JPWO2019003788A1 - Support catalyst and method for producing the same - Google Patents

Support catalyst and method for producing the same Download PDF

Info

Publication number
JPWO2019003788A1
JPWO2019003788A1 JP2019526728A JP2019526728A JPWO2019003788A1 JP WO2019003788 A1 JPWO2019003788 A1 JP WO2019003788A1 JP 2019526728 A JP2019526728 A JP 2019526728A JP 2019526728 A JP2019526728 A JP 2019526728A JP WO2019003788 A1 JPWO2019003788 A1 JP WO2019003788A1
Authority
JP
Japan
Prior art keywords
catalyst
carrier
tio
titanium oxide
crystal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019526728A
Other languages
Japanese (ja)
Other versions
JP7183158B2 (en
Inventor
佳弘 米田
佳弘 米田
顕治 田村
顕治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2019003788A1 publication Critical patent/JPWO2019003788A1/en
Application granted granted Critical
Publication of JP7183158B2 publication Critical patent/JP7183158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明の担体付き触媒は、触媒が担体に担持されてなる。担体がチタン酸化物を含み、担体に含まれるチタン元素(Ti)と酸素元素(O)の含有割合(O/Ti)がモル比で表して0.8以上1.6以下であり、担体がTiO0.5の結晶相又はTiOの結晶相を有する。担体付き触媒は、組成式TiOa(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物を有機溶媒中で粉砕し、次いで乾粉化工程を経ることなく有機溶媒中で触媒を担持させ;触媒を担持したチタン酸化物を焼成することで製造される。The carrier-supported catalyst of the present invention comprises a catalyst supported on a carrier. The carrier contains titanium oxide, and the content ratio (O / Ti) of titanium element (Ti) and oxygen element (O) contained in the carrier is 0.8 or more and 1.6 or less in terms of molar ratio, and the carrier is It has a crystalline phase of TiO0.5 or a crystalline phase of TiO. The catalyst with a carrier is obtained by pulverizing a titanium oxide represented by the composition formula TiOa (wherein a represents a number of 0.4 or more and 1 or less) in an organic solvent, and then organic It is produced by supporting a catalyst in a solvent; calcining a titanium oxide supporting the catalyst.

Description

触媒の担体としては様々な無機化合物が用いられている。かかる無機化合物は、触媒の種類や化学反応の種類に応じて導電性を有するものと、非導電性のものが用いられる。無機化合物からなる導電性の担体としては、例えば導電性を有する炭素などの炭素材料が知られている。しかし炭素材料は酸化性の環境下での耐久性に問題があることから、炭素材料の代替材料が種々検討されている。   Various inorganic compounds have been used as catalyst carriers. As such an inorganic compound, an electrically conductive one and a non-conductive one are used depending on the type of catalyst and the type of chemical reaction. As a conductive carrier made of an inorganic compound, for example, a carbon material such as conductive carbon is known. However, since carbon materials have a problem in durability in an oxidizing environment, various alternative materials for carbon materials have been investigated.

炭素材料に代わる導電性の無機化合物の一つとして導電性酸化チタンが知られている。例えば特許文献1には組成式TiO(式中のxは1.5<x<2の範囲である。)で表され、且つ比表面積が50m/g以上である低次酸化チタンに、金属を担持してなる触媒が提案されている。この触媒は、燃料電池の電極触媒として用いた場合に酸化安定性に優れ、また導電性が高いと同文献には記載されている。Conductive titanium oxide is known as one of conductive inorganic compounds that replace carbon materials. For example, in Patent Document 1, a low-order titanium oxide represented by the composition formula TiO x (where x is in the range of 1.5 <x <2) and having a specific surface area of 50 m 2 / g or more, A catalyst supporting a metal has been proposed. This catalyst is described in the literature as being excellent in oxidation stability and having high conductivity when used as an electrode catalyst of a fuel cell.

国際公開第2013/141063号パンフレットInternational publication 2013/141063 pamphlet

特許文献1に記載の低次酸化チタンは確かに導電性を有するものの、従来用いられていた炭素材料と比較すると導電性が決して高いとは言えず、更なる導電性の向上が望まれていた。   Although the low-order titanium oxide described in Patent Document 1 certainly has conductivity, it cannot be said that the low-order titanium oxide has high conductivity as compared with the conventionally used carbon materials, and further improvement in conductivity has been desired. .

したがって本発明の課題は、従来知られている酸化チタンより、導電性が一層向上した酸化チタンを担体とする触媒を提供することにある。   Therefore, an object of the present invention is to provide a catalyst having titanium oxide as a carrier, which has a further improved conductivity as compared with the conventionally known titanium oxide.

本発明は、触媒が担体に担持されてなる担体付き触媒であって、
前記担体がチタン酸化物を含み、
前記担体に含まれるチタン元素(Ti)と酸素元素(O)の含有割合(O/Ti)がモル比で表して0.8以上1.6以下であり、
前記担体がTiO0.5の結晶相又はTiOの結晶相を有する、担体付き触媒を提供することにより前記の課題を解決したものである。
The present invention is a catalyst with a carrier in which the catalyst is supported on a carrier,
The carrier comprises titanium oxide,
The content ratio (O / Ti) of titanium element (Ti) and oxygen element (O) contained in the carrier is 0.8 or more and 1.6 or less in terms of molar ratio,
The above problem is solved by providing a catalyst with a carrier in which the carrier has a TiO 0.5 crystal phase or a TiO crystal phase.

また本発明は、前記の担体付き触媒の好適な製造方法として、
組成式TiO(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物を有機溶媒中で粉砕し、次いで乾粉化工程を経ることなく有機溶媒中で触媒を担持させ、
前記触媒を担持した前記チタン酸化物を焼成する、担体付き触媒の製造方法を提供するものである。
The present invention also provides a suitable method for producing the above-mentioned catalyst with a carrier,
Titanium oxide represented by the composition formula TiO a (where a is a number of 0.4 or more and 1 or less) is crushed in an organic solvent, and then the catalyst is catalyzed in the organic solvent without a dry powdering step. Carry
The present invention provides a method for producing a catalyst with a carrier, which comprises firing the titanium oxide carrying the catalyst.

以下、本発明をその好ましい実施形態に基づき説明する。本発明は、触媒が担体に担持されてなる担体付き触媒に関するものである。この担体はチタン酸化物を含む。このチタン酸化物は、チタン元素(Ti)と酸素元素(O)とから構成される化合物である。担体は、このチタン酸化物を含み、残部が好ましくは不可避不純物から構成される。チタン酸化物は導電性を有していることが好ましい。   The present invention will be described below based on its preferred embodiments. The present invention relates to a catalyst with a carrier in which a catalyst is supported on a carrier. This carrier comprises titanium oxide. This titanium oxide is a compound composed of titanium element (Ti) and oxygen element (O). The carrier contains this titanium oxide and the balance is preferably composed of unavoidable impurities. The titanium oxide is preferably conductive.

触媒が担持された状態の担体(チタン酸化物)におけるチタン元素(Ti)と酸素元素(O)との含有割合は、O/Tiのモル比で表して、O/Tiの値が0.8以上1.6以下であることが好ましく、0.8以上1.4以下であることが更に好ましく、0.9以上1.2以下であることが一層好ましい。チタンの酸化物としては、例えば四価のチタンの酸化物である二酸化チタン(TiO)が典型的なものとして知られているところ、O/Tiの値がモル比で表して0.8以上1.6以下であるチタン酸化物は、二酸化チタンに比べて酸素が欠損した状態になっていると言える。この酸素欠損状態に起因して、本発明で用いるチタン酸化物は導電性を有するものと本発明者は考えている。The content ratio of the titanium element (Ti) and the oxygen element (O) in the carrier (titanium oxide) on which the catalyst is supported is expressed by the molar ratio of O / Ti, and the value of O / Ti is 0.8. It is preferably 1.6 or more and 1.6 or less, more preferably 0.8 or more and 1.4 or less, and further preferably 0.9 or more and 1.2 or less. As a titanium oxide, for example, titanium dioxide (TiO 2 ) which is an oxide of tetravalent titanium is known as a typical one, and the value of O / Ti is 0.8 or more in terms of a molar ratio. It can be said that the titanium oxide having 1.6 or less is in a state of lacking oxygen as compared with titanium dioxide. The present inventor believes that the titanium oxide used in the present invention has conductivity due to this oxygen deficiency state.

担体(チタン酸化物)におけるO/Tiのモル比の値は、次の方法で測定される。熱重量分析装置(TG−DTA)(日立ハイテクサイエンス社製STA7300)を用いて、大気中にて10℃/分の昇温速度で1300℃まで昇温することで、重量増加率を測定する。増加した重量のすべてが、担体を構成するチタン酸化物(TiO)の二酸化チタン(TiO)への酸化によるものであると仮定し、測定した重量増加率により、O/Tiのモル比の値を算出する。The value of the O / Ti molar ratio in the carrier (titanium oxide) is measured by the following method. Using a thermogravimetric analyzer (TG-DTA) (STA7300 manufactured by Hitachi High-Tech Science Co., Ltd.), the rate of increase in weight is measured by increasing the temperature to 1300 ° C. at a temperature increasing rate of 10 ° C./min in the atmosphere. It is assumed that all of the increased weight is due to the oxidation of the titanium oxide (TiO a ) that constitutes the support to titanium dioxide (TiO 2 ), and the measured weight gain rate indicates that the molar ratio of O / Ti Calculate the value.

担体(チタン酸化物)は、O/Tiのモル比の値が上述のとおりであることに加えて、TiO0.5の結晶相又はTiOの結晶相を有していることが好ましい。結晶性のTiO0.5及びTiOは、背景技術の項で述べたTiO(式中のxは1.5<x<2である。)に比べて導電性の高い物質である。したがって、担体が結晶性のTiO0.5又はTiOを含むことで、担体の導電性が高まり、該担体に担持されている触媒はその性能を十分に発揮することができる。The carrier (titanium oxide) preferably has a crystal phase of TiO 0.5 or a crystal phase of TiO, in addition to the value of the O / Ti molar ratio as described above. Crystalline TiO 0.5 and TiO are materials having higher conductivity than TiO x ( x in the formula is 1.5 <x <2) described in the section of background art. Therefore, since the carrier contains crystalline TiO 0.5 or TiO, the conductivity of the carrier is enhanced, and the catalyst supported on the carrier can sufficiently exhibit its performance.

