JPWO2019059080A1 - Unmanned moving body - Google Patents

Unmanned moving body Download PDF

Info

Publication number
JPWO2019059080A1
JPWO2019059080A1 JP2019543594A JP2019543594A JPWO2019059080A1 JP WO2019059080 A1 JPWO2019059080 A1 JP WO2019059080A1 JP 2019543594 A JP2019543594 A JP 2019543594A JP 2019543594 A JP2019543594 A JP 2019543594A JP WO2019059080 A1 JPWO2019059080 A1 JP WO2019059080A1
Authority
JP
Japan
Prior art keywords
power
unit
control unit
power supply
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019543594A
Other languages
Japanese (ja)
Inventor
康正 小平
康正 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec America Corp filed Critical Nidec America Corp
Publication of JPWO2019059080A1 publication Critical patent/JPWO2019059080A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

本発明の無人移動体の一つの態様は、非接触給電によって電力が供給される無人移動体であって、モータと、モータに電力を供給する充電式の蓄電部と、蓄電部と電気的に接続される非接触給電用の受電コイルと、受電コイルから蓄電部への給電を制御する給電制御ユニットと、無人移動体を制御する無人移動体制御ユニットと、蓄電部、給電制御ユニットおよび無人移動体制御ユニットを収容する筐体と、を備える。少なくとも蓄電部と給電制御ユニットと無人移動体制御ユニットとが電気的に接続されて回路部が構成される。回路部は、筐体に対して絶縁される。One aspect of the unmanned mobile body of the present invention is an unmanned mobile body in which electric power is supplied by non-contact power supply, and the motor, a rechargeable power storage unit that supplies electric power to the motor, and the power storage unit electrically. A power receiving coil for non-contact power supply to be connected, a power supply control unit that controls power supply from the power receiving coil to the power storage unit, an unmanned mobile body control unit that controls an unmanned mobile body, a power storage unit, a power supply control unit, and unmanned movement. It includes a housing for accommodating the body control unit. At least the power storage unit, the power supply control unit, and the unmanned mobile control unit are electrically connected to form a circuit unit. The circuit section is insulated from the housing.

Description

本発明は、無人移動体に関する。 The present invention relates to an unmanned moving body.

非接触で充電用電力が供給される無人搬送車が知られる。例えば、特許文献1には、交流電力を電磁誘導結合にて非接触で受ける無人搬送車が記載される。 An automated guided vehicle that is supplied with charging power in a non-contact manner is known. For example, Patent Document 1 describes an automatic guided vehicle that receives AC power in a non-contact manner by electromagnetic induction coupling.

特開2008−137451号公報Japanese Unexamined Patent Publication No. 2008-137451

上記のような無人搬送車において、非接触の給電方法として磁界を利用する方法を採用する場合、送電装置からの磁束が無人搬送車の筐体を通ると、筐体に渦電流が生じる場合がある。この場合、筐体の部分同士の間に電位差が生じる。ここで、筐体の内部に収容される無人搬送車の回路部は、接地のために筐体と電気的に接触する。そのため、筐体に電位差が生じると、筐体を通って回路部に不要な電流が流れ、回路部が誤動作する場合があった。 When a method using a magnetic field is adopted as a non-contact power feeding method in an automatic guided vehicle as described above, an eddy current may be generated in the housing when the magnetic flux from the power transmission device passes through the housing of the automatic guided vehicle. is there. In this case, a potential difference is generated between the housing portions. Here, the circuit portion of the automatic guided vehicle housed inside the housing is in electrical contact with the housing for grounding. Therefore, when a potential difference occurs in the housing, an unnecessary current flows through the housing to the circuit unit, which may cause the circuit unit to malfunction.

本発明は、上記事情に鑑みて、回路部が誤動作することを抑制できる無人移動体を提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide an unmanned moving body capable of suppressing malfunction of the circuit unit.

本発明の無人移動体の一つの態様は、非接触給電によって電力が供給される無人移動体であって、モータと、前記モータに電力を供給する充電式の蓄電部と、前記蓄電部と電気的に接続される非接触給電用の受電コイルと、前記受電コイルから前記蓄電部への給電を制御する給電制御ユニットと、前記無人移動体を制御する無人移動体制御ユニットと、前記蓄電部、前記給電制御ユニットおよび前記無人移動体制御ユニットを収容する筐体と、を備え、少なくとも前記蓄電部と前記給電制御ユニットと前記無人移動体制御ユニットとが電気的に接続されて回路部が構成され、前記回路部は、前記筐体に対して絶縁される。 One aspect of the unmanned mobile body of the present invention is an unmanned mobile body in which electric power is supplied by non-contact power supply, the motor, a rechargeable power storage unit that supplies electric power to the motor, and the power storage unit and electricity. A power receiving coil for non-contact power supply, a power supply control unit that controls power supply from the power receiving coil to the power storage unit, an unmanned mobile body control unit that controls the unmanned moving body, and the power storage unit. A housing for accommodating the power supply control unit and the unmanned mobile control unit is provided, and at least the power storage unit, the power supply control unit, and the unmanned mobile control unit are electrically connected to form a circuit unit. , The circuit unit is insulated from the housing.

本発明の一つの態様によれば、回路部が誤動作することを抑制できる無人移動体が提供される。 According to one aspect of the present invention, there is provided an unmanned moving body capable of suppressing malfunction of the circuit unit.

図1は、本実施形態の無人移動体システムを示す斜視図である。FIG. 1 is a perspective view showing an unmanned moving body system of the present embodiment. 図2は、本実施形態の無人移動体システムの機能構成の一例を示す図である。FIG. 2 is a diagram showing an example of the functional configuration of the unmanned mobile system of the present embodiment. 図3は、本実施形態の無人移動体を示す模式図である。FIG. 3 is a schematic view showing an unmanned moving body of the present embodiment. 図4は、本実施形態の無人移動体の一部を上側から視た図である。FIG. 4 is a view of a part of the unmanned moving body of the present embodiment as viewed from above.

各図に適宜示すXYZ座標系は、各実施形態の無人移動体を基準とする3次元直交座標系である。Z軸方向は、鉛直方向と平行な方向である。Z軸方向を単に「鉛直方向Z」と呼ぶ。X軸方向およびY軸方向は、Z軸方向と直交し、かつ、互いに直交する方向である。X軸方向を「前後方向X」と呼び、Y軸方向を「左右方向Y」と呼ぶ。 The XYZ coordinate system appropriately shown in each figure is a three-dimensional Cartesian coordinate system based on the unmanned moving body of each embodiment. The Z-axis direction is a direction parallel to the vertical direction. The Z-axis direction is simply referred to as "vertical direction Z". The X-axis direction and the Y-axis direction are orthogonal to the Z-axis direction and orthogonal to each other. The X-axis direction is called "front-back direction X", and the Y-axis direction is called "left-right direction Y".

