JPWO2019054301A1 - A method for purifying a highly branched polymer containing a sulfo group and a method for producing the same. - Google Patents

A method for purifying a highly branched polymer containing a sulfo group and a method for producing the same. Download PDF

Info

Publication number
JPWO2019054301A1
JPWO2019054301A1 JP2019542033A JP2019542033A JPWO2019054301A1 JP WO2019054301 A1 JPWO2019054301 A1 JP WO2019054301A1 JP 2019542033 A JP2019542033 A JP 2019542033A JP 2019542033 A JP2019542033 A JP 2019542033A JP WO2019054301 A1 JPWO2019054301 A1 JP WO2019054301A1
Authority
JP
Japan
Prior art keywords
highly branched
branched polymer
sulfo group
sulfuric acid
containing highly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019542033A
Other languages
Japanese (ja)
Other versions
JP7099466B2 (en
Inventor
悠太朗 津田
悠太朗 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019054301A1 publication Critical patent/JPWO2019054301A1/en
Application granted granted Critical
Publication of JP7099466B2 publication Critical patent/JP7099466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates

Abstract

スルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び前記再沈殿処理工程で得た沈殿物を含む液と有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程を含むことを特徴とするスルホ基含有高分岐ポリマーの精製方法を提供する。A reprecipitation treatment step of adding a sulfuric acid solution of a sulfo group-containing highly branched polymer to water to reprecipitate the sulfo group-containing highly branched polymer, and a liquid containing a precipitate obtained in the reprecipitation treatment step and an organic solvent. Provided is a method for purifying a sulfo group-containing highly branched polymer, which comprises an aggregation step of mixing and stirring to aggregate the precipitate.

Description

本発明は、スルホ基含有高分岐ポリマーの精製方法及びその製造方法に関する。 The present invention relates to a method for purifying a highly branched polymer containing a sulfo group and a method for producing the same.

スルホ基を有する高分岐ポリマーはカーボンナノチューブ(CNT)の分散剤として使用できるだけでなく、各種溶媒に溶解させて膜形成組成物として好適に用いることができる。 The highly branched polymer having a sulfo group can be used not only as a dispersant for carbon nanotubes (CNTs), but also can be suitably used as a film-forming composition by dissolving it in various solvents.

高分岐ポリマーとしては、トリアリールアミン構造を分岐点として含有する高分岐ポリマー等が例示されるが、このようなポリマーにスルホ基を導入する場合、一般的に、スルホ基が導入されたトリアリールアミン化合物、アルデヒド化合物及びケトン化合物等のポリマー原料を用いて製造する方法や、スルホ基を有しない高分岐ポリマーを合成した後、スルホ基を導入可能な試薬で処理する方法がある。通常は、製造の簡便さを考慮して、後者の方法を用いることが多い。後者の方法において、スルホ基を導入する方法としては、従来公知の方法から選択することができ、特に制限されるものではないが、過剰量の硫酸を用いてスルホン化する方法等を用いることができる。 Examples of the highly branched polymer include a highly branched polymer containing a triarylamine structure as a branching point. When a sulfo group is introduced into such a polymer, a triaryl having a sulfo group introduced is generally used. There are a method of producing using a polymer raw material such as an amine compound, an aldehyde compound and a ketone compound, and a method of synthesizing a highly branched polymer having no sulfo group and then treating with a reagent capable of introducing a sulfo group. Usually, the latter method is often used in consideration of manufacturing convenience. In the latter method, the method for introducing a sulfo group can be selected from conventionally known methods, and is not particularly limited, but a method of sulfonation with an excess amount of sulfuric acid or the like can be used. it can.

なお、本発明に関連する先行技術文献としては下記のものが挙げられる。 The following are examples of prior art documents related to the present invention.

国際公開第2012/161307号International Publication No. 2012/161307

スルホ基含有高分岐ポリマーの精製は、該ポリマーの硫酸溶液を貧溶媒へと滴下する再沈殿操作にて行われているが、再沈殿溶媒の貧溶媒として水が選定されると、再沈殿操作で生じるポリマー粒子の粒径が小さく、その後の沈殿物の濾過性が極めて悪いという問題がある。この濾過性の悪さのため、濾過の長時間化による生産効率低下、あるいは細かい粒子の目詰まりによる作業中断、またポリマーへの残留硫酸量の増加等の問題が生じている。 Purification of the sulfo group-containing highly branched polymer is performed by a reprecipitation operation in which a sulfuric acid solution of the polymer is dropped into a poor solvent, but when water is selected as the poor solvent for the reprecipitation solvent, a reprecipitation operation is performed. There is a problem that the particle size of the polymer particles produced in the above is small and the filterability of the subsequent precipitate is extremely poor. Due to this poor filterability, there are problems such as a decrease in production efficiency due to a long filtration time, work interruption due to clogging of fine particles, and an increase in the amount of residual sulfuric acid in the polymer.

この問題については、前記硫酸溶液のpHを等電点付近まで調整し、沈殿物の凝集を促す方法が考えられるが、硫酸中でスルホン化した場合には中和に多量のアルカリを必要とすること、膨大な中和熱の制御が必要であること等の理由により、生産性の高い製法とは言い難く、当該問題を解決し得る新たな方法の開発が望まれている。 To solve this problem, a method of adjusting the pH of the sulfuric acid solution to near the isoelectric point to promote the aggregation of the precipitate can be considered, but when sulfonated in sulfuric acid, a large amount of alkali is required for neutralization. It is hard to say that it is a highly productive manufacturing method because of the fact that it is necessary to control a huge amount of neutralization heat, and the development of a new method that can solve the problem is desired.

本発明は、このような事情に鑑みてなされたものであり、スルホ基含有高分岐ポリマーを短時間で効率的に精製し得、得られる精製物の残留硫酸量も低減し得るスルホ基含有高分岐ポリマーの精製方法、及びスルホ基含有高分岐ポリマーをより効率よく製造することができるスルホ基含有高分岐ポリマーの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the sulfo group-containing highly branched polymer can be efficiently purified in a short time, and the amount of residual sulfuric acid in the obtained purified product can be reduced. An object of the present invention is to provide a method for purifying a branched polymer and a method for producing a sulfo group-containing highly branched polymer capable of more efficiently producing a sulfo group-containing highly branched polymer.

本発明者は、前記目的を達成するために鋭意検討した結果、スルホ基含有高分岐ポリマーの硫酸溶液を水に投入して再沈殿処理を行った後、沈殿物を含む液に、更に有機溶媒を添加して撹拌することにより、沈殿物を凝集成長させ、良好な濾過性等の高い操作性が得られ、残留硫酸量の低さにおいても優れた精製効果が得られることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventor puts a sulfuric acid solution of a sulfo group-containing highly branched polymer into water to perform reprecipitation treatment, and then adds an organic solvent to the solution containing a precipitate. By adding and stirring the precipitate, the precipitate is coagulated and grown, high operability such as good filterability can be obtained, and an excellent purification effect can be obtained even when the amount of residual sulfuric acid is low. Was completed.

