JPWO2019138919A1 - Liquid encapsulation resin composition, electronic component equipment and method for manufacturing electronic component equipment - Google Patents

Liquid encapsulation resin composition, electronic component equipment and method for manufacturing electronic component equipment Download PDF

Info

Publication number
JPWO2019138919A1
JPWO2019138919A1 JP2019564644A JP2019564644A JPWO2019138919A1 JP WO2019138919 A1 JPWO2019138919 A1 JP WO2019138919A1 JP 2019564644 A JP2019564644 A JP 2019564644A JP 2019564644 A JP2019564644 A JP 2019564644A JP WO2019138919 A1 JPWO2019138919 A1 JP WO2019138919A1
Authority
JP
Japan
Prior art keywords
resin composition
electronic component
epoxy resin
liquid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019564644A
Other languages
Japanese (ja)
Other versions
JP7358988B2 (en
Inventor
晧平 関
晧平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2019138919A1 publication Critical patent/JPWO2019138919A1/en
Application granted granted Critical
Publication of JP7358988B2 publication Critical patent/JP7358988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

エポキシ樹脂と、アミン系硬化剤と、環状カルボジイミドと、を含む液状封止樹脂組成物。A liquid encapsulating resin composition containing an epoxy resin, an amine-based curing agent, and a cyclic carbodiimide.

Description

本発明は、液状封止樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。 The present invention relates to a liquid sealing resin composition, an electronic component device, and a method for manufacturing the electronic component device.

トランジスタ、IC(Integrated Circuit)等の電子部品装置に用いられる各種半導体素子(以下、チップともいう。)は、生産性、製造コスト等の面から樹脂による封止が主流となっている。樹脂としては、エポキシ樹脂が広く用いられている。これは、エポキシ樹脂が作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の封止材に求められる諸特性においてバランスに優れているためである。 Various semiconductor elements (hereinafter, also referred to as chips) used in electronic component devices such as transistors and ICs (Integrated Circuits) are mainly sealed with resin from the viewpoints of productivity, manufacturing cost, and the like. As the resin, an epoxy resin is widely used. This is because the epoxy resin has an excellent balance in various properties required for a sealing material such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness to insert products.

半導体素子の表面実装方法としては、電子部品装置の小型化及び薄型化に伴い、ベアチップを直接配線基板上に実装する、いわゆるベアチップ実装が主流となっている。このベアチップ実装による半導体装置としては、例えば、COB(Chip on Board)、COG(Chip on Glass)、TCP(Tape Carrier Package)等が挙げられ、これらの半導体装置においては、液状の封止樹脂組成物が広く使用されている。
また、半導体素子を配線基板(以下、単に「基板」ともいう)上に直接バンプ接続してなるフリップチップ型の半導体装置では、バンプ接続した半導体素子と配線基板との間隙(ギャップ)に充填するアンダーフィル材として、液状封止樹脂組成物が使用されている。この液状封止樹脂組成物は、電子部品を温湿度及び機械的な外力から保護する重要な役割を果たしている。
As a surface mounting method for semiconductor elements, so-called bare chip mounting, in which bare chips are mounted directly on a wiring board, has become the mainstream as electronic component devices have become smaller and thinner. Examples of the semiconductor device by mounting the bare chip include COB (Chip on Board), COG (Chip on Glass), TCP (Tape Carrier Package), and the like. In these semiconductor devices, a liquid sealing resin composition is used. Is widely used.
Further, in a flip-chip type semiconductor device in which a semiconductor element is directly bump-connected on a wiring board (hereinafter, also simply referred to as “board”), the gap between the bump-connected semiconductor element and the wiring board is filled. A liquid sealing resin composition is used as the underfill material. This liquid encapsulating resin composition plays an important role in protecting electronic components from temperature and humidity and mechanical external forces.

近年、情報技術の発展に伴って、電子機器のさらなる小型化、高集積度化及び多機能化が進展し、電子部品からの発熱量が多くなっている。このため、封止材に対する耐熱性の要求が益々高くなっている。また、自動車に搭載される場合には、封止材に対してより高い耐熱性が求められ、信頼性向上の観点から、高温環境下に置かれた場合でも封止部分でのクラックの発生を抑えることが求められている。 In recent years, with the development of information technology, electronic devices have been further miniaturized, highly integrated, and multifunctional, and the amount of heat generated from electronic components has increased. For this reason, the demand for heat resistance of the sealing material is increasing more and more. In addition, when mounted on an automobile, higher heat resistance is required for the sealing material, and from the viewpoint of improving reliability, cracks may occur in the sealing part even when placed in a high temperature environment. It is required to suppress it.

液状封止樹脂組成物の耐熱性を向上させる1つの方法として、ガラス転移温度を高くする方法がある。ガラス転移温度を高くする具体的な手法としては、多官能樹脂を多く添加して架橋密度を高くする方法が挙げられる(例えば、特許文献1参照)。 One method of improving the heat resistance of the liquid sealing resin composition is to raise the glass transition temperature. Specific methods for increasing the glass transition temperature include a method of adding a large amount of polyfunctional resin to increase the crosslink density (see, for example, Patent Document 1).

特開2014−080455号公報Japanese Unexamined Patent Publication No. 2014-080455

特許文献1等の多官能樹脂を用いて架橋密度を高くすることにより耐熱性を向上させる手法では、弾性率が上昇してしまい、チップに対する追従性に劣るため、他の手法により耐熱性を向上させる技術が望まれている。また、熱に晒されてもクラックの発生等が抑えられ信頼性に優れるものが求められている。 In the method of improving the heat resistance by increasing the crosslink density using a polyfunctional resin such as Patent Document 1, the elastic modulus increases and the followability to the chip is inferior. Therefore, the heat resistance is improved by another method. The technology to make it is desired. Further, there is a demand for a product having excellent reliability in which cracks and the like are suppressed even when exposed to heat.

本発明は、熱による重量減少が抑えられ、硬化物としたときのガラス転移温度を高くすることが可能な液状封止樹脂組成物、この液状封止樹脂組成物を用いて得られる電子部品装置及び電子部品装置を提供することを目的とする。 The present invention is a liquid encapsulating resin composition capable of suppressing weight loss due to heat and increasing the glass transition temperature of a cured product, and an electronic component device obtained by using this liquid encapsulating resin composition. And to provide electronic component equipment.

上記課題を解決するための手段には、以下の実施形態が含まれる。
<1> エポキシ樹脂と、アミン系硬化剤と、環状カルボジイミドと、を含む液状封止樹脂組成物。
<2> 前記環状カルボジイミドの含有率が、0.05質量%〜20質量%である、<1>に記載の液状封止樹脂組成物。
<3> 前記環状カルボジイミドの平均粒径が、200μm以下である、<1>又は<2>に記載の液状封止樹脂組成物。
<4> 前記環状カルボジイミドの最大粒径が、2mm以下である、<1>〜<3>のいずれか1項に記載の液状封止樹脂組成物。
<5> 無機充填材をさらに含有する<1>〜<4>のいずれか1項に記載の液状封止樹脂組成物。
<6> 前記無機充填材の含有率が、20質量%〜90質量%である、<5>に記載の液状封止樹脂組成物。
<7> 前記エポキシ樹脂が、ビスフェノール型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種を含む、<1>〜<6>のいずれか1項に記載の液状封止樹脂組成物。
<8> 前記エポキシ樹脂は、3官能以上の多官能エポキシ樹脂を含まないか、多官能エポキシ樹脂を含む場合には、多官能エポキシ樹脂の含有率は、前記エポキシ樹脂の総量に対して48質量%以下である、<1>〜<7>のいずれか1項に記載の液状封止樹脂組成物。
<9> 溶剤を含まないか、又は溶剤を含む場合には溶剤の含有率が5質量%以下である、<1>〜<8>のいずれか1項に記載の液状封止樹脂組成物。
<10> 支持部材と、
前記支持部材上に配置される電子部品と、
前記支持部材と前記電子部品との間の空隙の少なくとも一部を封止している<1>〜<9>のいずれか1項に記載の液状封止樹脂組成物の硬化物と、
を備える電子部品装置。
<11> 前記支持部材と前記電子部品との間の距離が、200μm以下である、<10>に記載の電子部品装置。
<12> 支持部材と、前記支持部材上に配置される電子部品との間の空隙の少なくとも一部を<1>〜<9>のいずれか1項に記載の液状封止樹脂組成物を用いて封止する工程を備える、電子部品装置の製造方法。
<13> 前記支持部材と前記電子部品との間の距離が、200μm以下である、<12>に記載の電子部品装置の製造方法。
Means for solving the above problems include the following embodiments.
<1> A liquid encapsulating resin composition containing an epoxy resin, an amine-based curing agent, and a cyclic carbodiimide.
<2> The liquid encapsulating resin composition according to <1>, wherein the content of the cyclic carbodiimide is 0.05% by mass to 20% by mass.
<3> The liquid encapsulating resin composition according to <1> or <2>, wherein the average particle size of the cyclic carbodiimide is 200 μm or less.
<4> The liquid encapsulating resin composition according to any one of <1> to <3>, wherein the maximum particle size of the cyclic carbodiimide is 2 mm or less.
<5> The liquid sealing resin composition according to any one of <1> to <4>, which further contains an inorganic filler.
<6> The liquid sealing resin composition according to <5>, wherein the content of the inorganic filler is 20% by mass to 90% by mass.
<7> The liquid sealing resin according to any one of <1> to <6>, wherein the epoxy resin contains at least one selected from the group consisting of a bisphenol type epoxy resin and a glycidylamine type epoxy resin. Composition.
<8> When the epoxy resin does not contain a trifunctional or higher functional epoxy resin or contains a polyfunctional epoxy resin, the content of the polyfunctional epoxy resin is 48 mass by mass with respect to the total amount of the epoxy resin. % Or less, according to any one of <1> to <7>. The liquid sealing resin composition.
<9> The liquid encapsulating resin composition according to any one of <1> to <8>, wherein the liquid encapsulating resin composition does not contain a solvent, or when the solvent is contained, the content of the solvent is 5% by mass or less.
<10> Support member and
Electronic components placed on the support member and
The cured product of the liquid sealing resin composition according to any one of <1> to <9>, which seals at least a part of the gap between the support member and the electronic component.
Electronic component device equipped with.
<11> The electronic component device according to <10>, wherein the distance between the support member and the electronic component is 200 μm or less.
<12> The liquid sealing resin composition according to any one of <1> to <9> is used for at least a part of the gap between the support member and the electronic component arranged on the support member. A method of manufacturing an electronic component device, which comprises a step of sealing.
<13> The method for manufacturing an electronic component device according to <12>, wherein the distance between the support member and the electronic component is 200 μm or less.