また、Z軸方向の正の側、すなわち鉛直方向上側を単に「上側」と呼び、Z軸方向の負の側、すなわち鉛直方向下側を単に「下側」と呼ぶ。X軸方向の負の側を「前後方向一方側」と呼び、X軸方向の正の側を「前後方向他方側」と呼ぶ。Y軸方向の負の側を「左右方向一方側」と呼び、Y軸方向の正の側を「左右方向他方側」と呼ぶ。 Further, the positive side in the Z-axis direction, that is, the upper side in the vertical direction is simply called "upper side", and the negative side in the Z-axis direction, that is, the lower side in the vertical direction is simply called "lower side". The negative side in the X-axis direction is called "one side in the front-rear direction", and the positive side in the X-axis direction is called "the other side in the front-back direction". The negative side in the Y-axis direction is called "one side in the left-right direction", and the positive side in the Y-axis direction is called "the other side in the left-right direction".

なお、鉛直方向、前後方向および左右方向とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 The vertical direction, the front-back direction, and the left-right direction are simply names for explaining the relative positional relationship of each part, and the actual arrangement relationship, etc. is an arrangement relationship other than the arrangement relationship, etc. indicated by these names. There may be.

図1および図2に示すように、本実施形態の無人移動体システム10は、送電装置30と、非接触給電によって電力が供給される無人移動体20と、を備える。本実施形態において送電装置30は、例えば、床面に設置される。図2に示すように、送電装置30は、送電コイル31と、送電ユニット32と、を有する。送電コイル31は、後述する受電コイル61に対して送電可能な非接触給電用のコイルである。送電コイル31は、例えば、鉛直方向Zと直交する中心軸を中心とする円環状である。図1に示す配置関係においては、送電コイル31は、例えば、左右方向Yと平行な中心軸を中心とする円環状である。 As shown in FIGS. 1 and 2, the unmanned mobile body system 10 of the present embodiment includes a power transmission device 30 and an unmanned mobile body 20 to which electric power is supplied by non-contact power supply. In the present embodiment, the power transmission device 30 is installed on the floor, for example. As shown in FIG. 2, the power transmission device 30 includes a power transmission coil 31 and a power transmission unit 32. The power transmission coil 31 is a non-contact power feeding coil capable of transmitting power to the power receiving coil 61 described later. The power transmission coil 31 is, for example, an annular shape centered on a central axis orthogonal to the vertical direction Z. In the arrangement relationship shown in FIG. 1, the power transmission coil 31 is, for example, an annular shape centered on a central axis parallel to the left-right direction Y.

送電ユニット32には、外部の電源36から電力が供給される。電源36は、DC電源であってもよいし、商用電源等の交流電源であってもよい。送電ユニット32は、送電電源部33と、送電通信部35と、送電制御部34と、を有する。 Electric power is supplied to the power transmission unit 32 from an external power source 36. The power source 36 may be a DC power source or an AC power source such as a commercial power source. The power transmission unit 32 includes a power transmission power supply unit 33, a power transmission communication unit 35, and a power transmission control unit 34.

送電電源部33は、送電制御部34の制御に基づいて、電源36から供給された電力を送電コイル31に出力する。送電通信部35は、例えば、赤外線センサ等を有し、無人移動体20に設けられた後述する受電通信部65から射出される通信用の赤外光を受光する。また、送電通信部35は、無人移動体20の受電通信部65に通信用の赤外光を射出してもよい。送電制御部34は、送電通信部35が受光する赤外光に基づいて、送電コイル31による電力供給を制御する。 The power transmission power supply unit 33 outputs the electric power supplied from the power supply 36 to the power transmission coil 31 based on the control of the power transmission control unit 34. The power transmission communication unit 35 has, for example, an infrared sensor or the like, and receives infrared light for communication emitted from a power reception communication unit 65, which will be described later, provided in the unmanned mobile body 20. Further, the power transmission communication unit 35 may emit infrared light for communication to the power reception communication unit 65 of the unmanned mobile body 20. The power transmission control unit 34 controls the power supply by the power transmission coil 31 based on the infrared light received by the power transmission communication unit 35.

図1から図4に示すように、無人移動体20は、筐体20aと、天板22と、推進ユニット40と、従動車輪44と、受電装置60と、蓄電部50と、給電制御ユニット51と、無人移動体制御ユニット80と、第1絶縁部材24と、第2絶縁部材25と、磁束遮蔽部材23と、を備える。 As shown in FIGS. 1 to 4, the unmanned moving body 20 includes a housing 20a, a top plate 22, a propulsion unit 40, a driven wheel 44, a power receiving device 60, a power storage unit 50, and a power supply control unit 51. The unmanned moving body control unit 80, the first insulating member 24, the second insulating member 25, and the magnetic flux shielding member 23 are provided.

図1および図3に示すように、筐体20aは、全体として上側に開口する箱状である。図3に示すように、筐体20aは、蓄電部50、給電制御ユニット51および無人移動体制御ユニット80を収容する。筐体20aは、蓄電部50、給電制御ユニット51および無人移動体制御ユニット80を囲む枠部21を有する。枠部21は、鉛直方向Zに沿って視て、矩形枠状である。枠部21は、金属製である。 As shown in FIGS. 1 and 3, the housing 20a has a box shape that opens upward as a whole. As shown in FIG. 3, the housing 20a houses the power storage unit 50, the power supply control unit 51, and the unmanned mobile unit control unit 80. The housing 20a has a power storage unit 50, a power supply control unit 51, and a frame unit 21 surrounding the unmanned moving body control unit 80. The frame portion 21 has a rectangular frame shape when viewed along the vertical direction Z. The frame portion 21 is made of metal.

枠部21は、複数の梁部21a,21b,21c,21dを有する。図1に示すように、梁部21aおよび梁部21bは、前後方向Xに延びる四角筒状である。梁部21aと梁部21bとは、互いに左右方向Yに間隔を空けて配置される。梁部21cおよび梁部21dは、左右方向Yに延び、互いに前後方向Xに間隔を空けて配置される。梁部21cは、梁部21aの前後方向一方側の端部と梁部21bの前後方向一方側の端部とを繋ぐ。梁部21dは、梁部21aの前後方向他方側の端部と梁部21bの前後方向他方側の端部とを繋ぐ。 The frame portion 21 has a plurality of beam portions 21a, 21b, 21c, 21d. As shown in FIG. 1, the beam portion 21a and the beam portion 21b have a square tubular shape extending in the front-rear direction X. The beam portion 21a and the beam portion 21b are arranged at intervals in the left-right direction Y from each other. The beam portion 21c and the beam portion 21d extend in the left-right direction Y and are arranged at intervals in the front-rear direction X from each other. The beam portion 21c connects the end portion of the beam portion 21a on one side in the front-rear direction and the end portion of the beam portion 21b on one side in the front-rear direction. The beam portion 21d connects the end portion of the beam portion 21a on the other side in the front-rear direction and the end portion of the beam portion 21b on the other side in the front-rear direction.

