JPWO2019187337A1 - 酸化膜形成方法 - Google Patents

酸化膜形成方法 Download PDF

Info

Publication number
JPWO2019187337A1
JPWO2019187337A1 JP2018567977A JP2018567977A JPWO2019187337A1 JP WO2019187337 A1 JPWO2019187337 A1 JP WO2019187337A1 JP 2018567977 A JP2018567977 A JP 2018567977A JP 2018567977 A JP2018567977 A JP 2018567977A JP WO2019187337 A1 JPWO2019187337 A1 JP WO2019187337A1
Authority
JP
Japan
Prior art keywords
gas
oxide film
film
film formation
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018567977A
Other languages
English (en)
Other versions
JP6569831B1 (ja
Inventor
直人 亀田
直人 亀田
敏徳 三浦
敏徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority claimed from PCT/JP2018/043658 external-priority patent/WO2019187337A1/ja
Application granted granted Critical
Publication of JP6569831B1 publication Critical patent/JP6569831B1/ja
Publication of JPWO2019187337A1 publication Critical patent/JPWO2019187337A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

減圧された処理炉(5)内に設置された被成膜基体(7)に対して、オゾン濃度が20〜100vol%のオゾンガスと、不飽和炭化水素ガスと、原料ガスを供給し、化学気相成長法により、被成膜基体(7)表面に酸化膜を形成する酸化膜形成方法である。不飽和炭化水素ガスは、例えば、エチレンガスであり、原料ガスは、例えば、TEOSガスである。オゾンガスの流量を、不飽和炭化水素ガスと原料ガスの合計流量の2倍以上とする。この酸化膜形成方法では、200℃以下の低温条件であっても高い成膜速度で、被成膜基体(7)上に酸化膜が形成される。