すなわち、本発明は、
1. スルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び
前記再沈殿処理工程で得た沈殿物を含む液と有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程
を含むことを特徴とするスルホ基含有高分岐ポリマーの精製方法、
2. 前記硫酸溶液が、高分岐ポリマーを硫酸中でスルホン化した後の反応液である1のスルホ基含有高分岐ポリマーの精製方法、
3. 前記硫酸が、濃硫酸又は発煙硫酸である1又は2のスルホ基含有高分岐ポリマーの精製方法、
4. 前記有機溶媒が、水と混和する有機溶媒である1〜3のいずれかのスルホ基含有高分岐ポリマーの精製方法、
5. 前記有機溶媒が、テトラヒドロフラン、アセトニトリル、ジオキサン又はこれらの混合溶媒である4のスルホ基含有高分岐ポリマーの精製方法、
6. 前記スルホ基含有高分岐ポリマーが、トリアリールアミン構造を含有する高分岐ポリマーである1〜5のいずれかのスルホ基含有高分岐ポリマーの精製方法、
7. 前記スルホ基含有高分岐ポリマーが、トリアリールアミン化合物及びアルデヒド化合物から得られるノボラック型高分岐ポリマーである6のスルホ基含有高分岐ポリマーの精製方法、
8. 前記再沈殿処理工程において、硫酸の質量に対する水の質量比(水/硫酸)を0.95〜1.25とし、かつ、凝集工程において、硫酸の質量に対する有機溶媒の質量比(有機溶媒/硫酸)を0.9〜1.1とする1〜7のいずれかのスルホ基含有高分岐ポリマーの精製方法、
9. 前記凝集工程において、撹拌時間を2時間以上とする1〜8のいずれかのスルホ基含有高分岐ポリマーの精製方法、
10. 前記凝集工程において、温度を25〜100℃とする1〜9のいずれかのスルホ基含有高分岐ポリマーの精製方法、
11. トリアリールアミン化合物及びアルデヒド化合物を重合させて高分岐ポリマーを得る重合工程、
前記高分岐ポリマーを硫酸中でスルホン化して、スルホ基含有高分岐ポリマーの硫酸溶液を得るスルホン化工程、
前記スルホン化工程で得たスルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び
前記再沈殿処理工程で得た沈殿物を含む液と、水と混和する有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程
を含むことを特徴とするスルホ基含有高分岐ポリマーの製造方法、
12. 前記有機溶媒が、テトラヒドロフラン、アセトニトリル、ジオキサン又はこれらの混合溶媒である11のスルホ基含有高分岐ポリマーの製造方法
を提供する。
That is, the present invention
1. 1. A reprecipitation treatment step of adding a sulfuric acid solution of a sulfo group-containing highly branched polymer to water to reprecipitate the sulfo group-containing highly branched polymer, and a liquid containing a precipitate obtained in the reprecipitation treatment step and an organic solvent. A method for purifying a sulfo group-containing highly branched polymer, which comprises an aggregation step of mixing and stirring to aggregate the precipitate.
2. A method for purifying a sulfo group-containing highly branched polymer according to which the sulfuric acid solution is a reaction solution after sulfonated the highly branched polymer in sulfuric acid.
3. 3. A method for purifying a highly branched polymer containing 1 or 2 sulfo groups, wherein the sulfuric acid is concentrated sulfuric acid or fuming sulfuric acid.
4. A method for purifying a sulfo group-containing highly branched polymer according to any one of 1 to 3, wherein the organic solvent is an organic solvent miscible with water.
5. A method for purifying a sulfo group-containing highly branched polymer of 4, wherein the organic solvent is tetrahydrofuran, acetonitrile, dioxane or a mixed solvent thereof.
6. The method for purifying a sulfo group-containing highly branched polymer according to any one of 1 to 5, wherein the sulfo group-containing highly branched polymer is a highly branched polymer containing a triarylamine structure.
7. 6. A method for purifying a sulfo group-containing highly branched polymer, wherein the sulfo group-containing highly branched polymer is a novolak-type highly branched polymer obtained from a triarylamine compound and an aldehyde compound.
8. In the reprecipitation treatment step, the mass ratio of water to the mass of sulfuric acid (water / sulfuric acid) was 0.95 to 1.25, and in the aggregation step, the mass ratio of the organic solvent to the mass of sulfuric acid (organic solvent / sulfuric acid). ) Is 0.9 to 1.1, and the method for purifying a highly branched polymer containing a sulfo group according to any one of 1 to 7.
9. The method for purifying a sulfo group-containing highly branched polymer according to any one of 1 to 8 in which the stirring time is 2 hours or more in the aggregation step.
10. The method for purifying a sulfo group-containing highly branched polymer according to any one of 1 to 9, wherein the temperature is 25 to 100 ° C. in the aggregation step.
11. Polymerization step of polymerizing a triarylamine compound and an aldehyde compound to obtain a highly branched polymer,
A sulfonate step of sulfonated the highly branched polymer in sulfuric acid to obtain a sulfuric acid solution of the sulfo group-containing highly branched polymer.
A reprecipitation treatment step in which a sulfuric acid solution of the sulfo group-containing highly branched polymer obtained in the sulfonated step is added to water to reprecipitate the sulfo group-containing highly branched polymer, and a precipitate obtained in the reprecipitation treatment step. A method for producing a sulfo group-containing highly branched polymer, which comprises a coagulation step of mixing a liquid containing the above-mentioned material and an organic solvent to be mixed with water and stirring the mixture to coagulate the precipitate.
12. Provided is a method for producing a sulfo group-containing highly branched polymer of 11 in which the organic solvent is tetrahydrofuran, acetonitrile, dioxane or a mixed solvent thereof.

本発明によれば、再沈殿処理後の沈殿物を含む液と有機溶媒とを混合して撹拌することで、ポリマー粒子が適度に凝集するため、沈殿物の濾過性等の操作性が良好になる。また、濾過性の大幅な改善により濾過時間が短縮するため、生産性向上に寄与することができ、更には、濾物への通液洗浄を容易に行うことができるため、ポリマー中の残存硫酸量を十分に低減させることができる。 According to the present invention, by mixing and stirring the liquid containing the precipitate after the reprecipitation treatment and the organic solvent, the polymer particles are appropriately aggregated, so that the operability such as the filterability of the precipitate is good. Become. In addition, since the filtration time is shortened due to the significant improvement in the filterability, it is possible to contribute to the improvement in productivity, and further, since the liquid-passing cleaning through the filter medium can be easily performed, the residual sulfuric acid in the polymer can be easily performed. The amount can be sufficiently reduced.

本発明のスルホ基含有高分岐ポリマーの精製方法は、重合反応後のスルホ基含有高分岐ポリマーの硫酸溶液を水へ投入し、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び前記再沈殿処理工程で得た沈殿物を含む液と有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程を含むものである。以下、各工程について詳細に説明する。 The method for purifying a sulfo group-containing highly branched polymer of the present invention includes a reprecipitation treatment step of adding a sulfuric acid solution of the sulfo group-containing highly branched polymer after the polymerization reaction to water to reprecipitate the sulfo group-containing highly branched polymer. This includes a coagulation step in which a solution containing a precipitate obtained in the reprecipitation treatment step and an organic solvent are mixed and stirred to agglomerate the precipitate. Hereinafter, each step will be described in detail.

(1)再沈殿処理工程
再沈殿処理工程は、スルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる工程である。なお、本発明において、前記スルホ基含有高分岐ポリマーの硫酸溶液は、スルホ基含有高分岐ポリマーを硫酸に溶かして調製した溶液でも、高分岐ポリマーを硫酸中でスルホン化した後の反応液でもよいが、作業効率等を考慮すると、スルホン化後の反応液が好ましい。以降の説明において、硫酸の質量は、スルホ基含有高分岐ポリマーを硫酸に溶かして調製した溶液を使用する場合は、スルホ基含有高分岐ポリマーを溶かす際に使用する硫酸の質量を意味し、高分岐ポリマーを硫酸中でスルホン化した後の反応液を使用する場合は、前記高分岐ポリマーをスルホン化する際に使用する硫酸の質量を意味するものとする。例えば、高分岐ポリマーのスルホン化において95質量%濃度の硫酸を40g使用した場合、使用した硫酸の質量は38gとなる。
(1) Reprecipitation Treatment Step The reprecipitation treatment step is a step of adding a sulfuric acid solution of a sulfo group-containing highly branched polymer to water to reprecipitate the sulfo group-containing highly branched polymer. In the present invention, the sulfuric acid solution of the sulfo group-containing highly branched polymer may be a solution prepared by dissolving the sulfo group-containing highly branched polymer in sulfuric acid or a reaction solution after sulfonated the highly branched polymer in sulfuric acid. However, in consideration of work efficiency and the like, the reaction solution after sulfonate is preferable. In the following description, the mass of sulfuric acid means the mass of sulfuric acid used when dissolving the sulfo group-containing highly branched polymer when a solution prepared by dissolving the sulfo group-containing highly branched polymer in sulfuric acid is used, and is high. When the reaction solution after sulfonated the branched polymer in sulfuric acid is used, it means the mass of sulfuric acid used when sulfonated the highly branched polymer. For example, when 40 g of sulfuric acid having a concentration of 95% by mass is used in the sulfonation of a highly branched polymer, the mass of sulfuric acid used is 38 g.

