JPWO2018230238A1 - Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery - Google Patents

Semi-solid electrolyte, electrode, electrode with semi-solid electrolyte layer, and secondary battery Download PDF

Info

Publication number
JPWO2018230238A1
JPWO2018230238A1 JP2019525229A JP2019525229A JPWO2018230238A1 JP WO2018230238 A1 JPWO2018230238 A1 JP WO2018230238A1 JP 2019525229 A JP2019525229 A JP 2019525229A JP 2019525229 A JP2019525229 A JP 2019525229A JP WO2018230238 A1 JPWO2018230238 A1 JP WO2018230238A1
Authority
JP
Japan
Prior art keywords
negative electrode
semi
solid electrolyte
weight
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019525229A
Other languages
Japanese (ja)
Other versions
JP6875522B2 (en
Inventor
篤 宇根本
篤 宇根本
克 上田
克 上田
敦史 飯島
敦史 飯島
明秀 田中
明秀 田中
純 川治
純 川治
奥村 壮文
壮文 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2018230238A1 publication Critical patent/JPWO2018230238A1/en
Application granted granted Critical
Publication of JP6875522B2 publication Critical patent/JP6875522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

二次電池の寿命を向上させることを目的とする。半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比が0.6%〜11.7%である半固体電解質。半固体電解質の重量と負極の重量の和に対する適用する負極界面添加材の重量比が1.7重量%〜5.8重量%であることが望ましい。半固体電解質を含む二次電池において、所定サイクル後の二次電池の容量維持率が、負極界面添加材を含まない場合の二次電池の容量維持率よりも大きいことが望ましい。An object is to improve the life of a secondary battery. A semisolid electrolyte solution containing a semisolid electrolyte solvent and a negative electrode interface additive, and a semisolid electrolyte containing particles, wherein the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the weight of the applied negative electrode is 0.6. % To 11.7% semi-solid electrolyte. The weight ratio of the negative electrode interface additive applied to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode is preferably 1.7% by weight to 5.8% by weight. In the secondary battery including the semi-solid electrolyte, it is desirable that the capacity retention of the secondary battery after a predetermined cycle is larger than the capacity retention of the secondary battery in the case where the negative electrode interface additive is not included.

Description

本発明は、半固体電解質、電極、半固体電解質層付き電極、および二次電池に関する。   The present invention relates to a semi-solid electrolyte, an electrode, an electrode with a semi-solid electrolyte layer, and a secondary battery.

従来の非水電解液二次電池として、特許文献1には、アニオンを挿入乃至脱離可能な正極活物質を含む正極と、カチオンを挿入乃至脱離可能な負極活物質を含む負極と、非水溶媒に電解質塩が溶解されてなる非水電解液とを備えた非水電解液蓄電素子であって、前記非水溶媒は、非水溶媒全量に対して鎖状カーボネートを85.0−99.9質量%および環状カーボネートを0.1−15.0質量%含み、 前記環状カーボネートは少なくともフッ素化環状カーボネートを含み、前記非水電解液中の電解質塩の濃度が2mol/L以上であることを特徴とする非水電解液蓄電素子が開示されている。   As a conventional nonaqueous electrolyte secondary battery, Patent Document 1 discloses a positive electrode including a positive electrode active material capable of inserting or removing an anion, a negative electrode including a negative electrode active material capable of inserting or removing a cation, and a non-aqueous electrolyte secondary battery. A non-aqueous electrolyte storage element comprising a non-aqueous electrolyte in which an electrolyte salt is dissolved in an aqueous solvent, wherein the non-aqueous solvent contains 85.0-99.9% by mass of a chain carbonate with respect to the total amount of the non-aqueous solvent. And 0.1 to 5% by mass of cyclic carbonate, wherein the cyclic carbonate contains at least a fluorinated cyclic carbonate, and the concentration of the electrolyte salt in the non-aqueous electrolyte is 2 mol / L or more. An energy storage device is disclosed.

特開2016−058252号公報JP-A-2006-058252

特許文献1の方法では、非水溶媒の重量に対してフッ素化環状カーボネートの量を規定しているため、二次電池の寿命を向上させることは難しい。   In the method of Patent Document 1, since the amount of the fluorinated cyclic carbonate is defined based on the weight of the nonaqueous solvent, it is difficult to improve the life of the secondary battery.

本発明は、二次電池の寿命を向上させることを目的とする。   An object of the present invention is to improve the life of a secondary battery.

上記課題を解決するための本発明の特徴は、例えば以下の通りである。   The features of the present invention for solving the above problems are, for example, as follows.

半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%〜11.7%である半固体電解質。   A semisolid electrolyte solution containing a semisolid electrolyte solvent and a negative electrode interface additive, and a semisolid electrolyte containing particles, wherein the weight of the negative electrode interface additive is 0.6% with respect to the sum of the weight of the semisolid electrolyte and the weight of the negative electrode to be applied. Semi-solid electrolyte that is ~ 11.7%.