天板22は、板面が鉛直方向Zと直交する板状である。天板22の上側から視た形状は、例えば、前後方向Xに長い長方形状である。天板22は、筐体20aの上側に配置される。天板22は、筐体20aの上側の開口を塞ぐ。天板22は、金属製である。天板22の上側の面である積載面22aには、例えば、無人移動体20が搬送する対象物が載せられる。積載面22aは、鉛直方向Zと直交する長方形状の面である。なお、天板22を上側から視た形状は、特に限定されず、長方形状以外の形状であってもよい。天板22を上側から視た形状は、例えば、円形状であってもよいし、長方形以外の多角形状であってもよい。 The top plate 22 has a plate shape whose surface is orthogonal to the vertical direction Z. The shape of the top plate 22 viewed from above is, for example, a rectangular shape long in the front-rear direction X. The top plate 22 is arranged on the upper side of the housing 20a. The top plate 22 closes the opening on the upper side of the housing 20a. The top plate 22 is made of metal. For example, an object to be conveyed by the unmanned moving body 20 is placed on the loading surface 22a, which is the upper surface of the top plate 22. The loading surface 22a is a rectangular surface orthogonal to the vertical direction Z. The shape of the top plate 22 viewed from above is not particularly limited, and may be a shape other than a rectangular shape. The shape of the top plate 22 viewed from above may be, for example, a circular shape or a polygonal shape other than a rectangle.

図3に示すように、本実施形態において推進ユニット40は、左右方向Yに沿って2つ設けられる。2つの推進ユニット40は、左右方向Yに対して対称に配置される。図2および図3に示すように、推進ユニット40は、モータ41と、駆動車輪42と、モータ制御部43と、を有する。すなわち、無人移動体20は、モータ41と、駆動車輪42と、モータ制御部43と、を備える。 As shown in FIG. 3, two propulsion units 40 are provided along the left-right direction Y in the present embodiment. The two propulsion units 40 are arranged symmetrically with respect to the left-right direction Y. As shown in FIGS. 2 and 3, the propulsion unit 40 includes a motor 41, drive wheels 42, and a motor control unit 43. That is, the unmanned moving body 20 includes a motor 41, drive wheels 42, and a motor control unit 43.

図3に示すように、モータ41は、筐体20aに収容される。モータ41は、鉛直方向Zに沿って視て、枠部21の内側に配置される。モータ41のシャフトは、左右方向Yに延び、枠部21の外側に突出する。駆動車輪42は、モータ41のシャフトに固定される。モータ41は、シャフトを回転させることで、駆動車輪42を回転させる。駆動車輪42が回転することによって、無人移動体20は、推進ユニット40から推進力を得る。 As shown in FIG. 3, the motor 41 is housed in the housing 20a. The motor 41 is arranged inside the frame portion 21 when viewed along the vertical direction Z. The shaft of the motor 41 extends in the left-right direction Y and projects to the outside of the frame portion 21. The drive wheel 42 is fixed to the shaft of the motor 41. The motor 41 rotates the drive wheel 42 by rotating the shaft. As the drive wheels 42 rotate, the unmanned moving body 20 obtains propulsive force from the propulsion unit 40.

モータ制御部43は、無人移動体制御ユニット80からの情報に基づいて、蓄電部50から供給される電力をモータ41に出力する。図1に示すように、従動車輪44は、枠部21の四隅にそれぞれ取り付けられる。従動車輪44は、駆動車輪42による無人移動体20の移動に伴って回転する。 The motor control unit 43 outputs the electric power supplied from the power storage unit 50 to the motor 41 based on the information from the unmanned moving body control unit 80. As shown in FIG. 1, the driven wheels 44 are attached to the four corners of the frame portion 21, respectively. The driven wheel 44 rotates with the movement of the unmanned moving body 20 by the driving wheel 42.

図4に示すように、受電装置60は、筐体20aの左右方向一方側の部分における前後方向一方側の端部に取り付けられる。すなわち、受電装置60は、鉛直方向Zと直交する左右方向Yにおいて筐体20aの一方側に配置される。本実施形態において受電装置60は、第2絶縁部材25および磁束遮蔽部材23を介して梁部21bに固定される。より詳細には、受電装置60は、磁束遮蔽部材23の左右方向一方側の面に固定される。受電装置60は、給電制御ユニット51および蓄電部50の左右方向一方側に配置される。図2に示すように、受電装置60は、受電コイル61と、受電ユニット62と、を有する。すなわち、無人移動体20は、受電コイル61と、受電ユニット62と、を備える。 As shown in FIG. 4, the power receiving device 60 is attached to the end portion on one side in the front-rear direction of the portion on one side in the left-right direction of the housing 20a. That is, the power receiving device 60 is arranged on one side of the housing 20a in the left-right direction Y orthogonal to the vertical direction Z. In the present embodiment, the power receiving device 60 is fixed to the beam portion 21b via the second insulating member 25 and the magnetic flux shielding member 23. More specifically, the power receiving device 60 is fixed to one surface of the magnetic flux shielding member 23 in the left-right direction. The power receiving device 60 is arranged on one side in the left-right direction of the power supply control unit 51 and the power storage unit 50. As shown in FIG. 2, the power receiving device 60 includes a power receiving coil 61 and a power receiving unit 62. That is, the unmanned moving body 20 includes a power receiving coil 61 and a power receiving unit 62.

受電コイル61は、非接触給電用のコイルである。受電コイル61は、受電ユニット62、給電制御ユニット51を介して、蓄電部50と電気的に接続される。受電コイル61は、例えば、左右方向Yと平行な中心軸を中心とする円環状である。送電コイル31に電流が流れることで生じる磁界が受電コイル61に作用すると、受電コイル61に電流が流れる。これにより、受電コイル61から受電ユニット62、給電制御ユニット51を介して、蓄電部50に給電することができ、蓄電部50を充電できる。したがって、無人移動体20を送電装置30に近づけることで、蓄電部50を外部電源に接続することなく、受電コイル61と送電コイル31とによって非接触給電を行うことができる。また、受電コイル61と送電コイル31とによって非接触給電を行えるため、無人移動体20の構造および送電装置30の構造を簡単化できる。以上により、簡単な構造および制御で蓄電部50の充電を自動化できる。 The power receiving coil 61 is a coil for non-contact power feeding. The power receiving coil 61 is electrically connected to the power storage unit 50 via the power receiving unit 62 and the power supply control unit 51. The power receiving coil 61 is, for example, an annular shape centered on a central axis parallel to the left-right direction Y. When a magnetic field generated by the current flowing through the power transmitting coil 31 acts on the power receiving coil 61, the current flows through the power receiving coil 61. As a result, power can be supplied from the power receiving coil 61 to the power storage unit 50 via the power receiving unit 62 and the power supply control unit 51, and the power storage unit 50 can be charged. Therefore, by bringing the unmanned mobile body 20 closer to the power transmission device 30, non-contact power supply can be performed by the power receiving coil 61 and the power transmission coil 31 without connecting the power storage unit 50 to the external power source. Further, since the power receiving coil 61 and the power transmitting coil 31 can supply non-contact power, the structure of the unmanned moving body 20 and the structure of the power transmission device 30 can be simplified. As described above, the charging of the power storage unit 50 can be automated with a simple structure and control.