スルホ基含有高分岐ポリマーの硫酸溶液に使用できる硫酸としては、濃硫酸や発煙硫酸等を挙げることができるが、コストや取扱性の観点から、特に濃硫酸を好適に使用できる。前記硫酸の濃度も、特に限定されるものではないが、ポリマーを効率的に沈殿させることを考慮すると、90質量%以上が好ましく、95質量%以上がより好ましい。(以下、単に%と表記することもある。) Examples of sulfuric acid that can be used in the sulfuric acid solution of the sulfo group-containing highly branched polymer include concentrated sulfuric acid and fuming sulfuric acid, but from the viewpoint of cost and handleability, concentrated sulfuric acid can be particularly preferably used. The concentration of the sulfuric acid is also not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, in consideration of efficient precipitation of the polymer. (Hereinafter, it may be simply expressed as%.)

スルホ基含有高分岐ポリマーの硫酸溶液において、硫酸の使用量は、特に限定されるものではないが、スルホ基含有高分岐ポリマーを硫酸に溶かして調製した溶液を使用する場合は、スルホ基含有高分岐ポリマーに対して、また、高分岐ポリマーを硫酸中でスルホン化した後の反応液を使用する場合は、スルホン化前の原料ポリマーに対して、2〜50質量倍が好ましく、10〜30質量倍がより好ましい。 The amount of sulfuric acid used in the sulfuric acid solution of the sulfo group-containing highly branched polymer is not particularly limited, but when a solution prepared by dissolving the sulfo group-containing highly branched polymer in sulfuric acid is used, the sulfo group content is high. When the reaction solution after sulfonated the highly branched polymer in sulfuric acid is used for the branched polymer, it is preferably 2 to 50 times by mass, preferably 10 to 30 mass by mass, compared to the raw material polymer before sulfonation. Double is more preferable.

再沈殿処理工程で使用する水の量は、特に制限はないが、スルホ基含有高分岐ポリマーを速やかに再沈殿させる観点から、硫酸の質量に対する水の質量比(水/硫酸)は、0.5〜2が好ましく、高分岐ポリマーの凝集を適切に制御して濾過性をより向上させる観点から、0.95〜1.25がより好ましく、1〜1.21が最適である。 The amount of water used in the reprecipitation treatment step is not particularly limited, but from the viewpoint of rapidly reprecipitating the sulfo group-containing highly branched polymer, the mass ratio of water to the mass of sulfuric acid (water / sulfuric acid) is 0. 5 to 2 is preferable, 0.95 to 1.25 is more preferable, and 1 to 1.21 is optimal from the viewpoint of appropriately controlling the aggregation of the highly branched polymer to further improve the filterability.

再沈殿処理時の液の温度(内温)は、特に制限されるものではないが、凝集を促進させる観点から、25〜100℃の範囲に制御することが好ましく、30〜60℃がより好ましい。 The temperature (internal temperature) of the liquid during the reprecipitation treatment is not particularly limited, but is preferably controlled in the range of 25 to 100 ° C., more preferably 30 to 60 ° C. from the viewpoint of promoting aggregation. ..

(2)凝集工程
凝集工程は、前記再沈殿処理工程で得た沈殿物を含む液と有機溶媒とを混合し、撹拌して前記沈殿物を適度に凝集させる工程である。
(2) Aggregation Step The aggregation step is a step of mixing a liquid containing a precipitate obtained in the reprecipitation treatment step with an organic solvent and stirring the mixture to appropriately agglomerate the precipitate.

前記有機溶媒は、目的のスルホ基含有高分岐ポリマーを凝集させることができる溶媒であれば特に限定されるものではないが、プロトン性の有機溶媒、非プロトン性の有機溶媒等が挙げられる。 The organic solvent is not particularly limited as long as it is a solvent capable of aggregating the target sulfo group-containing highly branched polymer, and examples thereof include a protic organic solvent and an aprotic organic solvent.

プロトン性の有機溶媒としては、例えば、メタノール、エタノール、2−プロパノール等のアルコール系溶媒が挙げられる。
非プロトン性の有機溶媒としては、例えば、アセトニトリル等のニトリル系溶媒、テトラヒドロフラン、ジオキサン等の環状エーテル系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒が挙げられる。
Examples of the protic organic solvent include alcohol solvents such as methanol, ethanol and 2-propanol.
Examples of the aprotonic organic solvent include a nitrile solvent such as acetonitrile, a cyclic ether solvent such as tetrahydrofuran and dioxane, and an amide solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide and dimethylacetamide. , Dimethyl sulfoxide and other sulfoxide-based solvents.

本発明において、有機溶媒は、前記で例示したものの中でも水と任意の割合で混和するものが好ましく、高分岐ポリマーの凝集を適切に制御できる観点から、テトラヒドロフラン、アセトニトリル、ジオキサン又はこれらの混合溶媒が好ましく、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒がより好ましく、テトラヒドロフランがより一層好ましい。 In the present invention, the organic solvent is preferably miscible with water at an arbitrary ratio among those exemplified above, and from the viewpoint of appropriately controlling the aggregation of the highly branched polymer, tetrahydrofuran, acetonitrile, dioxane or a mixed solvent thereof is used. Preferably, tetrahydrofuran, dioxane or a mixed solvent thereof is more preferable, and tetrahydrofuran is even more preferable.

また、有機溶媒の使用量は、特に制限されないが、硫酸の質量に対する有機溶媒の質量比(有機溶媒/硫酸)は、0.5〜1.5が好ましく、高分岐ポリマーの凝集を適切に制御して濾過性をより向上させる観点から、0.5〜1.1がより好ましく、0.9〜1.1が更に好ましく、0.95〜1.05が最も好ましい。 The amount of the organic solvent used is not particularly limited, but the mass ratio of the organic solvent to the mass of sulfuric acid (organic solvent / sulfuric acid) is preferably 0.5 to 1.5, and the aggregation of the highly branched polymer is appropriately controlled. From the viewpoint of further improving the filterability, 0.5 to 1.1 is more preferable, 0.9 to 1.1 is further preferable, and 0.95 to 1.05 is most preferable.

液の温度(内温)は、高分岐ポリマーの凝集を適切に制御して濾過性をより向上させる観点から、25〜100℃が好ましく、30〜60℃がより好ましい。 The temperature (internal temperature) of the liquid is preferably 25 to 100 ° C., more preferably 30 to 60 ° C., from the viewpoint of appropriately controlling the aggregation of the highly branched polymer to further improve the filterability.

撹拌時間は、粒径1μm未満の細かい粒子を凝集させる観点から、2時間以上とすることが好ましく、4時間以上がより好ましい。また、その上限は特に制限されないが、50時間以下が好ましく、25時間以下がより好ましい。 The stirring time is preferably 2 hours or more, and more preferably 4 hours or more, from the viewpoint of aggregating fine particles having a particle size of less than 1 μm. The upper limit thereof is not particularly limited, but is preferably 50 hours or less, and more preferably 25 hours or less.

硫酸、水及び有機溶媒の合計使用量は、スルホン化前の原料ポリマーに対し5〜200質量倍が好ましく、20〜100質量倍がより好ましく、40〜80質量倍が更に好ましい。合計使用量が、前記の範囲から外れた場合、凝集が進行しない場合がある。 The total amount of sulfuric acid, water and organic solvent used is preferably 5 to 200 times by mass, more preferably 20 to 100 times by mass, and even more preferably 40 to 80 times by mass with respect to the raw material polymer before sulfonation. If the total amount used is out of the above range, aggregation may not proceed.

加熱撹拌工程後は、沈殿物を瀘別し、濾物を必要に応じて水等で洗浄し、これを乾燥することで目的のポリマーを得ることができる。濾過設備は特に限定されるものではなく、公知の吸引濾過設備等を用いればよい。また、乾燥温度及び時間は、前記有機溶媒の種類やポリマーの耐熱性等によって異なるため一概に規定することはできないが、50〜200℃程度、好ましくは80〜150℃程度で、1〜200時間程度である。なお、乾燥時、−10〜−100kPa程度に減圧してもよい。 After the heating and stirring step, the precipitate is separated, the filter medium is washed with water or the like as necessary, and this is dried to obtain the desired polymer. The filtration equipment is not particularly limited, and a known suction filtration equipment or the like may be used. The drying temperature and time cannot be unconditionally defined because they differ depending on the type of the organic solvent, the heat resistance of the polymer, etc., but are about 50 to 200 ° C., preferably about 80 to 150 ° C. for 1 to 200 hours. Degree. When drying, the pressure may be reduced to about -10 to -100 kPa.