特に担体(チタン酸化物)がTiO0.5の結晶相を有する場合には、該結晶相の結晶子サイズは10nm以上100nm以下であることが好ましく、15nm以上80nm以下であることが更に好ましく、20nm以上65nm以下であることが一層好ましい。TiO0.5の結晶相の結晶子サイズがこの範囲内であることによって、担体の導電性が一層高まり、担体に担持されている触媒はその性能を十分に発揮することができる。Particularly when the carrier (titanium oxide) has a crystal phase of TiO 0.5 , the crystallite size of the crystal phase is preferably 10 nm or more and 100 nm or less, more preferably 15 nm or more and 80 nm or less, It is more preferably 20 nm or more and 65 nm or less. When the crystallite size of the crystal phase of TiO 0.5 is within this range, the conductivity of the carrier is further enhanced, and the catalyst supported on the carrier can sufficiently exhibit its performance.

担体(チタン酸化物)に含まれるTiO0.5の結晶相の結晶子サイズは、粉末X線回折によって得られる回折ピークからシェラー(Scherrer)の式によって算出される。粉末X線回折による測定には例えば株式会社リガク製のSmartLabを用い、CuKα1線を使用して、測定範囲20°〜100°でTiO0.5のX線回折強度を測定したときの結晶面(101)X線回折ピークのピーク幅(半値幅)から、下記のシェラーの式により算出する。
シェラーの式:D=Kλ/βcosθ
D:結晶子サイズ
K:シェラー定数(1.333)
λ:X線の波長
β:半値幅[rad]
θ:回折角
The crystallite size of the crystal phase of TiO 0.5 contained in the carrier (titanium oxide) is calculated by the Scherrer formula from the diffraction peak obtained by powder X-ray diffraction. For measurement by powder X-ray diffraction, for example, SmartLab manufactured by Rigaku Co., Ltd. is used, and CuKα1 rays are used to measure the crystal plane (when measuring the X-ray diffraction intensity of TiO 0.5 in a measurement range of 20 ° to 100 ° ( 101) It is calculated from the peak width (half-width) of the X-ray diffraction peak by the Scherrer's formula below.
Scherrer's formula: D = Kλ / β cos θ
D: Crystallite size K: Scherrer constant (1.333)
λ: wavelength of X-ray β: full width at half maximum [rad]
θ: Diffraction angle

担体(チタン酸化物)が、TiO0.5の結晶相又はTiOの結晶相を有することは、該担体の粉末X線回折(XRD)測定によって確認することができる。担体は、X線回折測定によってTiO0.5の結晶相の存在のみが確認されてもよく、TiOの結晶相の存在のみが確認されてもよく、あるいはTiO0.5の結晶相及びTiOの結晶相の双方の存在が確認されてもよい。担体の導電性の一層の向上の観点からは、担体がTiO0.5の結晶相を少なくとも有することが好ましい。担体に、TiO0.5の結晶相及びTiOの結晶相以外の酸化チタンの結晶相や非晶質相が存在してもよい。そのような酸化物の例としてはTiOやTiなどが挙げられる。TiOが結晶相として存在している場合には、TiOはルチル型及びアナターゼ型、ブルッカイト型のいずれであってもよい。また、TiO0.5の結晶相以外の結晶相を有する場合、担体の導電性の一層の向上の観点から、TiO0.5の結晶相は主結晶相として存在することが好ましい。It can be confirmed by powder X-ray diffraction (XRD) measurement of the carrier that the carrier (titanium oxide) has a crystal phase of TiO 0.5 or a crystal phase of TiO. Carrier may be only in the presence of a crystalline phase of TiO 0.5 is confirmed by X-ray diffraction measurement may be only in the presence of TiO crystalline phase is confirmed, or the TiO 0.5 crystalline phase and the TiO The presence of both crystalline phases may be confirmed. From the viewpoint of further improving the conductivity of the carrier, it is preferable that the carrier has at least a crystal phase of TiO 0.5 . A crystal phase of titanium oxide other than the crystal phase of TiO 0.5 and the crystal phase of TiO 2 or an amorphous phase may be present in the carrier. Examples of such oxides include TiO 2 and Ti 2 O 3 . When TiO 2 exists as a crystal phase, TiO 2 may be any of rutile type, anatase type, and brookite type. Also, when having a crystal phase other than the crystalline phase of TiO 0.5, from the viewpoint of further improvement of the conductivity of the carrier, the crystalline phase of TiO 0.5 are preferably present as the predominant crystal phase.

TiO0.5の結晶相やTiOの結晶相は、Tiの一部が他の元素(例えば、Nb,Ta,Mo,W,Ge,Sb,Bi,Hf,Zr,Mg,Ca,Sr,Ba,Zn,Alなどの金属元素)で置換されていてもよいし、またTiの一部が欠損していてもよい。また、本発明の効果を奏する程度において、担体はチタン酸化物以外の化合物を含有してもよい。In the crystal phase of TiO 0.5 or the crystal phase of TiO, a part of Ti is contained in another element (for example, Nb, Ta, Mo, W, Ge, Sb, Bi, Hf, Zr, Mg, Ca, Sr, Ba). , Zn, Al, etc.), or a part of Ti may be missing. In addition, the carrier may contain a compound other than titanium oxide to the extent that the effects of the present invention are exhibited.

担体が有する結晶相の同定は次のように行う。測定装置として例えば株式会社リガク製のSmartLabを用い、CuKα1線を使用して、測定範囲20°〜100°で、粉末X線回折の測定を行う。そして、粉末X線回折の測定によって得られた回折パターンを観察することにより、結晶相の同定を行う。担体がTiO0.5の結晶相を主結晶相として有するか否かは、粉末X線回折の測定で得られる回折パターンにおいて、TiO0.5の結晶相に由来する回折ピークの最大強度が、他のいずれの結晶相に由来する回折ピークの最大強度よりも大きいか否かで判断する。The crystal phase of the carrier is identified as follows. As the measuring device, for example, SmartLab manufactured by Rigaku Corporation is used, and the powder X-ray diffraction is measured in the measurement range of 20 ° to 100 ° using CuKα1 ray. Then, the crystal phase is identified by observing the diffraction pattern obtained by the powder X-ray diffraction measurement. Whether or not the carrier has the crystal phase of TiO 0.5 as the main crystal phase is determined by the maximum intensity of the diffraction peak derived from the crystal phase of TiO 0.5 in the diffraction pattern obtained by the measurement of powder X-ray diffraction. It is judged by whether it is larger than the maximum intensity of the diffraction peak derived from any of the other crystal phases.

本発明の担体付き触媒において、該担体を構成するチタン酸化物には、上述のとおり、TiOが存在していてもよい。特にTiOは、担体の表面の少なくとも一部に露出していることが好ましい。この理由は次のとおりである。すなわち、本発明において担体として用いられるチタン酸化物にはTiO0.5の結晶相又はTiOの結晶相が含まれるところ、TiO0.5やTiOは、背景技術の項で述べた特許文献1に記載のTiO(式中のxは1.5<x<2の範囲である。)に比べて酸化されやすい性質を有している。そこで、担体の表面部分にTiOを配置することで、担体の内部に含まれるTiO0.5の結晶相又はTiOの結晶相が酸化されることが効果的に防止される。TiOの表層は、例えば、チタン酸化物を含む担体に触媒を担持させる工程において、該担体が酸素と触れて酸化が生じることに起因して形成される。In the catalyst with a carrier of the present invention, TiO 2 may be present in the titanium oxide constituting the carrier as described above. Particularly, TiO 2 is preferably exposed on at least a part of the surface of the carrier. The reason for this is as follows. That is, the titanium oxide used as a carrier in the present invention includes a crystal phase of TiO 0.5 or a crystal phase of TiO, and TiO 0.5 and TiO are described in Patent Document 1 described in the background art section. Compared with the described TiO x ( x in the formula is in the range of 1.5 <x <2), it has a property of being easily oxidized. Therefore, by disposing TiO 2 on the surface of the carrier, it is possible to effectively prevent the crystal phase of TiO 0.5 or the crystal phase of TiO contained in the carrier from being oxidized. The surface layer of TiO 2 is formed, for example, because the carrier is brought into contact with oxygen to be oxidized in the step of supporting the catalyst on the carrier containing titanium oxide.

本発明の担体付き触媒は、担体として用いられるチタン酸化物の導電性が高いことに起因して体積抵抗率が低いものである。詳細には、本発明の担体付き触媒は、その体積抵抗率が、10Ω・cm以下、特に5Ω・cm以下、とりわけ2Ω・cm以下という低い値を示す。かかる低体積抵抗率を示す本発明の担体付き触媒は、その低体積抵抗率を利用して、例えば自動車用燃料電池、家庭用燃料電池に使用される固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)の電極触媒などとして有用なものとなる。   The catalyst with a carrier of the present invention has a low volume resistivity due to the high conductivity of titanium oxide used as a carrier. Specifically, the catalyst with a carrier of the present invention has a low volume resistivity of 10 Ω · cm or less, particularly 5 Ω · cm or less, and particularly 2 Ω · cm or less. The carrier-supported catalyst of the present invention exhibiting such a low volume resistivity utilizes the low volume resistivity, for example, a polymer electrolyte fuel cell (PEFC) or phosphorus used in a fuel cell for automobiles, a fuel cell for household use. It is useful as an electrode catalyst for an acid fuel cell (PAFC).

前記の体積抵抗率は次のようにして測定される。測定には圧粉抵抗測定システム(三菱化学アナリティック社製 PD−41)と抵抗率測定器(三菱化学アナリティック社製 MCP−T600)を用いる。試料1gをプローブシリンダへ投入し、プローブユニットをPD−41へセットする。油圧ジャッキによって3.2MPaの荷重をかけたときの抵抗値を、抵抗率測定器を用いて測定する。測定した抵抗値と試料厚みから、体積抵抗率を算出する。   The volume resistivity is measured as follows. A dust resistance measuring system (PD-41 manufactured by Mitsubishi Chemical Analytical Co., Ltd.) and a resistivity measuring device (MCP-T600 manufactured by Mitsubishi Chemical Analytical Co., Ltd.) are used for the measurement. 1 g of the sample is put into the probe cylinder, and the probe unit is set to PD-41. The resistance value when a load of 3.2 MPa is applied by the hydraulic jack is measured using a resistivity measuring device. The volume resistivity is calculated from the measured resistance value and the sample thickness.