本明細書は本願の優先権の基礎となる日本国特許出願番号2017−117337号の開示内容を包含する。   This description includes the disclosure of Japanese Patent Application No. 2017-117337, which is a priority document of the present application.

本発明により二次電池の寿命を向上できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。   According to the present invention, the life of a secondary battery can be improved. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

二次電池の外観図である。It is an external view of a secondary battery. 二次電池の断面図である。It is sectional drawing of a secondary battery. 実施例および比較例の結果を示す表である。It is a table | surface which shows the result of an Example and a comparative example. 劣化係数と負極界面添加材重量比との関係図である。FIG. 4 is a diagram illustrating a relationship between a deterioration coefficient and a weight ratio of a negative electrode interface additive. 負極界面添加材重量比と初回放電容量との関係図である。FIG. 4 is a diagram illustrating a relationship between a weight ratio of a negative electrode interface additive and an initial discharge capacity. 初回放電容量と負極かさ密度との関係図である。FIG. 4 is a diagram showing a relationship between initial discharge capacity and negative electrode bulk density. 負極かさ密度と負極界面添加材重量比との関係図である。FIG. 3 is a diagram illustrating a relationship between a negative electrode bulk density and a negative electrode interface additive weight ratio.

以下、図面などを用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art within the technical idea disclosed in the present specification. Changes and modifications are possible. In all the drawings for describing the present invention, components having the same function are denoted by the same reference numerals, and the repeated description thereof may be omitted.

本明細書に記載される「〜」は、その前後に記載される数値を下限値および上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。   The term “to” described in this specification is used to mean that the numerical values described before and after it are included as the lower limit and the upper limit. In the numerical ranges described stepwise in this specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in another step. The upper limit or the lower limit of the numerical range described in this specification may be replaced with the value shown in the examples.

本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用できる。   In this specification, a lithium ion secondary battery will be described as an example of a secondary battery. A lithium ion secondary battery is an electrochemical device that stores or uses electrical energy by inserting and extracting lithium ions into and from an electrode in a non-aqueous electrolyte. This is referred to by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any of the batteries is an object of the present invention. The technical idea of the present invention can be applied to a sodium ion secondary battery, a magnesium ion secondary battery, an aluminum ion secondary battery, and the like, in addition to the lithium ion secondary battery.

図1は、本発明の一実施形態に係る二次電池の外観図である。図2は、本発明の一実施形態に係る二次電池の断面図である。図1および図2は積層型の二次電池であり、二次電池1000は、正極100、負極200、外装体500および半固体電解質層300を有する。外装体500は、半固体電解質層300、正極100、負極200、を収容する。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼など、非水電解質に対し耐食性のある材料から選択することができる。本発明は、捲回型の二次電池にも適用できる。   FIG. 1 is an external view of a secondary battery according to one embodiment of the present invention. FIG. 2 is a cross-sectional view of a secondary battery according to one embodiment of the present invention. FIGS. 1 and 2 show a stacked secondary battery. A secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer package 500, and a semi-solid electrolyte layer 300. The outer package 500 contains the semi-solid electrolyte layer 300, the positive electrode 100, and the negative electrode 200. The material of the exterior body 500 can be selected from materials having corrosion resistance to a non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel. The present invention can also be applied to a wound type secondary battery.

二次電池1000内で、正極100、半固体電解質層300、負極200で構成される電極体400が積層されている。正極100または負極200を電極または二次電池用電極と称する場合がある。正極100、負極200、または半固体電解質層300を二次電池用シートと称する場合がある。半固体電解質層300および正極100または負極200が一体構造になっているものを半固体電解質層付き電極と称する場合がある。半固体電解質層付き電極は、半固体電解質を含む半固体電解質層および電極を有し、電極は負極であることが好ましい。   In the secondary battery 1000, an electrode body 400 including the positive electrode 100, the semi-solid electrolyte layer 300, and the negative electrode 200 is stacked. The positive electrode 100 or the negative electrode 200 may be referred to as an electrode or a secondary battery electrode. The positive electrode 100, the negative electrode 200, or the semi-solid electrolyte layer 300 may be referred to as a secondary battery sheet. One in which the semi-solid electrolyte layer 300 and the positive electrode 100 or the negative electrode 200 have an integrated structure may be referred to as an electrode with a semi-solid electrolyte layer. The electrode with a semi-solid electrolyte layer has a semi-solid electrolyte layer containing a semi-solid electrolyte and an electrode, and the electrode is preferably a negative electrode.