本発明の精製方法を実施することで、スルホ基含有高分岐ポリマーについては、残留硫酸を通常1,000ppm以下、場合によっては200ppm以下程度まで低減することができる。 By carrying out the purification method of the present invention, the residual sulfuric acid of the sulfo group-containing highly branched polymer can be reduced to about 1,000 ppm or less, and in some cases, about 200 ppm or less.

本発明の精製方法を適用できるスルホ基含有高分岐ポリマーは、その構造中にスルホ基を含有するものであれば特に制限はなく、例えば、トリアリールアミン構造を有する高分岐ポリマー(例えば、国際公開第2011/065395号等)、トリアジン環を含有する高分岐ポリマー(例えば、特開2014−098101号公報等)又はトリカルボニルベンゼン構造を有する高分岐ポリマー(例えば、特開2015−096625号公報等)等の高分岐ポリマーにスルホ基を導入したもの、特にポリマーの繰り返し単位の芳香環上にスルホ基を導入したものを挙げることができる。なお、これら高分岐ポリマーに対するスルホ基の導入は、例えば、過剰量の硫酸を用いてスルホン化する方法等により行うことができる(例えば、国際公開第2012/161307号等)。 The sulfo group-containing highly branched polymer to which the purification method of the present invention can be applied is not particularly limited as long as it contains a sulfo group in its structure, and is, for example, a highly branched polymer having a triarylamine structure (for example, international publication). No. 2011/065395, etc.), a highly branched polymer containing a triazine ring (for example, JP-A-2014-098101, etc.) or a highly branched polymer having a tricarbonylbenzene structure (for example, JP-A-2015-096625, etc.) Examples thereof include those in which a sulfo group is introduced into a highly branched polymer such as, and in particular, a polymer in which a sulfo group is introduced on the aromatic ring of a repeating unit of the polymer. The introduction of sulfo groups into these highly branched polymers can be carried out, for example, by a method of sulfonation with an excess amount of sulfuric acid (for example, International Publication No. 2012/161307, etc.).

本発明の精製方法は、これらの高分岐ポリマーの中でも、トリアリールアミン構造を有する高分岐ポリマー、より具体的には、トリアリールアミン化合物及びアルデヒド化合物を重合させることにより得られるノボラック型高分岐ポリマーにスルホ基を導入したもの、特にその繰り返し単位の芳香環上にスルホ基を導入したものにおいて好適に採用することができる。 Among these highly branched polymers, the purification method of the present invention is a novolak type highly branched polymer obtained by polymerizing a highly branched polymer having a triarylamine structure, more specifically, a triarylamine compound and an aldehyde compound. In particular, a polymer having a sulfo group introduced therein, particularly a polymer having a sulfo group introduced on the aromatic ring of the repeating unit, can be suitably adopted.

前記ノボラック型高分岐ポリマーは、上述した国際公開第2011/065395号に記載の方法によりトリアリールアミン化合物及びアルデヒド化合物を重合させることで得ることができるが、特に生成物のゲル化、高粘度化、壁固着物等の製造上の問題を回避する観点から、より好適な方法として以下の重合工程及びスルホン化工程を含む製造方法を採用することができる。 The novolak type highly branched polymer can be obtained by polymerizing a triarylamine compound and an aldehyde compound by the method described in International Publication No. 2011/065395 described above, and in particular, gelation and high viscosity of the product are obtained. From the viewpoint of avoiding problems in the production of wall-adhered substances and the like, a production method including the following polymerization step and sulfonate step can be adopted as a more preferable method.

[スルホ基含有高分岐ポリマーの合成]
(1)重合工程
重合工程は、トリアリールアミン化合物及びアルデヒド化合物を重合させてノボラック型高分岐ポリマーを得る工程である。
[Synthesis of sulfo group-containing highly branched polymer]
(1) Polymerization Step The polymerization step is a step of polymerizing a triarylamine compound and an aldehyde compound to obtain a novolak type highly branched polymer.

前記トリアリールアミン化合物としては、下記式(A)で表されるトリアリールアミン化合物が好ましい。

Figure 2019054301
As the triarylamine compound, a triarylamine compound represented by the following formula (A) is preferable.
Figure 2019054301

式(A)中、Ar1〜Ar3は、それぞれ独立に、式(A−1)〜(A−5)のいずれかで表される2価の有機基であるが、特に、式(A−1)で表される基が好ましい。In the formula (A), Ar 1 to Ar 3 are divalent organic groups represented by any of the formulas (A-1) to (A-5) independently, and in particular, the formula (A). The group represented by -1) is preferable.

Figure 2019054301
Figure 2019054301

式(A−1)〜(A−5)中、R1〜R34は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜5のアルキル基又は炭素数1〜5のアルコキシ基である。In formulas (A-1) to (A-5), R 1 to R 34 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 5 carbon atoms or alkoxy groups having 1 to 5 carbon atoms. ..

ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

炭素数1〜5のアルキル基としては、直鎖状又は分岐状のものが好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基等が挙げられる。 The alkyl group having 1 to 5 carbon atoms is preferably linear or branched, and for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or an isobutyl group. , Tert-Butyl group, n-pentyl group and the like.

炭素数1〜5のアルコキシ基としては、直鎖状又は分岐状のものが好ましく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、イソブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基等が挙げられる。 The alkoxy group having 1 to 5 carbon atoms is preferably linear or branched, and for example, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, or an isobutoxy group. Groups, tert-butoxy group, n-pentyloxy group and the like can be mentioned.

好ましいトリアリールアミン化合物としては、トリフェニルアミン及びその誘導体等が挙げられる。 Preferred triarylamine compounds include triphenylamine and its derivatives.

前記アルデヒド化合物としては、特に限定されないが、下記式(B)で表されるものが好ましい。

Figure 2019054301
The aldehyde compound is not particularly limited, but a compound represented by the following formula (B) is preferable.
Figure 2019054301

式(B)中、Rは、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、又は下記式(B−1)〜(B−4)のいずれかで表される1価の有機基である。

Figure 2019054301
In the formula (B), R is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a monovalent organic represented by any of the following formulas (B-1) to (B-4). It is the basis.
Figure 2019054301

式(B−1)〜(B−4)中、R35〜R58は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜5のアルキル基、炭素数1〜5のハロアルキル基、フェニル基、−OR59、−COR60、−NR6162又は−COOR63であり、R59〜R62は、それぞれ独立に、水素原子、炭素数1〜5のアルキル基、炭素数1〜5のハロアルキル基又はフェニル基であり、R63は、炭素数1〜5のアルキル基、炭素数1〜5のハロアルキル基又はフェニル基である。Wherein (B-1) ~ (B -4), R 35 ~R 58 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, a haloalkyl group having 1 to 5 carbon atoms, phenyl Group, -OR 59 , -COR 60 , -NR 61 R 62 or -COOR 63 , and R 59 to R 62 are independently hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, and 1 to 5 carbon atoms, respectively. R 63 is an alkyl group having 1 to 5 carbon atoms and a haloalkyl group or phenyl group having 1 to 5 carbon atoms.

炭素数1〜5のハロアルキル基としては、直鎖状又は分岐状のものが好ましく、例えば、ジフルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2−クロロエチル基、2−ブロモエチル基、1,1−ジフルオロエチル基、2,2,2−トリフルオロエチル基、1,1,2,2−テトラフルオロエチル基、2−クロロ−1,1,2−トリフルオロエチル基、ペンタフルオロエチル基、3−ブロモプロピル基、2,2,3,3−テトラフルオロプロピル基、1,1,2,3,3,3−ヘキサフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イル基、3−ブロモ−2−メチルプロピル基、4−ブロモブチル基、パーフルオロペンチル基等が挙げられる。なお、ハロゲン原子及び炭素数1〜5のアルキル基としては、前述したものと同様のものが挙げられる。 The haloalkyl group having 1 to 5 carbon atoms is preferably linear or branched, and for example, a difluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, 1, 1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group, 3-Bromopropyl group, 2,2,3,3-Tetrafluoropropyl group, 1,1,2,3,3,3-Hexafluoropropyl group, 1,1,1,1,3,3,3-Hexafluoro Propyl-2-yl group, 3-bromo-2-methylpropyl group, 4-bromobutyl group, perfluoropentyl group and the like can be mentioned. Examples of the halogen atom and the alkyl group having 1 to 5 carbon atoms are the same as those described above.