本実施形態において受電コイル61および送電コイル31は、磁界共鳴方式による非接触給電用のコイルである。磁界共鳴方式による非接触給電を用いる場合、受電コイル61を送電コイル31に近づければ、受電コイル61と送電コイル31との相対姿勢によらず、受電コイル61に電流を生じさせることができる。そのため、送電装置30に対する無人移動体20の姿勢、および無人移動体20に対する受電コイル61の姿勢によらず、蓄電部50を充電しやすい。これにより、無人移動体20の位置制御の精度が比較的低い場合であっても、無人移動体20を単に送電装置30に近づけることによって、蓄電部50の充電を行いやすい。したがって、より簡単な無人移動体20の制御によって、蓄電部50の自動充電を実現できる。 In the present embodiment, the power receiving coil 61 and the power transmitting coil 31 are coils for non-contact power feeding by the magnetic field resonance method. When the non-contact power supply by the magnetic field resonance method is used, if the power receiving coil 61 is brought close to the power transmission coil 31, a current can be generated in the power receiving coil 61 regardless of the relative posture between the power receiving coil 61 and the power transmission coil 31. Therefore, the power storage unit 50 can be easily charged regardless of the posture of the unmanned moving body 20 with respect to the power transmission device 30 and the posture of the power receiving coil 61 with respect to the unmanned moving body 20. As a result, even when the accuracy of the position control of the unmanned moving body 20 is relatively low, the power storage unit 50 can be easily charged by simply bringing the unmanned moving body 20 closer to the power transmission device 30. Therefore, automatic charging of the power storage unit 50 can be realized by simpler control of the unmanned moving body 20.

受電ユニット62は、受電電源部63と、受電通信部65と、受電制御部64と、を有する。受電電源部63は、受電制御部64の制御に基づいて、受電コイル61から供給された電力を給電制御ユニット51に出力する。受電通信部65は、例えば、通信用の赤外光等を射出する光源を有し、受電制御部64の制御に基づいて、赤外光を射出する。また、受電通信部65は、送電通信部35が射出する赤外光を受光する。 The power receiving unit 62 includes a power receiving power supply unit 63, a power receiving communication unit 65, and a power receiving control unit 64. The power receiving power supply unit 63 outputs the power supplied from the power receiving coil 61 to the power supply control unit 51 based on the control of the power receiving control unit 64. The power receiving communication unit 65 has, for example, a light source that emits infrared light for communication or the like, and emits infrared light under the control of the power receiving control unit 64. Further, the power receiving communication unit 65 receives the infrared light emitted by the power transmission communication unit 35.

受電制御部64は、受電通信部65を制御する。具体的には、受電制御部64は、給電開始要求の信号および給電停止要求の信号を、受電通信部65に出力する。受電通信部65は、受電制御部64から出力された給電開始要求の信号および給電停止要求の信号を送電装置30に送信する。 The power receiving control unit 64 controls the power receiving communication unit 65. Specifically, the power receiving control unit 64 outputs a power supply start request signal and a power supply stop request signal to the power receiving communication unit 65. The power receiving communication unit 65 transmits the power supply start request signal and the power supply stop request signal output from the power receiving control unit 64 to the power transmission device 30.

蓄電部50は、例えば、充電式のバッテリである。蓄電部50は、無人移動体制御ユニット80を介して推進ユニット40と電気的に接続され、推進ユニット40に電力を供給する。これにより、蓄電部50は、モータ41に電力を供給する。本実施形態において蓄電部50は、例えば、1つ設けられる。1つの蓄電部50は、2つの推進ユニット40と電気的に接続され、2つの推進ユニット40に電力を供給する。蓄電部50の種類は、充電式の蓄電部であれば特に限定されない。図4に示すように、蓄電部50は、例えば、枠部21の内側における前後方向一方側の端部に配置される。 The power storage unit 50 is, for example, a rechargeable battery. The power storage unit 50 is electrically connected to the propulsion unit 40 via the unmanned mobile control unit 80 to supply electric power to the propulsion unit 40. As a result, the power storage unit 50 supplies electric power to the motor 41. In this embodiment, for example, one power storage unit 50 is provided. One power storage unit 50 is electrically connected to the two propulsion units 40 to supply electric power to the two propulsion units 40. The type of the power storage unit 50 is not particularly limited as long as it is a rechargeable power storage unit. As shown in FIG. 4, the power storage unit 50 is arranged, for example, at one end in the front-rear direction inside the frame portion 21.

図2に示すように、給電制御ユニット51は、充電電源部53と、充電制御部52と、を有する。充電電源部53は、充電制御部52の制御に基づいて、受電装置60から供給された電力を蓄電部50に出力する。充電制御部52は、蓄電部50への充電の開始および停止を制御する。これにより、給電制御ユニット51は、受電装置60の受電コイル61から蓄電部50への給電を制御する。図4に示すように、給電制御ユニット51は、例えば、枠部21の内側における前後方向一方側の端部に配置される。給電制御ユニット51は、蓄電部50の左右方向一方側に並んで配置される。本実施形態において受電装置60と給電制御ユニット51と蓄電部50とは、左右方向Yに沿って視て、互いに重なる。 As shown in FIG. 2, the power supply control unit 51 includes a charging power supply unit 53 and a charging control unit 52. The charging power supply unit 53 outputs the electric power supplied from the power receiving device 60 to the power storage unit 50 based on the control of the charging control unit 52. The charge control unit 52 controls the start and stop of charging the power storage unit 50. As a result, the power supply control unit 51 controls the power supply from the power receiving coil 61 of the power receiving device 60 to the power storage unit 50. As shown in FIG. 4, the power supply control unit 51 is arranged, for example, at one end in the front-rear direction inside the frame portion 21. The power supply control unit 51 is arranged side by side on one side in the left-right direction of the power storage unit 50. In the present embodiment, the power receiving device 60, the power supply control unit 51, and the power storage unit 50 overlap each other when viewed along the left-right direction Y.

無人移動体制御ユニット80は、無人移動体20を制御する。図2に示すように、無人移動体制御ユニット80は、無人移動体電源部82と、無人移動体制御部81と、を有する。無人移動体電源部82は、無人移動体制御部81の制御に基づいて、蓄電部50から供給された電力を推進ユニット40に出力する。これにより、無人移動体制御ユニット80は、推進ユニット40を制御し、無人移動体20の移動を制御する。また、無人移動体制御部81は、給電制御ユニット51を制御する。 The unmanned moving body control unit 80 controls the unmanned moving body 20. As shown in FIG. 2, the unmanned moving body control unit 80 includes an unmanned moving body power supply unit 82 and an unmanned moving body control unit 81. The unmanned mobile body power supply unit 82 outputs the electric power supplied from the power storage unit 50 to the propulsion unit 40 based on the control of the unmanned mobile body control unit 81. As a result, the unmanned moving body control unit 80 controls the propulsion unit 40 and controls the movement of the unmanned moving body 20. Further, the unmanned moving body control unit 81 controls the power supply control unit 51.