正極100は、正極集電体120および正極合剤層110を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極集電体220および負極合剤層210を有する。負極集電体220の両面に負極合剤層210が形成されている。正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体と称する場合がある。   The positive electrode 100 has a positive electrode current collector 120 and a positive electrode mixture layer 110. Positive electrode mixture layers 110 are formed on both surfaces of positive electrode current collector 120. The negative electrode 200 includes a negative electrode current collector 220 and a negative electrode mixture layer 210. Negative electrode mixture layers 210 are formed on both surfaces of negative electrode current collector 220. The positive electrode mixture layer 110 or the negative electrode mixture layer 210 may be referred to as an electrode mixture layer, and the positive electrode current collector 120 or the negative electrode current collector 220 may be referred to as an electrode current collector.

正極集電体120は正極タブ部130を有する。負極集電体220は負極タブ部230を有する。正極タブ部130または負極タブ部230を電極タブ部と称する場合がある。電極タブ部には電極合剤層が形成されていない。ただし、二次電池1000の性能に悪影響を与えない範囲で電極タブ部に電極合剤層を形成してもよい。正極タブ部130および負極タブ部230は、外装体500の外部に突出しており、突出した複数の正極タブ部130同士、複数の負極タブ部230同士が、例えば超音波接合などで接合されることで、二次電池1000内で並列接続が形成される。本発明は、二次電池1000中で電気的な直列接続を構成させたバイポーラ型の二次電池にも適用できる。   The positive electrode current collector 120 has a positive electrode tab portion 130. The negative electrode current collector 220 has a negative electrode tab portion 230. The positive electrode tab 130 or the negative electrode tab 230 may be referred to as an electrode tab. No electrode mixture layer is formed on the electrode tab portion. However, an electrode mixture layer may be formed on the electrode tab portion within a range that does not adversely affect the performance of the secondary battery 1000. The positive electrode tab portion 130 and the negative electrode tab portion 230 project outside the exterior body 500, and the plurality of projecting positive electrode tab portions 130 and the plurality of negative electrode tab portions 230 are joined by, for example, ultrasonic bonding. Thus, a parallel connection is formed in the secondary battery 1000. The present invention can also be applied to a bipolar secondary battery in which an electric series connection is configured in the secondary battery 1000.

正極合剤層110は、正極活物質、正極導電剤、正極バインダを有する。負極合剤層210は、負極活物質、負極導電剤、負極バインダを有する。半固体電解質層300は、半固体電解質バインダおよび半固体電解質を有する。半固体電解質は、粒子および半固体電解液を含む。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。   The positive electrode mixture layer 110 has a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder. The negative electrode mixture layer 210 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder. The semi-solid electrolyte layer 300 has a semi-solid electrolyte binder and a semi-solid electrolyte. Semi-solid electrolytes include particles and semi-solid electrolytes. The positive electrode active material or the negative electrode active material may be referred to as an electrode active material, the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent, and the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.

電極合剤層の細孔に半固体電解液を充填させてもよい。この場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入し、電極合剤層の細孔に半固体電解液を充填させる。この場合、半固体電解質に含まれる粒子を要せず、電極合剤層中の電極活物質や電極導電剤などの粒子が粒子として機能して、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解液、電極活物質、電極導電剤、電極バインダを混合したスラリーを調製し、調製したスラリーを電極集電体上に一緒に塗布する方法などがある。   The semi-solid electrolyte may be filled in the pores of the electrode mixture layer. In this case, a semi-solid electrolyte is injected into the secondary battery 1000 from one free side or the injection hole of the outer package 500, and the pores of the electrode mixture layer are filled with the semi-solid electrolyte. In this case, particles contained in the semi-solid electrolyte are not required, and particles such as the electrode active material and the electrode conductive agent in the electrode mixture layer function as particles, and these particles hold the semi-solid electrolyte. As another method of filling the semi-solid electrolyte into the pores of the electrode mixture layer, a slurry in which a semi-solid electrolyte, an electrode active material, an electrode conductive agent, and an electrode binder are mixed is prepared, and the prepared slurry is subjected to electrode current collection. There is a method of applying together on the body.

半固体電解質層300の形成に用いる半固体電解質は、エーテル系溶媒またはイオン液体にリチウム塩などの電解質塩を溶解させた半固体電解質溶媒、負極界面添加材、および任意の低粘度有機溶媒を含む半固体電解液と、SiOなどの粒子とを混合した材料である。半固体電解質層300は正極100と負極200の間にリチウムイオンの伝達させる媒体となる他に、電子の絶縁体としても働き、正極100と負極200の短絡を防止する。The semi-solid electrolyte used for forming the semi-solid electrolyte layer 300 includes a semi-solid electrolyte solvent in which an electrolyte salt such as a lithium salt is dissolved in an ether-based solvent or an ionic liquid, a negative electrode interface additive, and any low-viscosity organic solvent. It is a material in which a semi-solid electrolyte and particles such as SiO 2 are mixed. The semi-solid electrolyte layer 300 not only serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, but also functions as an insulator for electrons, and prevents a short circuit between the positive electrode 100 and the negative electrode 200.