本発明によれば、熱による重量減少が抑えられ、硬化物としたときのガラス転移温度を高くすることが可能な液状封止樹脂組成物、この液状封止樹脂組成物を用いて得られる電子部品装置及び電子部品装置の製造方法が提供される。 According to the present invention, a liquid encapsulating resin composition capable of suppressing weight loss due to heat and increasing the glass transition temperature of a cured product, and electrons obtained by using this liquid encapsulating resin composition. A method for manufacturing a component device and an electronic component device is provided.

以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "~" in the present disclosure includes the numerical values before and after "~" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.

本開示において「常温」とは25℃を意味し、「液体」とは流動性と粘性を示し、かつ粘性を示す尺度である粘度が0.0001Pa・s〜100Pa・sである物質を意味する。また、「液状」とは前記液体の状態であることを意味する。 In the present disclosure, "normal temperature" means 25 ° C., and "liquid" means a substance showing fluidity and viscosity and having a viscosity of 0.0001 Pa · s to 100 Pa · s, which is a measure of viscosity. .. Further, "liquid" means the state of the liquid.

本開示において「粘度」とは、EHD型回転粘度計を25℃で1分間、所定の回毎分で回転させた時の測定値に、所定の換算係数を乗じた値と定義する。測定値は、25±1℃に保たれた液体について、コーン角度3゜、コーン半径14mmのコーンロータを装着したEHD型回転粘度計を用いて得られる。回毎分及び換算係数は、測定対象の液体の粘度によって異なる。具体的には、測定対象の液体の粘度を予め大まかに推定し、推定値に応じて回毎分(rpm)及び換算係数を決定する。 In the present disclosure, "viscosity" is defined as a value obtained by multiplying a measured value when an EHD type rotational viscometer is rotated at 25 ° C. for 1 minute at a predetermined revolutions per minute by a predetermined conversion coefficient. The measured value is obtained by using an EHD type rotational viscometer equipped with a cone rotor having a cone angle of 3 ° and a cone radius of 14 mm for a liquid maintained at 25 ± 1 ° C. Revolutions per minute and conversion factor vary depending on the viscosity of the liquid to be measured. Specifically, the viscosity of the liquid to be measured is roughly estimated in advance, and the revolutions per minute (rpm) and the conversion coefficient are determined according to the estimated values.

本開示では、測定対象の液体の粘度の推定値が0Pa・s以上1.25Pa・s未満の場合は回転数を10rpm、換算係数を0.5とし、粘度の推定値が1.25Pa・s以上2.5Pa・s未満の場合は回転数を5rpm、換算係数を1とし、粘度の推定値が2.5Pa・s以上6.25Pa・s未満の場合は回転数を2.5rpm、換算係数を2とし、粘度の推定値が6.25Pa・s以上12.5Pa・s未満の場合は回転数を1rpm、換算係数を5とする。 In the present disclosure, when the estimated value of the viscosity of the liquid to be measured is 0 Pa · s or more and less than 1.25 Pa · s, the rotation speed is 10 rpm, the conversion coefficient is 0.5, and the estimated viscosity is 1.25 Pa · s. If it is more than 2.5 Pa · s, the rotation speed is 5 rpm and the conversion coefficient is 1. If the estimated viscosity is 2.5 Pa · s or more and less than 6.25 Pa · s, the rotation speed is 2.5 rpm and the conversion coefficient. When the estimated value of viscosity is 6.25 Pa · s or more and less than 12.5 Pa · s, the rotation speed is set to 1 rpm and the conversion coefficient is set to 5.

<液状封止樹脂組成物>
本開示の液状封止樹脂組成物は、エポキシ樹脂と、アミン系硬化剤と、環状カルボジイミドと、を含む。液状封止樹脂組成物は、必要に応じてその他の成分を含んでいてもよい。
<Liquid sealing resin composition>
The liquid encapsulating resin composition of the present disclosure contains an epoxy resin, an amine-based curing agent, and a cyclic carbodiimide. The liquid sealing resin composition may contain other components, if necessary.

本開示の液状封止樹脂組成物では、熱による重量減少が抑えられ、硬化物としたときのガラス転移温度(Tg)を高くすることが可能となる。その理由は明らかではないが、以下のように考えることができる。 In the liquid sealing resin composition of the present disclosure, weight loss due to heat is suppressed, and the glass transition temperature (Tg) when a cured product is formed can be increased. The reason is not clear, but it can be thought of as follows.

エポキシ樹脂とアミン系硬化剤との硬化反応により、C−N結合が生成する。従来のように高Tg化のために多官能樹脂を用いて架橋密度を高くすると、生成するC−N結合が多くなる。C−N結合は熱に弱いため、熱分解して重量減少を引き起こす虞がある。
これに対して、本開示の液状封止樹脂組成物は、環状カルボジイミドを用いるため、高Tg化が図られる。その理由は、環状カルボジイミドは剛直な環状骨格を持ち、この骨格が架橋の隙間を埋めることで架橋鎖の動きを抑制するためであると考えられる。そのため、環状カルボジイミドを用いることで、架橋密度を高くせずに高Tg化できる。よって、環状カルボジイミドの使用により、高Tg化しつつもC−N結合を増やさずにすみ、熱分解を抑えることが可能となる。熱分解による重量減少が抑制されることで、封止部分でのクラックの発生等が抑えられる傾向にある。
A CN bond is formed by the curing reaction between the epoxy resin and the amine-based curing agent. When the crosslink density is increased by using a polyfunctional resin for increasing Tg as in the conventional case, the number of CN bonds formed increases. Since the CN bond is sensitive to heat, it may be thermally decomposed to cause weight loss.
On the other hand, since the liquid sealing resin composition of the present disclosure uses cyclic carbodiimide, high Tg can be achieved. It is considered that the reason is that the cyclic carbodiimide has a rigid cyclic skeleton, and this skeleton fills the gaps in the crosslinks to suppress the movement of the crosslinked chains. Therefore, by using cyclic carbodiimide, high Tg can be achieved without increasing the crosslink density. Therefore, by using the cyclic carbodiimide, it is possible to suppress the thermal decomposition without increasing the CN bond while increasing the Tg. By suppressing the weight loss due to thermal decomposition, the occurrence of cracks at the sealed portion tends to be suppressed.

(環状カルボジイミド)
環状カルボジイミドは、分子内にカルボジイミド基(−N=C=N−)を1個以上有し、そのカルボジイミド基を構成する2つの窒素が連結基により結合された環状構造を有する化合物である。環状カルボジイミドは、1種を単独で用いても2種以上を併用してもよい。
(Cyclic carbodiimide)
Cyclic carbodiimide is a compound having one or more carbodiimide groups (-N = C = N-) in the molecule and having a cyclic structure in which two nitrogens constituting the carbodiimide group are bonded by a linking group. The cyclic carbodiimide may be used alone or in combination of two or more.

液状封止樹脂組成物を硬化物としたときの耐熱性を向上させる観点から、環状カルボジイミドは、分子内に2個以上のカルボジイミド基を含むことが好ましい。 From the viewpoint of improving the heat resistance when the liquid sealing resin composition is used as a cured product, the cyclic carbodiimide preferably contains two or more carbodiimide groups in the molecule.

環状カルボジイミドにおける環状構造は、1個であっても、2個以上であってもよい。2個以上の環状構造を有する場合、ビシクロ構造、トリシクロ構造等のように二環が2個以上の原子を共有していてもよく、またスピロ構造のように、二環において1つの原子が共有されていてもよい。さらに、環状構造を構成している原子が、置換基として環状基を有することによって、2個以上の環状構造を有する構造となっていてもよい。 The cyclic structure in the cyclic carbodiimide may be one or two or more. When having two or more cyclic structures, the two rings may share two or more atoms such as a bicyclo structure and a tricyclo structure, and one atom shares in the two rings such as a spiro structure. It may have been. Further, the atoms constituting the cyclic structure may have a structure having two or more cyclic structures by having a cyclic group as a substituent.

環状カルボジイミドとしては、下記一般式(1)で表される化合物が挙げられる。 Examples of the cyclic carbodiimide include compounds represented by the following general formula (1).


一般式(1)中、Xは2価以上の連結基である。Xが3価以上の連結基の場合には、ポリマーと結合したり、他の環状構造と結合したりしてもよい。
Xで表される連結基は、炭素原子及び水素原子を含み、さらにヘテロ原子を含んでいてもよい。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子、リン原子等が挙げられる。
In the general formula (1), X is a divalent or higher linking group. When X is a trivalent or higher valent linking group, it may be bonded to a polymer or to another cyclic structure.
The linking group represented by X contains a carbon atom and a hydrogen atom, and may further contain a hetero atom. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and the like.

カルボジイミド基とXとを含んで構成される環状構造の原子数(員数)は特に限定されず、例えば、8〜50であることが好ましく、10〜30であることがより好ましく、10〜20であることがさらに好ましい。ここでいう員数には、置換基の原子数は含まれない。 The number of atoms (membership) of the cyclic structure composed of the carbodiimide group and X is not particularly limited, and is, for example, preferably 8 to 50, more preferably 10 to 30, and 10 to 20. It is more preferable to have. The number of members here does not include the number of atoms of the substituent.

Xで表される連結基として、具体的には、脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基、これらの組み合わせ、又はこれらとヘテロ原子との組み合わせが挙げられる。 Specific examples of the linking group represented by X include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a combination thereof, or a combination thereof and a heteroatom.

Xで表される脂肪族炭化水素基としては、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基等が挙げられる。脂肪族炭化水素基は置換基を有していてもよい。置換基としては、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。 Examples of the aliphatic hydrocarbon group represented by X include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. The aliphatic hydrocarbon group may have a substituent. Examples of the substituent include an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, an aldehyde group and the like.

Xで表される脂環式炭化水素基としては、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。脂環式炭化水素基は置換基を有していてもよい。置換基としては、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。 Examples of the alicyclic hydrocarbon group represented by X include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. .. The alicyclic hydrocarbon group may have a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, an aldehyde group and the like.

芳香族炭化水素基としては、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。芳香族炭化水素基は置換基を有していてもよい。置換基としては、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。 Examples of the aromatic hydrocarbon group include an arylene group having 5 to 15 carbon atoms, an arene triyl group having 5 to 15 carbon atoms, and an arene tetrayl group having 5 to 15 carbon atoms. The aromatic hydrocarbon group may have a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, an aldehyde group and the like.

環状カルボジイミドの分子量は、100〜1,000であることが好ましく、100〜750であることがより好ましく、250〜750であることがさらに好ましい。 The molecular weight of the cyclic carbodiimide is preferably 100 to 1,000, more preferably 100 to 750, and even more preferably 250 to 750.