本発明の担体付き触媒において、該触媒が本来的に有する性能を十分に発揮させるためには、担体の表面の一部にTiO0.5の結晶相又はTiOの結晶相が露出しており、且つ触媒が、露出しているTiO0.5の結晶相又はTiOの結晶相に直接に接していることが好ましい。これらの結晶相と触媒とが直接に接していることで、例えば触媒が導電性を有する場合には、これらの結晶相と触媒との間で電気的な導通が確保されるという利点がある。このような接触状態を実現するためには、例えば後述する方法に従い本発明の担体付き触媒を製造すればよい。In the carrier-supported catalyst of the present invention, in order to fully exhibit the inherent performance of the catalyst, the crystal phase of TiO 0.5 or the crystal phase of TiO is exposed on a part of the surface of the carrier, Further, it is preferable that the catalyst is in direct contact with the exposed crystal phase of TiO 0.5 or the crystal phase of TiO. Since these crystal phases and the catalyst are in direct contact with each other, for example, when the catalyst has conductivity, there is an advantage that electrical conduction is secured between the crystal phases and the catalyst. In order to achieve such a contact state, for example, the catalyst with the carrier of the present invention may be produced according to the method described later.

ところで、担体に含まれるTiO0.5の結晶相又はTiOの結晶相の酸化を効果的に防止するためには、上述のとおり、該担体が表層にTiOを有していることが好ましい。尤もTiOは、TiO0.5やTiOに比べると導電性の低い物質なので、触媒がTiOを介して間接的にTiO0.5の結晶相又はTiOの結晶相に接していることは、触媒活性上有利とは言えない。そこで、上述のとおり触媒は、担体の表面の一部に露出しているTiO0.5の結晶相又はTiOの結晶相に直接に接していることが好ましく、且つ担体の表面のうち触媒と接触していない部分は、TiOが露出している、すなわちTiOの表層が配置されていることが好ましい。担体がこのような表面状態になっていることは、例えばTEM(透過型電子顕微鏡)のEELS分析や、XPS(X線光電子分光法)による表面のチタンの価数測定によって確認できる。By the way, in order to effectively prevent the oxidation of the crystal phase of TiO 0.5 or the crystal phase of TiO contained in the carrier, it is preferable that the carrier has TiO 2 in the surface layer as described above. Since TiO 2 is a substance having a lower conductivity than TiO 0.5 or TiO, the catalyst is indirectly contacted with the crystal phase of TiO 0.5 or the crystal phase of TiO 2 through TiO 2 . It cannot be said to be advantageous in terms of catalytic activity. Therefore, as described above, the catalyst is preferably in direct contact with the crystal phase of TiO 0.5 or the crystal phase of TiO exposed on a part of the surface of the carrier, and in contact with the catalyst on the surface of the carrier. It is preferable that TiO 2 is exposed in a portion not formed, that is, a surface layer of TiO 2 is arranged. The surface state of the carrier can be confirmed by, for example, EELS analysis of a TEM (transmission electron microscope) or valence measurement of titanium on the surface by XPS (X-ray photoelectron spectroscopy).

本発明の担体付き触媒は、触媒活性を高める観点からBET比表面積が大きいことが好ましい。具体的には、本発明の担体付き触媒のBET比表面積は、1m/g以上20m/g以下であることが好ましく、2m/g以上20m/g以下であることが更に好ましく、4m/g以上20m/g以下であることが一層好ましい。このような範囲のBET比表面積を実現するためには、例えば後述する方法に従い本発明の担体付き触媒を製造すればよい。The catalyst with a carrier of the present invention preferably has a large BET specific surface area from the viewpoint of enhancing the catalytic activity. Specifically, BET specific surface area of the support with the catalyst of the present invention is preferably from 1 m 2 / g or more 20 m 2 / g, more preferably at most 2m 2 / g or more 20 m 2 / g, It is more preferably 4 m 2 / g or more and 20 m 2 / g or less. In order to achieve a BET specific surface area in such a range, the catalyst with a carrier of the present invention may be produced according to, for example, the method described below.

BET比表面積は、例えば島津製作所社製の「フローソーブ2300」を用い、BET1点法に従い窒素吸着法で測定することができる。測定粉末の量は0.3gとし、予備脱気条件は大気圧下、80℃で10分間とする。   The BET specific surface area can be measured by a nitrogen adsorption method according to the BET one-point method, using "Flowsorb 2300" manufactured by Shimadzu Corporation. The amount of powder to be measured is 0.3 g, and the preliminary deaeration conditions are atmospheric pressure and 80 ° C. for 10 minutes.

BET比表面積に関連して、本発明の担体付き触媒の粒径は、レーザー回折散乱式粒度分布測定法(例えば、堀場製作所社製のレーザー回折/散乱式粒子径分布測定装置「LA−920」を用いて測定する。)による累積体積50容量%における体積累積粒径D50で表して0.5μm以上100μm以下であることが好ましく、1μm以上50μm以下であることが更に好ましく、3μm以上20μm以下であることが一層好ましい。本発明の担体付き触媒の粒径をこの範囲内に設定することで、触媒活性を十分に高くすることができる。Regarding the BET specific surface area, the particle size of the catalyst with a carrier of the present invention is determined by a laser diffraction / scattering particle size distribution measuring method (for example, laser diffraction / scattering particle size distribution measuring apparatus “LA-920” manufactured by Horiba Ltd.). In terms of the volume cumulative particle diameter D 50 at a cumulative volume of 50% by volume, the particle diameter is preferably 0.5 μm or more and 100 μm or less, more preferably 1 μm or more and 50 μm or less, and 3 μm or more and 20 μm or less. Is more preferable. By setting the particle size of the catalyst with carrier of the present invention within this range, the catalytic activity can be sufficiently increased.

本発明の担体付き触媒において、触媒の担持量は、触媒の種類にもよるが一般に、担体付き触媒に対して1質量%以上50質量%以下であることが好ましく、5質量%以上40質量%以下であることが更に好ましく、10質量%以上30質量%以下であることが一層好ましい。触媒の担持量がこの範囲内であることによって、必要最低限の使用量で十分な触媒活性を発現させることができる。触媒の担持量は、担体付き触媒を例えば酸で溶解した溶液を調製し、その溶液を対象としたICP発光分光分析によって測定できる。   In the catalyst with a carrier of the present invention, the supported amount of the catalyst depends on the type of the catalyst, but generally, it is preferably 1% by mass or more and 50% by mass or less, and 5% by mass or more and 40% by mass or less with respect to the catalyst with a carrier. It is more preferable that the amount is 10% by mass or more and 30% by mass or less. When the amount of the catalyst carried is within this range, sufficient catalytic activity can be expressed with the minimum necessary amount. The supported amount of the catalyst can be measured by preparing a solution of a catalyst with a carrier, for example, in an acid, and subjecting the solution to ICP emission spectroscopy.

本発明で用いられる触媒の種類に特に制限はなく、対象とする化学反応を活性化する物質が適切に用いられる。本発明の担体付き触媒を例えば燃料電池の電極触媒として用いる場合には、触媒として各種金属を用いることが好ましい。金属としては、例えば白金、金、パラジウム、銀、イリジウム、ロジウム及びルテニウムなどからなる貴金属触媒が好適なものとして挙げられる。これらの金属は合金として用いることもできる。触媒として水素酸化活性を有するものを用いる場合には、白金、イリジウム及びルテニウムからなる群より選ばれる少なくとも1種の金属又はその合金を含む触媒を用いることが好ましい。例えば白金又は白金を含む合金、イリジウムやイリジウムを含む合金、ルテニウムやルテニウムを含む合金を用いることが好ましい。具体的には、白金、イリジウム、ルテニウム、白金−イリジウム合金、白金−ルテニウム合金、白金−鉄合金、イリジウム−ルテニウム合金などが挙げられるが、これらに限られない。   The type of catalyst used in the present invention is not particularly limited, and a substance that activates a target chemical reaction is appropriately used. When the carrier-supported catalyst of the present invention is used as, for example, an electrode catalyst for a fuel cell, it is preferable to use various metals as the catalyst. Preferable examples of the metal include noble metal catalysts composed of platinum, gold, palladium, silver, iridium, rhodium, ruthenium and the like. These metals can also be used as an alloy. When a catalyst having hydrogen oxidation activity is used as the catalyst, it is preferable to use a catalyst containing at least one metal selected from the group consisting of platinum, iridium and ruthenium, or an alloy thereof. For example, it is preferable to use platinum or an alloy containing platinum, iridium, an alloy containing iridium, ruthenium, or an alloy containing ruthenium. Specific examples thereof include, but are not limited to, platinum, iridium, ruthenium, platinum-iridium alloy, platinum-ruthenium alloy, platinum-iron alloy, and iridium-ruthenium alloy.

次に本発明の担体付き触媒の好適な製造方法について説明する。本製造方法は、(1)担体の製造工程、(2)触媒の担持工程、(3)焼成工程の3工程に大別される。以下、それぞれの工程について詳述する。   Next, a suitable method for producing the catalyst with carrier of the present invention will be described. This production method is roughly divided into three steps: (1) carrier production step, (2) catalyst loading step, and (3) calcination step. Hereinafter, each step will be described in detail.

