurality of ultrasonic oscillators 32 may be provided.

図6は、本願の第三実施形態の試料導入装置40の断面模式図である。試料導入装置40は、流路16付近の本体12内に、粉体物Pを除電する除電装置42を備えている。粉体物Pを除電することによって、粉体物Pの試料運搬室22から流路16への落下が促進される。また、試料導入装置40は、試料運搬室22が流路16から試料室18に移動する経路の付近に、試料運搬室22を帯電させる帯電装置44を備えている。なお、除電装置42と帯電装置44の詳細構造の図示は省略した。試料室18に連通する直前に試料運搬室22が帯電すると、粉体物Pの試料運搬室22への投入が促進される。除電装置42または帯電装置44としては、レーザー光源などが挙げられる。 FIG. 6 is a schematic cross-sectional view of the sample introduction device 40 according to the third embodiment of the present application. The sample introduction device 40 includes a static eliminator 42 for removing static electricity from the powder P in the main body 12 near the flow path 16. By eliminating static electricity from the powder material P, the powder material P is promoted to fall from the sample transport chamber 22 into the flow path 16. Further, the sample introduction device 40 includes a charging device 44 for charging the sample transport chamber 22 in the vicinity of the path through which the sample transport chamber 22 moves from the flow path 16 to the sample chamber 18. The detailed structure of the static elimination device 42 and the charging device 44 is not shown. When the sample transport chamber 22 is charged immediately before communicating with the sample chamber 18, the charge of the powder P into the sample transport chamber 22 is promoted. Examples of the static elimination device 42 or the charging device 44 include a laser light source.

図2に示すような試料導入装置を作製した。誘導結合プラズマ質量分析計(アジレント社、Agilent−8800型ICP−MS)とキャリアガスであるアルゴンのガスボンベにこの試料導入装置を接続して、分析装置を構成した。この分析装置を用いて、微量元素分析用の認証標準物質である茶葉粉体物(国立研究開発法人産業技術総合研究所、NMIJ CRM 7505−a)の元素分析を行った。 A sample introduction device as shown in FIG. 2 was manufactured. This sample introduction device was connected to an inductively coupled plasma mass spectrometer (Agilent-8800 type ICP-MS) and a gas cylinder of argon as a carrier gas to form an analyzer. Using this analyzer, elemental analysis of tea leaf powder (National Institute of Advanced Industrial Science and Technology, NMIJ CRM 7505-a), which is a certified standard substance for trace element analysis, was performed.

この茶葉粉体物の各元素濃度の認証値は下記のとおりである。
Ca:0.450±0.013%
Mg:0.301±0.008%
Al:709±23mg/kg
Ba:20.4±0.7mg/kg
Cu:19.2±0.6mg/kg
Fe:82.1±2.4mg/kg
Mn:760±22mg/kg
Ni:5.5±0.3mg/kg
Rb:7.2±0.4mg/kg
Sr:9.0±0.3mg/kg
Zn:22.7±0.7mg/kg
The certified values of the concentration of each element of this tea leaf powder are as follows.
Ca: 0.450 ± 0.013%
Mg: 0.301 ± 0.008%
Al: 709 ± 23 mg / kg
Ba: 20.4 ± 0.7 mg / kg
Cu: 19.2 ± 0.6 mg / kg
Fe: 82.1 ± 2.4 mg / kg
Mn: 760 ± 22 mg / kg
Ni: 5.5 ± 0.3 mg / kg
Rb: 7.2 ± 0.4 mg / kg
Sr: 9.0 ± 0.3 mg / kg
Zn: 22.7 ± 0.7 mg / kg

なお、茶葉粉体物が約100μgずつ断続的に誘導結合プラズマ質量分析計に導入されるように、回転体の回転速度を調整した。この元素分析の結果として、元素分析スペクトルの時間変化を図7から図9に示す。図7から図9に示すように、断続的に各元素のスペクトルが検出された。各元素のスペクトル強度は、毎時刻同じではなかったものの、上記の各元素濃度の認証値と相関性があった。したがって、本発明の試料導入装置と分析装置を用いれば、粉体物の分析が簡易にできることがわかった。 The rotation speed of the rotating body was adjusted so that about 100 μg of the tea leaf powder was intermittently introduced into the inductively coupled plasma mass spectrometer. As a result of this elemental analysis, the time change of the elemental analysis spectrum is shown in FIGS. 7 to 9. As shown in FIGS. 7 to 9, the spectra of each element were detected intermittently. Although the spectral intensity of each element was not the same every hour, there was a correlation with the above-mentioned certified value of each element concentration. Therefore, it was found that the analysis of powders can be easily performed by using the sample introduction device and the analyzer of the present invention.