環状カルボジイミドは、室温(25℃)で固形でも液状でもよい。環状カルボジイミドが固形の場合には、その形状はいずれであってもよく、粒子状であってもよい。
環状カルボジイミドが粒子状である場合、その粒子の平均粒径は、200μm以下であることが好ましく、100μm以下であることがより好ましく、20μm以下であることがさらに好ましく、10μm以下であることが特に好ましく、8μm以下であることが極めて好ましい。
また、環状カルボジイミドの平均粒径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.8μm以上であることがさらに好ましい。
The cyclic carbodiimide may be solid or liquid at room temperature (25 ° C.). When the cyclic carbodiimide is solid, its shape may be any shape, and it may be in the form of particles.
When the cyclic carbodiimide is in the form of particles, the average particle size of the particles is preferably 200 μm or less, more preferably 100 μm or less, further preferably 20 μm or less, and particularly preferably 10 μm or less. It is preferably 8 μm or less, which is extremely preferable.
The average particle size of the cyclic carbodiimide is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 0.8 μm or more.

本開示において環状カルボジイミドの平均粒径は、体積平均粒径を意味する。具体的には、レーザー回折散乱法により得られる体積基準の粒度分布曲線において、小径側からの累積が50%となるときの粒子径(D50)を意味する。 In the present disclosure, the average particle size of cyclic carbodiimide means the volume average particle size. Specifically, it means the particle size (D50) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution curve obtained by the laser diffraction / scattering method.

環状カルボジイミドが粒子状である場合、その粒子の最大粒径(Dmax)は、2mm以下であることが好ましく、800μm以下であることがより好ましく、100μm以下であることがさらに好ましく、50μm以下であることが特に好ましい。
また、環状カルボジイミドの最大粒径(Dmax)は、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
When the cyclic carbodiimide is in the form of particles, the maximum particle size (Dmax) of the particles is preferably 2 mm or less, more preferably 800 μm or less, further preferably 100 μm or less, and further preferably 50 μm or less. Is particularly preferred.
The maximum particle size (Dmax) of the cyclic carbodiimide is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more.

本開示において環状カルボジイミドの最大粒径(Dmax)は、レーザー回折散乱法によって体積基準の粒度分布曲線を求め、この粒度分布曲線における最大粒径を意味する。 In the present disclosure, the maximum particle size (Dmax) of cyclic carbodiimide is obtained by obtaining a volume-based particle size distribution curve by a laser diffraction / scattering method, and means the maximum particle size in this particle size distribution curve.

環状カルボジイミドがスピロ構造を有している場合、環状カルボジイミドとしては下記一般式(2)で表される化合物が挙げられる。 When the cyclic carbodiimide has a spiro structure, examples of the cyclic carbodiimide include compounds represented by the following general formula (2).


式中Xは、下記式(3)で表される4価の基である。式中Ar〜Arは各々独立に、置換基を有していてもよい、オルトフェニレン基又は1,2−ナフタレン−ジイル基である。置換基としては、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基等が挙げられる。Ar〜Arはヘテロ原子を含んで複素環構造を有していてもよい。ヘテロ原子として、酸素原子、窒素原子、硫黄原子、リン原子等が挙げられる。In the formula, X is a tetravalent group represented by the following formula (3). In the formula, Ar 1 to Ar 4 are each independently an orthophenylene group or a 1,2-naphthalene-diyl group which may have a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, an aldehyde group and the like. Ar 1 to Ar 4 may contain a hetero atom and have a heterocyclic structure. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.


一般式(2)で表される化合物の具体例化合物としては、下記化合物が例示される。 Specific examples of the compound represented by the general formula (2) Examples of the compound include the following compounds.

これらの環状カルボジイミド化合物は、各種の文献、特許公報等で周知の方法により製造することができる。 These cyclic carbodiimide compounds can be produced by methods well known in various documents, patent publications, and the like.

環状カルボジイミドの市販品としては、TCC−FP10M(帝人株式会社、商品名)等が挙げられる。 Examples of commercially available cyclic carbodiimides include TCC-FP10M (Teijin Corporation, trade name) and the like.

液状封止樹脂組成物における環状カルボジイミドの含有率は特に制限されず、例えば、液状封止樹脂組成物全体の0.05質量%〜20質量%であることが好ましく、0.1質量%〜20質量%であることがより好ましく、0.2質量%〜15質量%であることがさらに好ましく、0.5質量%〜10質量%であることが特に好ましい。 The content of the cyclic carbodiimide in the liquid sealing resin composition is not particularly limited, and is preferably, for example, 0.05% by mass to 20% by mass, and 0.1% by mass to 20% by mass of the entire liquid sealing resin composition. It is more preferably mass%, more preferably 0.2% by mass to 15% by mass, and particularly preferably 0.5% by mass to 10% by mass.

(エポキシ樹脂)
エポキシ樹脂は特に制限されず、例えば、電子部品装置の封止材の成分として一般的に使用されているエポキシ樹脂を用いることができる。充分な硬化性を得る観点からは、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を用いることが好ましい。
(Epoxy resin)
The epoxy resin is not particularly limited, and for example, an epoxy resin generally used as a component of a sealing material for an electronic component device can be used. From the viewpoint of obtaining sufficient curability, it is preferable to use an epoxy resin having two or more epoxy groups in one molecule.

エポキシ樹脂として具体的には、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミン等の芳香族グリシジルアミン型エポキシ樹脂などのグリシジルアミン型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビフェニル型エポキシ樹脂;スチルベン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;トリフェノールプロパン型エポキシ樹脂;アルキル変性トリフェノールメタン型エポキシ樹脂;トリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂;ナフトール型エポキシ樹脂;ナフタレン型エポキシ樹脂;フェニレン骨格及びビフェニレン骨格の少なくともいずれかを有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格及びビフェニレン骨格の少なくともいずれかを有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂;並びにビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイド等の脂環式エポキシ樹脂などの脂肪族エポキシ樹脂;が挙げられる。エポキシ樹脂は、1種を単独で用いても2種以上を併用してもよい。 Specifically, as the epoxy resin, for example, a novolak type epoxy resin such as a phenol novolac type epoxy resin and a cresol novolac type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin and a bisphenol F type epoxy resin; N, N- Glycidylamine type epoxy resin such as aromatic glycidylamine type epoxy resin such as diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol type glycidylamine; hydroquinone type epoxy resin; biphenyl type epoxy resin; Stilben type epoxy resin; triphenol methane type epoxy resin; triphenol propane type epoxy resin; alkyl modified triphenol methane type epoxy resin; triazine nucleus containing epoxy resin; dicyclopentadiene modified phenol type epoxy resin; naphthol type epoxy resin; naphthalene type Epoxy resin; phenol aralkyl type epoxy resin having at least one of phenylene skeleton and biphenylene skeleton, aralkyl type epoxy resin such as naphthol aralkyl type epoxy resin having at least one of phenylene skeleton and biphenylene skeleton; and vinylcyclohexendioxide, dioxide. Examples thereof include aliphatic epoxy resins such as alicyclic epoxy resins such as cyclopentadiene oxide and alicyclic dieepoxy-adipade. One type of epoxy resin may be used alone, or two or more types may be used in combination.

エポキシ樹脂は、硬化物の耐熱性、機械特性及び耐湿性を向上させる観点から、芳香族環にグリシジル構造又はグリシジルアミン構造が結合した構造を含むエポキシ樹脂を含むことが好ましい。
また、エポキシ樹脂が脂肪族エポキシ樹脂を含む場合、硬化物の信頼性、特に接着性を確保する観点から、その使用する量を制限することが好ましい。
From the viewpoint of improving the heat resistance, mechanical properties and moisture resistance of the cured product, the epoxy resin preferably contains an epoxy resin containing a structure in which a glycidyl structure or a glycidylamine structure is bonded to an aromatic ring.
When the epoxy resin contains an aliphatic epoxy resin, it is preferable to limit the amount used from the viewpoint of ensuring the reliability of the cured product, particularly the adhesiveness.

封止樹脂組成物を液状にする観点からは、エポキシ樹脂として液状のエポキシ樹脂を用いることが好ましく、液状封止樹脂組成物を常温で液状にする観点からは、エポキシ樹脂として常温で液状のエポキシ樹脂を用いることがより好ましい。 From the viewpoint of making the sealing resin composition liquid, it is preferable to use a liquid epoxy resin as the epoxy resin, and from the viewpoint of making the liquid sealing resin composition liquid at room temperature, the epoxy resin is liquid at room temperature. It is more preferable to use a resin.

液状封止樹脂組成物が液状のエポキシ樹脂を含む場合、すべてのエポキシ樹脂が液状であってもよく、液状のエポキシ樹脂と固体のエポキシ樹脂の組み合わせであってもよい。
液状のエポキシ樹脂と固体のエポキシ樹脂の組み合わせは、これらのエポキシ樹脂の混合物が全体として液状となる組み合わせであることが好ましく、常温で液状となる組み合わせであることがより好ましい。
液状封止樹脂組成物が固体のエポキシ樹脂を含む場合、良好な流動性を維持する観点から、その含有率はエポキシ樹脂全体の20質量%以下であることが好ましい。
When the liquid sealing resin composition contains a liquid epoxy resin, all the epoxy resins may be liquid, or may be a combination of the liquid epoxy resin and the solid epoxy resin.
The combination of the liquid epoxy resin and the solid epoxy resin is preferably a combination in which the mixture of these epoxy resins is liquid as a whole, and more preferably a combination in which the mixture is liquid at room temperature.
When the liquid sealing resin composition contains a solid epoxy resin, the content thereof is preferably 20% by mass or less of the total epoxy resin from the viewpoint of maintaining good fluidity.

液状封止樹脂組成物が2種以上のエポキシ樹脂を含む場合、使用するすべてのエポキシ樹脂を混合してから、他の成分と混合して、液状封止樹脂組成物を調製してもよく、使用するエポキシ樹脂を別々に混合して、液状封止樹脂組成物を調製してもよい。 When the liquid sealing resin composition contains two or more kinds of epoxy resins, all the epoxy resins to be used may be mixed and then mixed with other components to prepare the liquid sealing resin composition. The epoxy resin to be used may be mixed separately to prepare a liquid sealing resin composition.

液状封止樹脂組成物におけるエポキシ樹脂の含有率は、特に限定されず、液状封止樹脂組成物全体の5質量%〜60質量%であることが好ましく、5質量%〜50質量%であることがより好ましい。エポキシ樹脂の含有率がこの範囲内であると、反応性に優れ、かつ硬化物としたときの耐熱性及び機械的強度、並びに封止時の流動特性に優れる傾向にある。 The content of the epoxy resin in the liquid sealing resin composition is not particularly limited, and is preferably 5% by mass to 60% by mass, preferably 5% by mass to 50% by mass, based on the entire liquid sealing resin composition. Is more preferable. When the content of the epoxy resin is within this range, the reactivity tends to be excellent, the heat resistance and mechanical strength of the cured product, and the flow characteristics at the time of sealing tend to be excellent.