担体の製造工程においては、チタン酸化物を製造する。このチタン酸化物は組成式TiO(式中、aは0.4以上1以下の数を表す。)で表されるものである。このチタン酸化物を生成させるため、本製造方法では出発原料として金属チタン及び二酸化チタンを用いる。金属チタンとしては、D50が0.5μm以上300μm以下である金属チタンの粉末を用いることが、金属チタンと二酸化チタンとの反応性を高める観点から好ましい。同様の観点から、二酸化チタンとしてD50が0.01μm以上5.0μm以下である粉末を用いることが好ましい。二酸化チタンとしてはルチル型、アナターゼ型、及びブルッカイト型のいずれであっても用いることができる。比表面積の高い担体を得る観点からは、アナターゼ型の二酸化チタンを用いることが好ましい。In the manufacturing process of the carrier, titanium oxide is manufactured. This titanium oxide is represented by the composition formula TiO a (in the formula, a represents a number of 0.4 or more and 1 or less). In order to produce this titanium oxide, titanium metal and titanium dioxide are used as starting materials in this production method. As the metallic titanium, it is preferable to use metallic titanium powder having a D 50 of 0.5 μm or more and 300 μm or less from the viewpoint of enhancing the reactivity between the metallic titanium and titanium dioxide. From the same viewpoint, it is preferable to use a powder having D 50 of 0.01 μm or more and 5.0 μm or less as titanium dioxide. As titanium dioxide, any of rutile type, anatase type and brookite type can be used. From the viewpoint of obtaining a carrier having a high specific surface area, it is preferable to use anatase type titanium dioxide.

担体の製造工程において、金属チタンと二酸化チタンとを混合させる割合は、TiO(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物が得られるように適切に調整される。この観点から、金属チタン100質量部に対して二酸化チタンを好ましくは20質量部以上300質量部以下、更に好ましくは40質量部以上230質量部以下、一層好ましくは50質量部以上180質量部以下の量で混合する。混合に際しては乳鉢、自動乳鉢、ボールミル、スタンプミル、V型混合器、タンブラー型混合器など一般的に乾式で混合可能な装置を用いることができる。In the production process of the carrier, the mixing ratio of metallic titanium and titanium dioxide is such that a titanium oxide represented by TiO a (in the formula, a represents a number of 0.4 or more and 1 or less) is obtained. Adjusted appropriately. From this viewpoint, titanium dioxide is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 40 parts by mass or more and 230 parts by mass or less, and further preferably 50 parts by mass or more and 180 parts by mass or less with respect to 100 parts by mass of metallic titanium. Mix by volume. For mixing, a generally dry type mixing device such as a mortar, an automatic mortar, a ball mill, a stamp mill, a V-type mixer, and a tumbler-type mixer can be used.

金属チタンと二酸化チタンとを混合したら、混合物を焼成してチタン酸化物を生成させる。焼成は一般に真空中で行うことができる。この場合の真空度は、絶対圧で表して1×10−1Pa以下であることが、目的とするチタン酸化物を首尾よく得る点から好ましい。同様の観点から、焼成温度は、600℃以上1300℃以下であることが好ましく、750℃以上1100℃以下であることが更に好ましい。焼成時間は、焼成温度が上述の範囲であることを条件として5時間以上30時間以下であることが好ましく、5時間以上15時間以下であることが更に好ましい。Once the titanium metal and titanium dioxide are mixed, the mixture is fired to form titanium oxide. Firing can generally be performed in vacuum. In this case, the degree of vacuum is preferably 1 × 10 −1 Pa or less expressed in absolute pressure in terms of successfully obtaining the target titanium oxide. From the same viewpoint, the firing temperature is preferably 600 ° C. or higher and 1300 ° C. or lower, and more preferably 750 ° C. or higher and 1100 ° C. or lower. The firing time is preferably 5 hours or more and 30 hours or less, more preferably 5 hours or more and 15 hours or less, provided that the firing temperature is within the above range.

チタン酸化物の担体において、その表面の少なくとも一部に二酸化チタンを存在させるためには、例えば上述した金属チタンと二酸化チタンとの混合物の焼成条件を調整して、一部の二酸化チタンが残存するようにすればよい。   In order to allow titanium dioxide to be present on at least a part of the surface of the titanium oxide carrier, for example, the firing conditions of the above-mentioned mixture of metallic titanium and titanium dioxide are adjusted so that a part of titanium dioxide remains. You can do it like this.

以上の工程によってチタン酸化物の担体が得られる。この担体は、上述のとおりTiO(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物からなるものである。また、このチタン酸化物中は好ましくはTiO0.5の結晶相又はTiOの結晶相を有する。Through the above steps, a titanium oxide carrier is obtained. As described above, this carrier is made of titanium oxide represented by TiO a (in the formula, a represents a number of 0.4 or more and 1 or less). The titanium oxide preferably has a TiO 0.5 crystal phase or a TiO crystal phase.

このようにしてチタン酸化物の担体が得られたら、この担体に触媒を担持させる。触媒の担持に先立ち触媒の粒径を調整することが好ましい。粒径の調整には、例えばペイントシェイカーやビーズミルなどの粉砕装置を用いることができる。この場合、担体が酸素に触れて酸化されることを防止する目的で、担体を有機溶媒中で粉砕することが好ましい。この目的で用いられる有機溶媒としては、例えばエタノール、2−プロパノール、ブタノールなどの脂肪族一価アルコール類、トルエンやベンゼンなどの芳香族炭化水素、ヘキサンなどの脂肪族炭化水素、その他ケトン類やエステル類、エーテル類などが挙げられる。担体と有機溶媒との使用割合は、粉砕を首尾よく行う観点から、担体100質量部に対する有機溶媒の使用量が100質量部以上9900質量部以下であることが好ましく、100質量部以上900質量部以下であることが更に好ましい。   After the titanium oxide carrier is obtained in this manner, the catalyst is supported on the carrier. It is preferable to adjust the particle size of the catalyst before supporting the catalyst. A crushing device such as a paint shaker or a bead mill can be used to adjust the particle size. In this case, it is preferable to grind the carrier in an organic solvent for the purpose of preventing the carrier from being oxidized by being exposed to oxygen. Examples of the organic solvent used for this purpose include aliphatic monohydric alcohols such as ethanol, 2-propanol and butanol, aromatic hydrocarbons such as toluene and benzene, aliphatic hydrocarbons such as hexane, and other ketones and esters. And ethers. The use ratio of the carrier and the organic solvent is preferably 100 parts by mass or more and 9900 parts by mass or less, and 100 parts by mass or more and 900 parts by mass, with respect to 100 parts by mass of the carrier, from the viewpoint of successfully performing pulverization. The following is more preferable.

有機溶媒中での担体の粉砕が完了したら、引き続き触媒の担持工程を行う。この場合、粉砕から触媒の担持までの間でも触媒を酸素に極力触れさせないことが、触媒の酸化を防止する観点から好ましい。この目的のために、粉砕が完了した担体に対して乾粉化工程を行うことなく、有機溶媒中に分散した状態の担体に触媒を担持させることが有利である。つまり、担体を有機溶媒中で粉砕し、次いで乾粉化工程を経ることなく有機溶媒中で触媒を担持させることが有利である。粉砕に用いる有機溶媒と、触媒の担持に用いる有機溶媒とは同一のものであってもよく、あるいは異なるものであってもよい。   After the pulverization of the carrier in the organic solvent is completed, the step of supporting the catalyst is subsequently performed. In this case, it is preferable from the viewpoint of preventing oxidation of the catalyst that the catalyst is not exposed to oxygen as much as possible during the period from crushing to loading the catalyst. For this purpose, it is advantageous to support the catalyst on a carrier in a state of being dispersed in an organic solvent, without performing a dry powdering process on the carrier after pulverization. That is, it is advantageous to grind the carrier in an organic solvent and then carry the catalyst in the organic solvent without going through a dry powdering step. The organic solvent used for pulverization and the organic solvent used for supporting the catalyst may be the same or different.

触媒の担持には、触媒を構成する元素を含む原料を用いることができる。かかる原料と、有機溶媒中に分散されている担体とを混合することで、担体の表面に、触媒を構成する元素を付着させる。この場合、必要に応じて分散液を加熱してもよい。触媒を構成する元素を含む原料としては、例えば触媒が白金を含む場合には、ヘキサクロロ白金酸塩、ジニトロアンミン白金塩、ヘキサアンミン白金クロライド、テトラアンミン白金水酸塩、アセチルアセトナト白金塩などを用いることができる。触媒がイリジウムを含む場合には、酸化イリジウム、塩化イリジウム、アセチルアセトナトイリジウム塩などを用いることができる。触媒がルテニウムを含む場合には、塩化ルテニウム、酸化ルテニウム、硝酸ルテニウム、ヘキサアンミンルテニウムクロライド、アセチルアセトナトルテニウム塩などを用いることができる。   A raw material containing an element constituting the catalyst can be used for supporting the catalyst. By mixing such a raw material and a carrier dispersed in an organic solvent, the elements constituting the catalyst are attached to the surface of the carrier. In this case, the dispersion may be heated if necessary. As the raw material containing the element constituting the catalyst, for example, when the catalyst contains platinum, hexachloroplatinate, dinitroammineplatinum salt, hexaammineplatinum chloride, tetraammineplatinum hydrochloride, acetylacetonatoplatinum salt, etc. are used. be able to. When the catalyst contains iridium, iridium oxide, iridium chloride, acetylacetonatoiridium salt and the like can be used. When the catalyst contains ruthenium, ruthenium chloride, ruthenium oxide, ruthenium nitrate, hexaammine ruthenium chloride, acetylacetonatoruthenium salt and the like can be used.

このようにして、触媒を構成する元素を担体に担持させたら、これを焼成工程に付して、担体の表面に触媒を生成させる。また、必要に応じ、担体中にTiO0.5の結晶相又はTiOの結晶相を生成させる。焼成は一般に還元性雰囲気中で行うことができる。還元性雰囲気としては、水素ガス及びアルゴンガスや窒素ガス等の不活性ガスとの混合ガスを用いることが好ましい。この場合、混合ガス中の水素ガスと不活性ガスとの割合を調整することで、還元の程度をコントロールできる。焼成温度は、還元の程度を適切にコントロールする観点から400℃以上1200℃以下であることが好ましく、550℃以上900℃以下であることが更に好ましい。焼成時間は、焼成温度が上述の範囲であることを条件として0.1時間以上20時間以下であることが好ましく、1時間以上10時間以下であることが更に好ましい。After the elements constituting the catalyst are supported on the carrier in this manner, the carrier is subjected to a firing step to generate the catalyst on the surface of the carrier. If necessary, a TiO 0.5 crystal phase or a TiO crystal phase is generated in the carrier. Firing can generally be performed in a reducing atmosphere. As the reducing atmosphere, it is preferable to use a mixed gas of hydrogen gas and an inert gas such as argon gas or nitrogen gas. In this case, the degree of reduction can be controlled by adjusting the ratio of hydrogen gas and inert gas in the mixed gas. The firing temperature is preferably 400 ° C. or higher and 1200 ° C. or lower, and more preferably 550 ° C. or higher and 900 ° C. or lower, from the viewpoint of appropriately controlling the degree of reduction. The firing time is preferably 0.1 hours or more and 20 hours or less, more preferably 1 hour or more and 10 hours or less, provided that the firing temperature is in the above range.