10 試料導入装置
12 本体
14 試料供給部
16 流路
16a 入口
16b 出口
18 試料室
20 回転体
22 試料運搬室
24 キャップ
26 バネ
28 押圧板
30 試料導入装置
32 超音波発振器
40 試料導入装置
42 除電装置
44 帯電装置
P 粉体物
L 軸
10 Sample introduction device 12 Main body 14 Sample supply unit 16 Flow path 16a Inlet 16b Outlet 18 Sample chamber 20 Rotating body 22 Sample transport chamber 24 Cap 26 Spring 28 Press plate 30 Sample introduction device 32 Ultrasonic oscillator 40 Sample introduction device 42 Static elimination device 44 Charging device P Powder L axis

Claims (10)

試料供給部と、流路とを有し、試料である粉体物を分析機器に導入するための試料導入装置であって、
前記試料供給部が、断続して定量の前記粉体物を前記流路に供給し、
前記流路が、キャリアガスが導入される入口と、前記試料供給部から供給された前記粉体物および前記入口から導入された前記キャリアガスを前記分析機器に向けて排出する出口とを備える試料導入装置。
A sample introduction device having a sample supply unit and a flow path for introducing a powder product as a sample into an analytical instrument.
The sample supply unit intermittently supplies a fixed amount of the powder to the flow path.
A sample in which the flow path includes an inlet into which the carrier gas is introduced and an outlet for discharging the powder material supplied from the sample supply unit and the carrier gas introduced from the inlet toward the analytical instrument. Introduction device.
請求項1において、
前記定量が1mg未満の質量である試料導入装置。
In claim 1,
A sample introduction device whose mass is less than 1 mg.
請求項1または2において、
前記試料供給部が、粉体物を蓄える試料室と、前記試料室から前記粉体物を受け取り、この粉体物を前記流路に導入する試料運搬室とを備える試料導入装置。
In claim 1 or 2,
A sample introduction device in which the sample supply unit includes a sample chamber for storing powders and a sample transport chamber for receiving the powders from the sample chamber and introducing the powders into the flow path.
請求項3において、
前記試料供給部が、前記試料室と前記流路で露出している回転体をさらに備えており、
前記試料運搬室が前記回転体の表面に形成されており、
前記回転体の回転によって、前記試料運搬室が、前記試料室に連通された状態と、前記流路に連通された状態とを断続して繰り返す試料導入装置。
In claim 3,
The sample supply unit further includes a rotating body exposed in the sample chamber and the flow path.
The sample transport chamber is formed on the surface of the rotating body, and the sample transport chamber is formed on the surface of the rotating body.
A sample introduction device that intermittently repeats a state in which the sample transport chamber is communicated with the sample chamber and a state in which the sample transport chamber is communicated with the flow path by the rotation of the rotating body.
請求項4において、
前記試料運搬室が前記回転体の表面に複数形成されている試料導入装置。
In claim 4,
A sample introduction device in which a plurality of sample transport chambers are formed on the surface of the rotating body.
請求項4または5において、
前記試料室と、前記回転体と、前記流路とが、この順で上から配置されている試料導入装置。
In claim 4 or 5,
A sample introduction device in which the sample chamber, the rotating body, and the flow path are arranged in this order from above.
請求項4から6のいずれかにおいて、
前記試料室の付近に超音波発振器をさらに有する試料導入装置。
In any of claims 4 to 6,
A sample introduction device further having an ultrasonic oscillator in the vicinity of the sample chamber.
請求項4から7のいずれかにおいて、
前記流路の付近に前記粉体物を除電する除電装置をさらに有する試料導入装置。
In any of claims 4 to 7,
A sample introduction device further comprising a static elimination device for statically eliminating the powder material in the vicinity of the flow path.
請求項8において、
前記試料運搬室が前記流路から前記試料室に移動する経路の付近に、前記試料運搬室を帯電させる帯電装置をさらに有する試料導入装置。
In claim 8.
A sample introduction device further comprising a charging device for charging the sample transport chamber in the vicinity of a path through which the sample transport chamber moves from the flow path to the sample chamber.
請求項1から9のいずれかの試料導入装置と、
前記試料導入装置から前記粉体物が導入される分析機器と、
前記流路にキャリアガスを導入するガスボンベと、
を有する分析装置。
With the sample introduction device according to any one of claims 1 to 9.
An analytical instrument into which the powder is introduced from the sample introduction device, and
A gas cylinder that introduces carrier gas into the flow path,
An analyzer with.
JP2020516267A 2018-04-27 2019-04-17 Sample introduction device and analyzer Active JP7016186B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018086609 2018-04-27
JP2018086609 2018-04-27
PCT/JP2019/016457 WO2019208356A1 (en) 2018-04-27 2019-04-17 Sample introduction device and analysis device