Description

本発明は、酸化膜形成方法に関する。特に、合成樹脂により形成された基板やフィルム上へ成膜可能な酸化膜形成方法に関する。
包装用や電子部品、フレキシブルデバイス等に用いられる有機材料では、表面保護や機能性付加のために無機膜の成膜が行われている。また、各種電気デバイスの多くにおいてフレキブル化が検討されており、これらは、例えば、有機フィルム上での形成が求められる。
成膜技術としては、化学気相成長(CVD:Chemical Vapor Deposition)や物理気相成長(PVD:Physical Vapor Deposition)等の技術がある。これらの成膜技術は、半導体やセンサ、FPD(Flat Panel Display)等、微細電子デバイスの製造プロセスにおいて、各種絶縁膜や導電膜等の形成に利用されている。一般的に、成膜速度や被覆性の点で、化学気相成長の方が優れている。
化学気相成長では、各種成膜元素を有する化合物を含む原料ガス(例えば、シラン(ケイ化水素の総称)、TEOS(TetraEthyl OrthoSillicate)、TMA(TriMethyl Alminium)、フッ化タングステン(WF6)等)に、各種反応ガスを加えて反応させ、反応生成物を被成膜基体に堆積させ、膜を形成する。この技術は、ガス間の反応を促進させ、さらに被成膜基体上での膜質向上のために、数百℃以上の高温下で実施される。つまり、化学気相成長法は低温化が難しく、多くの場合、有機材料の耐熱温度を超えてしまう。
例えば、高濃度のオゾンガスを化学気相成長の技術に適用した場合でも、高濃度のオゾンガスとTEOSガスを用いて、数百℃以上の高温下で基板上にSiO2膜が形成されている(例えば、特許文献1)。
低温で化学気相成長を行い、良い膜質を得るためには、低温でも化学反応性が高い反応活性種の導入が必要となる。例えば、被成膜基体に堆積された被覆膜の酸化を100℃以下の温度で行う手法(例えば、特許文献2)や、有機物の除去を目的としたアッシング技術において、室温での反応を行う手法がある(例えば、特許文献3、4)。これらの手法では、高濃度のオゾンと不飽和炭化水素の反応から生成される反応活性種を利用して、200℃以下のプロセスを実現している。
従来の化学気相成長は、200℃以下では反応速度が遅く、得られた酸化膜の膜質が悪いだけでなく、成膜速度が遅い。その結果、耐熱温度が200℃以下の被成膜基体上に良質な酸化膜を形成することができず、優れた特性を有するデバイスを作成することが困難であった。
特開2007−109984号公報 特開2013−207005号公報 特開2008−294170号公報 特開2009−141028号公報
本発明は、上記事情に鑑みてなされたものであり、200℃以下で被成膜基体上に酸化膜の成膜が可能な酸化膜形成方法を提供することを目的とする。
上記目的を達成する本発明の酸化膜形成方法の一態様は、
酸化膜が形成される被成膜基体に対して、
オゾンガスと、不飽和炭化水素ガスと、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガスと、を供給し、化学気相成長法により、前記被成膜基体表面に酸化膜を形成する。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体は、合成樹脂製の基板またはフィルムであり、
前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給した後、
前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して前記被成膜基体表面に前記酸化膜を形成する。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して、前記被成膜基体表面に前記酸化膜を形成した後、
前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給する。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記不飽和炭化水素ガスは、エチレンガスである。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、前記不飽和炭化水素ガスと前記原料ガスの合計供給流量の2倍以上である。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガス、前記不飽和炭化水素ガス、前記原料ガス、および前記被成膜基体上に供給されたガスの攪拌を行う不活性ガスのうち少なくとも1つのガス流量を周期的に変化させる。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記オゾンガスと前記不飽和炭化水素ガスの供給流量を一定とし、前記原料ガスを周期的に変化させる。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
予め、前記不飽和炭化水素ガスと前記原料ガスを混合し、この混合したガスと前記オゾンガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
予め、前記オゾンガスと前記原料ガスを混合し、この混合したガスと前記不飽和炭化水素ガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する。
また、上記目的を達成する本発明の酸化膜形成方法の他の態様は、上記酸化膜形成方法において、
前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、0.2sccm以上である。
以上の発明によれば、200℃以下で被成膜基体上に酸化膜を形成することができる。
本発明の第1実施形態に係る酸化膜形成処理システムの概略を示す図である。 処理炉の詳細を示す図である。 酸化膜形成処理のフローを示す図である。 基板の側方からTEOSガスを供給した酸化膜形成処理の結果を示す図である。 基板の処理面の上方からTEOSガスを供給した酸化膜形成処理の結果を示す図である。 SiO2の成膜速度と成膜温度との関係を示す特性図であり、(a)基板の側方からTEOSガスを供給した場合の特性図、(b)基板の処理面の上方からTEOSガスを供給した場合の特性図である。 本発明の第2実施形態に係る酸化膜形成処理システムの概略を示す図である。
本発明の実施形態に係る酸化膜形成方法について、図面に基づいて詳細に説明する。