担体の表面の一部にTiO0.5の結晶相又はTiOの結晶相が露出している場合、上述の方法を用いれば、該TiO0.5の結晶相又はTiOの結晶相に直接触媒を担持させることができる。一方、担体の表面のうち触媒と接していない部分にTiOを露出させるためには、例えば担体の製造において、上述した金属TiとTiOとの混合物の焼成条件を調整して、一部のTiOが残存するようにすればよい。When the crystal phase of TiO 0.5 or the crystal phase of TiO is exposed on a part of the surface of the carrier, the above method is used to directly attach the catalyst to the crystal phase of TiO 0.5 or the crystal phase of TiO. It can be supported. On the other hand, in order to expose TiO 2 to a portion of the surface of the support that is not in contact with the catalyst, for example, in the production of the support, the firing conditions of the above-described mixture of metal Ti and TiO 2 are adjusted to allow a part of It is sufficient that TiO 2 remains.

以上の工程によって目的とする担体付き触媒を得ることができる。この触媒は、担体の導電性が高いことを活かして種々の用途に用いることができる。そのような用途としては、例えば自動車用燃料電池、家庭用燃料電池に使用される固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)の電極触媒などが挙げられる。特に、本発明の担体付き触媒は、固体高分子形燃料電池の電極触媒として有用である。   The target catalyst with a carrier can be obtained by the above steps. This catalyst can be used for various purposes by taking advantage of the high conductivity of the carrier. Such applications include, for example, fuel cells for automobiles, polymer electrolyte fuel cells (PEFC) used in household fuel cells, and electrode catalysts for phosphoric acid fuel cells (PAFC). In particular, the carrier-supported catalyst of the present invention is useful as an electrode catalyst for polymer electrolyte fuel cells.

本発明の担体付き触媒を燃料電池の電極触媒として用いる場合、該電極触媒は、例えば固体高分子電解質膜の一方の面に配置された酸素極及び他方の面に配置された燃料極を有する膜電極接合体における酸素極又は燃料極の少なくとも一方に含有させることができる。電極触媒は、好適には燃料極に含有させることができる。   When the carrier-supported catalyst of the present invention is used as an electrode catalyst of a fuel cell, the electrode catalyst is, for example, a membrane having an oxygen electrode arranged on one surface of a solid polymer electrolyte membrane and a fuel electrode arranged on the other surface. It can be contained in at least one of the oxygen electrode and the fuel electrode in the electrode assembly. The electrode catalyst can be preferably contained in the fuel electrode.

特に、燃料極は、本発明の担体付き触媒を含む触媒層と、ガス拡散層とを含んでいることが好ましい。電極反応を円滑に進行させるために、担体付き触媒は固体高分子電解質膜に接していることが好ましい。ガス拡散層は、集電機能を有する支持集電体として機能するものである。更に、本発明の担体付き触媒にガスを十分に供給する機能を有するものである。ガス拡散層としては、この種の技術分野において従来用いられてきたものと同様のものを用いることができる。例えば多孔質材料であるカーボンペーパー、カーボンクロスを用いることができる。具体的には、例えば表面をポリ四フッ化エチレンでコーティングした炭素繊維と、当該コーティングがなされていない炭素繊維とを所定の割合とした糸で織成したカーボンクロスにより形成することができる。   In particular, the fuel electrode preferably includes a catalyst layer containing the carrier-supported catalyst of the present invention and a gas diffusion layer. In order to allow the electrode reaction to proceed smoothly, the catalyst with a carrier is preferably in contact with the solid polymer electrolyte membrane. The gas diffusion layer functions as a supporting current collector having a current collecting function. Further, it has a function of sufficiently supplying gas to the catalyst with a carrier of the present invention. As the gas diffusion layer, the same one as that conventionally used in this kind of technical field can be used. For example, carbon paper or carbon cloth, which is a porous material, can be used. Specifically, for example, it can be formed by a carbon cloth woven from yarns in which carbon fibers whose surfaces are coated with polytetrafluoroethylene and carbon fibers which are not coated are woven in a predetermined ratio.

固体高分子電解質としては、この種の技術分野において従来用いられてきたものと同様のものを用いることができる。例えばパーフルオロスルホン酸ポリマー系のプロトン伝導体膜、リン酸などの無機酸を炭化水素系高分子化合物にドープさせたもの、一部がプロトン伝導体の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。   As the solid polymer electrolyte, the same ones conventionally used in this kind of technical field can be used. For example, a perfluorosulfonic acid polymer-based proton conductor membrane, a hydrocarbon polymer compound doped with an inorganic acid such as phosphoric acid, or an organic / inorganic hybrid polymer partially substituted with a proton conductor functional group. A proton conductor obtained by impregnating a polymer matrix with a phosphoric acid solution or a sulfuric acid solution may be used.

前記膜電極接合体は、その各面にセパレータが配されて固体高分子形燃料電池となされる。セパレータとしては、例えばガス拡散層との対向面に、一方向に延びる複数個の凸部(リブ)が所定間隔をおいて形成されているものを用いることができる。隣り合う凸部間は、断面が矩形の溝部となっている。この溝部は、燃料ガス及び空気等の酸化剤ガスの供給排出用流路として用いられる。燃料ガス及び酸化剤ガスは、燃料ガス供給手段及び酸化剤ガス供給手段からそれぞれ供給される。膜電極接合体の各面に配されるそれぞれのセパレータは、それに形成されている溝部が互いに直交するように配置されることが好ましい。以上の構成が燃料電池の最小単位を構成しており、この構成を数十個〜数百個並設してなるセルスタックから燃料電池を構成することができる。   The membrane electrode assembly has a separator on each surface thereof to form a polymer electrolyte fuel cell. As the separator, for example, a separator in which a plurality of convex portions (ribs) extending in one direction are formed at predetermined intervals on the surface facing the gas diffusion layer can be used. A groove having a rectangular cross section is formed between the adjacent convex portions. This groove is used as a flow path for supplying and discharging a fuel gas and an oxidant gas such as air. The fuel gas and the oxidant gas are supplied from the fuel gas supply means and the oxidant gas supply means, respectively. The respective separators arranged on the respective surfaces of the membrane electrode assembly are preferably arranged such that the groove portions formed therein are orthogonal to each other. The above configuration constitutes the minimum unit of the fuel cell, and the fuel cell can be constructed from a cell stack in which several tens to several hundreds of this configuration are arranged in parallel.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the invention is not limited to such embodiments. Unless otherwise specified, "%" means "% by mass".

〔実施例1〕
(1)担体の製造工程
6.7gの金属チタンと3.7gのアナターゼ型二酸化チタンとを混合し、真空炉で900℃にて10時間にわたり焼成を行った。真空炉内の絶対圧は10−1Pa以下になるよう設定した。金属チタンの粒径D50は13μmであった。二酸化チタンの粒径D50は0.2μmであった。この焼成によってTiO(式中、aは0.47である)で表されるチタン酸化物を得た。
[Example 1]
(1) Support manufacturing process 6.7 g of metallic titanium and 3.7 g of anatase type titanium dioxide were mixed and baked in a vacuum furnace at 900 ° C. for 10 hours. The absolute pressure in the vacuum furnace was set to 10 -1 Pa or less. The particle size D 50 of titanium metal was 13 μm. The particle size D 50 of titanium dioxide was 0.2 μm. By this firing, a titanium oxide represented by TiO a (in the formula, a is 0.47) was obtained.

(2)触媒の担持工程
前記(1)で得られたチタン酸化物4.0gとエタノール16.0gと混合し、それによって得られたスラリーをペイントシェイカーにより、10時間にわたりチタン酸化物の粉砕を行った。次いでチタン酸化物を乾粉化させず、酸素に触れさせることなく、該チタン酸化物を含むスラリーに、300gのエタノール及び3.9mlのジニトロアンミン白金硝酸水溶液(白金濃度15%)を添加して混合液を得た。この混合液を四つ口フラスコに投入した。フラスコ中の混合液を、液温が75℃になるようにオイルバスで6時間にわたり加温した。その後、液を冷却し、更に水洗することで、エタノール及び副塩成分を除去した。これによって得られたケーキを真空乾燥して乾粉を得た。
(2) Catalyst loading step 4.0 g of the titanium oxide obtained in (1) above and 16.0 g of ethanol were mixed, and the resulting slurry was pulverized with a paint shaker for 10 hours. went. Next, 300 g of ethanol and 3.9 ml of a dinitroammine platinum nitric acid aqueous solution (platinum concentration: 15%) were added to and mixed with the slurry containing the titanium oxide without drying the titanium oxide and exposing it to oxygen. A liquid was obtained. This mixed solution was placed in a four-necked flask. The mixed liquid in the flask was heated in an oil bath for 6 hours so that the liquid temperature became 75 ° C. Then, the liquid was cooled and further washed with water to remove ethanol and by-salt components. The cake thus obtained was vacuum dried to obtain a dry powder.