液状封止樹脂組成物の諸特性のバランスの観点からは、エポキシ樹脂は、ビスフェノール型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ビスフェノール型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂の双方を含むことがより好ましい。この場合、ビスフェノール型エポキシ樹脂とグリシジルアミン型エポキシ樹脂の総含有率が、エポキシ樹脂全体の20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。 From the viewpoint of balancing various properties of the liquid sealing resin composition, the epoxy resin preferably contains at least one selected from the group consisting of the bisphenol type epoxy resin and the glycidylamine type epoxy resin, and the bisphenol type epoxy resin. And more preferably, it contains both a glycidylamine type epoxy resin. In this case, the total content of the bisphenol type epoxy resin and the glycidylamine type epoxy resin is preferably 20% by mass or more, more preferably 30% by mass or more, and 50% by mass or more of the entire epoxy resin. It is more preferable, and it is particularly preferable that it is 80% by mass or more.

液状封止樹脂組成物がエポキシ樹脂としてビスフェノール型エポキシ樹脂とグリシジルアミン型エポキシ樹脂の双方を含む場合、その質量比(ビスフェノール型エポキシ樹脂:グリシジルアミン型エポキシ)は、特に制限はない。耐熱性、接着性及び流動性の観点からは、例えば、質量比は20:80〜95:5であることが好ましく、40:60〜90:10であることがより好ましく、60:40〜80:20であることがさらに好ましい。 When the liquid sealing resin composition contains both a bisphenol type epoxy resin and a glycidylamine type epoxy resin as the epoxy resin, the mass ratio (bisphenol type epoxy resin: glycidylamine type epoxy) is not particularly limited. From the viewpoint of heat resistance, adhesiveness and fluidity, for example, the mass ratio is preferably 20:80 to 95: 5, more preferably 40:60 to 90:10, and 60:40 to 80. : 20 is more preferable.

熱による重量減少をより抑える観点から、3官能以上の多官能エポキシ樹脂を含まないか、多官能エポキシ樹脂を含む場合には、多官能エポキシ樹脂の含有率は、エポキシ樹脂の総量に対して48質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、38質量%以下であることが特に好ましく、35質量%以下であることが極めて好ましい。
また、ガラス転移温度をより高める観点からは、3官能以上の多官能エポキシ樹脂の含有率は、エポキシ樹脂全体の2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。
From the viewpoint of further suppressing weight loss due to heat, when the polyfunctional epoxy resin having three or more functions is not contained or the polyfunctional epoxy resin is contained, the content of the polyfunctional epoxy resin is 48 with respect to the total amount of the epoxy resin. It is preferably 5% by mass or less, more preferably 45% by mass or less, further preferably 40% by mass or less, particularly preferably 38% by mass or less, and preferably 35% by mass or less. Very preferable.
From the viewpoint of further increasing the glass transition temperature, the content of the trifunctional or higher functional epoxy resin is preferably 2% by mass or more, more preferably 3% by mass or more of the entire epoxy resin. It is more preferably 4% by mass or more.

エポキシ樹脂の純度は、高いほど好ましい。特に、エポキシ樹脂中の加水分解性塩素量は、IC等の素子上のアルミ配線の腐食に関係するため、少ない方が好ましい。耐湿性に優れる液状封止樹脂組成物を得る観点からは、例えば、加水分解性塩素量が500質量ppm以下のエポキシ樹脂を用いることが好ましい。 The higher the purity of the epoxy resin, the more preferable. In particular, the amount of hydrolyzable chlorine in the epoxy resin is preferably small because it is related to the corrosion of the aluminum wiring on the element such as the IC. From the viewpoint of obtaining a liquid encapsulating resin composition having excellent moisture resistance, for example, it is preferable to use an epoxy resin having a hydrolyzable chlorine content of 500 mass ppm or less.

本開示においてエポキシ樹脂の加水分解性塩素量とは、試料のエポキシ樹脂1gをジオキサン30mlに溶解し、1N−KOH(水酸化カリウム)メタノール溶液5mlを添加して30分間還流させた後、電位差滴定により求めた値を尺度としたものである。 In the present disclosure, the hydrolyzable chlorine content of an epoxy resin is defined by dissolving 1 g of a sample epoxy resin in 30 ml of dioxane, adding 5 ml of a 1N-KOH (potassium hydroxide) methanol solution, refluxing for 30 minutes, and then potentiometric titration. It is a scale based on the value obtained by.

(アミン系硬化剤)
アミン系硬化剤は特に制限されず、例えば、電子部品装置の封止材の成分として一般的に使用されているものを用いることができる。
(Amine-based curing agent)
The amine-based curing agent is not particularly limited, and for example, those generally used as a component of a sealing material for an electronic component device can be used.

アミン系硬化剤としては、1分子中に1級アミノ基及び2級アミノ基からなる群から選ばれる1種以上(以下、単に「アミノ基」ともいう)を2個以上含む化合物であることが好ましく、1分子中にアミノ基を2個〜4個有する化合物であることがより好ましく、1分子中にアミノ基を2個有する化合物(ジアミン化合物)であることがさらに好ましい。アミン系硬化剤は、1種を単独で用いても2種以上を併用してもよい。 The amine-based curing agent may be a compound containing two or more of one or more selected from the group consisting of a primary amino group and a secondary amino group (hereinafter, also simply referred to as "amino group") in one molecule. Preferably, it is more preferably a compound having 2 to 4 amino groups in one molecule, and further preferably a compound having two amino groups in one molecule (diamine compound). As the amine-based curing agent, one type may be used alone or two or more types may be used in combination.

アミン系硬化剤は、芳香環を有する化合物(芳香族アミン化合物)であることが好ましく、液状の芳香族アミン化合物(液状芳香族アミン化合物)であることがより好ましく、常温で液状の芳香族アミン化合物であることがさらに好ましい。 The amine-based curing agent is preferably a compound having an aromatic ring (aromatic amine compound), more preferably a liquid aromatic amine compound (liquid aromatic amine compound), and the aromatic amine is liquid at room temperature. It is more preferably a compound.

液状芳香族アミン化合物として具体的には、3,5−ジエチルトルエン−2,4−ジアミン、3,5−ジエチルトルエン−2,6−ジアミン等のジエチルトルエンジアミン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、1−メチル−3,5−ジエチル−2,6−ジアミノベンゼン、1,3,5−トリエチル−2,6−ジアミノベンゼン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、3,5,3’,5’−テトラメチル−4,4’−ジアミノジフェニルメタン等が挙げられる。これらの中でも、保存安定性の観点からは、例えば、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン及びジエチルトルエンジアミンが好ましい。 Specifically, as the liquid aromatic amine compound, diethyltoluenediamine such as 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, 1-methyl-3,5- Diethyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl-2,6-diaminobenzene, 1,3,5-triethyl-2,6-diaminobenzene, 3,3'-diethyl-4, Examples thereof include 4'-diaminodiphenylmethane, 3,5,3', 5'-tetramethyl-4,4'-diaminodiphenylmethane and the like. Among these, from the viewpoint of storage stability, for example, 3,3'-diethyl-4,4'-diaminodiphenylmethane and diethyltoluenediamine are preferable.

アミン系硬化剤の活性水素当量は、特に制限はなく、高耐熱性の観点から、例えば、10g/mol〜200g/molであることが好ましく、20g/mol〜100g/molであることがより好ましく、30g/mol〜70g/molであることがさらに好ましい。 The active hydrogen equivalent of the amine-based curing agent is not particularly limited, and is preferably 10 g / mol to 200 g / mol, more preferably 20 g / mol to 100 g / mol, for example, from the viewpoint of high heat resistance. , 30 g / mol to 70 g / mol is more preferable.

液状芳香族アミン化合物は、市販品としても入手可能である。市販品の液状芳香族アミン化合物としては、jERキュア(登録商標)−W、jERキュア(登録商標)−Z(三菱ケミカル株式会社、商品名)、カヤハード(登録商標)A−A、カヤハード(登録商標)A−B、カヤハード(登録商標)A−S(日本化薬株式会社、商品名)、トートアミンHM−205(新日鉄住金化学株式会社、商品名)、アデカハードナー(登録商標)EH−101(株式会社ADEKA、商品名)、エポミック(登録商標)Q−640、エポミック(登録商標)Q−643(三井化学株式会社、商品名)、DETDA80(Lonza社、商品名)等が挙げられる。 The liquid aromatic amine compound is also available as a commercial product. Commercially available liquid aromatic amine compounds include jER Cure (registered trademark) -W, jER Cure (registered trademark) -Z (Mitsubishi Chemical Co., Ltd., trade name), Kayahard (registered trademark) AA, and Kayahard (registered). Trademarks) AB, Kayahard (registered trademark) AS (Nippon Kayaku Co., Ltd., trade name), Totoamine HM-205 (Nippon Steel & Sumikin Chemical Co., Ltd., trade name), Adeka Hardner (registered trademark) EH-101 (ADEKA Co., Ltd., trade name), Epomic (registered trademark) Q-640, Epomic (registered trademark) Q-643 (Mitsui Chemicals Co., Ltd., trade name), DETDA80 (Lonza, trade name) and the like can be mentioned.

硬化剤として、アミン系硬化剤以外のその他の硬化剤を併用してもよい。その他の硬化剤としては、フェノール系硬化剤、酸無水物系硬化剤等が挙げられる。その他の硬化剤としては、電子部品装置の封止材の成分として一般的に使用されているものを用いることができる。 As the curing agent, other curing agents other than the amine-based curing agent may be used in combination. Examples of other curing agents include phenol-based curing agents and acid anhydride-based curing agents. As the other curing agent, those generally used as a component of the sealing material of the electronic component device can be used.

硬化剤の総量に対するアミン系硬化剤の含有率は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 The content of the amine-based curing agent with respect to the total amount of the curing agent is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.

液状封止樹脂組成物を液状にする観点からは、液状の硬化剤を用いることが好ましく、液状封止樹脂組成物を常温で液状にする観点からは、常温で液状の硬化剤を用いることがより好ましい。 From the viewpoint of making the liquid sealing resin composition liquid, it is preferable to use a liquid curing agent, and from the viewpoint of making the liquid sealing resin composition liquid at room temperature, it is preferable to use a curing agent which is liquid at room temperature. More preferred.