半固体電解質層300に微多孔膜などのセパレータを用いてもよい。セパレータとして、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータに微多孔膜が用いられる場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入することで、半固体電解質層300に半固体電解液が充填される。   A separator such as a microporous membrane may be used for the semi-solid electrolyte layer 300. As the separator, polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used. When a microporous membrane is used for the separator, the semisolid electrolyte is injected into the secondary battery 1000 from one of the open sides or the injection hole of the outer package 500, so that the semisolid electrolyte is supplied to the semisolid electrolyte layer 300. Will be filled.

正極100、負極200、または半固体電解質層300のいずれか一つのみまたは二つ以上に半固体電解質が含まれていてもよい。   Only one or two or more of the positive electrode 100, the negative electrode 200, and the semi-solid electrolyte layer 300 may contain a semi-solid electrolyte.

<電極導電剤>
電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラックなどが好適に用いられるが、これに限られない。
<Electrode conductive agent>
The electrode conductive agent improves the conductivity of the electrode mixture layer. As the electrode conductive agent, Ketjen black, acetylene black, or the like is preferably used, but is not limited thereto.

<電極バインダ>
電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン−ブタジエンゴム、カルボキシメチルセルロ−ス、ポリフッ化ビニリデン(PVDF)およびこれらの混合物などが挙げられるが、これに限られない。
<Electrode binder>
The electrode binder binds an electrode active material and an electrode conductive agent in the electrode. Electrode binders include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and mixtures thereof.

<正極活物質>
貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が望ましく、具体例としては、LiMO2、Li過剰組成のLi[LiM]O2、LiM2O4、LiMPO4、LiMVOx、LiMBO3、Li2MSiO4(ただし、M = Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ruなどを少なくとも1種類以上含む)が挙げられる。また、これら材料における酸素の一部を、フッ素など、他の元素に置換してもよい。さらに、硫黄、TiS2、MoS2、Mo6S8、TiSe2などのカルコゲナイドや、V2O5などのバナジウム系酸化物、FeF3などのハライド、ポリアニオンを構成するFe(MoO4)3、Fe2(SO4)3、Li3Fe2(PO4)3など、キノン系有機結晶などが挙げられるが、これらに限られない。さらに、化学組成におけるリチウムやアニオン量は上記定比組成からずれていてもよい。
<Positive electrode active material>
In the positive electrode active material having a noble potential, lithium ions are desorbed in a charging process, and lithium ions desorbed from the negative electrode active material of the negative electrode mixture layer in a discharging process are inserted. As the material of the positive electrode active material, a lithium composite oxide containing a transition metal is preferable. Specific examples thereof include LiMO 2 , Li [LiM] O 2 having a Li excess composition, LiM 2 O 4 , LiMPO 4 , LiMVO x , and LiMBO 3 , Li 2 MSiO 4 (however, M = Co, Ni, Mn, Fe, Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru, etc.) . Further, part of oxygen in these materials may be replaced with another element such as fluorine. Furthermore, sulfur, TiS 2, MoS 2, Mo 6 S 8, TiSe 2 chalcogenide or the like, vanadium oxide such as V 2 O 5, FeF halides such as 3, Fe (MoO 4) 3 constituting the polyanion, Examples include, but are not limited to, quinone-based organic crystals such as Fe 2 (SO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3 . Further, the amounts of lithium and anions in the chemical composition may deviate from the stoichiometric composition.

<正極集電体120>
正極集電体120として、厚さが10〜100μmのアルミニウム箔、あるいは厚さが10〜100μm、孔径0.1〜10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体120を使用できる。
<Positive electrode current collector 120>
As the positive electrode current collector 120, an aluminum foil having a thickness of 10 to 100 μm, or an aluminum perforated foil having a thickness of 10 to 100 μm, having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used. In addition to aluminum, stainless steel, titanium, and the like can also be used. Any positive electrode current collector 120 can be used without being limited by the material, shape, manufacturing method, and the like.

<負極活物質>
負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。卑な電位を示す負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭など)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12やLi2TiO4など)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズなどを少なくとも1種類以上含む)やこれらの酸化物を用いることができるが、これに限られない。
<Negative electrode active material>
In the negative electrode active material, lithium ions are desorbed in a discharging process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 110 are inserted in a charging process. Examples of the material of the negative electrode active material exhibiting a low potential include a carbon-based material (eg, graphite, easily graphitized carbon material, amorphous carbon material, organic crystal, activated carbon, etc.), a conductive polymer material (eg, polyacetone). , Polyparaphenylene, polyaniline, polyacetylene), lithium composite oxides (eg, lithium titanate: Li 4 Ti 5 O 12 and Li 2 TiO 4 ), metallic lithium, and metals alloying with lithium (eg, aluminum, silicon) , Tin, and the like) and oxides thereof, but are not limited thereto.

