JPWO2019093146A1 - 回折光学素子 - Google Patents

回折光学素子 Download PDF

Info

Publication number
JPWO2019093146A1
JPWO2019093146A1 JP2019552711A JP2019552711A JPWO2019093146A1 JP WO2019093146 A1 JPWO2019093146 A1 JP WO2019093146A1 JP 2019552711 A JP2019552711 A JP 2019552711A JP 2019552711 A JP2019552711 A JP 2019552711A JP WO2019093146 A1 JPWO2019093146 A1 JP WO2019093146A1
Authority
JP
Japan
Prior art keywords
light
optical element
diffractive optical
incident
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019552711A
Other languages
English (en)
Other versions
JP7276139B2 (ja
Inventor
健介 小野
健介 小野
亮太 村上
亮太 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2019093146A1 publication Critical patent/JPWO2019093146A1/ja
Application granted granted Critical
Publication of JP7276139B2 publication Critical patent/JP7276139B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4244Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in wavelength selecting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • G02B27/20Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective for imaging minute objects, e.g. light-pointer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4261Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

薄型で、かつ0次光をより低減させながら広範囲に照射できる回折光学素子を提供する。本発明の回折光学素子は、基材と、基材の一方の面上に設けられ、入射光に対して所定の回折作用を発現させる凹凸部と、基材と凹凸部との間に備えられる反射防止層とを備え、凹凸部の凸部を構成する第1の媒質と凹部を構成する第2の媒質の入射光の波長帯における屈折率差が0.70以上であり、入射光が基材の法線方向から入射したときに凹凸部から出射される回折光が形成する光パターンの広がりを示す範囲である出射角度範囲が60°以上である。