前記アルデヒド化合物としては、芳香族アルデヒド化合物が好ましい。具体的には、式(B)で表されるアルデヒド化合物において、Rが、式(B−1)〜(B−4)のいずれかで表される基であるものが好ましく、2−若しくは3−チエニル基、又は式(B−1)で表される基であるものが好ましく、2−若しくは3−チエニル基、又は式(B−1)で表される基のうちR37がフェニル基であるもの若しくはメトキシ基であるものがより好ましく、2−若しくは3−チエニル基、又は式(B−1)で表される基のうちR37がフェニル基であるものがより一層好ましい。As the aldehyde compound, an aromatic aldehyde compound is preferable. Specifically, among the aldehyde compounds represented by the formula (B), those in which R is a group represented by any of the formulas (B-1) to (B-4) are preferable, and 2- or 3 -A thienyl group or a group represented by the formula (B-1) is preferable, and among the groups represented by the 2- or 3-thienyl group or the formula (B-1), R 37 is a phenyl group. A certain group or a methoxy group is more preferable, and a group represented by 2- or 3-thienyl group or the group represented by the formula (B-1) in which R 37 is a phenyl group is even more preferable.

好ましいアルデヒド化合物としては、ベンズアルデヒド、4−メチルベンズアルデヒド、3−トリフルオロメチルベンズアルデヒド、4−トリフルオロメチルベンズアルデヒド、3−フェニルベンズアルデヒド、4−フェニルベンズアルデヒド、サリチルアルデヒド、アニスアルデヒド、4−アセトキシベンズアルデヒド、4−アセチルベンズアルデヒド、2−ホルミル安息香酸、3−ホルミル安息香酸、4−ホルミル安息香酸、2−ホルミル安息香酸メチル、3−ホルミル安息香酸メチル、4−ホルミル安息香酸メチル、4−アミノベンズアルデヒド、4−ジメチルアミノベンズアルデヒド、4−ジフェニルアミノベンズアルデヒド、1−ナフトアルデヒド、2−ナフトアルデヒド、2−チオフェンカルバルデヒド、3−チオフェンカルバルデヒド、9−アントラセンカルバルデヒド等の芳香族アルデヒド化合物が挙げられる。 Preferred aldehyde compounds include benzaldehyde, 4-methylbenzaldehyde, 3-trifluoromethylbenzaldehyde, 4-trifluoromethylbenzaldehyde, 3-phenylbenzaldehyde, 4-phenylbenzaldehyde, salicylaldehyde, anisaldehyde, 4-acetoxybenzaldehyde, 4- Acetylbenzaldehyde, 2-formyl benzoic acid, 3-formyl benzoic acid, 4-formyl benzoic acid, 2-formyl benzoate methyl, 3-formyl benzoate methyl, 4-formyl benzoate methyl, 4-aminobenzaldehyde, 4-dimethyl Examples thereof include aromatic aldehyde compounds such as aminobenzaldehyde, 4-diphenylaminobenzaldehyde, 1-naphthaldehyde, 2-naphthaldehyde, 2-thiophenecarbaldehyde, 3-thiofencarbaldehyde, and 9-anthracenecarbaldehyde.

式(A)で表されるトリアリールアミン化合物と、式(B)で表されるアルデヒド化合物とを、酸触媒存在下で重合させることで、下記式(C)で表される繰り返し単位を含む高分岐ポリマーを合成することができる。 By polymerizing the triarylamine compound represented by the formula (A) and the aldehyde compound represented by the formula (B) in the presence of an acid catalyst, the repeating unit represented by the following formula (C) is contained. Highly branched polymers can be synthesized.

Figure 2019054301
(式中、Ar1〜Ar3及びRは、前記と同じ。)
Figure 2019054301
(In the formula, Ar 1 to Ar 3 and R are the same as above.)

前記高分岐ポリマーとして好ましくは、下記式で表される繰り返し単位を有するものが挙げられるが、これらに限定されない。 The highly branched polymer preferably includes, but is not limited to, a polymer having a repeating unit represented by the following formula.

Figure 2019054301
Figure 2019054301

前記式(B)で表されるアルデヒド化合物の使用量は、式(A)で表されるトリアリールアミン化合物1当量に対し、前記アルデヒド化合物0.1〜1.0当量が好ましく、0.7〜0.95当量がより好ましい。 The amount of the aldehyde compound represented by the formula (B) to be used is preferably 0.1 to 1.0 equivalents, preferably 0.7, with respect to 1 equivalent of the triarylamine compound represented by the formula (A). ~ 0.95 equivalent is more preferred.

前記高分岐ポリマーの平均分子量は特に限定されないが、重量平均分子量(Mw)が1,000〜2,000,000が好ましく、2,000〜200,000がより好ましい。なお、本発明においてMwは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。 The average molecular weight of the highly branched polymer is not particularly limited, but the weight average molecular weight (Mw) is preferably 1,000 to 2,000,000, more preferably 2,000 to 200,000. In the present invention, Mw is a polystyrene-equivalent measured value by gel permeation chromatography (GPC).

前記酸触媒としては、硫酸、リン酸、過塩素酸等の無機酸や、p−トルエンスルホン酸、メタンスルホン酸、カンファースルホン酸等のスルホン酸、ギ酸、シュウ酸等のカルボン酸等の有機酸を用いることができるが、硫酸、スルホン酸が好ましい。酸触媒の使用量は、その種類によって適宜設定されるが、通常、トリアリールアミン化合物1当量に対し、0.01〜0.5当量が好ましく、0.02〜0.2当量がより好ましい。 Examples of the acid catalyst include inorganic acids such as sulfuric acid, phosphoric acid and perchloric acid, sulfonic acids such as p-toluene sulfonic acid, methane sulfonic acid and camphor sulfonic acid, and organic acids such as carboxylic acid such as formic acid and oxalic acid. Can be used, but sulfuric acid and sulfonic acid are preferable. The amount of the acid catalyst used is appropriately set depending on the type thereof, but is usually preferably 0.01 to 0.5 equivalents, more preferably 0.02 to 0.2 equivalents, relative to 1 equivalent of the triarylamine compound.

前記トリアリールアミン化合物とアルデヒド化合物との縮合重合によって合成されるが、このとき脱水が起こるため、副生成物として水が生じる。本発明の製造方法においては、この副生した水を反応系内から除去しながら重合反応を行うことが好ましい。 It is synthesized by condensation polymerization of the triarylamine compound and an aldehyde compound, but dehydration occurs at this time, so that water is produced as a by-product. In the production method of the present invention, it is preferable to carry out the polymerization reaction while removing the by-produced water from the reaction system.

前記副生成物の水を除去する方法としては、特に限定されないが、共沸によって除去する方法が、大量製造の点から好ましい。共沸によって水を除去する方法としては、例えば、ディーンスターク装置を用いて副生する水を除去する方法が挙げられる。 The method for removing water as a by-product is not particularly limited, but a method for removing water by azeotrope is preferable from the viewpoint of mass production. Examples of the method of removing water by azeotrope include a method of removing by-produced water using a Dean-Stark apparatus.

このとき、有機溶媒としては、水と共沸可能であって、水よりも比重が小さく、かつ水と混和しないものが好ましい。なお、本発明において「水と混和しない」とは、溶解する水分量が5.0質量%未満の有機溶媒を指す。このような有機溶媒としては、トルエン、o−キシレン、m−キシレン、p−キシレン等の芳香族炭化水素類、ヘプタン、ヘキサン、シクロヘキサン等の脂肪族炭化水素類、ジエチルエーテル、シクロペンチルメチルエーテル等のエーテル類、2−メチルテトラヒドロフラン、4−メチルテトラヒドロピラン、メチルイソブチルケトン等のケトン類等が挙げられる。これらのうち、トルエン、o−キシレン、m−キシレン、p−キシレン又はこれらの混合物が好ましい。前記有機溶媒の使用量は、トリアリールアミン化合物及びアルデヒド化合物の合計に対し、質量比で1〜50となる量が好ましく、2〜10となる量がより好ましい。 At this time, the organic solvent is preferably one that is azeotropic with water, has a lower specific gravity than water, and is immiscible with water. In the present invention, "immiscible with water" refers to an organic solvent having a dissolved water content of less than 5.0% by mass. Examples of such an organic solvent include aromatic hydrocarbons such as toluene, o-xylene, m-xylene and p-xylene, aliphatic hydrocarbons such as heptane, hexane and cyclohexane, diethyl ether and cyclopentyl methyl ether. Examples thereof include ethers, ketones such as 2-methyl tetrahydrofuran, 4-methyltetrahydropyran, and methylisobutylketone. Of these, toluene, o-xylene, m-xylene, p-xylene or a mixture thereof is preferable. The amount of the organic solvent used is preferably 1 to 50 in terms of mass ratio with respect to the total of the triarylamine compound and the aldehyde compound, and more preferably 2 to 10.