本発明の実施形態に係る酸化膜形成方法は、酸化膜が形成される被成膜基体が配置された処理炉に、オゾンガス、各種成膜元素を含む原料ガス、不飽和炭化水素ガスを供給し、化学気相成長法(CVD法)により、被成膜基体上に酸化膜を形成するものである。
被成膜基体は、基板またはフィルム等である。特に、本発明の実施形態に係る酸化膜形成方法は、低温で酸化膜を形成することが可能であるので、Si基板等の比較的耐熱性が高い基板だけでなく、耐熱性が比較的低い合成樹脂で形成された基板またはフィルムに酸化膜を形成することができる。基板またはフィルムを形成する合成樹脂としては、例えば、ポリエステル樹脂、アラミド樹脂、オレフィン樹脂、ポリプロピレン、PPS(ポリフェニレンサルファイド)、PET(ポリエチレンテレフタレート)等がある。その他、PE(ポリエチレン)、POM(ポリオキシメチレン、または、アセタール樹脂)、PEEK(ポリエーテルエーテルケトン)、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、PA(ポリアミド)、PFA(4フッ化エチレン、パーフルオロアルコキシエチレン共重合体)、PI(ポリイミド)、PVD(ポリ二塩化ビニル)等が用いられる。
オゾンガスは、オゾン濃度が高いほど好ましい。例えば、オゾンガスのオゾン濃度(体積%濃度)は、20〜100vol%が好ましく、80〜100vol%がより好ましい。これは、オゾン濃度が100vol%に近いほど、オゾンから生成される反応活性種(OH)をより高密度で被成膜基体表面に到達させることができるためである。この反応活性種(OH)は、化学気相成長に必要な反応に加え、膜中不純物のカーボン(C)と反応し、このカーボン(C)をガスとして除去することができる。したがって、より多くの反応活性種(OH)を被成膜基体表面に供給することで、不純物の少ない酸化膜の形成が可能となる。また、オゾン濃度が高いほど(すなわち、酸素濃度が低いほど)、オゾンが分離して発生する原子状酸素(O)の寿命が長くなる傾向があることからも、高濃度のオゾンガスを用いることが好ましい。すなわち、オゾン濃度を高くすることで、酸素濃度が低くなり、原子状酸素(O)が酸素分子との衝突によって失活することが抑制される。また、オゾン濃度を高くすることで、酸化膜形成プロセスのプロセス圧力を減圧にできるため、ガス流制御性・ガス流向上の観点からも、高濃度のオゾンガスを用いることが好ましい。
オゾンガスの流量は、例えば、0.2sccm以上が好ましく、0.2〜1000sccmがより好ましい。sccmは、1atm(1013hPa)、25℃におけるccm(cm3/min)である。また、オゾンガスの流量(供給量)は、不飽和炭化水素ガスの流量(供給量)の2倍以上が好ましい。不飽和炭化水素ガスがOH基へ分解する分解ステップが複数ステップから成るため、オゾン分子:不飽和炭化水素分子=1:1で供給した場合に、反応に必要なオゾン分子が不足し、OH基が十分な量得られないおそれがあるためである。なお、不飽和炭化水素ガスと原料ガスを供給する際には、オゾンガスの流量を不飽和炭化水素ガスと原料ガスの合計流量の2倍以上とすることで、良好な成膜レートで酸化膜を形成することができる。
高濃度のオゾンガスは、オゾン含有ガスから蒸気圧の差に基づいてオゾンのみを液化分離した後、再び液化したオゾンを気化させて得ることができる。高濃度のオゾンガスを得るための装置は、例えば、特開2001−304756号公報や特開2003−20209号公報の特許文献に開示されている。これらの高濃度のオゾンガスを生成する装置は、オゾンと他のガス(例えば、酸素)の蒸気圧の差に基づきオゾンのみを液化分離して高濃度のオゾン(オゾン濃度≒100vol%)を生成している。特に、オゾンのみを液化および気化させるチャンバを複数備えると、これらのチャンバを個別に温度制御することにより、連続的に高濃度のオゾンガスを供給することができる。なお、高濃度のオゾンガスを生成する市販の装置として、例えば、明電舎製のピュアオゾンジェネレータ(MPOG−HM1A1)がある。
原料ガスは、酸化膜を形成する元素(例えば、リチウム(Li)、マグネシウム(Mg)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、インジウム(In)、錫(Sn)、タングステン(W)、イリジウム(Ir)、白金(Pt)、鉛(Pb)等、以下これらの元素を金属または金属元素という)を構成元素として含む原料ガスが用いられる。例えば、Si−O結合若しくはSi−C結合を有する有機シリコンまたは金属元素−酸素結合若しくは金属元素−炭素結合を有する有機金属を含有する原料ガスや、金属ハロゲン化物や有機金属錯体またはケイ素や金属の水素化物等の原料ガスが用いられる。具体的には、原料ガスとして、シラン(ケイ化水素の総称)、TEOS(TetraEthyl OrthoSillicate)、TMS(TriMthoxySilane)、TES(TriEthoxySilane)、TMA(TriMethyl Alminium)、TEMAZ(Tetrakis(ethylmethylamino)zirconium)、フッ化タングステン(WF6)等が用いられる。また、金属元素1種類だけでなく複数種類の金属元素を含む異種複核錯体(例えば、特開2016−210742等に記載の錯体)を原料ガスとして用いることもできる。原料ガスの流量は、例えば、0.1sccm以上が好ましく、0.1〜500sccmがより好ましい。
不飽和炭化水素は、エチレンに例示される2重結合を有する炭化水素(アルケン)やアセチレンに例示される3重結合を有する炭化水素(アルキン)が用いられる。不飽和炭化水素としては、エチレンやアセチレンの他に、ブチレン等の低分子量の不飽和炭化水素(例えば、炭素数nが4以下の不飽和炭化水素)が好ましく用いられる。不飽和炭化水素ガスの流量は、例えば、0.1sccm以上が好ましく、0.1〜500sccmがより好ましい。
図1は、本発明の実施形態に係る酸化膜形成処理システム1の構成を示す図である。この例では、オゾン濃度が100vol%のオゾンガス、不飽和炭化水素ガスとしてエチレンガスを用い、原料ガスとしてTEOSガスを用いた例を示すが、不飽和炭化水素ガスや原料ガスとして、他のガスを用いた場合も同様に酸化膜を形成することができる。
酸化膜形成処理システム1は、オゾンガス発生装置2(または、高濃度のオゾンガスが充填されたボンベ)、エチレンガスボンベ3、TEOSガスボンベ4、およびプロセス処理を行う処理炉5(チャンバ)を備える。