Description

本発明は、所定パターンの光スポットを生成する回折光学素子に関する。
計測対象の被測定物に所定の光を照射し、その被測定物によって散乱された光を検出することにより、該被測定物の位置や形状等の計測を行う装置がある(例えば、特許文献1等参照)。このような計測装置において、特定の光のパターンを計測対象に照射するために、回折光学素子を使用できる。
回折光学素子は、例えば、基板表面を凹凸加工して得られるものが知られている。このような凹凸構成の場合、凹部を充填する材料(例えば、屈折率=1の空気)と凸部材料との屈折率差を利用して所望の光路長差を与えて光を回折する。
回折光学素子の他の例として、凸部材料とは異なるとともに空気ではない屈折率材料で凹部(より具体的には凹部及び凸部上面)を充填する構成も知られている。該構成は、凹凸表面が露出しないため、付着物による回折効率の変動を抑制できる。例えば、特許文献2には、2次元の光スポットを発生させる凹凸パターンを埋めるように、屈折率が異なる他の透明材料を与える回折光学素子も示されている。
ところで、光学装置の中には、近赤外光などの目に見えない光を使用するものがある。例えば、スマートフォン等において顔認証やカメラ装置の焦点合わせに用いられるリモートセンシング装置、ゲーム機等と接続されてユーザの動きを捉えるために用いられるリモートセンシング装置、車両等において周辺物体を検知するために用いられるLIDAR(Light Detecting and Ranging)装置などが挙げられる。
また、これら光学装置の中には、入射光の進行方向に対して大きく異なる出射角で光を照射させることが求められる場合がある。例えば、スマートフォンなどに具備されるような広い画角を有するカメラ装置の焦点合わせ用途や、VR(Virtual Reality)のヘッドセットのような人の視野角に対応した表示画面を有する装置において該表示装置に表示させる障害物や指などの周辺物体を検知する用途等では、60°以上や、100°以上や、120°以上といった広い角度範囲への光照射が望まれる場合がある。
回折光学素子を利用して、上記のような広い角度範囲に光を出射しようとした場合、凹凸構造を形成する上で、ピッチを細かくする必要がある。特に、近赤外光のような長波長の入射光に対して出射角度範囲が大きい凹凸構造を考えた場合、所望の光路長差を得るために、凸部がより高くなる傾向がある。尚、凸部の高さは凹部の深さと読み替えてもよい。
回折光学素子の凹凸部のピッチを細かくしたり、高さが増すと、それにしたがってアスペクト比(例えば、「凸部の高さ/凸部の幅」)も大きくなる。アスペクト比が大きくなると、凹凸部を進行する光に対して界面をなしうる凹凸部の全表面中の側壁(凸部側面)の面積比率も増えるため、凸部側面での反射等の影響が大きくなり、望まない0次光が発生するおそれがある。一般に、強い0次光が照射されるとアイセーフの観点から好ましくないとされている。
回折光学素における0次光の低減技術に関して、例えば、特許文献3には、2つの回折光学素子(DOE:Diffractive Optical element)を設けた構成が開示されている。特許文献3に記載の技術は、第1の回折光学素子で発生した0次光を、第2の回折光学素子で回折するように構成することにより、0次光を低減させている。
特許第5174684号公報 特許第5760391号公報 特開2014−209237号公報
センサーを隠匿したいといった意匠的な要望や、センサーを設ける筐体全体の薄型化および小型化の要望から、センシングを行うための回折光学素子に対しても薄型化が望まれている。
そこで、本発明は、薄型で、かつ0次光をより低減させながら広範囲に照射できる回折光学素子の提供を目的とする。
本発明による回折光学素子は、基材と、前記基材の一方の面上に設けられ、入射光に対して所定の回折作用を発現させる凹凸部と、前記基材と前記凹凸部との間に備えられる反射防止層とを備え、前記凹凸部の凸部を構成する第1の媒質と、前記凹凸部の凹部を構成する第2の媒質の、前記入射光の波長帯における屈折率差が、0.70以上であり、前記入射光が前記基材の法線方向から入射したときに前記凹凸部から出射される回折光が形成する光パターンの広がりを示す角度範囲である出射角度範囲が60°以上であることを特徴とする。
本発明によれば、薄型で、かつ0次光をより低減させながら広範囲に照射できる回折光学素子を提供できる。
第1の実施形態の回折光学素子10の断面模式図。 回折光学素子10の他の例を示す断面模式図。 回折光学素子10により生成される光のパターンの例を示す説明図。 格子深さdと0次光の強さとの関係を示すグラフ。 異なる5つの屈折率材料についての対角方向の視野角θと0次光の強度(0次光極小値)との関係を示すグラフ。 異なる5つの屈折率材料についてのΔn/NAと0次光の強さ(最小値)との関係を示す。 回折光学素子10の他の例を示す断面模式図。 例1の反射防止層14の反射率の計算結果を示すグラフ。 例1の反射防止層14の波長850nmの光に対する反射率の入射角依存性を示すグラフ。 例1の内面反射防止層13の反射率の計算結果を示すグラフ。 例1の内面反射防止層13の波長850nmの光に対する反射率の入射角依存性を示すグラフ。
以下、本発明の実施形態を、図面を参照して説明する。図1は、第1の実施形態の回折光学素子10の断面模式図である。回折光学素子10は、基材11と、基材11の一方の面上に設けられる凹凸部12と、基材11と凹凸部12との間に設けられる反射防止層13とを備える。以下、基材11と凹凸部12との間に設けられる反射防止層13を、内面反射防止層13と呼ぶ。
基材11は、ガラス、樹脂等、使用波長に対して透過性のある部材であれば特に限定されない。使用波長は、回折光学素子10への入射光の波長帯である。以下、回折光学素子10に、波長700〜1200nmの可視光および近赤外光のうちの特定の波長帯(例えば、850nm±20nm等)の光が入射する、として説明するが、使用波長はこれらに限定されない。また、とくにことわりがなく説明する場合、可視域は波長400nm〜780nmであり、赤外域は近赤外領域とされる波長780nm〜2000nm、特に波長800nm〜1000nmであり、紫外域は近紫外領域とされる波長300nm〜400nm、特に360nm〜380nmであるとする。尚、可視光は該可視域の光であり、赤外光は該赤外域の光であり、紫外光は該紫外域の光である。