重合反応時の温度は、用いる原料や溶媒に応じて適宜設定すればよいが、通常40〜200℃である。また、前述したようにディーンスターク装置を用いて共沸によって水の除去を行う場合、還流温度で反応させるが、このとき十分に還流させるため、外温を内温(還流温度)よりも1℃以上高く設定することが好ましく、内温よりも10℃以上高く設定することがより好ましい。外温の上限は、特に限定されないが、通常、内温+20℃程度である。 The temperature at the time of the polymerization reaction may be appropriately set depending on the raw material and solvent used, but is usually 40 to 200 ° C. Further, as described above, when water is removed by azeotrope using a Dean-Stark apparatus, the reaction is carried out at the reflux temperature, but in order to sufficiently reflux the water at this time, the outside temperature is 1 ° C. higher than the internal temperature (reflux temperature). It is preferable to set it higher than that, and it is more preferable to set it higher than the internal temperature by 10 ° C. or more. The upper limit of the external temperature is not particularly limited, but is usually about + 20 ° C.

反応時間は、反応温度によって適宜選択されるが、通常1〜30時間程度である。 The reaction time is appropriately selected depending on the reaction temperature, but is usually about 1 to 30 hours.

得られた高分岐ポリマーは、反応液をそのままで、又は精製して固体状としてから次のスルホン化工程に供される。 The obtained highly branched polymer is subjected to the next sulfonation step as it is or after being purified into a solid state.

(2)スルホン化工程
スルホン化工程は、前記重合工程で得た高分岐ポリマーにスルホ基を導入する工程であるが、スルホ基を導入する方法としては、特に制限はなく、例えば、過剰量の硫酸を用いてスルホン化する方法等を用いることができる(例えば、国際公開第2012/161307号等)。
(2) Sulfonization Step The sulfonation step is a step of introducing a sulfo group into the highly branched polymer obtained in the polymerization step, but the method of introducing the sulfo group is not particularly limited, and for example, an excess amount is used. A method of sulfonation with sulfuric acid or the like can be used (for example, International Publication No. 2012/161307, etc.).

前記硫酸としては、濃硫酸、発煙硫酸等を使用することができ、コストや取扱性の観点から、濃硫酸を好適に採用し得る。なお、前記硫酸の濃度は、90質量%以上が好ましく、95質量%以上がより好ましい。 As the sulfuric acid, concentrated sulfuric acid, fuming sulfuric acid and the like can be used, and concentrated sulfuric acid can be preferably used from the viewpoint of cost and handleability. The concentration of the sulfuric acid is preferably 90% by mass or more, more preferably 95% by mass or more.

スルホン化に用いる硫酸の量としては特に制限はないが、高分岐ポリマー1質量部に対して100質量部以下が好ましく、後処理時に水へ投入する際の発熱制御等の操作を考慮すると50質量部以下がより好ましく、30質量部以下が更に好ましい。下限は特に制限されないが、2質量部以上が好ましく、10質量部以上がより好ましい。 The amount of sulfuric acid used for sulfonation is not particularly limited, but is preferably 100 parts by mass or less with respect to 1 part by mass of the highly branched polymer, and 50 mass by mass in consideration of operations such as heat generation control when adding to water during post-treatment. It is more preferably parts or less, and even more preferably 30 parts by mass or less. The lower limit is not particularly limited, but is preferably 2 parts by mass or more, and more preferably 10 parts by mass or more.

スルホン化の際の反応温度は、用いる原料や溶媒に応じて適宜設定すればよいが、通常20〜100℃であり、好ましくは30〜60℃である。 The reaction temperature at the time of sulfonation may be appropriately set depending on the raw material and solvent used, but is usually 20 to 100 ° C, preferably 30 to 60 ° C.

反応時間は、反応温度によって適宜選択されるが、通常1〜24時間程度であり、1時間以上あれば特に制限はされない。 The reaction time is appropriately selected depending on the reaction temperature, but is usually about 1 to 24 hours, and is not particularly limited as long as it is 1 hour or more.

前記スルホ基含有高分岐ポリマーとして好ましくは、スルホ基がポリマーの繰り返し単位の芳香環上に導入されたものが好ましく、より好ましい具体例として、下記式で表される繰り返し単位を有するものが挙げられるが、これに限定されない。 The sulfo group-containing highly branched polymer is preferably one in which a sulfo group is introduced on the aromatic ring of the repeating unit of the polymer, and more preferable specific examples include those having a repeating unit represented by the following formula. However, it is not limited to this.

Figure 2019054301
Figure 2019054301

スルホン化後、前記スルホ基含有高分岐ポリマーは、硫酸溶液として得られ、反応液をそのままで、又は溶媒等を除去して固体状としてから前述の再沈殿工程へと供される。 After sulfonation, the sulfo group-containing highly branched polymer is obtained as a sulfuric acid solution, and the reaction solution is used as it is or after removing a solvent or the like to form a solid, and then subjected to the above-mentioned reprecipitation step.

以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置等は以下のとおりである。
(1)数平均分子量Mn,質量平均分子量Mw
GPC(ゲル浸透クロマトグラフィ)
装置:(株)島津製作所製 SCL−10Avpシリーズ
カラム:Shodex KF−805+KF−804+KF−803
カラム温度:40℃
溶媒:テトラヒドロフラン
検出器:UV(271nm)
検量線:標準ポリスチレン
(2)残留硫酸量
イオンクロマトグラフ法
装置(燃焼):(株)三菱アナリテック製 IGF−100
装置(イオンクロマトグラフ):日本ダイオネクス(株)製 ICS−1500
試料1mgに5mM−NaOHを10mL加え、よく振とうし、液液抽出を行った。水相をイオンクロマトグラフで測定し、水相側に抽出された硫酸分を測定し、定量を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The measuring devices and the like used in the examples are as follows.
(1) Number average molecular weight Mn, mass average molecular weight Mw
GPC (Gel Permeation Chromatography)
Equipment: SCL-10Avp series manufactured by Shimadzu Corporation Column: Shodex KF-805 + KF-804 + KF-803
Column temperature: 40 ° C
Solvent: Tetrahydrofuran Detector: UV (271 nm)
Calibration curve: Standard polystyrene (2) Residual sulfuric acid ion chromatograph method Equipment (combustion): IGF-100 manufactured by Mitsubishi Analytech Co., Ltd.
Equipment (ion chromatograph): ICS-1500 manufactured by Nippon Dionex Corporation
10 mL of 5 mM-NaOH was added to 1 mg of the sample, shaken well, and liquid-liquid extraction was performed. The aqueous phase was measured by an ion chromatograph, and the sulfuric acid content extracted on the aqueous phase side was measured and quantified.

[合成例1]原料ポリマーの合成
(1)下記スキームに示される反応に従って、ポリマーPTPAを合成した。

Figure 2019054301
[Synthesis Example 1] Synthesis of Raw Material Polymer (1) Polymer PTPA was synthesized according to the reaction shown in the scheme below.
Figure 2019054301