図3に示すように、無人移動体制御部81は、回路基板83a,83b,83cを有する。回路基板83aと回路基板83bと回路基板83cとは、互いに電気的に接続される。回路基板83aは、給電制御ユニット51、蓄電部50および2つの推進ユニット40と電気的に接続される。これにより、無人移動体制御ユニット80は、給電制御ユニット51、蓄電部50および2つの推進ユニット40と電気的に接続される。回路基板83bは、例えば、2つの推進ユニット40のうちの一方を制御する回路基板である。回路基板83cは、例えば、2つの推進ユニット40のうちの他方を制御する回路基板である。 As shown in FIG. 3, the unmanned moving body control unit 81 has circuit boards 83a, 83b, 83c. The circuit board 83a, the circuit board 83b, and the circuit board 83c are electrically connected to each other. The circuit board 83a is electrically connected to the power supply control unit 51, the power storage unit 50, and the two propulsion units 40. As a result, the unmanned mobile control unit 80 is electrically connected to the power supply control unit 51, the power storage unit 50, and the two propulsion units 40. The circuit board 83b is, for example, a circuit board that controls one of the two propulsion units 40. The circuit board 83c is, for example, a circuit board that controls the other of the two propulsion units 40.

上述したようにして、少なくとも蓄電部50と給電制御ユニット51と無人移動体制御ユニット80とが電気的に接続されて回路部90が構成される。回路部90は、筐体20aに対して絶縁される。そのため、筐体20aと回路部90とを通る閉回路が構成されない。これにより、仮に筐体20aに渦電流が生じて、筐体20aに電位差が生じた場合であっても、筐体20aを通って回路部90に電流が流れない。したがって、回路部90に不要な電流が流れることを抑制でき、回路部90が誤動作することを抑制できる。また、例えば、静電気等の外乱によって筐体20aに電流が流れるような場合であっても、回路部90と筐体20aとが絶縁されるため、筐体20aから回路部90に電流が流れない。したがって、外乱によって筐体20aに電流が流れる場合であっても、回路部90が誤動作することを抑制できる。 As described above, at least the power storage unit 50, the power supply control unit 51, and the unmanned mobile control unit 80 are electrically connected to form the circuit unit 90. The circuit unit 90 is insulated from the housing 20a. Therefore, a closed circuit passing through the housing 20a and the circuit unit 90 is not formed. As a result, even if an eddy current is generated in the housing 20a and a potential difference is generated in the housing 20a, no current flows through the housing 20a to the circuit unit 90. Therefore, it is possible to suppress the flow of unnecessary current through the circuit unit 90, and it is possible to prevent the circuit unit 90 from malfunctioning. Further, for example, even when a current flows through the housing 20a due to disturbance such as static electricity, the circuit unit 90 and the housing 20a are insulated so that no current flows from the housing 20a to the circuit unit 90. .. Therefore, even when a current flows through the housing 20a due to disturbance, it is possible to prevent the circuit unit 90 from malfunctioning.

回路部90は、第1接地部91と、第2接地部92と、第3接地部93a,93b,93cと、を有する。第1接地部91は、蓄電部50を接地する部分である。第1接地部91は、例えば、蓄電部50における接地用の端子である。第2接地部92は、給電制御ユニット51を接地する部分である。第2接地部92は、例えば、給電制御ユニット51における接地用の端子である。 The circuit unit 90 includes a first grounding unit 91, a second grounding unit 92, and a third grounding unit 93a, 93b, 93c. The first grounding unit 91 is a portion that grounds the power storage unit 50. The first grounding unit 91 is, for example, a grounding terminal in the power storage unit 50. The second grounding portion 92 is a portion that grounds the power supply control unit 51. The second grounding unit 92 is, for example, a grounding terminal in the power supply control unit 51.

第3接地部93a〜93cは、無人移動体制御ユニット80を接地する部分である。第3接地部93aは、例えば、回路基板83aにおける接地用のプリント配線部分である。第3接地部93bは、例えば、回路基板83bにおける接地用のプリント配線部分である。第3接地部93cは、例えば、回路基板83cにおける接地用のプリント配線部分である。 The third grounding portions 93a to 93c are portions for grounding the unmanned moving body control unit 80. The third grounding portion 93a is, for example, a printed wiring portion for grounding on the circuit board 83a. The third grounding portion 93b is, for example, a printed wiring portion for grounding on the circuit board 83b. The third grounding portion 93c is, for example, a printed wiring portion for grounding in the circuit board 83c.

第1接地部91と第2接地部92と第3接地部93a〜93cとは、互いに電気的に接続される。これにより、各接地部の電位を同じにすることができ、各接地部の電位を回路部90の基準電位とすることができる。すなわち、回路部90を接地することができる。各接地部同士が電気的に接続されて構成される回路は、開回路である。これにより、各接地部同士が電気的に接続されて構成される回路に不要な電流が流れることを抑制でき、回路部90が誤動作することをより抑制できる。 The first grounding portion 91, the second grounding portion 92, and the third grounding portions 93a to 93c are electrically connected to each other. As a result, the potential of each grounding portion can be made the same, and the potential of each grounding portion can be used as the reference potential of the circuit unit 90. That is, the circuit unit 90 can be grounded. A circuit formed by electrically connecting each grounding portion to each other is an open circuit. As a result, it is possible to suppress the flow of unnecessary current through the circuit formed by electrically connecting the grounding portions to each other, and it is possible to further suppress the malfunction of the circuit portion 90.

第1絶縁部材24は、絶縁性を有する。図4に示すように、第1絶縁部材24は、給電制御ユニット51の周囲を覆う。給電制御ユニット51は、第1絶縁部材24を介して筐体20aに固定される。給電制御ユニット51の第2接地部92は、第1絶縁部材24を介して筐体20aに固定される。これにより、給電制御ユニット51の第2接地部92が筐体20aと電気的に接触することを抑制できる。したがって、筐体20aに第2接地部92が電気的に接触することを抑制できる。第1絶縁部材24の材質は、絶縁性を有するならば、特に限定されない。第1絶縁部材24は、例えば、樹脂製のシートである。 The first insulating member 24 has an insulating property. As shown in FIG. 4, the first insulating member 24 covers the periphery of the power supply control unit 51. The power supply control unit 51 is fixed to the housing 20a via the first insulating member 24. The second grounding portion 92 of the power supply control unit 51 is fixed to the housing 20a via the first insulating member 24. As a result, it is possible to prevent the second grounding portion 92 of the power supply control unit 51 from electrically contacting the housing 20a. Therefore, it is possible to prevent the second grounding portion 92 from electrically contacting the housing 20a. The material of the first insulating member 24 is not particularly limited as long as it has insulating properties. The first insulating member 24 is, for example, a resin sheet.