<負極集電体220>
負極集電体220として、厚さが10〜100μmの銅箔、厚さが10〜100μm、孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体220を使用できる。
<Negative electrode current collector 220>
As the negative electrode current collector 220, a copper foil having a thickness of 10 to 100 μm, a perforated copper foil having a thickness of 10 to 100 μm and a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used. In addition to copper, stainless steel, titanium, nickel and the like can be applied. Any negative electrode current collector 220 can be used without being limited by the material, shape, manufacturing method, and the like.

<電極>
電極活物質、電極導電剤、電極バインダおよび有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法などによって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を乾燥させ、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。電極スラリーに半固体電解液または半固体電解質を含めてもよい。塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させてもよい。電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。
<Electrode>
An electrode mixture layer is prepared by attaching an electrode slurry obtained by mixing an electrode active material, an electrode conductive agent, an electrode binder, and an organic solvent to an electrode current collector by a doctor blade method, a dipping method, a spray method, or the like. After that, the organic solvent is dried, and the electrode mixture layer is pressure-formed by a roll press to produce an electrode. The electrode slurry may include a semi-solid electrolyte or a semi-solid electrolyte. By performing a plurality of times from application to drying, a plurality of electrode mixture layers may be laminated on the electrode current collector. It is desirable that the thickness of the electrode mixture layer be equal to or larger than the average particle size of the electrode active material. When the thickness of the electrode mixture layer is small, the electron conductivity between adjacent electrode active materials may be deteriorated.

<粒子>
粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒またはイオン液体を含む半固体電解液に不溶であることが好ましい。粒子として、例えば、シリカ(SiO2)粒子、γ−アルミナ(Al2O3)粒子、セリア(CeO2)粒子、ジルコニア(ZrO2)粒子などの酸化物無機粒子を好ましく用いることができる。粒子として固体電解質を用いてもよい。固体電解質としては、例えば、酸化物系固体電解質や硫化物系固体電解質などの無機系固体電解質の粒子が挙げられる。
<Particles>
From the viewpoint of electrochemical stability, the particles are preferably insulating particles and insoluble in a semi-solid electrolyte containing an organic solvent or an ionic liquid. As the particles, for example, oxide inorganic particles such as silica (SiO 2 ) particles, γ-alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, and zirconia (ZrO 2 ) particles can be preferably used. A solid electrolyte may be used as the particles. Examples of the solid electrolyte include particles of an inorganic solid electrolyte such as an oxide solid electrolyte and a sulfide solid electrolyte.

半固体電解液の保持量は粒子の比表面積に比例すると考えられるため、粒子の一次粒子の平均粒径は、1nm〜10μmが好ましい。粒子の一次粒子の平均粒径が大きいと、粒子が十分な量の半固体電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、粒子の一次粒子の平均粒径が小さいと、粒子間の表面間力が大きくなって粒子同士が凝集し易くなって、半固体電解質の形成が困難になる可能性がある。粒子の一次粒子の平均粒径は、1nm〜50nmがより好ましく、1nm〜10nmがさらに好ましい。粒子の一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定できる。   Since the holding amount of the semi-solid electrolyte is considered to be proportional to the specific surface area of the particles, the average primary particle diameter of the particles is preferably 1 nm to 10 μm. If the average particle size of the primary particles of the particles is large, the particles cannot appropriately hold a sufficient amount of the semisolid electrolyte, and it may be difficult to form a semisolid electrolyte. Further, when the average particle size of the primary particles of the particles is small, the surface force between the particles becomes large, and the particles are easily aggregated, which may make it difficult to form a semi-solid electrolyte. The average particle size of the primary particles of the particles is more preferably 1 nm to 50 nm, and still more preferably 1 nm to 10 nm. The average particle size of the primary particles of the particles can be measured using a known particle size distribution measuring device using a laser scattering method.

<半固体電解液>
半固体電解液は、半固体電解質溶媒、任意の低粘度有機溶媒、および負極界面添加材を含む。半固体電解質溶媒は、イオン液体またはイオン液体に類似の性質を示すエーテル系溶媒と、電解質塩との混合物を含む。半固体電解液が低粘度有機溶媒を含む場合、電解質塩は、半固体電解質溶媒ではなく低粘度有機溶媒が含んでいてもよい。また、半固体電解質溶媒と低粘度有機溶媒の両方に含んでいてもよい。イオン液体またはエーテル系溶媒を主溶媒と称する場合がある。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。
<Semi-solid electrolyte>
The semi-solid electrolyte includes a semi-solid electrolyte solvent, an optional low viscosity organic solvent, and a negative electrode interface additive. The semi-solid electrolyte solvent includes a mixture of an ionic liquid or an ether-based solvent having properties similar to the ionic liquid, and an electrolyte salt. When the semi-solid electrolyte contains a low-viscosity organic solvent, the electrolyte salt may contain a low-viscosity organic solvent instead of the semi-solid electrolyte. Further, it may be contained in both the semi-solid electrolyte solvent and the low-viscosity organic solvent. An ionic liquid or an ether solvent may be referred to as a main solvent. An ionic liquid is a compound that dissociates into a cation and an anion at room temperature and maintains a liquid state. The ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt. From the viewpoint of stability in the air and heat resistance in the secondary battery, the semisolid electrolyte solvent is preferably one having low volatility, specifically, a vapor pressure at room temperature of 150 Pa or less.