オゾンガス発生装置2は、処理炉5にオゾンガスを供給する。オゾンガス発生装置2は、配管2aを介して処理炉5に接続される。配管2aには、流量可変のバルブV1が設けられ、オゾンガスの流量制御が個別に行われる。配管2aの流量は、例えば、バルブV1の1次圧と2次圧の差圧および配管2aの断面積に基づいて算出される。このようにオゾンガスの流量計測では、圧力差で流量を計測するようなシステムを備えた装置を用いることが好ましい。これは、熱を加える方式の計測装置を用いると、オゾンの分解が起きるためである。
エチレンガスボンベ3は、処理炉5にエチレンガスを供給する。エチレンガスボンベ3は、配管3aを介して処理炉5に接続される。配管3aには、流量可変のバルブV2が設けられ、エチレンガスの流量制御が個別に行われる。図示していないが、配管3aには、例えば、マスフローメータ等のエチレンガスの流量を計測する計測装置が備えられる。
TEOSガスボンベ4は、処理炉5にTEOSガスを供給する。TEOSガスボンベ4は、配管4aを介して処理炉5に接続される。配管4aには、流量可変のバルブV3が設けられ、TEOSガスの流量制御が個別に行われる。TEOSガスの流量は、例えば、バルブV3の1次圧と2次圧の差圧および配管4aの断面積に基づいて算出される。また、配管4aには、気化室6が備えられる。例えば、気化室6では、TEOSが70℃以上に加熱され、常温では液体であるTEOSが気化室6で気化されてから処理炉5に供給される。なお、配管4aに、窒素等の不活性ガスをキャリアガスとして流すと、TEOSガスの輸送が改善されるため好ましい。
図示省略しているが、処理炉5内のガスを攪拌またはパージする不活性ガス(例えば、窒素ガス)を供給する配管を処理炉5に設けることもできる。
処理炉5には、酸化膜が形成される被成膜基体7が配置される。処理炉5において、化学気相成長法により被成膜基体7上に酸化膜(この実施例では、SiO2膜)が形成される。処理炉5が、コールドウォール炉であると、処理炉5壁面でのオゾン等の分解が抑制されるので好ましい。処理炉5には、排気用配管8が接続される。排気用配管8には、真空ポンプ9および排気後の残留ガスを分解するための除外筒10が備えられ、この除外筒10を介して処理炉5内のガスが大気中に放出される。排気用配管8には、流量可変のバルブV4が設けられ、このバルブV4により成膜プロセス中の処理炉5内の圧力が制御される。
図2に処理炉5の詳細を示す。処理炉5は、被成膜基体7が配置される炉本体5aを備える。炉本体5aには、試料台11(加熱サセプタ)が備えられ、試料台11の上に被成膜基体7が載置される。試料台11を加熱するヒータ(図示せず)は、例えば、半導体製造技術において加熱手段として用いられている赤外線を発する光源が適用される。試料台11を加熱することで、被成膜基体7が所定の温度に加熱される。
炉本体5aの一方の端部には、エチレンガス、TEOSガスが導入される配管3a、4aが接続される配管5bが備えられ、エチレンガスとTEOSの混合ガスが炉本体5aに供給される。炉本体5aの他方の端部には、排気用配管8に接続される配管5cが備えられ、炉本体5aに導入された各種ガスは、被成膜基体7表面付近を通過した後、排気用配管8を流れて排気される。図2では、図示されていないが、オゾンガスが導入される配管2aは、被成膜基体7の処理面と平行にオゾンが供給可能なように、配管5bに隣接して炉本体5aに備えられる。
つまり、処理炉5には、配管2a〜4aが接続され、被成膜基体7の処理面に対して水平方向にオゾンガス、エチレンガス、TEOSガスが供給される。炉本体5a、配管2a〜4a、配管5b、5cおよび排気用配管8の材質は、内部を真空にすることによる応力変形に耐え、オゾンによる酸化劣化が起きないもの(例えば、アルミニウム製や石英ガラス製のもの)が用いられる。
また、図2に、炉本体5aの試料台11部分の断面12を示す。炉本体5aにおいて試料台11部分のガスが流通する断面積が小さいほど、被成膜基体7表面近傍を流通するガス流速が上昇する。例えば、被成膜基体7表面から離れた位置に、被成膜基体7表面と向かい合ってスペーサ(図示せず)を備えると、被成膜基体7表面を流通するガスの流路の幅が狭められ、ガス流速が上昇する。被成膜基体7表面を流通するガス流速が上昇すると、被成膜基体7の下流部分においても未反応なガスが供給可能となり、被成膜基体7の下流部分の成膜が可能となる。
次に、図3のフローを参照して、酸化膜形成処理システム1における酸化膜形成方法について説明する。
(STEP1:試料の搬入)
処理炉5内に窒素ガスを送り込み、処理炉5内に滞留するガスを窒素ガスに置き換え、処理炉5内のガスを除去する(窒素パージ)。次に、被成膜基体7を処理炉5内に搬入し、バルブV4を開き、真空ポンプ9を用いて処理炉5内の圧力を1Pa以下に下げる。バルブV4は、開放状態を継続し、被成膜基体7の温度が所定の温度となるように試料台11を加熱する。
(STEP2:前処理)
バルブV1、V2を開放し、オゾンガスとエチレンガスを供給する。この処理により、酸化活性種(OH)が被成膜基体7表面に供給・吸着される。その結果、被成膜基体7表面が親水性となり、後に成膜されるSiO2と被成膜基体7表面との密着性が向上する。オゾンガスの流量は、例えば、0.2〜1000sccmの範囲内で設定し、エチレンガスの流量は、例えば、0.1〜500sccmの範囲内で設定する。オゾンの爆発を防ぐため、例えば、プロセス圧力は1000Pa以下とし、次ステップまで、オゾンガスとエチレンガスの供給を継続する。オゾンガスの流量は、エチレンガスの流量の2倍以上であることが好ましい。
(STEP3:本処理)
バルブV3を開放し、TEOSガスを供給する。TEOSガスの流量は、例えば、0.1〜500sccmの範囲で設定する。オゾンガスの流量は、例えば、エチレンガスの流量とTEOSガスの流量の合計流量の2倍以上であることが好ましい。プロセス圧力は、例えば、1000Pa以下とする。
本処理工程では、プロセス中の、オゾンガス、エチレンガス(不飽和炭化水素ガス)、TEOSガス(原料ガス)の流量を一定に固定する処理方法の他に、オゾンガス、エチレンガス(不飽和炭化水素ガス)、TEOSガス(原料ガス)のガスのうち1つまたは複数のガス流量をそれぞれ経時的に変化または周期的に変化させる処理方法が考えられる。ガスの流量を経時的または周期的に変化させる態様としては、ガス流量を絞る態様やガスの供給を一定時間停止する態様がある。また、処理炉5内のガスを攪拌またはパージする不活性ガスを周期的に供給して、不活性ガスにより処理炉5内を攪拌し、処理炉5内のガス分布を均一にする処理を併せて行うこともできる。処理炉5に不活性ガスを供給したり、原料ガス等のガスの流量を個々にプロセス処理中に変化させたりすることで、被成膜基体7上により均一な酸化膜を形成することができる。具体例として、プロセス中のガス流量の時間変化に対して、次の3つのプロセスパターンを例示する。