凹凸部12は、入射光に対して回折作用を発現する所定の凹凸パターンを有する凹凸構造である。凹凸パターンは、より具体的には、凹凸部12の凸部121がなす段差の平面視による2次元のパターンである。尚、「平面視」とは、回折光学素子10に入射する光の進行方法から見た平面であり、回折光学素子10の主面の法線方向から見た平面に相当する。凹凸パターンは、それによって発生する複数の回折光の各々である光スポットが、予め定めた投影面等において所定のパターンを実現できるように構成される。
所定の投影面において特定の光のパターンをなす複数の光スポットを生成する凹凸パターンは、例えば、当該凹凸パターンからの出射光の位相分布をフーリエ変換して得られる。
本実施形態では、凹凸部12から見て基材11に近づく方向を下方とし、基材11から離れる方向を上方とする。したがって、凹凸部12の各段の上面のうち基材11と最も近い面が最下面となり、最も離れる面が最上面となる。
また、以下では、凹凸パターン(基材11の面上に凹凸部12によって形成される、断面が凹凸形状の表面)において最も低い位置にある部分(図中の第1段s1)よりも高い位置にある部分を、凸部121と呼び、凸部121に囲まれてなる凹み部分であって凸部121の最上部(本例では、第2段s2)よりも低くなる部分を凹部122と呼ぶ。また、凹凸部12のうち実際に位相差を生じさせる部分の高さ、より具体的には凹凸パターンの第1段s1から凸部121の最上部までの距離を、凸部121の高さdまたは格子深さdと呼ぶ。また、以下では、凹凸部12のうち位相差を生じさせない部分(図1において基材11の表面を覆って第1段s1を構成している層)を下地層と呼ぶ場合がある。
凹凸パターンの段数は、一般的な回折格子と同様、入射光に対して位相差を生じさせる段差を構成する各面を1段として数える。尚、図1には、バイナリの回折格子すなわち2段の凹凸パターンを構成する凹凸部12を備える回折光学素子10の例が示されている。
図2に、回折光学素子10の他の例を示す。回折光学素子10は、例えば、図2(a)に示すように、3段以上の凹凸パターンを構成する凹凸部12を備えてもよい。また、回折光学素子10は、図2(b)に示すように、凹凸部12の部材以外の部材(本例では、後述する内面反射防止層13の最表層の部材)が、凹凸パターンの1段目を構成することも可能である。尚、そのような場合も、凹凸パターンの第1段s1から凸部121の最上部までの距離を、凸部121の高さdとする。
図1および図2(a)に示す構成は、少なくとも入射光が入射する有効領域内において、凹部122を構成する第2の媒質(空気)が内面反射防止層13と接しない構成であるが、図2(b)に示すように、有効領域の少なくとも一部において、第2の媒質(空気)が内面反射防止層13と接する構成であってもよい。なお、後者の場合、凹凸部12には下地層は含まれない。
凹凸部12の材料は、使用波長における屈折率が1.70以上のものを用いる。そのような材料の例としては、無機材料、例えば、Zn、Al、Y、In、Cr、Si、Zr、Ce、Ta、W、Ti、Nd、Hf、Mg、La、Nbなどの酸化物、窒化物、酸窒化物、Al、Y、Ce、Ca、Na、Nd、Ba、Mg、La、Liのフッ化物、シリコンカーバイド、または、これらの混合物を使用できる。また、ITOなどの透明導電体も使用できる。また、Si、Ge、ダイヤモンドライクカーボン、これらに水素などの不純物を含有させたものなどが挙げられる。尚、凹凸部12の材料は、使用波長における屈折率が上記条件を満たすものであれば、無機材料に限定されない。例えば、有機材料を含み屈折率が1.70以上の材料の例としては、有機材料に無機材料の微粒子を分散させた、いわゆるナノコンポジット材料がある。無機材料の微粒子としては、例えば、Zr、Ti、Alなどの酸化物があげられる。
また、凹部122が空気以外の媒質で充填される場合は、凸部121と凹部122の使用波長における屈折率差をΔnとしたとき、Δnが0.70以上となればよい。ただし、材料の選択性および薄型化の観点から、凹部122は空気が好ましい。
次に、回折光学素子10が発現する回折作用について、図3の回折光学素子10により生成される光のパターンの例示に基づき説明する。回折光学素子10は、光軸方向をZ軸として入射する光束21に対して出射される回折光群22が2次元に分布するように形成される。回折光学素子10は、Z軸と交点を持ちZ軸に垂直な軸をX軸及びY軸とした場合、X軸上における最小角度θxminから最大角度θxmax及びY軸上における最小角度θyminから最大角度θymax(いずれも不図示)の角度範囲内に光束群が分布する。
ここでX軸は光スポットパターンの長辺に略平行でY軸は光スポットパターンの短辺に略平行となる。尚、X軸方向における最小角度θxminから最大角度θxmax、Y軸方向における最小角度θyminから最大角度θymaxにより形成される回折光群22の照射される範囲は、回折光学素子10と一緒に用いられる光検出素子における光検出範囲と略一致した範囲となる。本例では、光スポットパターンにおいて、Z軸に対しX方向の角度がθxmaxである光スポットを通るY軸に平行な直線が上記短辺となり、Z軸に対しY方向の角度がθymaxである光スポットを通るX軸と平行な直線が上記長辺となる。以下、上記短辺と上記長辺の交点とその対角にある他の交点とがなす角度をθとし、この角度を対角方向の角度と称する。ここで、対角方向の角度θ(以下、対角の視野角θという)は、回折光学素子10の出射角度範囲θoutとされる。ここで、出射角度範囲θoutは、入射光が基材11の法線方向から入射した時に凹凸部12から出射される回折光が形成する光のパターンの広がりを示す角度範囲である。尚、回折光学素子10の出射角度範囲θoutは、上記の対角方向の視野角θとする以外に、例えば、回折光群22に含まれる2つの光スポットがなす角度の最大値としてもよい。
回折光学素子10は、例えば、入射光が基材11の表面の法線方向から入射したときの出射角度範囲θoutが70°以上がよい。例えば、スマートフォン等に備えられるカメラ装置には、画角(全角)が50〜90°程度のものがある。また、自動運転等に用いられるLIDAR装置としては、視野角が30〜70°程度のものがある。また、人間の視野角は一般に120°程度であり、VRのヘッドセット等のカメラ装置には、視野角70〜140°を実現したものがある。これらの装置に適用できるように、回折光学素子10の出射角度範囲θoutは100°以上でもよく、120°以上でもよい。