電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は20体積%〜40体積%であることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性がある。   When the electrode mixture layer contains a semi-solid electrolyte, the content of the semi-solid electrolyte in the electrode mixture layer is preferably 20% by volume to 40% by volume. When the content of the semi-solid electrolyte is small, the ion conduction path inside the electrode mixture layer is not sufficiently formed, and the rate characteristics may be reduced. When the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak from the electrode mixture layer.

イオン液体はカチオンおよびアニオンで構成される。イオン液体としては、カチオン種に応じ、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系、モルホリニウム系、ホスホニウム系、スルホニウム系などに分類される。イミダゾリウム系イオン液体を構成するカチオンには、例えば、1-エチル-3-メチルイミダゾリウム(EMI)や1-ブチル-3-メチルイミダゾリウム(BMI)などのアルキルイミダゾリウムカチオンなどがある。アンモニウム系イオン液体を構成するカチオンには、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)やテトラアミルアンモニウムなどのほかに、N,N,N-トリメチル-N-プロピルアンモニウムなどのアルキルアンモニウムカチオンがある。ピロリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピロリジニウム(Py13)や1-ブチル-1-メチルピロリジニウムなどのアルキルピロリジニウムカチオンなどがある。ピペリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピペリジニウム(PP13)や1-ブチル-1-メチルピペリジニウムなどのアルキルピペリジニウムカチオンなどがある。ピリジニウム系イオン液体を構成するカチオンには、例えば、1-ブチルピリジニウムや1-ブチル-4-メチルピリジニウムなどのアルキルピリジニウムカチオンなどがある。モルホリニウム系イオン液体を構成するカチオンには、例えば、4-エチル-4-メチルモルホリニウムなどのアルキルモルホリニウムなどがある。ホスホニウム系イオン液体を構成するカチオンには、例えば、テトラブチルホスホニウムやトリブチルメチルホスホニウムなどのアルキルホスホニウムカチオンなどがある。スルホニウム系イオン液体を構成するカチオンには、例えば、トリメチルスルホニウムやトリブチルスルホニウムなどのアルキルスルホニウムカチオンなどがある。これらカチオンと対になるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、ビス(フルオロスルホニル)イミド(FSI)、テトラフルオロボレート(BF4)、ヘキサフルオロホスファート(PF6)、ビス(ペンタフルオロエタンスルホニル)イミド(BETI)、トリフルオロメタンスルホネート(トリフラート)、アセテート、ジメチルホスファート、ジシアナミド、トリフルオロ(トリフルオロメチル)ボレートなどがある。これらのイオン液体を単独または複数組み合わせて使用してもよい。Ionic liquids are composed of cations and anions. Ionic liquids are classified into imidazolium-based, ammonium-based, pyrrolidinium-based, piperidinium-based, pyridinium-based, morpholinium-based, phosphonium-based, and sulfonium-based, depending on the cation type. Examples of the cations constituting the imidazolium-based ionic liquid include alkyl imidazolium cations such as 1-ethyl-3-methylimidazolium (EMI) and 1-butyl-3-methylimidazolium (BMI). Cations constituting the ammonium-based ionic liquid include, for example, N, N, diethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME), tetraamyl ammonium, and the like, There are alkyl ammonium cations such as trimethyl-N-propyl ammonium. Examples of the cation constituting the pyrrolidinium-based ionic liquid include alkylpyrrolidinium cations such as N-methyl-N-propylpyrrolidinium (Py13) and 1-butyl-1-methylpyrrolidinium. Examples of the cation constituting the piperidinium-based ionic liquid include alkylpiperidinium cations such as N-methyl-N-propylpiperidinium (PP13) and 1-butyl-1-methylpiperidinium. Examples of the cation constituting the pyridinium-based ionic liquid include an alkylpyridinium cation such as 1-butylpyridinium and 1-butyl-4-methylpyridinium. Examples of the cation constituting the morpholinium-based ionic liquid include alkylmorpholinium such as 4-ethyl-4-methylmorpholinium. Examples of the cation constituting the phosphonium-based ionic liquid include an alkylphosphonium cation such as tetrabutylphosphonium and tributylmethylphosphonium. Examples of the cation constituting the sulfonium-based ionic liquid include an alkylsulfonium cation such as trimethylsulfonium and tributylsulfonium. Examples of the anion to be paired with these cations include bis (trifluoromethanesulfonyl) imide (TFSI), bis (fluorosulfonyl) imide (FSI), tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), Bis (pentafluoroethanesulfonyl) imide (BETI), trifluoromethanesulfonate (triflate), acetate, dimethylphosphate, dicyanamide, trifluoro (trifluoromethyl) borate, and the like are available. These ionic liquids may be used alone or in combination.