図示は省略するが、本実施形態においては、蓄電部50と無人移動体制御ユニット80とにも、給電制御ユニット51と同様に第1絶縁部材が設けられる。蓄電部50に設けられる第1絶縁部材は、例えば、蓄電部50の筐体である。蓄電部50の第1接地部91は、蓄電部50に設けられた第1絶縁部材を介して筐体20aに固定される。これにより、筐体20aに第1接地部91が電気的に接触することを抑制できる。 Although not shown, in the present embodiment, the power storage unit 50 and the unmanned moving body control unit 80 are also provided with the first insulating member in the same manner as the power supply control unit 51. The first insulating member provided in the power storage unit 50 is, for example, a housing of the power storage unit 50. The first grounding portion 91 of the power storage unit 50 is fixed to the housing 20a via the first insulating member provided in the power storage unit 50. As a result, it is possible to prevent the first grounding portion 91 from electrically contacting the housing 20a.

無人移動体制御ユニット80の第3接地部93a〜93cは、無人移動体制御ユニット80に設けられる第1絶縁部材を介して筐体20aに固定される。これにより、筐体20aに第3接地部93a〜93cが電気的に接触することを抑制できる。以上のように、本実施形態によれば、第1接地部91と第2接地部92と第3接地部93a〜93cとは、絶縁性を有する第1絶縁部材を介して筐体20aに固定される。したがって、回路部90を筐体20aに対して絶縁して配置することが容易である。 The third grounding portions 93a to 93c of the unmanned moving body control unit 80 are fixed to the housing 20a via the first insulating member provided in the unmanned moving body control unit 80. As a result, it is possible to prevent the third grounding portions 93a to 93c from electrically contacting the housing 20a. As described above, according to the present embodiment, the first grounding portion 91, the second grounding portion 92, and the third grounding portions 93a to 93c are fixed to the housing 20a via the first insulating member having an insulating property. Will be done. Therefore, it is easy to arrange the circuit unit 90 so as to be insulated from the housing 20a.

第2絶縁部材25は、絶縁性を有する。第2絶縁部材25は、例えば、直方体状である。第2絶縁部材25は、筐体20aに固定される。より詳細には、第2絶縁部材25は、枠部21の左右方向一方側の面に固定される。本実施形態において枠部21の左右方向一方側の面とは、梁部21bの左右方向一方側の面を含む。第2絶縁部材25の材質は、絶縁性を有するならば、特に限定されない。第2絶縁部材25は、例えば、樹脂製である。 The second insulating member 25 has an insulating property. The second insulating member 25 has, for example, a rectangular parallelepiped shape. The second insulating member 25 is fixed to the housing 20a. More specifically, the second insulating member 25 is fixed to one surface of the frame portion 21 in the left-right direction. In the present embodiment, the one side surface of the frame portion 21 in the left-right direction includes the one side surface of the beam portion 21b in the left-right direction. The material of the second insulating member 25 is not particularly limited as long as it has insulating properties. The second insulating member 25 is made of resin, for example.

磁束遮蔽部材23は、磁束を遮蔽する。磁束遮蔽部材23は、板面が左右方向Yと直交する板状である。磁束遮蔽部材23は、受電コイル61と給電制御ユニット51および蓄電部50との左右方向Yの間に配置される。すなわち、磁束遮蔽部材23は、受電コイル61と回路部90との左右方向Yの間に配置される。これにより、送電装置30から受電装置60に放出される磁束を磁束遮蔽部材23で遮蔽することができ、磁束が回路部90に干渉することを抑制できる。 The magnetic flux shielding member 23 shields the magnetic flux. The magnetic flux shielding member 23 has a plate shape whose plate surface is orthogonal to the left-right direction Y. The magnetic flux shielding member 23 is arranged between the power receiving coil 61, the power supply control unit 51, and the power storage unit 50 in the left-right direction Y. That is, the magnetic flux shielding member 23 is arranged between the power receiving coil 61 and the circuit unit 90 in the left-right direction Y. As a result, the magnetic flux emitted from the power transmitting device 30 to the power receiving device 60 can be shielded by the magnetic flux shielding member 23, and the magnetic flux can be prevented from interfering with the circuit unit 90.

上述したように、磁束遮蔽部材23の左右方向一方側の面には、受電装置60が固定される。そのため、磁束遮蔽部材23を受電装置60に密着させることができる。これにより、磁束遮蔽部材23によって受電コイル61を通る磁束および受電コイル61の周囲を通る磁束を遮蔽しやすい。したがって、磁束が筐体20aを通ることを抑制でき、筐体20aに渦電流が生じることを抑制できる。そのため、筐体20aに電位差が生じることを抑制できる。また、筐体20aが発熱することを抑制できる。 As described above, the power receiving device 60 is fixed to the surface of the magnetic flux shielding member 23 on one side in the left-right direction. Therefore, the magnetic flux shielding member 23 can be brought into close contact with the power receiving device 60. As a result, the magnetic flux shielding member 23 can easily shield the magnetic flux passing through the power receiving coil 61 and the magnetic flux passing around the power receiving coil 61. Therefore, it is possible to suppress the magnetic flux from passing through the housing 20a, and it is possible to suppress the generation of eddy currents in the housing 20a. Therefore, it is possible to suppress the occurrence of a potential difference in the housing 20a. In addition, it is possible to suppress heat generation of the housing 20a.

本実施形態において磁束遮蔽部材23は、受電コイル61と筐体20aとの間に配置される。そのため、磁束が筐体20aを通ることを抑制でき、筐体20aに渦電流が生じることを抑制できる。より詳細には、磁束遮蔽部材23は、受電コイル61と枠部21との左右方向Yの間に配置される。そのため、磁束が枠部21を通ることを抑制でき、枠部21に渦電流が生じることを抑制できる。本実施形態では、左右方向Yに沿って視て、受電コイル61の全体は、磁束遮蔽部材23と重なる。これにより、磁束遮蔽部材23によって受電コイル61の内側を通る磁束のすべてを遮蔽しやすく、磁束が回路部90に干渉することをより抑制できる。また、磁束が筐体20aを通ることをより抑制でき、筐体20aに渦電流が生じることをより抑制できる。 In the present embodiment, the magnetic flux shielding member 23 is arranged between the power receiving coil 61 and the housing 20a. Therefore, it is possible to suppress the magnetic flux from passing through the housing 20a, and it is possible to suppress the generation of eddy currents in the housing 20a. More specifically, the magnetic flux shielding member 23 is arranged between the power receiving coil 61 and the frame portion 21 in the left-right direction Y. Therefore, it is possible to suppress the magnetic flux from passing through the frame portion 21, and it is possible to suppress the generation of eddy current in the frame portion 21. In the present embodiment, the entire power receiving coil 61 overlaps with the magnetic flux shielding member 23 when viewed along the left-right direction Y. As a result, the magnetic flux shielding member 23 can easily shield all the magnetic flux passing through the inside of the power receiving coil 61, and can further suppress the magnetic flux from interfering with the circuit unit 90. Further, the magnetic flux can be further suppressed from passing through the housing 20a, and the generation of eddy current in the housing 20a can be further suppressed.