液状封止樹脂組成物が液状の硬化剤を含む場合、すべての硬化剤が液状であってもよく、液状の硬化剤と固体の硬化剤の組み合わせであってもよい。液状の硬化剤と固体の硬化剤の組み合わせは、これらの硬化剤の混合物が全体として液状となる組み合わせが好ましく、常温で液状となる組み合わせがより好ましい。
液状封止樹脂組成物が固体の硬化剤を含む場合、良好な流動性を維持する観点から、その含有率は硬化剤全体の20質量%以下であることが好ましい。
When the liquid sealing resin composition contains a liquid curing agent, all the curing agents may be liquid, or may be a combination of a liquid curing agent and a solid curing agent. The combination of the liquid curing agent and the solid curing agent is preferably a combination in which the mixture of these curing agents is liquid as a whole, and more preferably a combination in which the mixture is liquid at room temperature.
When the liquid sealing resin composition contains a solid curing agent, the content thereof is preferably 20% by mass or less of the total amount of the curing agent from the viewpoint of maintaining good fluidity.

液状封止樹脂組成物に含まれるエポキシ樹脂と硬化剤の含有比率は特に制限されない。それぞれの未反応分を少なく抑える観点からは、例えば、エポキシ樹脂のエポキシ基数の硬化剤の活性水素数に対する比率(エポキシ樹脂のエポキシ基数/硬化剤の活性水素数)が0.7〜1.6であることが好ましく、0.8〜1.4であることがより好ましく、0.9〜1.2であることがさらに好ましい。 The content ratio of the epoxy resin and the curing agent contained in the liquid sealing resin composition is not particularly limited. From the viewpoint of reducing the amount of each unreacted component, for example, the ratio of the number of epoxy groups in the epoxy resin to the number of active hydrogens in the curing agent (number of epoxy groups in the epoxy resin / number of active hydrogens in the curing agent) is 0.7 to 1.6. It is preferably 0.8 to 1.4, more preferably 0.9 to 1.2.

(無機充填材)
本開示の液状封止樹脂組成物は無機充填材を含有してもよい。無機充填材は特に制限されず、例えば、電子部品装置の封止材の成分として一般的に使用されている無機充填材を用いることができる。
(Inorganic filler)
The liquid sealing resin composition of the present disclosure may contain an inorganic filler. The inorganic filler is not particularly limited, and for example, an inorganic filler generally used as a component of a sealing material for an electronic component device can be used.

無機充填材として具体的には、溶融シリカ、結晶シリカ等のシリカ、炭酸カルシウム、クレー、アルミナ、窒化珪素、炭化珪素、窒化ホウ素、珪酸カルシウム、チタン酸カリウム、窒化アルミニウム、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、前記粉体を球形化したビーズ、ガラス繊維などが挙げられる。無機充填材として難燃効果のあるものを用いてもよい。難燃効果のある無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。無機充填材は、1種を単独で用いても2種以上を併用してもよい。 Specifically, as the inorganic filler, silica such as molten silica and crystalline silica, calcium carbonate, clay, alumina, silicon nitride, silicon carbide, boron nitride, calcium silicate, potassium titanate, aluminum nitride, beryllia, zirconia, zircone, Examples thereof include powders of fosterite, steatite, spinel, mulite, titania and the like, beads obtained by spheroidizing the powder, glass fibers and the like. A flame-retardant filler may be used as the inorganic filler. Examples of the inorganic filler having a flame-retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and the like. As the inorganic filler, one type may be used alone or two or more types may be used in combination.

無機充填材の粒子形状は、特に制限はなく、不定形であっても球状であってもよいが、液状封止樹脂組成物の微細間隙への流動性及び浸透性の観点からは、球状であることが好ましい。具体的には、例えば、球状シリカが好ましく、球状溶融シリカがより好ましい。 The particle shape of the inorganic filler is not particularly limited and may be amorphous or spherical, but from the viewpoint of fluidity and permeability into the fine gaps of the liquid sealing resin composition, it is spherical. It is preferable to have. Specifically, for example, spherical silica is preferable, and spherical fused silica is more preferable.

無機充填材の平均粒径は、特に制限はなく、例えば、0.1μm〜10μmであることが好ましく、0.3μm〜5μmであることより好ましい。無機充填材の平均粒径が0.1μm以上であると、樹脂成分(エポキシ樹脂、硬化剤等)への分散性が向上し、液状封止樹脂組成物の流動特性がより向上する傾向にあり、10μm以下であると無機充填材の沈降をより抑制し易くなり、かつ微細間隙への浸透性及び流動性が向上してボイド又は未充填部分の発生がより抑制される傾向にある。 The average particle size of the inorganic filler is not particularly limited, and is preferably 0.1 μm to 10 μm, more preferably 0.3 μm to 5 μm, for example. When the average particle size of the inorganic filler is 0.1 μm or more, the dispersibility in the resin component (epoxy resin, curing agent, etc.) is improved, and the flow characteristics of the liquid sealing resin composition tend to be further improved. When it is 10 μm or less, it becomes easier to suppress the sedimentation of the inorganic filler, and the permeability and fluidity into the fine gaps are improved, so that the generation of voids or unfilled portions tends to be further suppressed.

本開示において無機充填材の平均粒径は、体積平均粒径を意味する。具体的には、レーザー回折散乱法により得られる体積基準の粒度分布曲線において、小径側からの累積が50%となるときの粒子径(d50)を意味する。 In the present disclosure, the average particle size of the inorganic filler means the volume average particle size. Specifically, it means the particle diameter (d50) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution curve obtained by the laser diffraction / scattering method.

液状封止樹脂組成物における無機充填材の含有率は、特に制限はなく、例えば、液状封止樹脂組成物全体の20質量%〜90質量%であることが好ましく、30質量%〜80質量%であることがより好ましく、40質量%〜75質量%であることがさらに好ましく、50質量%〜75質量%であることが特に好ましく、60質量%〜75質量%であることが極めて好ましい。 The content of the inorganic filler in the liquid sealing resin composition is not particularly limited, and is preferably, for example, 20% by mass to 90% by mass, and 30% by mass to 80% by mass of the entire liquid sealing resin composition. It is more preferably 40% by mass to 75% by mass, particularly preferably 50% by mass to 75% by mass, and extremely preferably 60% by mass to 75% by mass.

無機充填材の含有率が液状封止樹脂組成物全体の20質量%以上であると、硬化物の熱膨張係数が低減する傾向にあり、90質量%以下であると、液状封止樹脂組成物の粘度が低く維持されて流動性、浸透性及びディスペンス性が良好に維持される傾向にある。 When the content of the inorganic filler is 20% by mass or more of the entire liquid sealing resin composition, the coefficient of thermal expansion of the cured product tends to decrease, and when it is 90% by mass or less, the liquid sealing resin composition The viscosity of the plastic is kept low, and the fluidity, permeability and dispensability tend to be well maintained.

(カップリング剤)
本開示の液状封止樹脂組成物はカップリング剤を含有してもよい。カップリング剤としては特に制限されず、例えば、電子部品装置の封止材の成分として一般的に使用されているカップリング剤を用いることができる。液状封止樹脂組成物がカップリング剤を含むことで、樹脂成分と無機充填材又は電子部品の構成部材との界面における接着性の向上、充填性の向上等の効果が期待できる。
(Coupling agent)
The liquid sealing resin composition of the present disclosure may contain a coupling agent. The coupling agent is not particularly limited, and for example, a coupling agent generally used as a component of a sealing material for an electronic component device can be used. When the liquid sealing resin composition contains a coupling agent, effects such as improvement of adhesiveness and improvement of filling property at the interface between the resin component and the inorganic filler or the constituent member of the electronic component can be expected.

カップリング剤として具体的には、1級アミノ基、2級アミノ基及び3級アミノ基からなる群から選ばれる1種以上のアミノ基を有するアミノシラン、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の分子構造中にケイ素原子を有する化合物(シラン化合物)、チタン系化合物、アルミニウムキレート類、アルミニウム系化合物、ジルコニウム系化合物などが挙げられる。カップリング剤は、1種を単独で用いても2種以上を併用してもよい。 Specifically, as the coupling agent, aminosilane, epoxysilane, mercaptosilane, alkylsilane, and ureidosilane having one or more amino groups selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group. , Vinyl silane and other compounds having a silicon atom in their molecular structure (silane compounds), titanium compounds, aluminum chelate compounds, aluminum compounds, zirconium compounds and the like. As the coupling agent, one type may be used alone or two or more types may be used in combination.

液状封止樹脂組成物の充填性の観点からは、カップリング剤としてはシラン化合物が好ましく、エポキシシランがより好ましい。エポキシシランとして具体的には、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。これらの中でも、3−グリシドキシプロピルトリメトキシシラン及び2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。 From the viewpoint of filling property of the liquid sealing resin composition, a silane compound is preferable as the coupling agent, and epoxysilane is more preferable. Specifically, as the epoxy silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-) Epoxycyclohexyl) ethyltrimethoxysilane and the like can be mentioned. Among these, 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are preferable.

カップリング剤の含有率は特に制限されず、樹脂成分と無機充填材又は電子部品の構成部材との界面における接着性を強固にする観点、及び充填性を向上させる観点から、例えば、液状封止樹脂組成物全体の0.05質量%〜10質量%であることが好ましく、0.2質量%〜5質量%であることがより好ましく、0.4質量%〜1質量%であることがさらに好ましい。 The content of the coupling agent is not particularly limited, and from the viewpoint of strengthening the adhesiveness at the interface between the resin component and the inorganic filler or the constituent member of the electronic component, and from the viewpoint of improving the filler, for example, liquid sealing. The total amount of the resin composition is preferably 0.05% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and further preferably 0.4% by mass to 1% by mass. preferable.

(その他の成分)
液状封止樹脂組成物は、上述の成分以外のその他の成分を含んでいてもよい。その他の成分としては、染料、カーボンブラック等の着色剤、希釈剤、レベリング剤、消泡剤などが挙げられる。
(Other ingredients)
The liquid sealing resin composition may contain other components other than the above-mentioned components. Examples of other components include dyes, colorants such as carbon black, diluents, leveling agents, antifoaming agents and the like.

なお、液状封止樹脂組成物は一般的にアンダーフィル材として用いられるため、その用途から、溶剤を含まないか、溶剤を含んでいたとしてもその含有量は少なく、例えば、液状封止樹脂組成物全体の5質量%以下である。一方、環状カルボジイミドは、通常、常温で固体であるため、液状封止樹脂組成物の成分として積極的に用いられていない。しかしながら、溶剤を含まないか、又は溶剤を含む場合には溶剤の含有率が5質量%以下である液状封止樹脂組成物に、常温で固体の環状カルボジイミドを含有させても、耐熱性に優れる硬化物が得られる。 Since the liquid encapsulating resin composition is generally used as an underfill material, the content of the liquid encapsulating resin composition is small depending on its use, or even if it contains a solvent. For example, the liquid encapsulating resin composition. It is 5% by mass or less of the whole thing. On the other hand, since the cyclic carbodiimide is usually solid at room temperature, it is not positively used as a component of the liquid sealing resin composition. However, even if the liquid encapsulating resin composition containing no solvent or containing a solvent and having a solvent content of 5% by mass or less contains cyclic carbodiimide solid at room temperature, the heat resistance is excellent. A cured product is obtained.