<パターン1>
プロセス中、オゾンガスの流量、エチレンガスの流量およびTEOSガスの流量を一定にする。
パターン1の処理では、被成膜基体7上に形成される酸化膜の膜厚が、処理期間中、一定速度で増加する。
<パターン2>
プロセス中、オゾンガスの流量およびエチレンガスの流量を一定にし、TEOSガスの流量を周期的に変化させる。
パターン2の処理は、オゾンガスとエチレンガスが満たされた処理炉5内にTEOSガスを供給するものである。オゾンガスとエチレンガスが満たされた空間にTEOSガスを供給することで、質の高い酸化膜をより均一に成膜することができる。
例えば、オゾンガスの流量を一定とした場合、エチレンガスやTEOSガスとの反応により、処理炉5の下流に行くほどオゾンの数が減少することとなる。また、処理炉5内にTEOSガスを流通させることで、下流に行くほど、TEOSと反応する活性種(OH)の量が少なくなる。
このように、被成膜基体7上に酸化膜を形成する工程において、処理炉5内のオゾンや活性種の分布に偏りが生じる。そこで、TEOSガスの供給量を減少(または、停止)させることで、処理炉5内に、処理炉5内の反応で生成した不要な生成物を除去し、処理炉5にオゾンガスとエチレンガスを満たす。このオゾンガスとエチレンガスが満たされた処理炉5にTEOSガスを供給することで、被成膜基体7上における酸化膜の厚さや膜質をより均一にすることができる。
なお、パターン2の処理は、TEOSガスの流量をプロセス中に周期的に変化させることで、被成膜基体7に酸化膜を形成する工程と、被成膜基体7上に形成された酸化膜が、オゾンガスとエチレンガスの混合ガス(反応活性種を含む)により改質される工程と、が繰り返される。その結果、より質の高い酸化膜を均一に成膜することができる。
<パターン3>
プロセス中、オゾンガスの流量、TEOSガスの流量を一定にし、エチレンガスの流量を周期的に変化させる。
オゾンとTEOSの反応は、200℃以下の温度では、エチレンが存在する場合と比較して、ほとんど進まないと考えられる。そこで、エチレンガスの流量をプロセス処理中に周期的に変化させることで、被成膜基体7上に酸化膜を形成する工程と、処理炉5内にオゾンガスとTEOSガスを満たす工程と、が繰り返される。その結果、より質の高い酸化膜を均一に成膜することができる。
上記に例示したパターンの他に、プロセス中、エチレンガスの流量、TEOSガスの流量を一定にし、オゾンガスの流量を周期的に変化させる態様も同様の効果が得られると考えられる。つまり、オゾンガス、不飽和炭化水素ガス、原料ガスおよび不活性ガスの少なくとも1つのガスを経時的または周期的に変化させることで、酸化膜の成膜速度は経時的または周期的に変化する。そして、これらのガスの少なくとも1つのガスを経時的または周期的に変化させることで、被成膜基体7上に酸化膜を形成する工程における、処理炉5内のオゾンや活性種の分布の偏りによる酸化膜の膜厚の不均一や膜質の低下(偏り)が抑制される。また、処理炉5内のガス流分布を変えることで、成膜による膜厚増加の被成膜基体7面内分布が変化し、酸化膜の被成膜基体7面内分布を制御することが可能となる。いずれのパターンであっても、予め設定された所定の膜厚になるまで酸化膜が形成され、次のステップに移行する。
なお、この実施例では、パターン2のプロセスパターンで酸化膜の形成を行った。パターン2のように、TEOSガスの流量を一時的に微少とすることで、被成膜基体7上に形成された酸化膜へのOH供給数が多くなり、次のステップで詳細に説明する酸化膜の改質効果が期待できる。
(ステップ4:後処理)
バルブV3を閉じて、TEOSガスの供給を止める。TEOSガスの供給を止めることで、成膜が止まるが、STEP2と同様に、被成膜基体7上に成膜された酸化膜表面にOHが供給される。供給されたOHが膜中を拡散することで、膜中不純物であるカーボン(C)や水素(H)と化学反応し、これら膜中不純物がガス化(CO、CO2またはH2O)されて膜外に除去される。ステップ4におけるオゾンガスの流量およびエチレンガスの流量や処理炉5内の圧力範囲は、ステップ2と同様である。被成膜基体7上に成膜された酸化膜の改質時間は、膜厚が厚くなるにしたがって増加するので、改質時間は、被成膜基体7に形成された酸化膜の膜厚に応じて適宜設定される。
(ステップ5:試料搬出)
バルブV1、V2を閉じて、すべてのガス供給を停止する。処理炉5内の圧力を1Pa以下にし、バルブV4を閉じて排気を止める。そして、処理炉5内に窒素ガス等の不活性ガスを満たして、処理炉5内の圧力を大気圧にし、被成膜基体7を処理炉5外に搬送する。これにより、一連の処理プロセスが終了する。
図4は、本発明の実施形態に係る酸化膜形成処理システム1により室温(25℃)で化学気相成長法により被成膜基体7(具体的には、8インチSiウエハ)上に酸化膜を形成した結果(SiO2の膜厚分布(nm))を示す。図中矢印Aは、オゾンガスの供給位置を示し、矢印Bは、エチレンガスおよびTEOSガスの供給位置を示す。また、矢印Cは、排気用配管8の接続位置を示す。
図4に示した結果は、オゾンガスの流量を200sccm、エチレンガスの流量を25sccm、TEOSガスの流量を25sccmとしたガスの流量条件で、処理炉5の処理圧40Pa程度で、10分間成膜処理を行ったものである。
図4に示すように、オゾンガスの供給箇所付近で、酸化膜の膜厚が最大となり、排気箇所で酸化膜の膜厚が小さくなった。このことより、ガス流路の調節(または、被成膜基体7の移動)により、酸化膜の膜厚分布の制御が可能となることがわかる。また、酸化膜の膜厚の最大値は、780nmであり、成膜速度の最大値は、78nm/minであった。
図5は、エチレンガスおよびTEOSガスを被成膜基体7の上方より供給して、室温(25℃)で化学気相成長法により被成膜基体7(具体的には、8インチSiウエハ)上に酸化膜を形成した結果(SiO2の膜厚分布(nm))である。図中矢印Aは、オゾンガスの供給位置を示し、点線で囲った範囲B’は、エチレンガスおよびTEOSガスの供給位置を示す。エチレンガスおよびTEOSガスは、被処理基体7の処理面の上方から処理面に向かうように供給した。また、矢印Cは、排気用配管8の接続位置を示す。