磁束遮蔽部材23は、筐体20aに取り付けられる。本実施形態においては、磁束遮蔽部材23は、第2絶縁部材25を介して筐体20aに固定される。そのため、磁束遮蔽部材23が筐体20aと絶縁した状態で、磁束遮蔽部材23を筐体20aに取り付けることができる。これにより、磁束を遮蔽することで磁束遮蔽部材23内に生じた渦電流が、筐体20aに流れることを抑制できる。したがって、筐体20aに電位差が生じることを抑制できる。 The magnetic flux shielding member 23 is attached to the housing 20a. In the present embodiment, the magnetic flux shielding member 23 is fixed to the housing 20a via the second insulating member 25. Therefore, the magnetic flux shielding member 23 can be attached to the housing 20a in a state where the magnetic flux shielding member 23 is insulated from the housing 20a. As a result, it is possible to prevent the eddy current generated in the magnetic flux shielding member 23 from flowing to the housing 20a by shielding the magnetic flux. Therefore, it is possible to suppress the occurrence of a potential difference in the housing 20a.

本実施形態において磁束遮蔽部材23は、第2絶縁部材25を介して枠部21に固定される。そのため、磁束遮蔽部材23内に生じた渦電流が枠部21に流れることを抑制できる。これにより、枠部21に電位差が生じることを抑制できる。磁束遮蔽部材23は、第2絶縁部材25の左右方向一方側の面に固定される。磁束遮蔽部材23の材質は、磁束を遮蔽できるならば、特に限定されない。磁束遮蔽部材23の材質は、例えば、アルミニウムである。 In the present embodiment, the magnetic flux shielding member 23 is fixed to the frame portion 21 via the second insulating member 25. Therefore, it is possible to suppress the eddy current generated in the magnetic flux shielding member 23 from flowing to the frame portion 21. As a result, it is possible to suppress the occurrence of a potential difference in the frame portion 21. The magnetic flux shielding member 23 is fixed to one surface of the second insulating member 25 in the left-right direction. The material of the magnetic flux shielding member 23 is not particularly limited as long as it can shield the magnetic flux. The material of the magnetic flux shielding member 23 is, for example, aluminum.

本発明は上述の実施形態に限られず、以下の他の構成を採用することもできる。受電コイルの形状および送電コイルの形状は、円形状に限られない。例えば、受電コイルの形状および送電コイルの形状は、楕円形状であってもよいし、四角形等の多角形状であってもよい。受電コイルおよび送電コイルは、ソレノイド型のコイルであってもよい。受電コイルの形状と送電コイルの形状とは、互いに異なってもよい。無人移動体に搭載される受電コイルの数は、2つ以上であってもよい。 The present invention is not limited to the above-described embodiment, and the following other configurations can also be adopted. The shape of the power receiving coil and the shape of the power transmitting coil are not limited to the circular shape. For example, the shape of the power receiving coil and the shape of the power transmitting coil may be an elliptical shape or a polygonal shape such as a quadrangle. The power receiving coil and the power transmitting coil may be solenoid type coils. The shape of the power receiving coil and the shape of the power transmitting coil may be different from each other. The number of power receiving coils mounted on the unmanned moving body may be two or more.

受電コイルおよび送電コイルは、磁界共鳴方式以外の非接触給電用のコイルであってもよい。受電コイルおよび送電コイルは、例えば、電磁誘導方式の非接触給電用のコイルであってもよい。 The power receiving coil and the power transmitting coil may be coils for non-contact power feeding other than the magnetic field resonance method. The power receiving coil and the power transmitting coil may be, for example, an electromagnetic induction coil for non-contact power feeding.

蓄電部は、複数設けられてもよい。この場合において受電コイルが複数設けられる場合には、複数の蓄電部のそれぞれに対して、1つずつ受電コイルが接続される構成であってもよいし、複数ずつ受電コイルが接続される構成であってもよい。蓄電部は、推進ユニットごとに設けられてもよい。また、蓄電部は、充電式で蓄電できるならば、特に限定されず、バッテリ以外であってもよい。蓄電部は、例えば、電気二重層コンデンサであってもよい。回路部が筐体に対して絶縁されるならば、回路部の筐体に対する固定方法は、特に限定されない。 A plurality of power storage units may be provided. In this case, when a plurality of power receiving coils are provided, one power receiving coil may be connected to each of the plurality of power storage units, or a plurality of power receiving coils may be connected to each. There may be. The power storage unit may be provided for each propulsion unit. Further, the power storage unit is not particularly limited as long as it can store electricity in a rechargeable manner, and may be other than a battery. The power storage unit may be, for example, an electric double layer capacitor. As long as the circuit unit is insulated from the housing, the method of fixing the circuit unit to the housing is not particularly limited.

また、送電通信部と受電通信部とは、常時または所定の間隔毎に通信を行ってもよい。送電ユニットは、受電コイルによる受電状態を示す受電状態情報を受電通信部から受信してもよい。受電ユニットは、送電コイルによる送電状態を示す送電状態情報を送電通信部から受信してもよい。受電ユニットは、受電コイルによる受電状態を示す受電状態情報、送電ユニットからの受電指示情報および送電状態情報等を送電通信部から受信してもよい。なお、送電通信部および受電通信部は、赤外光を用いる方式に限定されず、他の無線通信等の方式を採用してもよい。無人移動体は、受電通信部が受信する受電状態情報に基づいて移動する。すなわち、モータ制御部が、受電コイルによる受電の状態を示す受電状態情報に基づいてモータを制御することによって、無人移動体は移動する。 Further, the power transmission communication unit and the power reception communication unit may communicate with each other at all times or at predetermined intervals. The power transmission unit may receive power receiving state information indicating the power receiving state by the power receiving coil from the power receiving communication unit. The power receiving unit may receive power transmission state information indicating the power transmission state by the power transmission coil from the power transmission communication unit. The power receiving unit may receive power receiving state information indicating the power receiving state by the power receiving coil, power receiving instruction information from the power transmission unit, power transmission state information, and the like from the power transmission communication unit. The power transmission communication unit and the power reception communication unit are not limited to the method using infrared light, and other methods such as wireless communication may be adopted. The unmanned mobile body moves based on the power receiving status information received by the power receiving communication unit. That is, the unmanned moving body moves when the motor control unit controls the motor based on the power receiving state information indicating the power receiving state by the power receiving coil.

また、受電ユニットは、直接的に無人移動体制御ユニットに接続されてもよい。この構成では、受電ユニットから蓄電部を介さずに無人移動体制御ユニットに電力が供給される。この構成においては、無人移動体制御部は、例えば、蓄電部から無人移動体制御ユニットに電力供給を行うか、受電ユニットから蓄電部を介さずに無人移動体制御ユニットに電力供給を行うかを判断してもよい。 Further, the power receiving unit may be directly connected to the unmanned mobile control unit. In this configuration, power is supplied from the power receiving unit to the unmanned mobile control unit without going through the power storage unit. In this configuration, the unmanned mobile control unit determines, for example, whether to supply power from the power storage unit to the unmanned mobile control unit or from the power receiving unit to the unmanned mobile control unit without going through the power storage unit. You may judge.

上述した実施形態の無人移動体および無人移動体システムの用途は、特に限定されない。上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The use of the unmanned mobile body and the unmanned mobile body system of the above-described embodiment is not particularly limited. The above configurations can be appropriately combined within a range that does not contradict each other.