(3)焼成工程
前記(2)で得られた乾粉を焼成した。焼成の雰囲気は2vol%H/Ar混合ガスとした。焼成温度は600℃とした。焼成時間は2時間とした。このようにして担体付き白金触媒を得た。この担体付き白金触媒の粒径D50は6.2μmであった。なお、粒径D50は次の方法で測定した。担体付き白金触媒の粒子を水と混合し、一般的な超音波バスを用いて1分間分散処理を行った。次いでベックマンコールター社製LS13 320を用いてD50を測定した。
(3) Firing step The dry powder obtained in (2) above was fired. The firing atmosphere was a 2 vol% H 2 / Ar mixed gas. The firing temperature was 600 ° C. The firing time was 2 hours. Thus, a platinum catalyst with a carrier was obtained. The particle diameter D 50 of this platinum catalyst with a carrier was 6.2 μm. The particle size D 50 was measured by the following method. Particles of the platinum catalyst with a carrier were mixed with water, and a dispersion treatment was performed for 1 minute using a general ultrasonic bath. It was then measured D 50 using the Beckman Coulter LS13 320.

〔実施例2〕
実施例1において(3)の焼成工程における焼成温度を、以下の表1に示すとおりに変更した。これ以外は実施例1と同様にして担体付き白金触媒を得た。実施例1と同様に測定した結果、実施例2の担体付き白金触媒の粒径D50は7.5μmであった。
[Example 2]
In Example 1, the firing temperature in the firing step (3) was changed as shown in Table 1 below. A platinum catalyst with a carrier was obtained in the same manner as in Example 1 except for this. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with the carrier of Example 2 was 7.5 μm.

〔実施例3〕
実施例1において(3)の焼成工程における焼成温度を、以下の表1に示すとおりに変更した。これ以外は実施例1と同様にして担体付き白金触媒を得た。実施例1と同様に測定した結果、実施例3の担体付き白金触媒の粒径D50は5.3μmであった。
[Example 3]
In Example 1, the firing temperature in the firing step (3) was changed as shown in Table 1 below. A platinum catalyst with a carrier was obtained in the same manner as in Example 1 except for this. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with the carrier of Example 3 was 5.3 μm.

〔実施例4〕
実施例1において(1)の担体の製造工程における金属チタン及び二酸化チタンの使用量を表1に示すとおりとし、且つ(1)担体の製造工程における焼成温度を、以下の表1に示すとおりに変更した。これ以外は実施例1と同様にして担体付き白金触媒を得た。実施例1と同様に測定した結果、実施例4の担体付き白金触媒の粒径D50は8.9μmであった。
[Example 4]
In Example 1, the amounts of titanium metal and titanium dioxide used in the manufacturing process of the carrier of (1) are as shown in Table 1, and the firing temperature in the manufacturing process of the carrier of (1) is as shown in Table 1 below. changed. A platinum catalyst with a carrier was obtained in the same manner as in Example 1 except for this. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with the carrier of Example 4 was 8.9 μm.

〔比較例1〕
(1)担体の製造工程
実施例1と同様に行った。
[Comparative Example 1]
(1) Manufacturing process of carrier The same process as in Example 1 was carried out.

(2)触媒の担持工程
前記(1)で得られたチタン酸化物4.0gとエタノール16.0gと混合し、それによって得られたスラリーをペイントシェイカーにより、10時間にわたりチタン酸化物の粉砕を行った。粉砕後、エタノール及び副塩成分を除去した。これによって得られたケーキを真空乾燥してチタン酸化物の乾粉を得た。この乾粉2.0gと、300gのエタノール及び3.9mlのジニトロアンミン白金水溶液(白金濃度15%)を添加して混合液を得た。その後は実施例1と同様の操作を行った。
(2) Catalyst loading step 4.0 g of the titanium oxide obtained in (1) above and 16.0 g of ethanol were mixed, and the resulting slurry was pulverized with a paint shaker for 10 hours. went. After grinding, ethanol and by-salt components were removed. The cake thus obtained was vacuum dried to obtain a dry powder of titanium oxide. 2.0 g of this dry powder, 300 g of ethanol and 3.9 ml of a dinitroammine platinum aqueous solution (platinum concentration 15%) were added to obtain a mixed solution. After that, the same operation as in Example 1 was performed.

(3)焼成工程
実施例1と同様に行った。これによって担体付き白金触媒を得た。実施例1と同様に測定した結果、比較例1の担体付き白金触媒の粒径D50は3.1μmであった。
(3) Firing step The same process as in Example 1 was performed. As a result, a platinum catalyst with a carrier was obtained. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with a carrier of Comparative Example 1 was 3.1 μm.

〔比較例2〕
比較例1において(3)の焼成工程を行わなかった点以外は、比較例1と同様にして担体付き白金触媒を得た。実施例1と同様に測定した結果、比較例2の担体付き白金触媒の粒径D50は1.1μmであった。
[Comparative Example 2]
A platinum catalyst with a carrier was obtained in the same manner as in Comparative Example 1 except that the firing step (3) in Comparative Example 1 was not performed. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with a carrier of Comparative Example 2 was 1.1 μm.

〔比較例3〕
(1)担体の製造工程
実施例1と同様に行った。
[Comparative Example 3]
(1) Manufacturing process of carrier The same process as in Example 1 was carried out.

(2)触媒の担持工程
前記(1)で得られたチタン酸化物4.0gとエタノール16.0gと混合し、それによって得られたスラリーをペイントシェイカーにより、10時間にわたりチタン酸化物の粉砕を行った。粉砕後、エタノール及び副塩成分を除去した。これによって得られたケーキを真空乾燥してチタン酸化物の乾粉を得た。この乾粉を用いてコロイド法で白金を担持させた。詳細には、5mlのHPtCl溶液(Pt1gに相当)を蒸留水295mlに溶解させ、15.3gのNaHSOを加えた後、1400mlの蒸留水で希釈した。5%NaOH水溶液を加えて、pHを約5に調整を行いながら35%過酸化水素水(120ml)を滴下し白金のコロイドを含む液を得た。このとき、5%NaOH水溶液を適宜加えて液のpHを約5に維持した。得られた液からPt0.60gに相当する量を分取し、3.0gのチタン酸化物粒子を添加し、90℃で3時間混合した。その後、液を冷却し、更に固液分離した。固液分離により得られた含水した粉体中から塩化物イオンを除去するために、1500mlの蒸留水で再び希釈し90℃で1時間煮沸を行い、液を冷却し固液分離した。この洗浄作業を4回実施した。最後に、固液分離後、大気下にて60℃で12時間にわたり乾燥させた。これによって、チタン酸化物粒子の表面に不定比の白金酸化物を含む白金を担持させた。次いで、このチタン酸化物粒子を2vol%H/Ar雰囲気下に80℃で2時間にわたり熱処理することによって白金の還元を行った。
(2) Catalyst loading step 4.0 g of the titanium oxide obtained in (1) above and 16.0 g of ethanol were mixed, and the resulting slurry was pulverized with a paint shaker for 10 hours. went. After grinding, ethanol and by-salt components were removed. The cake thus obtained was vacuum dried to obtain a dry powder of titanium oxide. This dry powder was used to support platinum by the colloid method. In detail, 5 ml of H 2 PtCl 6 solution (corresponding to 1 g of Pt) was dissolved in 295 ml of distilled water, 15.3 g of NaHSO 3 was added, and then diluted with 1400 ml of distilled water. A 5% NaOH aqueous solution was added to adjust the pH to about 5, and 35% hydrogen peroxide solution (120 ml) was added dropwise to obtain a liquid containing a platinum colloid. At this time, the pH of the solution was maintained at about 5 by appropriately adding a 5% NaOH aqueous solution. An amount corresponding to 0.60 g of Pt was separated from the obtained liquid, 3.0 g of titanium oxide particles was added, and mixed at 90 ° C. for 3 hours. Then, the liquid was cooled and further solid-liquid separated. In order to remove chloride ions from the hydrated powder obtained by solid-liquid separation, it was diluted again with 1500 ml of distilled water and boiled at 90 ° C. for 1 hour, and the liquid was cooled and solid-liquid separated. This cleaning work was carried out four times. Finally, after solid-liquid separation, it was dried in the atmosphere at 60 ° C. for 12 hours. As a result, platinum containing a non-stoichiometric ratio of platinum oxide was supported on the surface of the titanium oxide particles. Next, the titanium oxide particles were heat-treated at 80 ° C. for 2 hours in a 2 vol% H 2 / Ar atmosphere to reduce platinum.

(3)焼成工程
実施例1と同様に行った。これによって担体付き白金触媒を得た。実施例1と同様に測定した結果、比較例3の担体付き白金触媒の粒径D50は5.8μmであった。
(3) Firing step The same process as in Example 1 was performed. As a result, a platinum catalyst with a carrier was obtained. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with a carrier of Comparative Example 3 was 5.8 μm.

〔比較例4〕
(1)担体の製造工程
実施例1において(1)の担体の製造工程における金属チタン及び二酸化チタンの使用量を表1に示すとおりとし、且つ(1)担体の製造工程における焼成温度を、以下の表1に示すとおりに変更した。これ以外は実施例1と同様にしてチタン酸化物を得た。この焼成によってTiO(式中、aは1.79である)で表されるチタン酸化物を得た。
[Comparative Example 4]
(1) Carrier manufacturing process In Example 1, the amounts of titanium metal and titanium dioxide used in the carrier manufacturing process of (1) are as shown in Table 1, and (1) the firing temperature in the carrier manufacturing process is as follows. It was changed as shown in Table 1 of. A titanium oxide was obtained in the same manner as in Example 1 except for this. By this firing, a titanium oxide represented by TiO a (in the formula, a is 1.79) was obtained.

(2)触媒の担持工程
実施例1と同様に行った。
(2) Catalyst loading step The same procedure as in Example 1 was performed.

(3)焼成工程
実施例1と同様に行った。これによって担体付き白金触媒を得た。実施例1と同様に測定した結果、比較例4の担体付き白金触媒の粒径D50は2.2μmであった。
(3) Firing step The same process as in Example 1 was performed. As a result, a platinum catalyst with a carrier was obtained. As a result of measurement in the same manner as in Example 1, the particle diameter D 50 of the platinum catalyst with a carrier of Comparative Example 4 was 2.2 μm.