ディーンスターク装置を接続した200mLフラスコに、トリフェニルアミン(Zhenjiang Haitong Chemical Industry社製)10g、4−フェニルベンズアルデヒド(Beijing Odyssey Chemicals社製)6.5g(0.87eq.)、p−トルエンスルホン酸(関東化学(株)製)0.388g(0.05eq.)、及びトルエン60gを仕込み、還流状態(内温110〜115℃)となるよう昇温した。反応系内が常に還流状態となるように外温を還流温度(内温110〜115℃)+20℃に維持し、副生する水を共沸によって反応系内から除去しながら、3時間反応させた。3時間経過後、GPCにてポリマーのMwが35,000〜45,000付近に到達したことを確認し、4−フェニルベンズアルデヒドが全て消失し、重合が停止していることを確認した。得られたポリマーのトルエン溶液にトリエチルアミン(東京化成工業(株)製)0.25g(0.06eq.)を加え、クエンチした。クエンチ後のポリマー溶液を貧溶媒であるアセトン30g及び水270gの混合溶媒へと投入し、再沈殿させた。沈殿物を濾別し、アセトンにて濾物通液洗浄を繰り返した後、乾燥機にて100℃で乾燥し、目的のポリマーPTPAを得た。 In a 200 mL flask connected to the Dean-Stark apparatus, 10 g of triphenylamine (manufactured by Zhenjiang Haitong Chemical Industry), 6.5 g (0.87 eq.) Of 4-phenylbenzaldehyde (manufactured by Beijing Odyssey Chemicals), and p-toluenesulfonic acid (manufactured by Beijing Odyssey Chemicals). 0.388 g (0.05eq.) (Manufactured by Kanto Chemical Co., Ltd.) and 60 g of toluene were charged, and the temperature was raised so as to be in a reflux state (internal temperature 110 to 115 ° C.). The outside temperature is maintained at the reflux temperature (internal temperature 110-115 ° C) + 20 ° C. so that the inside of the reaction system is always in a reflux state, and the reaction is carried out for 3 hours while removing by-product water from the reaction system by azeotrope. It was. After 3 hours, it was confirmed by GPC that the Mw of the polymer reached the vicinity of 35,000 to 45,000, and it was confirmed that all 4-phenylbenzaldehyde disappeared and the polymerization was stopped. To a toluene solution of the obtained polymer, 0.25 g (0.06 eq.) Of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and quenched. The polymer solution after quenching was poured into a mixed solvent of 30 g of acetone and 270 g of water, which are poor solvents, and reprecipitated. The precipitate was separated by filtration, and the filtrate was washed with acetone repeatedly, and then dried in a dryer at 100 ° C. to obtain the desired polymer PTPA.

[実施例1]
50mLフラスコに95%濃硫酸(純正化学(株)製)40gを仕込み、内温を35〜45℃に調整した後、合成例1で得た原料ポリマーPTPA2gを投入した。その後、内温35〜45℃にて3時間攪拌した後、室温付近まで冷却し、スルホン化されたPTPA(以下、PTPA−S)の硫酸溶液を得た。別途用意した200mLフラスコに水44gを仕込んだ後、得られたPTPA−Sの硫酸溶液を、内温30℃以下を維持しながら滴下し、再沈殿操作を行った。その後、テトラヒドロフラン(関東化学(株)製)40gを加え、内温を45〜50℃に調整し、10時間撹拌して沈殿物を凝集させた。得られた沈殿物を桐山ロート(Φ60mm、濾紙No.5B)にて減圧濾別したところ、濾過時間16秒で完了した。続く濾物通液洗浄においても、濾過性は悪化することなく、目的のポリマーPTPA−Sを得ることができ、乾燥後に得られたPTPA−S中の残留硫酸量は200ppm未満であった。
[Example 1]
40 g of 95% concentrated sulfuric acid (manufactured by Junsei Chemical Co., Ltd.) was charged in a 50 mL flask, the internal temperature was adjusted to 35 to 45 ° C., and then 2 g of the raw material polymer PTPA obtained in Synthesis Example 1 was added. Then, after stirring at an internal temperature of 35 to 45 ° C. for 3 hours, the mixture was cooled to around room temperature to obtain a sulfuric acid solution of sulfonated PTPA (hereinafter, PTPA-S). After 44 g of water was charged into a separately prepared 200 mL flask, the obtained sulfuric acid solution of PTPA-S was added dropwise while maintaining an internal temperature of 30 ° C. or lower, and a reprecipitation operation was performed. Then, 40 g of tetrahydrofuran (manufactured by Kanto Chemical Co., Inc.) was added, the internal temperature was adjusted to 45 to 50 ° C., and the mixture was stirred for 10 hours to aggregate the precipitate. The obtained precipitate was filtered under reduced pressure using a Kiriyama funnel (Φ60 mm, filter paper No. 5B), and the filtration time was 16 seconds. In the subsequent washing with a filter medium, the target polymer PTPA-S could be obtained without deteriorating the filterability, and the amount of residual sulfuric acid in the PTPA-S obtained after drying was less than 200 ppm.

Figure 2019054301
Figure 2019054301

[比較例1]
50mLフラスコに95%濃硫酸40g(純正化学(株)製)を仕込み、内温を35〜45℃に調整した後、合成例1で得た原料ポリマーPTPA2gを投入した。その後、内温35〜45℃にて3時間攪拌した後、室温付近まで冷却し、PTPA−Sの硫酸溶液を得た。別途用意した200mLフラスコに水86gを仕込んだ後、得られたPTPA−Sの硫酸溶液を、内温30℃以下を維持しながら滴下し、再沈殿操作を行った。その後、50℃にて15時間攪拌し、得られた沈殿物を桐山ロート(Φ60mm、濾紙No.5B)にて減圧濾別したところ、濾過時間93秒を要した。続く濾物通液洗浄においては、経時的に濾過時間は長くなり、最終的に目詰まりして濾過操作を完了することができなかった。
[Comparative Example 1]
40 g of 95% concentrated sulfuric acid (manufactured by Junsei Chemical Co., Ltd.) was charged in a 50 mL flask, the internal temperature was adjusted to 35 to 45 ° C., and then 2 g of the raw material polymer PTPA obtained in Synthesis Example 1 was added. Then, after stirring at an internal temperature of 35 to 45 ° C. for 3 hours, the mixture was cooled to near room temperature to obtain a sulfuric acid solution of PTPA-S. After charging 86 g of water into a separately prepared 200 mL flask, the obtained sulfuric acid solution of PTPA-S was added dropwise while maintaining an internal temperature of 30 ° C. or lower, and a reprecipitation operation was performed. Then, the mixture was stirred at 50 ° C. for 15 hours, and the obtained precipitate was filtered under reduced pressure with a Kiriyama funnel (Φ60 mm, filter paper No. 5B). As a result, a filtration time of 93 seconds was required. In the subsequent washing of the filter medium, the filtration time became longer with time, and finally the filtration operation could not be completed due to clogging.

Claims (12)

スルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び
前記再沈殿処理工程で得た沈殿物を含む液と有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程
を含むことを特徴とするスルホ基含有高分岐ポリマーの精製方法。
A reprecipitation treatment step of adding a sulfuric acid solution of a sulfo group-containing highly branched polymer to water to reprecipitate the sulfo group-containing highly branched polymer, and a liquid containing a precipitate obtained in the reprecipitation treatment step and an organic solvent. A method for purifying a sulfo group-containing highly branched polymer, which comprises an aggregation step of mixing and stirring to aggregate the precipitate.
前記硫酸溶液が、高分岐ポリマーを硫酸中でスルホン化した後の反応液である請求項1記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to claim 1, wherein the sulfuric acid solution is a reaction solution after sulfonated the highly branched polymer in sulfuric acid. 前記硫酸が、濃硫酸又は発煙硫酸である請求項1又は2記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to claim 1 or 2, wherein the sulfuric acid is concentrated sulfuric acid or fuming sulfuric acid. 前記有機溶媒が、水と混和する有機溶媒である請求項1〜3のいずれか1項記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to any one of claims 1 to 3, wherein the organic solvent is an organic solvent miscible with water. 前記有機溶媒が、テトラヒドロフラン、アセトニトリル、ジオキサン又はこれらの混合溶媒である請求項4記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to claim 4, wherein the organic solvent is tetrahydrofuran, acetonitrile, dioxane or a mixed solvent thereof. 前記スルホ基含有高分岐ポリマーが、トリアリールアミン構造を含有する高分岐ポリマーである請求項1〜5のいずれか1項記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to any one of claims 1 to 5, wherein the sulfo group-containing highly branched polymer is a highly branched polymer containing a triarylamine structure. 前記スルホ基含有高分岐ポリマーが、トリアリールアミン化合物及びアルデヒド化合物から得られるノボラック型高分岐ポリマーである請求項6記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to claim 6, wherein the sulfo group-containing highly branched polymer is a novolak-type highly branched polymer obtained from a triarylamine compound and an aldehyde compound. 前記再沈殿処理工程において、硫酸の質量に対する水の質量比(水/硫酸)を0.95〜1.25とし、かつ、凝集工程において、硫酸の質量に対する有機溶媒の質量比(有機溶媒/硫酸)を0.9〜1.1とする請求項1〜7のいずれか1項記載のスルホ基含有高分岐ポリマーの精製方法。 In the reprecipitation treatment step, the mass ratio of water to the mass of sulfuric acid (water / sulfuric acid) was 0.95-1.25, and in the aggregation step, the mass ratio of the organic solvent to the mass of sulfuric acid (organic solvent / sulfuric acid). ) Is 0.9 to 1.1. The method for purifying a sulfo group-containing highly branched polymer according to any one of claims 1 to 7. 前記凝集工程において、撹拌時間を2時間以上とする請求項1〜8のいずれか1項記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to any one of claims 1 to 8, wherein the stirring time is 2 hours or more in the aggregation step. 前記凝集工程において、温度を25〜100℃とする請求項1〜9のいずれか1項記載のスルホ基含有高分岐ポリマーの精製方法。 The method for purifying a sulfo group-containing highly branched polymer according to any one of claims 1 to 9, wherein the temperature is 25 to 100 ° C. in the aggregation step. トリアリールアミン化合物及びアルデヒド化合物を重合させて高分岐ポリマーを得る重合工程、
前記高分岐ポリマーを硫酸中でスルホン化して、スルホ基含有高分岐ポリマーの硫酸溶液を得るスルホン化工程、
前記スルホン化工程で得たスルホ基含有高分岐ポリマーの硫酸溶液を水へ投入して、前記スルホ基含有高分岐ポリマーを再沈殿させる再沈殿処理工程、及び
前記再沈殿処理工程で得た沈殿物を含む液と、水と混和する有機溶媒とを混合し、撹拌して前記沈殿物を凝集させる凝集工程
を含むことを特徴とするスルホ基含有高分岐ポリマーの製造方法。
Polymerization step of polymerizing a triarylamine compound and an aldehyde compound to obtain a highly branched polymer,
A sulfonate step of sulfonated the highly branched polymer in sulfuric acid to obtain a sulfuric acid solution of the sulfo group-containing highly branched polymer.
A reprecipitation treatment step of adding a sulfuric acid solution of the sulfo group-containing highly branched polymer obtained in the sulfonated step to water to reprecipitate the sulfo group-containing highly branched polymer, and a precipitate obtained in the reprecipitation treatment step. A method for producing a sulfo group-containing highly branched polymer, which comprises a coagulation step of mixing a liquid containing the above-mentioned substance and an organic solvent to be mixed with water and stirring the mixture to coagulate the precipitate.
前記有機溶媒が、テトラヒドロフラン、アセトニトリル、ジオキサン又はこれらの混合溶媒である請求項11記載のスルホ基含有高分岐ポリマーの製造方法。 The method for producing a sulfo group-containing highly branched polymer according to claim 11, wherein the organic solvent is tetrahydrofuran, acetonitrile, dioxane or a mixed solvent thereof.
JP2019542033A 2017-09-15 2018-09-07 A method for purifying a highly branched polymer containing a sulfo group and a method for producing the same. Active JP7099466B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017177930 2017-09-15
JP2017177930 2017-09-15
PCT/JP2018/033252 WO2019054301A1 (en) 2017-09-15 2018-09-07 Method for purifying sulfo group-containing hyperbranched polymer and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019054301A1 true JPWO2019054301A1 (en) 2020-10-15
JP7099466B2 JP7099466B2 (en) 2022-07-12

Family

ID=65722677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542033A Active JP7099466B2 (en) 2017-09-15 2018-09-07 A method for purifying a highly branched polymer containing a sulfo group and a method for producing the same.

Country Status (4)

Country Link
JP (1) JP7099466B2 (en)
CN (1) CN111094372B (en)
TW (1) TWI783039B (en)
WO (1) WO2019054301A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161306A1 (en) * 2011-05-25 2012-11-29 日産化学工業株式会社 Conductive composition, and conductive complex
WO2012161307A1 (en) * 2011-05-25 2012-11-29 日産化学工業株式会社 Highly branched polymer and diepsersant for carbon nanotubes
JP2012245441A (en) * 2011-05-25 2012-12-13 Nissan Chem Ind Ltd Carbon nanotube dispersant
JP2013006756A (en) * 2011-05-25 2013-01-10 Nissan Chem Ind Ltd Method for improving conductivity of carbon nanotube dispersion material
WO2014042080A1 (en) * 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2016117524A1 (en) * 2015-01-23 2016-07-28 日産化学工業株式会社 Method for purifying triazine-ring-containing polymer
WO2016117531A1 (en) * 2015-01-23 2016-07-28 日産化学工業株式会社 Method for purifying triazine-ring-containing polymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035823A1 (en) * 2014-09-02 2017-06-15 国立大学法人九州大学 Low resistance clad material and electro-optic polymer optical waveguide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161306A1 (en) * 2011-05-25 2012-11-29 日産化学工業株式会社 Conductive composition, and conductive complex
WO2012161307A1 (en) * 2011-05-25 2012-11-29 日産化学工業株式会社 Highly branched polymer and diepsersant for carbon nanotubes
JP2012245441A (en) * 2011-05-25 2012-12-13 Nissan Chem Ind Ltd Carbon nanotube dispersant
JP2013006756A (en) * 2011-05-25 2013-01-10 Nissan Chem Ind Ltd Method for improving conductivity of carbon nanotube dispersion material
WO2014042080A1 (en) * 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2016117524A1 (en) * 2015-01-23 2016-07-28 日産化学工業株式会社 Method for purifying triazine-ring-containing polymer
WO2016117531A1 (en) * 2015-01-23 2016-07-28 日産化学工業株式会社 Method for purifying triazine-ring-containing polymer

Also Published As

Publication number Publication date
CN111094372A (en) 2020-05-01
CN111094372B (en) 2022-10-21
WO2019054301A1 (en) 2019-03-21
JP7099466B2 (en) 2022-07-12
TW202017961A (en) 2020-05-16
TWI783039B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
JP6192653B2 (en) Method for producing trioxane from an aqueous formaldehyde source
CN106432568B (en) The preparation method of Yi Zhong Duo oxazolinyl chain extenders
Wei et al. Diels–Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels
CN111517989B (en) Self-catalytic curing-based resin containing alkyl phthalonitrile and preparation method thereof
Doganci et al. Synthesis of AB 3‐type miktoarm star polymers with steroid core via a combination of “Click” chemistry and ring opening polymerization techniques
CN104844772A (en) Soluble elemental sulfur and alicyclic olefin copolymer and preparation method thereof
JP7099466B2 (en) A method for purifying a highly branched polymer containing a sulfo group and a method for producing the same.
CN106518926B (en) A kind of preparation method of the water-soluble benzoxazine compound containing DOPO
Cheng et al. A facile method for the preparation of thermally remendable cross‐linked polyphosphazenes
Gacal et al. The synthesis of poly (ethylene glycol)(PEG) containing polymers via step‐growth click coupling reaction for CO2 separation
Dou et al. A simple and efficient synthetic method for poly (ethylene terephthalate): phenylalkyl pyrrolidinium ionic liquid as polycondensation medium
JP2006225461A (en) Polythiophene
JP5394779B2 (en) Modified natural rubber and method for producing modified natural rubber latex, modified natural rubber, modified natural rubber latex and tire using modified natural rubber
Ding et al. Catalytic Polymerizations of Hydrophobic, Substituted, Acetylene Monomers in an Aqueous Medium by Using a Monomer/Hydroxypropyl‐β‐cyclodextrin Inclusion Complex
JP7131558B2 (en) Method for producing novolak-type polymer
JP4431790B2 (en) Resorcinol novolac derivatives
CN106046363A (en) Tetramethoxyfluorene-structure-containing high-solubility polyaryl amides and preparation method thereof
Shibata et al. Intermolecular interaction of supramolecular organic–inorganic hybrid composites of sulfonated polystyrene and oligomeric silsesquioxane possessing pyridyl groups
JP2002322293A (en) Filmy material and method for producing the same
CN105085919B (en) Hydrocarbon system polymeric electrolyte synthetic method and the polymer solvent for it
Jikei et al. Synthesis and properties of hyperbranched poly (ether sulfone) s prepared by self‐polycondensation of novel AB2 monomer
CN110003078B (en) Preparation method of 1, 3-bis (furfuryl imide methyl) benzene as rubber anti-vulcanization reversion agent
KR20170012974A (en) Novel method for preparation of polybenzimidazole under mild condition
KR20160140707A (en) Alkylene oxide polymer production method
CN103819316B (en) Curable polyfluorene and the application as heat-stable material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7099466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151