また、回折光学素子10は、発生させる光スポットの数が4以上でもよく、また9以上でもよく、100以上でもよく、10000以上でもよい。尚、光スポットの数の上限は、特に限定されないが、例えば、1000万点でもよい。
図3において、Rijは投影面の分割領域を示す。例えば、回折光学素子10は、透明面を複数の領域Rijに分割した場合、各領域Rijに照射される回折光群22による光スポット23の分布密度が全領域の平均値に対して±50%以内となるように構成されてもよい。尚、上記分布密度は、全領域の平均値に対して±25%以内でもよい。このように構成すると、投影面内で光スポット23の分布を均一にできるので、計測用途等において好適である。ここで投影面は、平面だけでなく曲面でもよい。また、平面の場合も、光学系の光軸に対して垂直な面以外に傾斜した面でもよい。
図3に示す回折光群22に含まれる各回折光は、式(1)に示すグレーティング方程式において、Z軸方向を基準として、X方向における角度θxo、Y方向における角度θyoに回折される光となる。式(1)において、mはX方向の回折次数であり、mはY方向の回折次数であり、λは光束21の波長であり、P、Pは後述する回折光学素子のX軸方向、Y軸方向におけるピッチであり、θxiはX方向における回折光学素子への入射角度、θyiはY方向における回折光学素子への入射角度である。この回折光群22をスクリーンまたは測定対象物等の投影面に照射させることにより、照射された領域に複数の光スポット23が生成される。
sinθxo=sinθxi+mλ/P
sinθyo=sinθyi+mλ/P
・・・(1)
凹凸部12がN段の階段状の疑似ブレーズ形状の場合、Δnd/λ=(N−1)/Nを満たすと凹凸部12によって発生する光路長差が1波長分の波面を近似したものにでき、高い回折効率が得られ好ましい。例えば、屈折率=1.7の材料からなる凸部121と空気からなる凹部122の凹凸パターンに近赤外光が入射する場合を例にとると、{(N−1)/N}×λ=0.7dとなる。これより、凸部121の高さdが、d<{(N−1)/N}×λ/0.7を満たすとよい。
また、図4は、凸部121の高さ(格子深さ)dと0次光の強さとの関係を示すグラフである。尚、図4(a)は格子深さが0.05λ〜2.0λである場合の0次光の強さとの関係を示すグラフであり、図4(b)はその一部を拡大して示すグラフである。図4では、X方向に21点、Y方向に21点の合計441点の光スポットを、対角方向のNA0.85(X方向およびY方向のNA0.6)の範囲に照射する場合の設計例であって、合成シリカ(屈折率n=1.45)を凸部121の材料とした場合と、Ta(n=2.1)を凸部121の材料とした場合とを例示している。尚、本実施形態において、NAは、1・sin(θmax/2)で表される指標である。
図4に示すように、屈折率が1.45の場合、NA0.85(出射角度範囲θoutは約116°)を実現する構成では、設計上、凸部121の高さdをいくら調整しても0次光が5%未満にはならない。一方、屈折率が2.1であれば、凸部121の高さdを調整することで、0次光の光量を1%以下等に抑えることができる。
ここで、高い回折効率を得つつ、0次光を低減するためには、Δn/NA≧0.7を満たすと良い。尚、Δn/NAは、0.7以上がよく、1.0以上がより好ましい。図5は、5つの異なる屈折率材料を凸部121材料としたときの、対角方向の視野角θと0次光の強度(0次光極小値)との関係を示すグラフである。
尚、5つの異なる屈折率材料は、それぞれ屈折率1.45(石英)、1.60(ポリカーボネート系樹脂)、1.70(SiON)、1.90(HfO)、2.10(Ta)である。図5では、5つの屈折率材料それぞれに対して、対角方向の視野角θを50.2°、68.8°、90.0°、116.0°、133.4°、163.4°としたときの設計解をそれぞれ求め、それら設計解に対して厳密結合波解析(RCWA)により算出された0次光の強さ(極小値)を示している。図5に示すように、凸部121の屈折率が高くなるほど、0次光の光量が高くなることがわかる。尚、上記の対角方向の視野角θをNAで表すと、それぞれ0.424、0.565、0.707、0.848、0.918、0.0989となる。
また、図6に、上記設計解におけるΔn/NAと0次光の強さ(最小値)との関係を示す。尚、図6(a)は上記設計解の全ての関係を示すグラフであり、図6(b)はその一部を拡大して示すグラフである。
上記の各例は、設計波長を850nm、凹部を空気(n=1)としている。また、凹凸部12は、X方向に21点、Y方向に21点の合計441点の光スポットを発生させる8段の凹凸パターンであり、該凹凸パターンにおける格子は規則配置であって、隣り合う光スポットの分離角は全て等しい。表1に各例の設計パラメータを示す。
Figure 2019093146
図6に示すように、0次光の強さとΔn/NAとの関係を見ると、例えば、Δn/NAが0.7以上であれば、出射角度範囲θoutが70°以上(165°未満)の設計解全てで0次光の極小値を3.0%未満にできる。また、例えば、Δn/NAが0.9以上であれば、出射角度範囲θoutが100°以上(165°未満)の設計解の多くで0次光の極小値を1.5%未満とできる。また、例えば、Δn/NAが1.0以上であれば、出射角度範囲θoutが165°未満の設計解の多くで0次光の極小値を1.0%未満とできる。また、例えば、Δn/NAが1.0以上であれば、出射角度範囲θoutが140°未満の設計解の多くで0次光の極小値を0.5%未満とできる。尚、図4〜図6に示す設計解のうち、n=1.45、1.60の設計解は比較例である。
尚、本実施形態の回折光学素子10は、入射光を垂直に入射した場合に当該回折光学素子10から出射される0次光の光量が、3.0%未満が好ましく、1.5%未満がより好ましく、0.5%未満がさらに好ましく、0.3%未満がとくに好ましい。