〔評価〕
実施例及び比較例で得られた担体付き白金触媒について、O/Tiのモル比、結晶相の種類及び結晶相の結晶子サイズを上述の方法で測定した。また、担体付き白金触媒のBET比表面積、体積抵抗率、白金担持量を上述の方法で測定した。更に、担体付き白金触媒を用いたMEAのセル電圧を以下の方法で測定した。それらの結果を以下の表1に示す。
[Evaluation]
With respect to the platinum catalysts with supports obtained in Examples and Comparative Examples, the O / Ti molar ratio, the type of crystal phase and the crystallite size of the crystal phase were measured by the above-mentioned methods. Further, the BET specific surface area, volume resistivity, and amount of platinum supported of the platinum catalyst with a carrier were measured by the above-mentioned methods. Furthermore, the cell voltage of MEA using a platinum catalyst with a carrier was measured by the following method. The results are shown in Table 1 below.

〔MEAのセル電圧〕
実施例及び比較例で得られた担体付き白金触媒を用いて作製した燃料電池について、膜電極接合体(MEA)の発電特性を評価した。
[MEA cell voltage]
The power generation characteristics of the membrane electrode assembly (MEA) were evaluated for the fuel cells produced using the platinum catalysts with a carrier obtained in Examples and Comparative Examples.

得られた担体付き白金触媒0.35gと、直径10mmのイットリウム安定化ジルコニア製ボールを容器に入れ、更に純水、エタノール及びイソプロパノールを35:45:20の質量比(混合液として0.875g)で順に加えた。このようにして得られたインクを、超音波で3分間にわたり分散した。次いで、遊星ボールミル(シンキーARE310)で800rpm、20分間撹拌した。更にインクに5%ナフィオン(登録商標)(274704−100ML、Sigma−Aldrich社製)を加え、超音波分散と遊星ボールミルにより前記と同様な撹拌を行った。ナフィオンの添加量は、ナフィオン/実施例及び比較例の担体付き白金触媒の質量比が7.4となるような量とした。このようにして得られたインクを、ポリ四フッ化エチレンのシート上にバーコーターを用いて塗工し、塗膜を60℃で乾燥させ、アノード用の触媒層とした。   0.35 g of the obtained platinum catalyst with a carrier and yttrium-stabilized zirconia balls having a diameter of 10 mm were placed in a container, and pure water, ethanol and isopropanol were mixed in a mass ratio of 35:45:20 (0.875 g as a mixed solution). In order. The ink thus obtained was ultrasonically dispersed for 3 minutes. Then, the mixture was stirred with a planetary ball mill (Sinky ARE310) at 800 rpm for 20 minutes. Further, 5% Nafion (registered trademark) (274704-100 ML, manufactured by Sigma-Aldrich) was added to the ink, and the same stirring as above was performed by ultrasonic dispersion and a planetary ball mill. The amount of Nafion added was such that the mass ratio of Nafion / platinum catalyst with carrier in Examples and Comparative Examples was 7.4. The ink thus obtained was applied onto a sheet of polytetrafluoroethylene using a bar coater, and the coating film was dried at 60 ° C. to form a catalyst layer for the anode.

一方、カソード触媒用の触媒層は次の方法で得た。田中貴金属工業株式会社製の白金担持カーボンブラック(TEK10E50E)1.00gと、直径10mmのイットリウム安定化ジルコニア製ボールを容器に入れ、更に純水、エタノール及びイソプロパノールを45:35:20の質量比(混合液として10.2g)で順に加えた。このようにして得られたインクを、超音波で3分間にわたり分散した。次いで、遊星ボールミル(シンキーARE310)を用い、800rpmで20分間撹拌した。更にインクに5%ナフィオン(登録商標)(274704−100ML、Sigma−Aldrich社製)を加え、超音波分散と遊星ボールミルにより前記と同様な撹拌を引き続き行った。ナフィオンの添加量は、ナフィオン/白金担持カーボンブラックの質量比が70.0となるような量とした。このようにして得られたインクを、ポリ四フッ化エチレンのシート上にバーコーターを用いて塗工し、塗膜を60℃で乾燥させた。   On the other hand, the catalyst layer for the cathode catalyst was obtained by the following method. Platinum-supporting carbon black (TEK10E50E) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., and yttrium-stabilized zirconia balls with a diameter of 10 mm were placed in a container, and pure water, ethanol and isopropanol were added at a mass ratio of 45:35:20 ( As a mixed solution, 10.2 g) was sequentially added. The ink thus obtained was ultrasonically dispersed for 3 minutes. Then, using a planetary ball mill (Sinkey ARE310), the mixture was stirred at 800 rpm for 20 minutes. Furthermore, 5% Nafion (registered trademark) (274704-100 ML, manufactured by Sigma-Aldrich) was added to the ink, and the same stirring as above was continuously performed by ultrasonic dispersion and a planetary ball mill. The amount of Nafion added was such that the mass ratio of Nafion / carbon black supporting platinum was 70.0. The ink thus obtained was applied onto a sheet of polytetrafluoroethylene using a bar coater, and the coating film was dried at 60 ° C.

得られたアノード用及びカソード用電極触媒層付ポリ四フッ化エチレンのシートを54mm四方の正方形状に切り出し、ナフィオン(登録商標)(NRE−212、Du−Pont社製)の電解質膜と重ね合わせ、140℃、25kgf/cmの条件下に2分間大気中で熱プレスし、転写を行った。このようにして、ナフィオンからなる固体高分子電解質膜の各面にカソード及びアノード触媒層を形成し、触媒層被覆電解質膜(Catalyst Coated Membrane;CCM)を作製した。電極触媒層における白金の量は、カソード触媒層では0.138mg−Pt/cmで、アノード触媒層では0.116mg−Pt/cmであった。The obtained sheet of polytetrafluoroethylene with an electrode catalyst layer for anode and cathode was cut out into a square shape of 54 mm square and superposed with an electrolyte membrane of Nafion (registered trademark) (NRE-212, manufactured by Du-Pont). , 140 ° C., 25 kgf / cm 2 for 2 minutes in the atmosphere, and hot pressed in the atmosphere to perform transfer. In this manner, the cathode and anode catalyst layers were formed on each surface of the solid polymer electrolyte membrane made of Nafion, and a catalyst layer-coated electrolyte membrane (Catalyst Coated Membrane; CCM) was produced. The amount of the platinum in the electrode catalyst layer, the cathode catalyst layer 0.138mg -Pt / cm 2, the anode catalyst layer was 0.116mg -Pt / cm 2.

前記で得られたCCMを一対のガス拡散層(SGLカーボン社製、型番:29BC)で挟んだ。更にガス流路が形成された一対のカーボン板からなるセパレータで挟み、固体高分子形燃料電池を作製した。このようにして得られた燃料電池は、JARI標準セルに相当するものである。   The CCM obtained above was sandwiched between a pair of gas diffusion layers (manufactured by SGL Carbon Co., model number: 29BC). Further, it was sandwiched between separators composed of a pair of carbon plates in which gas flow paths were formed, to produce a polymer electrolyte fuel cell. The fuel cell thus obtained corresponds to a JARI standard cell.

得られた固体高分子形燃料電池について、出力特性(I−V特性)を以下の方法で測定した。固体高分子形燃料電池のアノード側に水素ガスを供給するとともに、カソード側に酸素ガスを供給した。水素ガスの利用率は70%に、酸素利用率は40%になるように流量を設定した。ガスはそれぞれ外部加湿器で加湿を行ってから燃料電池に供給した。また燃料電池の温度は80℃になるように温度調整を行い、供給ガスの湿度については、相対湿度が100%RHとなるように調整した。このときのセル電圧と電流密度との関係(I−V特性)を測定した。得られたセル電圧と電流密度との関係から、0.1A/cmにおけるセル電圧値Vを得た。そして、得られたセル電圧値に基づき、性能を以下の基準で評価した。
◎:セル電圧が0.8V以上
○:セル電圧が0.79V以上0.8V未満
×:セル電圧が0.79V未満
The output characteristics (IV characteristics) of the obtained polymer electrolyte fuel cell were measured by the following method. Hydrogen gas was supplied to the anode side of the polymer electrolyte fuel cell, and oxygen gas was supplied to the cathode side. The flow rate was set so that the utilization rate of hydrogen gas was 70% and the utilization rate of oxygen was 40%. Each gas was humidified by an external humidifier and then supplied to the fuel cell. The temperature of the fuel cell was adjusted to 80 ° C., and the humidity of the supply gas was adjusted to a relative humidity of 100% RH. At this time, the relationship between the cell voltage and the current density (IV characteristic) was measured. The cell voltage value V at 0.1 A / cm 2 was obtained from the obtained relationship between the cell voltage and the current density. Then, based on the obtained cell voltage value, the performance was evaluated according to the following criteria.
⊚: Cell voltage is 0.8 V or more O: Cell voltage is 0.79 V or more and less than 0.8 V ×: Cell voltage is less than 0.79 V

Figure 2019003788
Figure 2019003788

表1に示す結果から明らかなとおり、各実施例の担体付き白金触媒は、比較例の触媒に比べて、触媒性能が高いことが判る。
また、表には示していないが、各実施例の担体付き白金触媒は、白金がTiO0.5の結晶相又はTiOの結晶相に直接に接しており、且つ白金に接触していないTiO0.5の結晶相又はTiOの結晶相の表面がTiOで被覆されていることが、TEMのEELS分析による測定の結果確認された。
As is clear from the results shown in Table 1, the carrier-supported platinum catalyst of each example has higher catalytic performance than the catalyst of the comparative example.
Further, although not shown in the table, in the platinum catalyst with a carrier of each example, platinum is in direct contact with the crystal phase of TiO 0.5 or the crystal phase of TiO, and TiO 0 which is not in contact with platinum. the surface of the crystal phase or TiO crystalline phase of .5 is that is coated with TiO 2, was confirmed the results of measurement by EELS analysis TEM.

本発明によれば、導電性が高く、担持する触媒の性能が十分に発揮される担体付き触媒が提供される。   According to the present invention, there is provided a catalyst with a carrier that has high conductivity and can sufficiently exert the performance of the catalyst to be supported.