<液状封止樹脂組成物の調製方法>
液状封止樹脂組成物の調製方法は特に制限されず、上記各種成分を分散混合できる手法であればよい。液状封止樹脂組成物は、例えば、所定の配合量の前記各成分を秤量し、擂潰機、ミキシングロール、プラネタリミキサ等の混合機を用いて混合及び混練し、必要に応じて脱泡することによって得ることができる。混合及び混練の条件は、原料の種類等に応じて適宜決定すればよく、各成分が均一に混合及び分散する条件を選択することが好ましい。
<Preparation method of liquid sealing resin composition>
The method for preparing the liquid sealing resin composition is not particularly limited, and any method may be used as long as the above various components can be dispersed and mixed. The liquid sealing resin composition is, for example, weighed each of the above-mentioned components in a predetermined blending amount, mixed and kneaded using a mixer such as a grinder, a mixing roll, and a planetary mixer, and defoamed as necessary. Can be obtained by The conditions for mixing and kneading may be appropriately determined according to the type of raw material and the like, and it is preferable to select conditions in which each component is uniformly mixed and dispersed.

<液状封止樹脂組成物の物性>
液状封止樹脂組成物は、EHD型回転粘度計を用いて測定される25℃における粘度が、例えば、1000Pa・s以下であることが好ましく、500Pa・s以下であることがより好ましく、100Pa・s以下であることがさらに好ましく、30Pa・s以下であることが特に好ましい。
1000Pa・s以下の粘度であると、電子部品の小型化、半導体素子の接続端子のファインピッチ化、配線基板の微細配線化等に対応可能な流動性及び浸透性が確保される傾向にある。
液状封止樹脂組成物の粘度の下限は特に制限はなく、実装性の観点からは、例えば、1.0Pa・s以上であることが好ましく、5Pa・s以上であることがより好ましい。
<Physical characteristics of liquid sealing resin composition>
The viscosity of the liquid sealing resin composition at 25 ° C. measured using an EHD type rotational viscometer is preferably, for example, 1000 Pa · s or less, more preferably 500 Pa · s or less, and 100 Pa · s. It is more preferably s or less, and particularly preferably 30 Pa · s or less.
When the viscosity is 1000 Pa · s or less, the fluidity and permeability that can cope with the miniaturization of electronic components, the fine pitch of the connection terminals of semiconductor elements, the fine wiring of wiring boards, and the like tend to be secured.
The lower limit of the viscosity of the liquid sealing resin composition is not particularly limited, and from the viewpoint of mountability, for example, it is preferably 1.0 Pa · s or more, and more preferably 5 Pa · s or more.

液状封止樹脂組成物の粘度は、例えば、封止の対象となる電子部品及び電子部品装置の種類に応じて適宜調整すればよい。液状封止樹脂組成物の粘度は、例えば、上記で例示した各成分の種類、含有量等を設定することによって調整することができる。 The viscosity of the liquid sealing resin composition may be appropriately adjusted according to, for example, the type of electronic component and electronic component device to be sealed. The viscosity of the liquid sealing resin composition can be adjusted, for example, by setting the type, content, etc. of each component exemplified above.

液状封止樹脂組成物は、熱による重量減少が、例えば、1.0質量%以下であることが好ましく、0.75質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。 The weight loss of the liquid sealing resin composition due to heat is, for example, preferably 1.0% by mass or less, more preferably 0.75% by mass or less, and 0.5% by mass or less. Is even more preferable.

熱による重量減少は、例えば、60mm×10mm×3mmのサンプルを150℃に設定した恒温槽で2000時間加熱し、加熱前後のサンプルの質量から計算することで求める。
すなわち、液状封止樹脂組成物の熱による重量減少(質量%)={(加熱前のサンプル質量−加熱後のサンプル質量)/加熱前のサンプル質量}×100で求められる。
The weight loss due to heat is obtained, for example, by heating a sample of 60 mm × 10 mm × 3 mm in a constant temperature bath set at 150 ° C. for 2000 hours and calculating from the mass of the sample before and after heating.
That is, the weight loss (mass%) due to heat of the liquid sealing resin composition = {(sample mass before heating-sample mass after heating) / sample mass before heating} × 100.

液状封止樹脂組成物のガラス転移温度は、封止の対象となるパッケージ構造に応じて適宜設定することができ、例えば、60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。 The glass transition temperature of the liquid sealing resin composition can be appropriately set according to the package structure to be sealed, and is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, for example. , 100 ° C. or higher is more preferable.

ガラス転移温度は、熱機械分析装置(例えば、TMA2940、TA instruments社製)を用いて、圧縮法にて0℃から300℃まで5℃/minで昇温したときのサンプルの長さの変化を測定し、50℃と150℃における接線の交点に対応する温度として求める。 The glass transition temperature is the change in sample length when the temperature is raised from 0 ° C to 300 ° C at 5 ° C / min by a compression method using a thermomechanical analyzer (for example, TMA2940, manufactured by TA instruments). It is measured and determined as the temperature corresponding to the intersection of the tangents at 50 ° C and 150 ° C.

熱膨張率は、熱機械分析装置(例えば、TMA2940、TA instruments社製)を用いて、圧縮法にて0℃から300℃まで5℃/minで昇温したときのサンプルの長さの変化を測定し、10℃〜30℃における接線の傾きを熱膨張率(ppm/℃)とする。 The coefficient of thermal expansion is the change in sample length when the temperature is raised from 0 ° C to 300 ° C at 5 ° C / min by a compression method using a thermomechanical analyzer (for example, TMA2940, manufactured by TA instruments). Measure and let the slope of the tangent line at 10 ° C to 30 ° C be the coefficient of thermal expansion (ppm / ° C).

<液状封止樹脂組成物の用途>
本開示の液状封止樹脂組成物は、リードフレーム、配線済みのテープキャリア、配線板(リジッド又はフレキシブル)、ガラス、シリコーンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などの電子部品を搭載した電子部品装置の製造に適用することができる。
<Use of liquid sealing resin composition>
The liquid sealing resin composition of the present disclosure is used for supporting members such as lead frames, pre-wired tape carriers, wiring boards (rigid or flexible), glass, silicone wafers, and active elements such as semiconductor chips, transistors, diodes, and thyristors. It can be applied to the manufacture of electronic component devices equipped with electronic components such as passive elements such as capacitors, resistors, resistance arrays, coils, and switches.

特に、本開示の液状封止樹脂組成物は、信頼性に優れるアンダーフィル材として好適に用いることができる。具体的には、例えば、支持部材上に電子部品をバンプ接続によりフリップチップボンディングして得られる、フリップチップ型の半導体装置の製造に用いるアンダーフィル材として好適である。フリップチップ型の半導体装置としては、BGA(Ball Grid Array)、LGA(Land Grid Array)、COF(Chip On Film)等が挙げられる。 In particular, the liquid encapsulating resin composition of the present disclosure can be suitably used as an underfill material having excellent reliability. Specifically, for example, it is suitable as an underfill material used for manufacturing a flip-chip type semiconductor device obtained by flip-chip bonding an electronic component on a support member by bump connection. Examples of the flip-chip type semiconductor device include BGA (Ball Grid Array), LGA (Land Grid Array), COF (Chip On Film), and the like.

本開示の液状封止樹脂組成物は、支持部材と電子部品とを接続するバンプの材質として、従来の鉛含有はんだを用いた電子部品装置の製造に対しても好適であるが、鉛含有はんだと比較して物性的に脆いSn−Ag−Cu系等の鉛フリーはんだを用いた電子部品装置の製造に対しても良好な信頼性を維持でき、好適に用いることができる。 The liquid encapsulating resin composition of the present disclosure is also suitable for manufacturing an electronic component device using conventional lead-containing solder as a material for bumps connecting a support member and an electronic component, but the lead-containing solder It is possible to maintain good reliability for the manufacture of electronic component devices using lead-free solder such as Sn-Ag-Cu, which is physically fragile as compared with the above, and it can be preferably used.

また、近年、半導体素子の高速化に伴い、低誘電率の層間絶縁膜が半導体素子に形成されているが、この層間絶縁膜は機械強度が弱く、外部からの応力で破壊され易いため、故障が発生し易い。この傾向は半導体素子が大きくなる程顕著になるため、液状封止樹脂組成物に起因して生じる応力の低減が求められている。 Further, in recent years, as the speed of semiconductor elements has increased, an interlayer insulating film having a low dielectric constant has been formed on the semiconductor element. However, this interlayer insulating film has weak mechanical strength and is easily broken by external stress, resulting in failure. Is likely to occur. Since this tendency becomes more remarkable as the semiconductor element becomes larger, it is required to reduce the stress caused by the liquid sealing resin composition.

本開示の液状封止樹脂組成物は、例えば、半導体素子の長い方の辺の長さが2mm以上のサイズであり、誘電率が3.0以下の層間絶縁膜を有する半導体素子を搭載するフリップチップ型の電子部品装置に対しても、優れた信頼性を提供することができる。
また、本開示の液状封止樹脂組成物は、支持部材と電子部品のバンプ接続面間の距離が小さい場合でも良好な流動性及び充填性を示し、耐湿性、耐熱衝撃性等の信頼性に優れる電子部品装置を製造することができる。具体的には、バンプ接続面間の距離は、200μm以下であってもよく、100μm以下であってもよく、50μm以下であってもよい。
The liquid encapsulant resin composition of the present disclosure is, for example, a flip on which a semiconductor element having a semiconductor element having a long side length of 2 mm or more and a dielectric constant of 3.0 or less having an interlayer insulating film is mounted. Excellent reliability can also be provided for chip-type electronic component devices.
Further, the liquid sealing resin composition of the present disclosure exhibits good fluidity and filling property even when the distance between the support member and the bump connection surface of the electronic component is small, and has high reliability such as moisture resistance and thermal shock resistance. It is possible to manufacture an excellent electronic component device. Specifically, the distance between the bump connecting surfaces may be 200 μm or less, 100 μm or less, or 50 μm or less.

<電子部品装置>
本開示の電子部品装置は、支持部材と、前記支持部材上に配置される電子部品と、前記支持部材と前記電子部品との間の空隙の少なくとも一部を封止している本開示の液状封止樹脂組成物の硬化物と、を備える。
<Electronic component equipment>
The electronic component device of the present disclosure is the liquid of the present disclosure that seals at least a part of a support member, an electronic component arranged on the support member, and a gap between the support member and the electronic component. A cured product of the sealing resin composition is provided.

本開示の電子部品装置を構成する支持部材、電子部品等を備える電子部品装置の好適な態様は、上述した液状封止樹脂組成物の用途の項で挙げたものと同様である。 A preferred embodiment of the electronic component device including the support member, the electronic component, and the like constituting the electronic component device of the present disclosure is the same as that mentioned in the above-mentioned section of application of the liquid sealing resin composition.