図5に示した結果は、オゾンガスの流量を100sccm、エチレンガスの流量を64sccm、TEOSガスの流量を0.3sccmとしたガスの流量条件で、処理炉5の処理圧50Pa程度で、3分間成膜処理を行ったものである。酸化膜の膜厚の最大値は、138nmであり、成膜速度の最大値は、46nm/minであった。
図6(a)、(b)は、それぞれ図4および図5を示して説明した酸化膜形成処理の処理条件におけるSiO2の成膜速度と成膜温度との関係を示す図である。図6に示すように、オゾンガスとエチレンガスを用いた酸化膜形成方法(○のプロットで示す)は、エチレンガスを用いない場合(オゾンガスのみを用いた酸化膜形成方法、□のプロットで示す)よりも成膜速度がかなり大きかった。また、酸化膜の成膜速度(nm/min)と成膜温度には相関性があり、室温(25℃)で最大の成膜速度であった。これは、被成膜基体7を温めることによる熱対流が反応を阻害していることが一因であるものと考えられる。よって、被成膜基体7の温度は、例えば、好ましくは200℃以下、より好ましくは150℃以下、さらに好ましくは100℃以下、さらに好ましくは80℃以下、さらに好ましくは25℃以下とすることで、高い成膜速度で酸化膜を形成することができる。また、被成膜基体7の加熱温度を低くすることにより被成膜基体7および被成膜基体7上に形成された薄膜へのダメージが低減されることとなる。したがって、酸化膜形成時の被成膜基体7の温度は、低いほど好ましい。例えば、被成膜基体7の温度を、−10℃以上とすることで、被成膜基体7や被成膜基体7上に形成された薄膜へのダメージを抑制し、十分な成膜速度で酸化膜を形成することができる。
図7は、本発明の第2実施形態に係る酸化膜形成処理システム13の概略を説明する図である。本発明の第2実施形態に係る酸化膜形成処理システム13は、本発明の第1実施形態に係る酸化膜形成処理システム1の処理炉5内に、シャワーヘッド14を備えたものである。よって、本発明の第1実施形態に係る酸化膜形成処理システム1と同様の構成については、同じ符号を付して詳細な説明は省略する。
シャワーヘッド14は、ガスが噴き出す供給孔が形成された面が、被成膜基体7の処理面に対向するように、被成膜基体7から離して備えられる。シャワーヘッド14には、オゾンガス発生装置2、エチレンガスボンベ3、TEOSガスボンベ4がそれぞれ配管2a〜4aを介して接続される。シャワーヘッド14から、各種ガスを供給することで、被成膜基体7により均一な酸化膜を形成することができる。
シャワーヘッド14から、オゾンガス、不飽和炭化水素ガス、原料ガスを個別に供給することが望ましいが、構造上、シャワーヘッド14に3種類以上のガスを個別に供給する供給孔を形成することは困難である。そこで、シャワーヘッド14としては、特開2009−141028号公報に記載されるような、ダブルシャワーヘッドが好適に用いられる。ダブルシャワーヘッドは、異なる2種類のガスが噴き出す供給孔を個別に備えたシャワーヘッドである。
シャワーヘッド14がダブルシャワーヘッドである場合、3種類のガスのうち、2種類のガスは、予め、被成膜基体7に供給される前に混合されることとなる。例えば、シャワーヘッド14には、不飽和炭化水素ガスと原料ガスを混合する混合空間が設けられ、不飽和炭化水素ガスと原料ガスの混合ガスと、オゾンガスが、シャワーヘッド14の異なる供給孔から被成膜基体7にそれぞれ供給される。また、シャワーヘッド14に、オゾンガスと原料ガスとを混合する混合空間を設け、オゾンガスと原料ガスの混合ガスと、不飽和炭化水素ガスをシャワーヘッド14の異なる供給孔から被成膜基体7に供給する態様とすることもできる。このように、オゾンガスと不飽和炭化水素ガス(または原料ガス)を予め混合せず個別に被成膜基体7に供給することで、寿命の短いラジカル種を被成膜基体7の表面で効率的に発生させることができる。その結果、酸化膜の成膜速度の向上および酸化膜の面内均一性がより向上する。
なお、第2実施形態に係る酸化膜形成処理システム13のプロセス処理条件や、処理手順は、第1実施形態に係る酸化膜形成処理システム1と同様とすることで、高い成膜速度で酸化膜を形成することができる。
以上のような、本発明の第1実施形態および第2実施形態に係る酸化膜形成方法によれば、200℃以下の低温で被成膜基体7上に酸化膜を形成することができる。その結果、耐熱温度が低い材料(例えば、合成樹脂等の有機材料)により形成された被成膜基体7(基板やフィルム)上に酸化膜を形成することができる。
また、プラズマを用いることなく、被成膜基体7上に酸化膜を形成することができるので、被成膜基体7の損傷が抑制される。特に、電子デバイスや有機フィルム上に酸化膜(例えば、SiO2膜)を形成する前に、予め薄膜(例えば、電子デバイスを構成する下地膜(主に有機薄膜)等)が形成されている場合であっても、この薄膜に絶縁破壊等のダメージを与えることなく、電子デバイスや有機フィルム上に酸化膜を形成することができる。
また、本発明の実施形態に係る酸化膜形成方法によれば、200℃以下の処理条件で、高い成膜速度で酸化膜を形成することができる。また、実施例で形成された酸化膜は、5MV/cmの耐圧性を備えており、本発明の実施形態に係る酸化膜形成方法により、耐圧性に優れ、ガスバリア性に優れた酸化膜を形成することができる。
従来、ガスバリア性を求められる材料に対する成膜の実施温度は、80℃以下である。したがって、本発明の実施形態に係る酸化膜形成方法は、ガスバリア性を求められる材料に対する酸化膜形成に好適に適用することができる。
したがって、本発明の実施形態に係る酸化膜形成方法は、有機フィルムの高機能化のみならず、フィルム層構造(バルク制御)の高機能化、多積層化等の技術に適用することができる。高機能化された有機フィルムは、スマートフォン、タブレット端末、液晶ディスプレイ、太陽光パネル、自動車関連等の分野に適用することができる。また、これら有機フィルム上に電子デバイス・配線等を形成し、変形を伴う製品上でも機能するフレキシブルデバイスを作製し、ウェアラブルコンピュータや様々な場所へ張付・設置可能なデジタルサイネージ等に適用することができる。
以上、具体的な実施形態を示して本発明の酸化膜形成方法にいて説明したが、本発明の酸化膜形成方法は、実施形態に限定されるものではなく、その特徴を損なわない範囲で適宜設計変更が可能であり、設計変更されたものも、本発明の技術的範囲に属する。