内面反射防止層13は、基材11と凹凸部12の界面反射を防止するために設けられる。内面反射防止層13は、基材11と凹凸部12の界面において少なくとも設計波長の光の反射率を低減する反射防止機能を有するものであれば、特に限定されないが、一例として、単層構造の薄膜や、誘電多層膜などの多層膜が挙げられる。
例えば、内面反射防止層13が単層の薄膜であれば、以下の条件式(2)を満たすとより好ましい。尚、式(2)において、内面反射防止層の材料の屈折率をn、厚さをd、また対象とする内面反射防止層の入射側界面をなす媒質の屈折率をn、出射側界面をなす媒質の屈折率をnとした。これにより、界面の反射率を低減できる。ここで、αは0.25、βは0.6である。以下、式(2)に示す条件式を、単層薄膜に関する第1の屈折率関係式と呼ぶ場合がある。尚、αは、0.2がより好ましく、0.1がさらに好ましい。また、βは、0.4がより好ましい。
(n×n0.5−α<n<(n×n0.5+α、かつ
(1−β)×λ/4<n×d<(1+β)×λ/4
・・・(2)
また、内面反射防止層13が多層膜であれば、設計波長の光に対し、以下の式(3)で示される反射率Rが1%未満であるとよく、0.5%未満であるとより好ましい。
内面反射防止層13が多層膜の場合は、多層膜に対して入射側に位置する屈折率nを有する媒質M1から入射角θで光が入射し、各層の屈折率がnで厚さがdであるq層からなる多層膜M2を透過し、多層膜に対して出射側に位置する屈折率nを有する媒質M3へ光が入射するとして考える。このときの反射率は、式(3)のように計算できる。尚、η、η、ηはそれぞれ、斜入射を考慮した媒質M1、多層膜M2、媒質M3の実効屈折率である。
Figure 2019093146
したがって、内面反射防止層13がない場合はY=ηとなり、比較的大きく反射が発生するのに対して、内面反射防止層13によってYをηに近づけられると、反射を低減できる。とくに垂直入射の時は、ηやηやηは屈折率と等価である。以下では、式(3)に示す反射率Rを、多層構造による理論反射率と呼ぶ場合がある。
一般的に、凹凸部12を構成する部材は薄膜であり、上記の多層膜の一部として計算する必要があるが、上述したように内面反射防止層13を設けることで、凹凸部12を構成する薄膜の厚さに依存せずに反射率を低減できる。尚、単層の内面反射防止層13に対して、q=1として式(3)を適用し、干渉の効果を考慮してもよい。
また、内面反射防止層13に斜めの光(波長:λ[nm])が入射する場合には、垂直に光を入射した際に次の条件を満たすと好ましい。すなわち、λ−200nmからλ+200nmの範囲にある透過率スペクトルの局所的な最小値が、λ〜λ+200nmの範囲にあると好ましい。尚、該最小値は、λ〜λ+100nmの範囲にあるとより好ましい。これは、斜めの光が入射する場合、透過率スペクトルが短波長シフトするためであり、こうすることで、斜入射によって生じる内面反射防止層13界面の透過率の低減を抑制できる。尚、λは「設計波長」に相当する。
また、図7に示すように、回折光学素子10は、基材11の凹凸部12が設けられている側の面と反対の面上に反射防止層14をさらに備えていてもよい。
反射防止層14は、回折光学素子10の出射側界面における反射を防止するために設けられる。反射防止層14は、回折光学素子10の出射側界面において少なくとも設計波長の光の反射率を低減する反射防止機能を有するものであれば、特に限定されないが、一例として、単層構造の薄膜や、誘電多層膜などの多層膜が挙げられる。尚、内面反射防止層13の反射率に関する条件はそのまま反射防止層14の反射率に関する条件としてもよい。
また、回折光学素子10に対して凹凸部12が設けられた側(図中の−z方向)から光が入射する場合、内面反射防止層13および反射防止層14は、基材11の法線方向に対してθmax/2°以内で入射する設計波長の光に対して、上記の反射率に関する条件を満たすとよい。これは、凹凸部12によって回折された光が内面反射防止層13および反射防止層14に入射するためである。なお、内面反射防止層13および反射防止層14は、基材11の法線方向に対してθmax/2°以内で入射する設計波長の特定の偏光成分の光に対して、上記の反射率に関する条件を満たしてもよい。
例えば、内面反射防止層13および反射防止層14は、基材11の法線方向に対して40°以内で入射する設計波長の少なくとも特定の偏光光に対する反射率が、0.5%以下を満たすように構成される。尚、内面反射防止層13および反射防止層14は、出射角度範囲θoutの1/4の角度すなわち最大出射角度(半角)の中間とされる角度で回折光学素子10から出射される光に対する反射率が、0.5%以下を満たすように構成されてもよい。
また、内面反射防止層13および反射防止層14は、設計波長の光に対する反射防止機能とともに、設計波長以外の特定の波長帯の光(例えば、紫外光)に対する反射防止機能を併せて有してもよい。回折光学素子10が設けられる装置等において、回折光学素子10以外に他の光学素子を備える場合があり、それらが使用する光を回折光学素子10で遮断しないためである。
その場合、内面反射防止層13および反射防止層14は、設計波長の光に対する上記条件に加えて、基材11の法線方向に対して20°以内で入射する波長360〜370nmの少なくとも特定の偏光光に対する反射率が1.0%以下を満たすように構成されてもよい。
また、上記では、0次光の光量をRCWAによって算出したが、0次光の光量は、設計波長のコリメートされたレーザー光を回折光学素子10に入射し、直進透過光の光量を測定することによっても評価できる。
(例1)
本例は、図2に示す回折光学素子10の例である。ただし、本例では、設計波長を850nm、凹部を空気(n=1)とした。また、凹凸部12は、X方向に21点、Y方向に21点の合計441点の光スポットを発生させる8段の凹凸パターンであり、該凹凸パターンにおける格子は規則配置であって、隣り合う光スポットの分離角は全て等しいとした。また、本例の回折光学素子10は、凹凸部12から出社される回折光群による出射角度範囲θout(より具体的には、対角の視野角θ)が110°となるように凹凸パターンを設計した。また、基材11の材料には屈折率が1.51のガラス基板を用い、凹凸部12の材料には屈折率が2.19のTaを用いた。表2に、本例の凹凸部12の具体的構成を示す。
Figure 2019093146
まず、ガラス基板上に、SiOおよびTaからなる6層の誘電体多層膜である反射防止層14を成膜する。各層の材料および厚さは表2の通りである。