イオン液体とともに用いる電解質塩として、溶媒に均一に分散できるものを使用できる。カチオンがリチウム、上記アニオンからなるものがリチウム塩として使用することができ、例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF4)、リチウムヘキサフルオロホスファート(LiPF6)、リチウムトリフラートなどが挙げられるが、これに限られない。これらの電解質塩を単独または複数組み合わせて使用してもよい。As the electrolyte salt used together with the ionic liquid, one that can be uniformly dispersed in a solvent can be used. A cation consisting of lithium and the above anion can be used as a lithium salt. For example, lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (pentafluoroethane) Examples include, but are not limited to, sulfonyl) imide (LiBETI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium triflate. These electrolyte salts may be used alone or in combination.

エーテル系溶媒は、電解質塩とともに溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体に類似の性質を示す公知のグライム(R-O(CH2CH2O)n-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を利用できる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、ヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。また、エーテル系溶媒として、クラウンエーテル((-CH2-CH2-O)n(nは整数)で表される大環状エーテルの総称)を利用できる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6などを好ましく用いることができるが、これに限らない。これらのエーテル系溶媒を単独または複数組み合わせて使用してもよい。電解質塩と錯体構造を形成できる点で、テトラグライム、トリグライムを用いることが好ましい。The ether solvent forms a solvated ionic liquid together with the electrolyte salt. As an ether solvent, a known glyme (RO (CH 2 CH 2 O) n-R ′ (R, R ′ is a saturated hydrocarbon, n is an integer) that exhibits properties similar to an ionic liquid is a symmetric glycol dimer. General term for ether) can be used. From the viewpoint of ion conductivity, tetraglyme (tetraethylene dimethyl glycol, G4), triglyme (triethylene glycol dimethyl ether, G3), pentaglyme (pentaethylene glycol dimethyl ether, G5), and hexaglyme (hexaethylene glycol dimethyl ether, G6) It can be preferably used. In addition, a crown ether (a general term for a macrocyclic ether represented by (—CH 2 —CH 2 —O) n (n is an integer)) can be used as the ether solvent. Specifically, 12-crown-4, 15-crown-5, 18-crown-6, dibenzo-18-crown-6 and the like can be preferably used, but not limited thereto. These ether solvents may be used alone or in combination. From the viewpoint that a complex structure can be formed with the electrolyte salt, it is preferable to use tetraglyme or triglyme.

エーテル系溶媒とともに用いる電解質塩としては、LiFSI、LiTFSI、LiBETIなどのリチウムイミド塩を利用できるが、これに限らない。エーテル系溶媒および電解質塩の混合物を単独または複数組み合わせて使用してもよい。   As the electrolyte salt used together with the ether-based solvent, a lithium imide salt such as LiFSI, LiTFSI, or LiBETI can be used, but is not limited thereto. A mixture of an ether solvent and an electrolyte salt may be used alone or in combination.

<低粘度有機溶媒>
低粘度有機溶媒は、半固体電解質溶媒の粘度を下げ、イオン伝導率を向上させる。半固体電解質溶媒を含む半固体電解液の内部抵抗は大きいため、低粘度有機溶媒を添加して半固体電解質溶媒のイオン伝導率を上げることにより、半固体電解液の内部抵抗を下げることができる。ただ、半固体電解質溶媒が電気化学的に不安定であるため、電池動作に対して分解反応が促進され、二次電池1000の繰返し動作に伴って二次電池1000の抵抗増加や容量低下を引き起こす可能性がある。さらに、負極活物質として黒鉛を利用した二次電池1000では、充電反応中、半固体電解質溶媒のカチオンが黒鉛に挿入されて黒鉛構造を破壊し、二次電池1000の繰返し動作ができなくなる可能性がある。
<Low viscosity organic solvent>
Low viscosity organic solvents lower the viscosity of the semi-solid electrolyte solvent and improve ionic conductivity. Since the internal resistance of the semi-solid electrolyte containing the semi-solid electrolyte solvent is large, the internal resistance of the semi-solid electrolyte can be reduced by adding a low-viscosity organic solvent to increase the ionic conductivity of the semi-solid electrolyte solvent. . However, since the semi-solid electrolyte solvent is electrochemically unstable, the decomposition reaction is promoted with respect to the battery operation, and the repetitive operation of the secondary battery 1000 causes an increase in the resistance and a decrease in the capacity of the secondary battery 1000. there is a possibility. Furthermore, in the secondary battery 1000 using graphite as the negative electrode active material, during the charging reaction, the cations of the semi-solid electrolyte solvent may be inserted into the graphite, destroying the graphite structure and making the secondary battery 1000 unable to operate repeatedly. There is.