Claims (10)

触媒が担体に担持されてなる担体付き触媒であって、
前記担体がチタン酸化物を含み、
前記担体に含まれるチタン元素(Ti)と酸素元素(O)の含有割合(O/Ti)がモル比で表して0.8以上1.6以下であり、
前記担体がTiO0.5の結晶相又はTiOの結晶相を有する、担体付き触媒。
A catalyst with a carrier in which the catalyst is supported on a carrier,
The carrier comprises titanium oxide,
The content ratio (O / Ti) of titanium element (Ti) and oxygen element (O) contained in the carrier is 0.8 or more and 1.6 or less in terms of molar ratio,
A catalyst with a carrier, wherein the carrier has a crystalline phase of TiO 0.5 or a crystalline phase of TiO 2.
体積抵抗率が10Ω・cm以下である請求項1に記載の担体付き触媒。   The catalyst with a carrier according to claim 1, which has a volume resistivity of 10 Ω · cm or less. BET比表面積が1m/g以上20m/g以下である請求項1又は2に記載の担体付き触媒。The catalyst with a carrier according to claim 1 or 2, which has a BET specific surface area of 1 m 2 / g or more and 20 m 2 / g or less. 前記担体がTiO0.5の結晶相を有する請求項1ないし3のいずれか一項に記載の担体付き触媒。The catalyst with a carrier according to any one of claims 1 to 3, wherein the carrier has a crystal phase of TiO 0.5 . TiO0.5の結晶相の結晶子サイズが10nm以上100nm以下である請求項4に記載の担体付き触媒。The carrier-supported catalyst according to claim 4, wherein the crystallite size of the crystal phase of TiO 0.5 is 10 nm or more and 100 nm or less. 前記担体の表面の一部にTiO0.5の結晶相又はTiOの結晶相が露出しており、
前記触媒が、露出している前記結晶相に直接に接している請求項1ないし5のいずれか一項に記載の担体付き触媒。
A crystal phase of TiO 0.5 or a crystal phase of TiO is exposed on a part of the surface of the carrier,
The catalyst with a carrier according to any one of claims 1 to 5, wherein the catalyst is in direct contact with the exposed crystal phase.
前記担体の表面のうち前記触媒と接していない部分は、TiOが露出している請求項6に記載の担体付き触媒。The catalyst with a carrier according to claim 6, wherein TiO 2 is exposed on a portion of the surface of the carrier that is not in contact with the catalyst. 前記触媒は、白金、イリジウム及びルテニウムからなる群より選ばれる少なくとも1種の金属又はその合金を含む請求項1ないし7のいずれか一項に記載の担体付き触媒。   8. The catalyst with a carrier according to claim 1, wherein the catalyst contains at least one metal selected from the group consisting of platinum, iridium and ruthenium, or an alloy thereof. 組成式TiO(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物を有機溶媒中で粉砕し、次いで乾粉化工程を経ることなく有機溶媒中で触媒を担持させ、
前記触媒を担持した前記チタン酸化物を焼成する、担体付き触媒の製造方法。
Titanium oxide represented by the composition formula TiO a (where a is a number of 0.4 or more and 1 or less) is crushed in an organic solvent, and then the catalyst is catalyzed in the organic solvent without a dry powdering step. Carry
A method for producing a catalyst with a carrier, comprising calcining the titanium oxide carrying the catalyst.
金属チタンと二酸化チタンとの混合物を焼成して、前記組成式TiO(式中、aは0.4以上1以下の数を表す。)で表されるチタン酸化物を生成させる請求項9に記載の担体付き触媒の製造方法。The mixture of metallic titanium and titanium dioxide is fired to produce a titanium oxide represented by the composition formula TiO a (wherein a represents a number of 0.4 or more and 1 or less). A method for producing the carrier-supported catalyst described.
JP2019526728A 2017-06-30 2018-05-31 Supported catalyst and method for producing the same Active JP7183158B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017129810 2017-06-30
JP2017129810 2017-06-30
PCT/JP2018/020887 WO2019003788A1 (en) 2017-06-30 2018-05-31 Catalyst with attached carrier and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2019003788A1 true JPWO2019003788A1 (en) 2020-04-30
JP7183158B2 JP7183158B2 (en) 2022-12-05

Family

ID=64741428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019526728A Active JP7183158B2 (en) 2017-06-30 2018-05-31 Supported catalyst and method for producing the same

Country Status (2)

Country Link
JP (1) JP7183158B2 (en)
WO (1) WO2019003788A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246232B2 (en) * 2019-03-29 2023-03-27 Jx金属株式会社 Sputtering target member, sputtering target, method for manufacturing sputtering target member, and method for manufacturing sputtered film
US20220271299A1 (en) 2019-08-01 2022-08-25 Mitsui Mining & Smelting Co., Ltd. Catalyst layer for fuel cell, method for producing same, and fuel cell provided with same
EP4113669A1 (en) 2020-02-27 2023-01-04 Mitsui Mining & Smelting Co., Ltd. Electrode catalyst layer for fuel cell, and solid polymer-type fuel cell comprising said electrode catalyst layer
CN115739063B (en) * 2022-11-19 2024-02-02 杭州电子科技大学 Titanium oxide multistage array photocatalytic film and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324990A (en) * 1997-05-26 1998-12-08 Permelec Electrode Ltd Anode for collecting metal and method for collecting mental
JP2007520327A (en) * 2003-09-27 2007-07-26 韓国電力技術株式会社 Vanadium / titania catalyst for removing nitrogen oxides at low temperature, and method for removing nitrogen oxides using the same
JP2008077999A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Catalyst used for electrochemical electrode and its manufacturing method
JP2009091206A (en) * 2007-10-10 2009-04-30 Tayca Corp Fine particle titanium monoxide composition and method of manufacturing the same
JP2012184458A (en) * 2011-03-03 2012-09-27 Chube Univ Electrode member, and method for manufacturing the same
WO2013141063A1 (en) * 2012-03-23 2013-09-26 株式会社クラレ Catalyst and fuel cell provided with same
JP2017016853A (en) * 2015-06-30 2017-01-19 堺化学工業株式会社 Carrier material for electrode and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324990A (en) * 1997-05-26 1998-12-08 Permelec Electrode Ltd Anode for collecting metal and method for collecting mental
JP2007520327A (en) * 2003-09-27 2007-07-26 韓国電力技術株式会社 Vanadium / titania catalyst for removing nitrogen oxides at low temperature, and method for removing nitrogen oxides using the same
JP2008077999A (en) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Catalyst used for electrochemical electrode and its manufacturing method
JP2009091206A (en) * 2007-10-10 2009-04-30 Tayca Corp Fine particle titanium monoxide composition and method of manufacturing the same
JP2012184458A (en) * 2011-03-03 2012-09-27 Chube Univ Electrode member, and method for manufacturing the same
WO2013141063A1 (en) * 2012-03-23 2013-09-26 株式会社クラレ Catalyst and fuel cell provided with same
JP2017016853A (en) * 2015-06-30 2017-01-19 堺化学工業株式会社 Carrier material for electrode and production method therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, BOR-HER ET AL.: "Properties of platinum supported on oxides of titanium", J. PHYS. CHEM., vol. 86, no. 18, JPN6022029234, 1 September 1982 (1982-09-01), US, pages 3534 - 3541, ISSN: 0004823378 *
HOLMBERG, BO ET AL.: "Disorder and Order in Solid Solutions of Oxygen in α-Titanium", ACTA CHEM. SCAND., vol. 16, no. 5, JPN7022001053, 1962, SE, pages 1245 - 1250, XP055671469, ISSN: 0004823380, DOI: 10.3891/acta.chem.scand.16-1245 *
IMRAN, M. ET AL.: "Pd/TiO Nanocatalyst with Strong Metal-Support Interaction for Highly Efficient Durable Heterogeneous", J. PHYS. CHEM. C, vol. 121, no. 2, JPN6022029233, 5 January 2017 (2017-01-05), US, pages 1162 - 1170, ISSN: 0004823379 *

Also Published As

Publication number Publication date
WO2019003788A1 (en) 2019-01-03
JP7183158B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
Huang et al. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications
JP7183158B2 (en) Supported catalyst and method for producing the same
CN108475791B (en) Catalyst and process for preparing same
US9947936B2 (en) Oxygen reduction catalyst and method for producing same
EP2634850B1 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
JP6748080B2 (en) Tin oxide, fuel cell electrode catalyst, membrane electrode assembly and polymer electrolyte fuel cell
JP6632987B2 (en) Electrode catalyst layer for fuel cell, membrane electrode assembly and polymer electrolyte fuel cell
Xu et al. Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions
Christy et al. Optimizing the surface characteristics of La0. 6Sr0. 4CoO3− δ perovskite oxide by rapid flash sintering technology for easy fabrication and fast reaction kinetics in alkaline medium
Feng et al. Morphology effect of MnO2 promoter to the catalytic performance of Pt toward methanol electrooxidation reaction
Naik et al. Intermetallic PdZn nanoparticles loaded on deficient TiO 2 nanosheets as a support: a bifunctional electrocatalyst for oxygen reduction in PEMFCs and the glycerol oxidation reactions
Yuasa Molten salt synthesis of Nb-doped TiO2 rod-like particles for use in bifunctional oxygen reduction/evolution electrodes
JP6040954B2 (en) Method for producing fuel cell catalyst
Armstrong et al. Nanoscale titania ceramic composite supports for PEM fuel cells
JP5562501B2 (en) Fuel cell operating method and power generator
JP5283913B2 (en) Proton-conducting inorganic material used in fuel cells and anode for fuel cells using the same
WO2018047968A1 (en) Electrode catalyst
US20100279202A1 (en) Electrode catalyst and oxygen reduction electrode for cathode using the same
JP2010010101A (en) Cathode for fuel cell
JP6863764B2 (en) Electrode catalyst, membrane electrode assembly and polymer electrolyte fuel cell
WO2021172059A1 (en) Electrode catalyst layer for fuel cell, and solid polymer-type fuel cell comprising said electrode catalyst layer
KR20240035414A (en) oxygen generation reaction catalyst
WO2021020300A1 (en) Catalyst layer for fuel cell, method for producing same, and fuel cell provided with same
WO2016068116A1 (en) Electrode catalyst and method for producing same
WO2020209195A1 (en) Water electrolysis catalyst for fuel cell anode, anode catalyst composition, and membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7183158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150