次いで、ガラス基板の反射防止層14を成膜した側と反対側の面に、SiOおよびTaからなる4層の誘電体多層膜である内面反射防止層13を成膜する。各層の材料および厚さは表2の通りである。その後、凹凸部12の材料であるTaを成膜し、該Ta膜をフォトリソグラフィおよびエッチングによって8段の凹凸構造へ加工する。当該凹凸構造において1段の高さは95nmである。膜厚は段差計やSEM(Scanning Electron Microscope)による断面観察によって測定される。
これにより、本例の回折光学素子10を得る。
図8に、本例の反射防止層14の反射率の計算結果を示す。なお、図8(a)は、波長350nm〜950nmの波長範囲における反射率の計算結果であり、図8(b)はそのうちの波長800nm〜900nmの波長範囲における反射率の計算結果である。なお、図8では、入射角すなわち基材11の法線方向に対する入射光の角度が0°、20°、40°の場合の計算結果を示している。斜入射ではP偏光とS偏光とに分けている。
また、図9に、波長850nmの光に対する本例の反射防止層14の反射率の入射角依存性を示す。図9に示すように、本例の反射防止層14は、入射角が55°以内で入射する波長850nmの光に対して、P偏光およびS偏光ともに反射率2.5%未満を実現する。また、本例の反射防止層14は、入射角が45°以内で入射する波長850nmのP偏光光に対して、反射率1.0%未満を実現する。
また、図10に、本例の内面反射防止層13の反射率の計算結果を示す。なお、図9(a)は、波長350nm〜950nmの波長範囲における反射率の計算結果であり、図9(b)はそのうちの波長800nm〜900nmの波長範囲における反射率の計算結果である。なお、図10では、入射角すなわち基材11の法線方向に対する入射光の角度が0°、20°、30°の場合の計算結果を示している。
また、図11に、波長850nmの光に対する本例の内面反射防止層13の反射率の入射角依存性を示す。図11に示すように、本例の内面反射防止層13は、入射角が35°以内で入射する波長850nmの光に対して、P偏光およびS偏光ともに反射率2.5%未満を実現する。また、本例の反射防止層14は、入射角が35°以内で入射する波長850nmのP偏光光に対して、反射率0.1%未満を実現する。尚、35°以上の入射角に対する内面反射防止層13および反射防止層14の反射率については省略しているが、入射角に応じた各媒質の実効屈折率から上記式(3)を用いて計算できる。
また、本例の回折光学素子10の凹凸部12から発生する0次光の光量をRCWAによって計算すると、0.25%であった。したがって、入射側界面及び回折光学素子内での反射や吸収による損失がないとする場合、波長850nmの光を垂直に入射した場合の本例の回折光学素子から出射される0次光の光量は、0.22%未満となる。
(例2)
本例は、例1と同様に図2に示す回折光学素子10の例である。ただし、本例では、凹凸部12は、X方向に11点、Y方向に11点の合計121点の光スポットを発生させる8段の凹凸パターンである。本例の凹凸部12の具体的構成は例1と同様で表2に記載されている。また作製方法も例1と同様である。
また、本例の回折光学素子10の凹凸部12から発生する0次光の光量をRCWAによって計算すると、0.08%であった。したがって、入射側界面及び回折光学素子内での反射や吸収による損失がないとする場合、波長850nmの光を垂直に入射した場合の本例の回折光学素子から出射される0次光の光量は、0.07%未満となる。
(例3)
本例は、例1と同様に図2に示す回折光学素子10の例である。ただし、本例では、凹凸部12は、X方向に31点、Y方向に31点の合計961点の光スポットを発生させる8段の凹凸パターンである。本例の凹凸部12の具体的構成は例1と同様で表2に記載されている。また作製方法も例1と同様である。
また、本例の回折光学素子10の凹凸部12から発生する0次光の光量をRCWAによって計算すると、0.08%であった。したがって、入射側界面及び回折光学素子内での反射や吸収による損失がないとする場合、波長850nmの光を垂直に入射した場合の本例の回折光学素子から出射される0次光の光量は、0.07%未満となる。
(例4)
本例は、例1と同様に図2に示す回折光学素子10の例である。ただし、本例では、設計波長を780nm、凹凸部12は、X方向に21点、Y方向に21点の合計441点の光スポットを発生させる8段の凹凸パターンである。本例の凹凸部12の具体的構成は例1と同様で表3に記載されている。また作製方法も例1と同様である。
また、本例の回折光学素子10の凹凸部12から発生する0次光の光量をRCWAによって計算すると、0.32%であった。したがって、入射側界面及び回折光学素子内での反射や吸収による損失がないとする場合、波長780nmの光を垂直に入射した場合の本例の回折光学素子から出射される0次光の光量は、0.28%未満となる。
Figure 2019093146
(例5)
本例は、例1と同様に図2に示す回折光学素子10の例である。ただし、本例では、設計波長を1550nm、凹凸部12は、X方向に21点、Y方向に21点の合計441点の光スポットを発生させる8段の凹凸パターンである。本例の凹凸部12の具体的構成は例1と同様で表4に記載されている。また作製方法も例1と同様である。
また、本例の回折光学素子10の凹凸部12から発生する0次光の光量をRCWAによって計算すると、0.03%であった。したがって、入射側界面及び回折光学素子内での反射や吸収による損失がないとする場合、波長780nmの光を垂直に入射した場合の本例の回折光学素子から出射される0次光の光量は、0.03%未満となる。
Figure 2019093146
本発明は、0次光を低減させつつ、回折格子によって形成される所定の光パターンの照射範囲を広くする用途に好適に適用可能である。
なお、2017年11月08日に出願された日本特許出願2017−215510号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10 回折光学素子
11 基材
12 凹凸部
121 凸部
122 凹部
13 内面反射防止層
14 反射防止層
21 光束
22 回折光群
23 光スポット