本開示の電子部品装置は、支持部材と電子部品との間の空隙の少なくとも一部が液状封止の硬化物によって封止されていればよく、空隙の全部が封止されていることが好ましい。また、支持部材と電子部品との間の空隙以外の部分が液状封止樹脂組成物の硬化物で封止されていてもよい。 In the electronic component device of the present disclosure, at least a part of the gap between the support member and the electronic component may be sealed by a cured product of liquid sealing, and it is preferable that the entire gap is sealed. .. Further, the portion other than the gap between the support member and the electronic component may be sealed with a cured product of the liquid sealing resin composition.

<電子部品装置の製造方法>
本開示の電子部品装置の製造方法は、支持部材と、前記支持部材上に配置される電子部品との間の空隙の少なくとも一部を本開示の液状封止樹脂組成物を用いて封止する工程を備える。
<Manufacturing method of electronic component equipment>
In the method for manufacturing an electronic component device of the present disclosure, at least a part of a gap between a support member and an electronic component arranged on the support member is sealed by using the liquid sealing resin composition of the present disclosure. Have a process.

本開示の電子部品装置の製造方法に用いられる、支持部材、電子部品等を備える電子部品装置の好適な態様は、上述した液状封止樹脂組成物の用途の項で挙げたものと同様である。 A preferred embodiment of the electronic component device including the support member, the electronic component, etc. used in the method for manufacturing the electronic component device of the present disclosure is the same as that mentioned in the above-mentioned section of use of the liquid sealing resin composition. ..

本開示の電子部品装置の製造方法では、支持部材と電子部品との間の空隙の少なくとも一部を液状封止樹脂組成物によって封止すればよく、空隙の全部を封止することが好ましい。また、支持部材と電子部品との間の空隙以外の部分を液状封止樹脂組成物で封止してもよい。 In the method for manufacturing an electronic component device of the present disclosure, at least a part of the void between the support member and the electronic component may be sealed with the liquid sealing resin composition, and it is preferable to seal the entire void. Further, the portion other than the gap between the support member and the electronic component may be sealed with the liquid sealing resin composition.

液状封止樹脂組成物を用いて支持部材と電子部品との間の空隙を封止する方法は特に制限されず、ディスペンス方式、注型方式、印刷方式等の従来公知の方式を適用することができる。 The method of sealing the gap between the support member and the electronic component by using the liquid sealing resin composition is not particularly limited, and conventionally known methods such as a dispensing method, a casting method, and a printing method can be applied. it can.

以下、本開示の液状封止樹脂組成物を実施例によってさらに具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the liquid sealing resin composition of the present disclosure will be described in more detail with reference to Examples, but the present disclosure is not limited to these Examples.

(液状封止樹脂組成物の調製)
下記成分を表1に示す質量部(但し、無機充填材の数値は「質量%」を示す)で配合し、三本ロール及び真空擂潰機にて混練分散して、実施例1〜6及び比較例1〜3の液状封止樹脂組成物を調製した。なお表中の「−」は無配合を表す。
(Preparation of liquid sealing resin composition)
The following components are blended in parts by mass shown in Table 1 (however, the numerical value of the inorganic filler indicates "mass%"), kneaded and dispersed with a three-roll and vacuum grinder, and Examples 1 to 6 and The liquid sealing resin compositions of Comparative Examples 1 to 3 were prepared. In the table, "-" indicates no compounding.

・エポキシ樹脂1:ビスフェノールFをエポキシ化して得られるエポキシ当量160g/molの液状ジエポキシ樹脂(新日鉄住金化学株式会社、商品名「YDF−8170C」)
・エポキシ樹脂2:アミノフェノールをエポキシ化して得られるエポキシ当量95g/molの3官能液状エポキシ樹脂(三菱ケミカル株式会社、商品名「jER630」)
・エポキシ樹脂3:ジヒドロキシナフタレン型でエポキシ当量143g/molの液状エポキシ樹脂(DIC株式会社、商品名「HP−4032D」)
-Epoxy resin 1: Liquid diepoxy resin with an epoxy equivalent of 160 g / mol obtained by epoxidizing bisphenol F (Nippon Steel & Sumikin Chemical Co., Ltd., trade name "YDF-8170C")
-Epoxy resin 2: A trifunctional liquid epoxy resin having an epoxy equivalent of 95 g / mol obtained by epoxidizing aminophenol (Mitsubishi Chemical Co., Ltd., trade name "jER630")
Epoxy resin 3: A dihydroxynaphthalene type liquid epoxy resin with an epoxy equivalent of 143 g / mol (DIC Corporation, trade name "HP-4032D")

・硬化剤1:活性水素当量45g/molのジエチルトルエンジアミン(三菱ケミカル株式会社、商品名「jERキュア(登録商標)−W」)
・硬化剤2:活性水素当量63g/molのジエチルジアミノジフェニルメタン(日本化薬株式会社、商品名「カヤハードA−A」)
-Curing agent 1: Diethyl toluenediamine having an active hydrogen equivalent of 45 g / mol (Mitsubishi Chemical Corporation, trade name "jER Cure (registered trademark) -W")
-Curing agent 2: diethyldiaminodiphenylmethane having an active hydrogen equivalent of 63 g / mol (Nippon Kayaku Co., Ltd., trade name "Kayahard AA")

・カルボジイミド1:環状カルボジイミド、帝人株式会社、商品名「TCC−FP10M」
・カルボジイミド2:鎖状カルボジイミド、日清紡ケミカル株式会社、商品名「カルボジライト(登録商標)LA−1」
-Carbodiimide 1: Cyclic carbodiimide, Teijin Limited, trade name "TCC-FP10M"
-Carbodiimide 2: Chain carbodiimide, Nisshinbo Chemical Co., Ltd., trade name "carbodilite (registered trademark) LA-1"

・カップリング剤:2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業株式会社、商品名「KBM−403」)
・着色剤:カーボンブラック(三菱ケミカル株式会社、商品名「MA−100」)
・無機充填材:平均粒径0.5μmの球状溶融シリカ(株式会社アドマテックス、商品名「SO−24H/25C」)
-Coupling agent: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., trade name "KBM-403")
-Colorant: Carbon black (Mitsubishi Chemical Corporation, product name "MA-100")
-Inorganic filler: Spherical molten silica with an average particle size of 0.5 μm (Admatex Co., Ltd., trade name "SO-24H / 25C")

(熱による重量減少の測定)
調製した液状封止樹脂組成物から60mm×10mm×3mmの大きさのサンプルを作製し、このサンプルを150℃に設定した恒温槽で2000時間加熱し、加熱前後のサンプルの質量から下記式により計算して求めた。
液状封止樹脂組成物の熱による重量減少(質量%)={(加熱前のサンプル質量−加熱後のサンプル質量)/加熱前のサンプル質量}×100
(Measurement of weight loss due to heat)
A sample having a size of 60 mm × 10 mm × 3 mm was prepared from the prepared liquid sealing resin composition, and this sample was heated in a constant temperature bath set at 150 ° C. for 2000 hours, and calculated from the mass of the sample before and after heating by the following formula. I asked for it.
Weight loss due to heat of the liquid sealing resin composition (mass%) = {(sample mass before heating-sample mass after heating) / sample mass before heating} x 100

(ガラス転移温度の測定)
調製した液状封止樹脂組成物を、150℃、2時間で硬化処理して硬化物を得た。この硬化物を直径8mm、長さ20mmのサイズに切り出して、測定サンプルを作製した。
熱機械分析装置(TMA2940、TA instruments社製)を用いて、圧縮法にて0℃から300℃まで5℃/minで昇温したときの測定サンプルの長さの変化を測定し、50℃と200℃における接線の交点に対応する温度をガラス転移温度として求めた。結果を表1に示す。
(Measurement of glass transition temperature)
The prepared liquid sealing resin composition was cured at 150 ° C. for 2 hours to obtain a cured product. This cured product was cut into a size having a diameter of 8 mm and a length of 20 mm to prepare a measurement sample.
Using a thermomechanical analyzer (TMA2940, manufactured by TA instruments), the change in the length of the measurement sample when the temperature was raised from 0 ° C. to 300 ° C. at 5 ° C./min by the compression method was measured, and the temperature was changed to 50 ° C. The temperature corresponding to the intersection of the tangents at 200 ° C. was determined as the glass transition temperature. The results are shown in Table 1.


表1に示すように、環状カルボジイミドを含む実施例1〜6は、環状カルボジイミドを含まない比較例1、及び環状カルボジイミドに代えて鎖状カルボジイミドを含む比較例2〜3に比べて、ガラス転移温度が高く、耐熱性に優れていることがわかる。特に、環状カルボジイミドの含有率が液状封止樹脂組成物全体の7.0質量%である実施例6は、ガラス転移温度が高く、耐熱性に特に優れていることがわかる。 As shown in Table 1, Examples 1 to 6 containing a cyclic carbodiimide have a glass transition temperature as compared with Comparative Example 1 containing no cyclic carbodiimide and Comparative Examples 2 to 3 containing a chain carbodiimide instead of the cyclic carbodiimide. It can be seen that the temperature is high and the heat resistance is excellent. In particular, it can be seen that Example 6 in which the content of the cyclic carbodiimide is 7.0% by mass of the entire liquid sealing resin composition has a high glass transition temperature and is particularly excellent in heat resistance.

なお、実施例のガラス転移温度の高さを考慮すると、実施例の液状封止樹脂組成物よりも架橋密度が低くなるように設計して硬化物中のC−N結合を減らしても、比較例の液状封止樹脂組成物よりもガラス転移温度を高くすることが可能であることがわかる。このように実施例よりも架橋密度を低くした場合には、ガラス転移温度を高く維持しつつ、熱による重量減少(質量%)を低く抑えることが可能である。この点については、多官能エポキシ樹脂を使わない比較例4では、熱による重量減少が0.36質量%にまで低減されることからも理解される。但し、比較例4では、多官能エポキシ樹脂を用いない上に、環状カルボジイミドを含有しないため、ガラス転移温度がかなり低くなっている。 Considering the high glass transition temperature of the examples, even if the crosslink density is designed to be lower than that of the liquid sealing resin composition of the examples and the CN bond in the cured product is reduced, comparison is made. It can be seen that the glass transition temperature can be made higher than that of the liquid sealing resin composition of the example. When the crosslink density is lower than that of the examples in this way, it is possible to keep the glass transition temperature high and suppress the weight loss (mass%) due to heat to a low level. This point is also understood from the fact that in Comparative Example 4 in which the polyfunctional epoxy resin is not used, the weight loss due to heat is reduced to 0.36% by mass. However, in Comparative Example 4, since the polyfunctional epoxy resin is not used and the cyclic carbodiimide is not contained, the glass transition temperature is considerably low.