Publications (2)

Publication Number Publication Date
JPWO2019208356A1 true JPWO2019208356A1 (en) 2021-03-18
JP7016186B2 JP7016186B2 (en) 2022-02-04

Family

ID=68294032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516267A Active JP7016186B2 (en) 2018-04-27 2019-04-17 Sample introduction device and analyzer

Country Status (2)

Country Link
JP (1) JP7016186B2 (en)
WO (1) WO2019208356A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872786A (en) * 1987-04-06 1989-10-10 Braden Thomas M Solid particulate aerosol generator
JPH04303606A (en) * 1991-03-29 1992-10-27 Matsui Mfg Co Rotary sampling device of powder and granular material
JPH04316809A (en) * 1991-04-16 1992-11-09 Matsui Mfg Co Rotary sampling device for powder and granular material
JP2002018269A (en) * 2000-07-05 2002-01-22 Satasu:Kk Powder quantitative supply apparatus
JP2007285944A (en) * 2006-04-19 2007-11-01 Kureha Corp Moisture measuring method of thermoplastic resin due to thermobalance method
WO2008156114A1 (en) * 2007-06-19 2008-12-24 Lifetech Co., Ltd. Powder measuring device, sample preparing device, and method of preparing sample
JP2014228377A (en) * 2013-05-22 2014-12-08 株式会社島津製作所 Particle collection mechanism and particle analysis device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872786A (en) * 1987-04-06 1989-10-10 Braden Thomas M Solid particulate aerosol generator
JPH04303606A (en) * 1991-03-29 1992-10-27 Matsui Mfg Co Rotary sampling device of powder and granular material
JPH04316809A (en) * 1991-04-16 1992-11-09 Matsui Mfg Co Rotary sampling device for powder and granular material
JP2002018269A (en) * 2000-07-05 2002-01-22 Satasu:Kk Powder quantitative supply apparatus
JP2007285944A (en) * 2006-04-19 2007-11-01 Kureha Corp Moisture measuring method of thermoplastic resin due to thermobalance method
WO2008156114A1 (en) * 2007-06-19 2008-12-24 Lifetech Co., Ltd. Powder measuring device, sample preparing device, and method of preparing sample
JP2014228377A (en) * 2013-05-22 2014-12-08 株式会社島津製作所 Particle collection mechanism and particle analysis device using the same

Also Published As

Publication number Publication date
WO2019208356A1 (en) 2019-10-31
JP7016186B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
Bendicho et al. Green chemistry in analytical atomic spectrometry: a review
Monge et al. Mass spectrometry: recent advances in direct open air surface sampling/ionization
Li et al. Applications of ambient mass spectrometry in high-throughput screening
Makinen et al. Ion mobility spectrometry and its applications in detection of chemical warfare agents
Musah et al. Direct analysis in real time mass spectrometry with collision‐induced dissociation for structural analysis of synthetic cannabinoids
EP2212903B1 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a quadrupole or time-of-flight mass spectrometer
Li et al. Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry
CN102129950B (en) Microwave plasma ordinary-pressure desorption ionization source and application thereof in mass spectrum analysis
Burnett et al. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis
US7667197B2 (en) Mass analyzing apparatus
JP7016186B2 (en) Sample introduction device and analyzer
WO2024051781A1 (en) Automatic test device for powder material
Forbes Rapid detection and isotopic measurement of discrete inorganic samples using acoustically actuated droplet ejection and extractive electrospray ionization mass spectrometry
CN106706592B (en) Pesticide residue detecting system based on Raman spectrum
Halko et al. Some green approaches in atomic absorption spectrometry. The last 10 years
Evans et al. Advances in atomic spectrometry and related techniques
US20120270753A1 (en) Metering device and method for operating same
Broekaert State-of-the-art and trends of development in analytical atomic spectrometry with inductively coupled plasmas as radiation and ion sources
CN110108812A (en) Aflatoxin sample purification extraction detection method and its purification liquid-transfering gun in a kind of Chinese medicine
Evans et al. Atomic Spectrometry Update. Advances in atomic spectrometry and related techniques
US3253496A (en) Method and apparatus for loading particulate material into receptacles
US11764051B2 (en) Linear quadrupole ion trap mass analyzer
McCurdy et al. ICP–MS-MS Delivers Accurate Trace-Level Arsenic Analysis in Complex Samples
Zhan et al. A Comparative Study of Targeted Screening Method by LC/MS/MS and Un-targeted Screening Method by LC-TOF in Residual Pesticides Analysis
Záray et al. Advanced methods for chemical characterization of soil pollutants

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7016186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150