Claims (13)

  1. 基材と、
    前記基材の一方の面上に設けられ、入射光に対して所定の回折作用を発現させる凹凸部と、
    前記基材と前記凹凸部との間に備えられる反射防止層とを備え、
    前記凹凸部の凸部を構成する第1の媒質と、前記凹凸部の凹部を構成する第2の媒質の、前記入射光の波長帯における屈折率差が、0.70以上であり、
    前記入射光が前記基材の法線方向から入射したときに前記凹凸部から出射される回折光が形成する光パターンの広がりを示す角度範囲である出射角度範囲が60°以上である
    ことを特徴とする回折光学素子。
  2. 前記第2の媒質が空気であり、
    前記第1の媒質の前記入射光の波長帯における屈折率が1.70以上である
    請求項1に記載の回折光学素子。
  3. 前記第1の媒質と前記第2の媒質の前記入射光の波長帯における屈折率差をΔn、前記出射角度範囲をθoutとしたとき、
    Δn/sin(θout/2)≧1.0
    を満たす
    請求項1または請求項2に記載の回折光学素子。
  4. 前記入射光の波長帯における0次光の光量が、3.0%未満である
    請求項1から請求項3のうちのいずれかに記載の回折光学素子。
  5. 前記出射角度範囲が100°以上であり、
    前記入射光の波長帯における0次光の光量が、1.5%未満である
    請求項1から請求項4のうちのいずれかに記載の回折光学素子。
  6. 前記出射角度範囲が140°未満であり、
    前記入射光の波長帯における0次光の光量が、0.5%未満である
    請求項1から請求項5のうちのいずれかに記載の回折光学素子。
  7. 前記第1の媒質が無機材料である
    請求項1から請求項6のうちのいずれかに記載の回折光学素子。
  8. 前記凹凸部は、少なくとも有効領域内において前記基材と接していない
    請求項1から請求項7のうちのいずれかに記載の回折光学素子。
  9. 前記反射防止層は、誘電体多層膜であり、前記基材の法線方向に対して前記出射角度範囲の1/4の角度で素子から出射される前記入射光の波長帯の少なくとも特定の偏光光に対する反射率が、0.5%以下である
    請求項1から請求項8のうちのいずれかに記載の回折光学素子。
  10. 前記反射防止層は、前記基材の法線方向に対して40°以内で当該反射防止層に入射する前記入射光の波長帯の少なくとも特定の偏光光に対する反射率が、0.5%以下である
    請求項1から請求項9のうちのいずれかに記載の回折光学素子。
  11. 前記入射光は、波長700nm〜1200nmのうちの少なくとも一部の波長帯の光であり、
    前記反射防止層は、前記基材の法線方向に対して20°以内で当該反射防止層に入射する波長360〜370nmの少なくとも特定の偏光光に対する反射率が、1.0%以下である
    請求項1から請求項10のうちのいずれかに記載の回折光学素子。
  12. 前記基材の前記凹凸部が設けられた側と反対側の表面上に、第2の反射防止層を備える
    請求項1から請求項11のうちのいずれかに記載の回折光学素子。
  13. 前記第2の反射防止層は、前記基材の法線方向に対して前記出射角度範囲の1/4の角度で素子から出射される前記入射光の波長帯の少なくとも特定の偏光光に対する反射率が、0.5%以下である
    請求項12に記載の回折光学素子。
JP2019552711A 2017-11-08 2018-10-25 回折光学素子 Active JP7276139B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017215510 2017-11-08
JP2017215510 2017-11-08
PCT/JP2018/039755 WO2019093146A1 (ja) 2017-11-08 2018-10-25 回折光学素子