Claims (10)

  1. 酸化膜が形成される被成膜基体に対して、
    オゾンガスと、不飽和炭化水素ガスと、前記酸化膜を構成する元素であるSiまたは金属元素を構成元素として含む原料ガスと、を供給し、化学気相成長法により、前記被成膜基体表面に酸化膜を形成する、酸化膜形成方法。
  2. 前記被成膜基体は、合成樹脂製の基板またはフィルムであり、
    前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給した後、
    前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して前記被成膜基体表面に前記酸化膜を形成する、請求項1に記載の酸化膜形成方法。
  3. 前記被成膜基体に対して、前記オゾンガス、前記不飽和炭化水素ガスおよび前記原料ガスを供給して、前記被成膜基体表面に前記酸化膜を形成した後、
    前記被成膜基体に対して、前記オゾンガスと前記不飽和炭化水素ガスを供給する、請求項1または請求項2に記載の酸化膜形成方法。
  4. 前記不飽和炭化水素ガスは、エチレンガスである、請求項1から請求項3のいずれか1項に記載の酸化膜形成方法。
  5. 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、前記不飽和炭化水素ガスと前記原料ガスの合計供給流量の2倍以上である、請求項1から請求項4のいずれか1項に記載の酸化膜形成方法。
  6. 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガス、前記不飽和炭化水素ガス、前記原料ガス、および前記被成膜基体上に供給されたガスの攪拌を行う不活性ガスのうち少なくとも1つのガス流量を周期的に変化させる、請求項1から請求項5のいずれか1項に記載の酸化膜形成方法。
  7. 前記オゾンガスと前記不飽和炭化水素ガスの供給流量を一定とし、前記原料ガスを周期的に変化させる、請求項6に記載の酸化膜形成方法。
  8. 前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
    予め、前記不飽和炭化水素ガスと前記原料ガスを混合し、この混合したガスと前記オゾンガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する、請求項1に記載の酸化膜形成方法。
  9. 前記被成膜基体から離れた位置に、前記被成膜基体表面と向かい合って、シャワーヘッドを備え、
    予め、前記オゾンガスと前記原料ガスを混合し、この混合したガスと前記不飽和炭化水素ガスを前記シャワーヘッドの異なる供給孔からそれぞれ前記被成膜基体に供給する、請求項1に記載の酸化膜形成方法。
  10. 前記被成膜基体上に前記酸化膜を形成する工程において、前記オゾンガスの供給流量は、0.2sccm以上である、請求項1に記載の酸化膜形成方法。
JP2018567977A 2018-03-28 2018-11-28 酸化膜形成方法 Active JP6569831B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018060983 2018-03-28
JP2018060983 2018-03-28
PCT/JP2018/043658 WO2019187337A1 (ja) 2018-03-28 2018-11-28 酸化膜形成方法