日本国特許出願2018−004052号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2018-004052 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (13)

エポキシ樹脂と、アミン系硬化剤と、環状カルボジイミドと、を含む液状封止樹脂組成物。 A liquid encapsulating resin composition containing an epoxy resin, an amine-based curing agent, and a cyclic carbodiimide. 前記環状カルボジイミドの含有率が、0.05質量%〜20質量%である、請求項1に記載の液状封止樹脂組成物。 The liquid encapsulating resin composition according to claim 1, wherein the content of the cyclic carbodiimide is 0.05% by mass to 20% by mass. 前記環状カルボジイミドの平均粒径が、200μm以下である、請求項1又は請求項2に記載の液状封止樹脂組成物。 The liquid encapsulating resin composition according to claim 1 or 2, wherein the average particle size of the cyclic carbodiimide is 200 μm or less. 前記環状カルボジイミドの最大粒径が、2mm以下である、請求項1〜請求項3のいずれか1項に記載の液状封止樹脂組成物。 The liquid encapsulating resin composition according to any one of claims 1 to 3, wherein the maximum particle size of the cyclic carbodiimide is 2 mm or less. 無機充填材をさらに含有する請求項1〜請求項4のいずれか1項に記載の液状封止樹脂組成物。 The liquid sealing resin composition according to any one of claims 1 to 4, further containing an inorganic filler. 前記無機充填材の含有率が、20質量%〜90質量%である、請求項5に記載の液状封止樹脂組成物。 The liquid sealing resin composition according to claim 5, wherein the content of the inorganic filler is 20% by mass to 90% by mass. 前記エポキシ樹脂が、ビスフェノール型エポキシ樹脂及びグリシジルアミン型エポキシ樹脂からなる群より選択される少なくとも1種を含む、請求項1〜請求項6のいずれか1項に記載の液状封止樹脂組成物。 The liquid encapsulating resin composition according to any one of claims 1 to 6, wherein the epoxy resin contains at least one selected from the group consisting of a bisphenol type epoxy resin and a glycidylamine type epoxy resin. 前記エポキシ樹脂は、3官能以上の多官能エポキシ樹脂を含まないか、多官能エポキシ樹脂を含む場合には、多官能エポキシ樹脂の含有率は、前記エポキシ樹脂の総量に対して48質量%以下である、請求項1〜請求項7のいずれか1項に記載の液状封止樹脂組成物。 When the epoxy resin does not contain a trifunctional or higher functional epoxy resin or contains a polyfunctional epoxy resin, the content of the polyfunctional epoxy resin is 48% by mass or less based on the total amount of the epoxy resin. The liquid encapsulating resin composition according to any one of claims 1 to 7. 溶剤を含まないか、又は溶剤を含む場合には溶剤の含有率が5質量%以下である、請求項1〜請求項8のいずれか1項に記載の液状封止樹脂組成物。 The liquid sealing resin composition according to any one of claims 1 to 8, wherein the liquid encapsulating resin composition does not contain a solvent, or when the solvent is contained, the content of the solvent is 5% by mass or less. 支持部材と、
前記支持部材上に配置される電子部品と、
前記支持部材と前記電子部品との間の空隙の少なくとも一部を封止している請求項1〜請求項9のいずれか1項に記載の液状封止樹脂組成物の硬化物と、
を備える電子部品装置。
Support members and
Electronic components placed on the support member and
The cured product of the liquid sealing resin composition according to any one of claims 1 to 9, which seals at least a part of the gap between the support member and the electronic component.
Electronic component device equipped with.
前記支持部材と前記電子部品との間の距離が、200μm以下である、請求項10に記載の電子部品装置。 The electronic component device according to claim 10, wherein the distance between the support member and the electronic component is 200 μm or less. 支持部材と、前記支持部材上に配置される電子部品との間の空隙の少なくとも一部を請求項1〜請求項9のいずれか1項に記載の液状封止樹脂組成物を用いて封止する工程を備える、電子部品装置の製造方法。 At least a part of the gap between the support member and the electronic component arranged on the support member is sealed by using the liquid sealing resin composition according to any one of claims 1 to 9. A method of manufacturing an electronic component device, which comprises a process of manufacturing. 前記支持部材と前記電子部品との間の距離が、200μm以下である、請求項12に記載の電子部品装置の製造方法。 The method for manufacturing an electronic component device according to claim 12, wherein the distance between the support member and the electronic component is 200 μm or less.
JP2019564644A 2018-01-15 2018-12-27 Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device Active JP7358988B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018004052 2018-01-15
JP2018004052 2018-01-15
PCT/JP2018/048354 WO2019138919A1 (en) 2018-01-15 2018-12-27 Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device

Publications (2)

Publication Number Publication Date
JPWO2019138919A1 true JPWO2019138919A1 (en) 2021-01-14
JP7358988B2 JP7358988B2 (en) 2023-10-12

Family

ID=67219739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019564644A Active JP7358988B2 (en) 2018-01-15 2018-12-27 Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device

Country Status (3)

Country Link
JP (1) JP7358988B2 (en)
TW (1) TW201934652A (en)
WO (1) WO2019138919A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075193A1 (en) * 2020-10-06 2022-04-14 昭和電工マテリアルズ株式会社 Cedge bond material, semiconductor package, and method for producing semiconductor package
TWI748898B (en) 2021-03-15 2021-12-01 晉一化工股份有限公司 Thermosetting resin compositions, flame-retardant resin compositions, liquid packaging material and its use, and film and its use
TW202344552A (en) * 2022-03-23 2023-11-16 日商納美仕有限公司 Resin composition, adhesives or sealing material, cured product, semiconductor device and electronic part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005345A (en) * 2012-06-22 2014-01-16 Nippon Steel & Sumikin Chemical Co Ltd High molecular weight epoxy resin, resin composition and cured product using the same
WO2014077216A1 (en) * 2012-11-13 2014-05-22 Jnc株式会社 Thermosetting resin composition
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
WO2014181754A1 (en) * 2013-05-08 2014-11-13 旭化成ケミカルズ株式会社 Curable resin composition and cured product thereof, sealing material for optical semiconductor, die bonding material, and optical semiconductor light-emitting element
WO2015079917A1 (en) * 2013-11-29 2015-06-04 東レ株式会社 Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
WO2016039486A1 (en) * 2014-09-11 2016-03-17 帝人株式会社 Thermosetting resin composition
JP2017031402A (en) * 2015-08-04 2017-02-09 信越化学工業株式会社 Thermosetting epoxy resin composition
JP2018035308A (en) * 2016-09-02 2018-03-08 信越化学工業株式会社 Thermosetting epoxy resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588631B2 (en) * 2009-06-12 2014-09-10 帝人株式会社 Resin composition containing cyclic carbodiimide
JP2016204530A (en) * 2015-04-23 2016-12-08 三菱電機株式会社 Thermosetting resin composition, stator coil and rotary electric machine
JP6766360B2 (en) * 2016-01-15 2020-10-14 住友ベークライト株式会社 Resin composition
JP6080064B2 (en) * 2016-03-03 2017-02-15 パナソニックIpマネジメント株式会社 UV curable resin composition, adhesive for optical parts, and sealing material
JPWO2017168732A1 (en) * 2016-03-31 2019-02-07 日立化成株式会社 Resin composition, prepreg, resin sheet and laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005345A (en) * 2012-06-22 2014-01-16 Nippon Steel & Sumikin Chemical Co Ltd High molecular weight epoxy resin, resin composition and cured product using the same
WO2014077216A1 (en) * 2012-11-13 2014-05-22 Jnc株式会社 Thermosetting resin composition
WO2014136693A1 (en) * 2013-03-05 2014-09-12 日本化薬株式会社 Polycarboxylic acid composition, curing agent composition for epoxy resins, and epoxy resin composition and cured product thereof
WO2014181754A1 (en) * 2013-05-08 2014-11-13 旭化成ケミカルズ株式会社 Curable resin composition and cured product thereof, sealing material for optical semiconductor, die bonding material, and optical semiconductor light-emitting element
WO2015079917A1 (en) * 2013-11-29 2015-06-04 東レ株式会社 Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
WO2016039486A1 (en) * 2014-09-11 2016-03-17 帝人株式会社 Thermosetting resin composition
JP2017031402A (en) * 2015-08-04 2017-02-09 信越化学工業株式会社 Thermosetting epoxy resin composition
JP2018035308A (en) * 2016-09-02 2018-03-08 信越化学工業株式会社 Thermosetting epoxy resin composition

Also Published As

Publication number Publication date
JP7358988B2 (en) 2023-10-12
TW201934652A (en) 2019-09-01
WO2019138919A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6415104B2 (en) Liquid encapsulant and electronic parts using it
JP6789495B2 (en) Resin composition for underfill, electronic component device and manufacturing method of electronic component device
JP6656792B2 (en) Liquid resin composition for electronic component and electronic component device
JP7358988B2 (en) Liquid sealing resin composition, electronic component device, and method for manufacturing electronic component device
TWI692503B (en) Liquid epoxy resin composition for encapsulation and electronic component device
JP6051557B2 (en) Epoxy resin liquid sealing material for underfill and electronic component device
JP7013790B2 (en) Epoxy resin composition for encapsulation and electronic component equipment
JP6816426B2 (en) Underfill material and electronic component equipment using it
JP2022133311A (en) Underfill material, electronic component device and method for producing electronic component device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP6825643B2 (en) Liquid resin composition for electronic parts and electronic parts equipment
JP2019083225A (en) Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device
JP7000698B2 (en) Resin composition for underfill, manufacturing method of semiconductor device and semiconductor device
JP6686433B2 (en) Underfill resin composition, electronic component device, and method for manufacturing electronic component device
JP7400714B2 (en) Underfill material, semiconductor package, and semiconductor package manufacturing method
JP2021174939A (en) Resin composition for underfill and production method thereof, method for manufacturing semiconductor device, and semiconductor device
JP2021050357A (en) Underfill material and electronic component device using the same
JP2021009935A (en) Resin composition for underfill, and electronic component device and method for manufacturing the same
JP6961921B2 (en) Resin composition for underfill material and electronic component equipment using it and its manufacturing method
JP2017028050A (en) Underfill material and electronic component device using the same
JP2020070347A (en) Resin composition for underfill and electronic component device and method for producing the same
JP7095724B2 (en) Manufacturing method of resin composition for underfill, electronic component equipment and electronic component equipment
JP2019085536A (en) Liquid sealing resin composition, electronic component device and method for producing electronic component device
JP7003575B2 (en) Underfill material, semiconductor package and manufacturing method of semiconductor package
JP2022063247A (en) Liquid resin composition for underfill, electronic component device, and method for manufacturing electronic component device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7358988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151