Publications (2)

Publication Number Publication Date
JPWO2019093146A1 true JPWO2019093146A1 (ja) 2020-11-26
JP7276139B2 JP7276139B2 (ja) 2023-05-18

Family

ID=66437739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019552711A Active JP7276139B2 (ja) 2017-11-08 2018-10-25 回折光学素子

Country Status (4)

Country Link
US (1) US20200264443A1 (ja)
JP (1) JP7276139B2 (ja)
CN (1) CN111316140A (ja)
WO (1) WO2019093146A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331070A (zh) * 2020-10-23 2021-02-05 云谷(固安)科技有限公司 一种光场调制组件、显示组件和显示装置
CN112331071A (zh) * 2020-10-23 2021-02-05 云谷(固安)科技有限公司 一种光场调制组件、显示组件和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643311A (ja) * 1992-07-22 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> 回折光学素子及びその製造方法
JP2002169010A (ja) * 2000-12-04 2002-06-14 Minolta Co Ltd 回折光学素子
US20100208346A1 (en) * 2009-02-13 2010-08-19 Britten Jerald A Multilayer Dielectric Transmission Gratings Having Maximal Transmitted Diffraction Efficiency
WO2012018017A1 (ja) * 2010-08-06 2012-02-09 旭硝子株式会社 回折光学素子及び計測装置
JP2012058729A (ja) * 2010-08-10 2012-03-22 Asahi Glass Co Ltd 回折光学素子及び計測装置
JP2017126064A (ja) * 2016-01-08 2017-07-20 大日本印刷株式会社 回折光学素子、及び光照射装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253811A (ja) * 1997-03-14 1998-09-25 Sankyo Seiki Mfg Co Ltd 回折格子及びその製造方法
US20040136073A1 (en) * 2002-11-01 2004-07-15 Sumitomo Electric Industries, Ltd. Transmitted type diffractive optical element
KR100787264B1 (ko) * 2003-05-22 2007-12-20 히다치 가세고교 가부시끼가이샤 광학필름 및 그것을 사용한 면광원장치
WO2016031133A1 (ja) * 2014-08-27 2016-03-03 富士フイルム株式会社 反射防止膜を備えた光学部材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643311A (ja) * 1992-07-22 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> 回折光学素子及びその製造方法
JP2002169010A (ja) * 2000-12-04 2002-06-14 Minolta Co Ltd 回折光学素子
US20100208346A1 (en) * 2009-02-13 2010-08-19 Britten Jerald A Multilayer Dielectric Transmission Gratings Having Maximal Transmitted Diffraction Efficiency
WO2012018017A1 (ja) * 2010-08-06 2012-02-09 旭硝子株式会社 回折光学素子及び計測装置
JP2012058729A (ja) * 2010-08-10 2012-03-22 Asahi Glass Co Ltd 回折光学素子及び計測装置
JP2017126064A (ja) * 2016-01-08 2017-07-20 大日本印刷株式会社 回折光学素子、及び光照射装置

Also Published As

Publication number Publication date
WO2019093146A1 (ja) 2019-05-16
US20200264443A1 (en) 2020-08-20
JP7276139B2 (ja) 2023-05-18
CN111316140A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
JP4346680B2 (ja) 発光装置
US11536981B2 (en) Diffractive optical element, projection device, and measurement device
WO2010131440A1 (ja) シート及び発光装置
JPWO2019093146A1 (ja) 回折光学素子
US20210003746A1 (en) Diffusion plate and optical device
WO2020080169A1 (ja) 回折光学素子および照明光学系
WO2018216575A1 (ja) 回折光学素子、投影装置及び計測装置
JP5511674B2 (ja) シートおよび発光装置
JP2014170109A (ja) 回折光学素子、光学系および光学機器
JP5676929B2 (ja) 回折光学素子、光学系および光学機器
JP5676928B2 (ja) 回折光学素子、光学系、及び、光学機器
JP6981074B2 (ja) 光学素子
JP2011022319A (ja) 回折光学素子、光学系及び光学装置
JP2019132905A (ja) 透過型回折素子、レーザ発振器及びレーザ加工機
JP2013023088A (ja) モニター付バックミラー
JP2019066756A (ja) 回折光学素子を備えた光学系および光学機器
JP2017026824A (ja) 偏光解消素子及びその製造方法、並びにそれを用いた光学機器及び液晶表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150