Publications (2)

Publication Number Publication Date
JP6569831B1 JP6569831B1 (ja) 2019-09-04
JPWO2019187337A1 true JPWO2019187337A1 (ja) 2020-04-30

Family

ID=67844861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567977A Active JP6569831B1 (ja) 2018-03-28 2018-11-28 酸化膜形成方法

Country Status (2)

Country Link
JP (1) JP6569831B1 (ja)
CN (1) CN111902564B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978293B2 (en) 2018-03-28 2021-04-13 Meidensha Corporation Oxide film formation method
JP6922959B2 (ja) * 2019-09-20 2021-08-18 株式会社明電舎 酸化膜形成装置
JPWO2023013477A1 (ja) 2021-08-05 2023-02-09
EP4382291A1 (en) 2021-08-05 2024-06-12 Shin-Etsu Chemical Co., Ltd. Article having water- and oil-repellent surface layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240581B2 (ja) * 1998-05-19 2009-03-18 大日本印刷株式会社 透明バリア性フィルムおよびその製造法
JP2001329088A (ja) * 1999-10-18 2001-11-27 Nippon Sheet Glass Co Ltd 二酸化珪素被覆ポリオレフィン樹脂及びその製造方法
FR2915753B1 (fr) * 2007-05-02 2009-09-04 Commissariat Energie Atomique Procede et dispositif de preparation d'un revetement multicouche sur un substrat
JP4968028B2 (ja) * 2007-12-04 2012-07-04 株式会社明電舎 レジスト除去装置
US8309174B2 (en) * 2008-04-15 2012-11-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Heteroleptic iridium precursors to be used for the deposition of iridium-containing films
WO2016143897A1 (ja) * 2015-03-12 2016-09-15 株式会社明電舎 樹脂の改質方法及び改質装置
CN107614580B (zh) * 2015-05-21 2018-11-20 株式会社明电舍 用于改性树脂的方法和装置
JP6613467B2 (ja) * 2015-07-13 2019-12-04 株式会社Flosfia シリコン酸化膜の成膜方法
JP6638401B2 (ja) * 2016-01-06 2020-01-29 凸版印刷株式会社 ガスバリアフィルム積層体およびその製造方法
KR101777689B1 (ko) * 2016-09-21 2017-09-12 에이피시스템 주식회사 복합막 증착장치 및 증착방법

Also Published As

Publication number Publication date
JP6569831B1 (ja) 2019-09-04
CN111902564A (zh) 2020-11-06
CN111902564B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6569831B1 (ja) 酸化膜形成方法
WO2019187337A1 (ja) 酸化膜形成方法
CN108796471B (zh) 成膜方法和成膜装置
JP5294694B2 (ja) シリコン及びチタン窒化物のインサイチュ蒸着
US20170309490A1 (en) Method of manufacturing semiconductor device
KR101737215B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
WO2020170482A1 (ja) 原子層堆積方法および原子層堆積装置
US8158198B2 (en) Method for forming tantalum nitride film
WO2021038958A1 (ja) 原子層堆積装置および原子層堆積方法
CN116508146A (zh) 低电阻栅极氧化物金属化衬里
WO2012118200A1 (ja) 金属薄膜の製膜方法、金属薄膜、および金属薄膜の製膜装置
US20220364235A1 (en) Atomic layer deposition method and atomic layer deposition device
US20220411932A1 (en) Oxide film forming device
JP6702514B1 (ja) 酸化膜形成装置
WO2024018811A1 (ja) 酸化膜形成方法
JP2018188724A (ja) 成膜方法および成膜装置
CN115769343A (zh) 非金属掺入介电表面的钼中

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150