本出願は、2017年9月19日に出願された日本出願である特願2017−179323号に基づく優先権を主張し、当該日本出願に記載された全ての記載内容を援用する
ものである。
This application claims priority based on Japanese Patent Application No. 2017-179323, which is a Japanese application filed on September 19, 2017, and incorporates all the contents described in the Japanese application.

20…無人移動体、20a…筐体、23…磁束遮蔽部材、24…第1絶縁部材、25… 第2絶縁部材、41…モータ、50…蓄電部、51…給電制御ユニット、61…受電コイル、80…無人移動体制御ユニット、90…回路部、91…第1接地部、92…第2接地部、93a,93b,93c…第3接地部 20 ... unmanned moving body, 20a ... housing, 23 ... magnetic flux shielding member, 24 ... first insulating member, 25 ... second insulating member, 41 ... motor, 50 ... power storage unit, 51 ... power supply control unit, 61 ... power receiving coil , 80 ... unmanned moving body control unit, 90 ... circuit unit, 91 ... first grounding unit, 92 ... second grounding unit, 93a, 93b, 93c ... third grounding unit

Claims (4)

非接触給電によって電力が供給される無人移動体であって、
モータと、
前記モータに電力を供給する充電式の蓄電部と、
前記蓄電部と電気的に接続される非接触給電用の受電コイルと、
前記受電コイルから前記蓄電部への給電を制御する給電制御ユニットと、
前記無人移動体を制御する無人移動体制御ユニットと、
前記蓄電部、前記給電制御ユニットおよび前記無人移動体制御ユニットを収容する筐体と、
を備え、
少なくとも前記蓄電部と前記給電制御ユニットと前記無人移動体制御ユニットとが電気的に接続されて回路部が構成され、
前記回路部は、前記筐体に対して絶縁される、無人移動体。
An unmanned mobile body powered by non-contact power supply
With the motor
A rechargeable power storage unit that supplies electric power to the motor,
A power receiving coil for non-contact power supply that is electrically connected to the power storage unit,
A power supply control unit that controls power supply from the power receiving coil to the power storage unit,
An unmanned moving body control unit that controls the unmanned moving body,
A housing for accommodating the power storage unit, the power supply control unit, and the unmanned mobile control unit, and
With
At least the power storage unit, the power supply control unit, and the unmanned mobile control unit are electrically connected to form a circuit unit.
The circuit unit is an unmanned moving body that is insulated from the housing.
前記回路部は、
前記蓄電部を接地する第1接地部と、
前記給電制御ユニットを接地する第2接地部と、
前記無人移動体制御ユニットを接地する第3接地部と、
を有し、
前記第1接地部と前記第2接地部と前記第3接地部とは、互いに電気的に接続される、請求項1に記載の無人移動体。
The circuit section
A first grounding unit that grounds the power storage unit and
A second grounding unit for grounding the power supply control unit and
A third grounding unit for grounding the unmanned moving body control unit and
Have,
The unmanned moving body according to claim 1, wherein the first grounding portion, the second grounding portion, and the third grounding portion are electrically connected to each other.
前記第1接地部と前記第2接地部と前記第3接地部とは、絶縁性を有する第1絶縁部材を介して前記筐体に固定される、請求項2に記載の無人移動体。 The unmanned moving body according to claim 2, wherein the first grounding portion, the second grounding portion, and the third grounding portion are fixed to the housing via a first insulating member having an insulating property. 絶縁性を有し、前記筐体に固定される第2絶縁部材と、
前記第2絶縁部材を介して前記筐体に固定され、磁束を遮蔽する磁束遮蔽部材と、
をさらに備え、
前記磁束遮蔽部材は、前記受電コイルと前記筐体との間に配置される、請求項1から3のいずれか一項に記載の無人移動体。
A second insulating member that has insulating properties and is fixed to the housing,
A magnetic flux shielding member fixed to the housing via the second insulating member and shielding the magnetic flux,
With more
The unmanned moving body according to any one of claims 1 to 3, wherein the magnetic flux shielding member is arranged between the power receiving coil and the housing.
JP2019543594A 2017-09-19 2018-09-13 Unmanned moving body Pending JPWO2019059080A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017179323 2017-09-19
JP2017179323 2017-09-19
PCT/JP2018/033949 WO2019059080A1 (en) 2017-09-19 2018-09-13 Unpiloted moving body

Publications (1)

Publication Number Publication Date
JPWO2019059080A1 true JPWO2019059080A1 (en) 2020-11-05

Family

ID=65809837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019543594A Pending JPWO2019059080A1 (en) 2017-09-19 2018-09-13 Unmanned moving body

Country Status (3)

Country Link
JP (1) JPWO2019059080A1 (en)
CN (1) CN111032420A (en)
WO (1) WO2019059080A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824227B2 (en) * 1990-10-20 1996-03-06 富士通株式会社 Case structure
KR101094253B1 (en) * 2008-04-28 2011-12-19 정춘길 Non-contact power receier, non-contact power trasmitter related to the same and non-contact power transmitting and receiving system
JP2011222892A (en) * 2010-04-14 2011-11-04 Toyota Motor Corp Vehicle body and electric vehicle
EP2801836B1 (en) * 2011-12-26 2019-07-10 Kawasaki Jukogyo Kabushiki Kaisha Leak detector, and leak detection method for electric vehicle
JP2015197663A (en) * 2014-04-03 2015-11-09 キヤノン株式会社 Radiographic device and radiographic system
CN108473067A (en) * 2015-12-28 2018-08-31 日本电产株式会社 Movable body system

Also Published As

Publication number Publication date
CN111032420A (en) 2020-04-17
WO2019059080A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP6743432B2 (en) Coil device
KR101750149B1 (en) Vehicle
WO2015045663A1 (en) Vehicle mounting structure of contactless power reception device
JP5547359B1 (en) Non-contact power supply system and non-contact power supply method
JP6135425B2 (en) In-vehicle structure of non-contact power receiving device
JPWO2013168239A1 (en) Vehicles that can receive power without contact
JP2013021886A (en) Power supply apparatus, power supply system, vehicle, and electronic apparatus
WO2015045085A1 (en) Vehicle mounting structure of contactless electricity reception device
JP2012216569A (en) Power transmission system
JP2015008547A (en) Non-contact power charger
JP5817813B2 (en) Power receiving device
EP3483906B1 (en) Coil device
CN113809840A (en) Position detection system and wireless power transmission system
JP2019057959A (en) Unmanned movable body
JP6458466B2 (en) Coil unit
JPWO2019059080A1 (en) Unmanned moving body
WO2014156014A1 (en) Contactless charging device
JP2020506657A (en) motor
JPWO2019059084A1 (en) Unmanned moving body
US11912149B2 (en) Misalignment detection device and coil device
JP2018064326A (en) Power transmission device
KR20180043129A (en) Wireless Power Charging System Strong to Deviation
JP6920123B2 (en) Power receiving device
JP2016226072A (en) Wireless power supply device and wireless power transmission system
WO2020026868A1 (en) Power transmission device, power reception device, wireless power transmission system, and method for driving power transmission device