低粘度有機溶媒は、例えばエーテル系溶媒および電解質塩の混合物の25℃における粘度である140Pa・sよりも粘度の小さい溶媒であることが望ましい。低粘度有機溶媒として、炭酸プロピレン(PC)、リン酸トリメチル(TMP)、ガンマブチルラクトン(GBL)、炭酸エチレン(EC)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、メチルホスホン酸ジメチル(DMMP)などが挙げられる。これらの低粘度有機溶媒を単独または複数組み合わせて使用してもよい。低粘度有機溶媒に上記の電解質塩を溶解させてもよい。二次電池1000の容量維持率の観点から低粘度有機溶媒としてECが望ましい。   The low-viscosity organic solvent is desirably a solvent having a viscosity smaller than 140 Pa · s, which is the viscosity at 25 ° C. of a mixture of an ether solvent and an electrolyte salt. Low-viscosity organic solvents include propylene carbonate (PC), trimethyl phosphate (TMP), gamma butyl lactone (GBL), ethylene carbonate (EC), triethyl phosphate (TEP), and tris phosphite (2,2,2- Trifluoroethyl) (TFP), dimethyl methylphosphonate (DMMP) and the like. These low-viscosity organic solvents may be used alone or in combination. The above-mentioned electrolyte salt may be dissolved in a low-viscosity organic solvent. EC is desirable as a low-viscosity organic solvent from the viewpoint of the capacity retention of the secondary battery 1000.

<半固体電解質バインダ>
半固体電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(P(VDF-HFP))、ポリテトラフルオロエチレン(PTFE)などが好適に用いられる。これらの半固体電解質バインダを単独または複数組み合わせて使用してもよい。PVDF、P(VDF-HFP)、PTFEを用いることで、半固体電解質層300と電極集電体の密着性が向上するため、電池性能が向上する。
<Semi-solid electrolyte binder>
As the semi-solid electrolyte binder, a fluorine-based resin is preferably used. As the fluorine-based resin, polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (P (VDF-HFP)), polytetrafluoroethylene (PTFE) and the like are preferably used. These semi-solid electrolyte binders may be used alone or in combination. By using PVDF, P (VDF-HFP), and PTFE, the adhesion between the semi-solid electrolyte layer 300 and the electrode current collector is improved, so that the battery performance is improved.

<半固体電解質>
半固体電解液が粒子に担持または保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と粒子とを特定の体積比率で混合し、メタノールなどの有機溶媒を添加し・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレに広げ、有機溶媒を留去して半固体電解質の粉末を得る方法などが挙げられる。半固体電解液が低粘度有機溶媒を含む場合、低粘度有機溶媒が揮発しやすいことを考慮して、半固体電解液が最終的に目標とする量で半固体電解質中に含まれるように制御するものとする。
<Semi-solid electrolyte>
The semi-solid electrolyte is constituted by the semi-solid electrolyte being carried or held by the particles. As a method for producing a semi-solid electrolyte, a semi-solid electrolyte and particles are mixed at a specific volume ratio, an organic solvent such as methanol is added and mixed, and a slurry of the semi-solid electrolyte is prepared. To obtain a semi-solid electrolyte powder by distilling off the organic solvent. If the semi-solid electrolyte contains a low-viscosity organic solvent, control to ensure that the semi-solid electrolyte is finally included in the semi-solid electrolyte in the target amount, considering that the low-viscosity organic solvent is easy to volatilize It shall be.

<半固体電解質層300>
半固体電解質層300の作製方法として、半固体電解質の粉末を成型ダイスなどでペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法などがある。半固体電解質に半固体電解質バインダの粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層300を作製できる。また、半固体電解質に、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、分散溶媒を留去することで、半固体電解質層300を作製できる。半固体電解質層300は、前記の、半固体電解質に結着剤の溶液を添加・混合したものを電極上に塗布および乾燥することにより作製してもよい。
<Semi-solid electrolyte layer 300>
Examples of a method for producing the semi-solid electrolyte layer 300 include a method in which the semi-solid electrolyte powder is compression-molded into a pellet shape using a molding die or the like, a method in which a semi-solid electrolyte binder is added to and mixed with the semi-solid electrolyte powder, and a method in which a sheet is formed. There is. By adding and mixing the powder of the semi-solid electrolyte binder to the semi-solid electrolyte, a highly flexible sheet-like semi-solid electrolyte layer 300 can be produced. In addition, a semisolid electrolyte layer 300 can be prepared by adding and mixing a solution of a binder in which a semisolid electrolyte binder is dissolved in a dispersion solvent to a semisolid electrolyte, and distilling off the dispersion solvent. The semi-solid electrolyte layer 300 may be produced by applying and drying a solution of a binder to the above-described semi-solid electrolyte on an electrode and drying.

半固体電解質層300中の半固体電解液の含有量は70体積%〜90体積%であることが望ましい。半固体電解液の含有量が小さい場合、電極と半固体電解質層300との界面抵抗が増加する可能性がある。また、半固体電解液の含有量が大きい場合、半固体電解質層300から半固体電解液が漏れ出してしまう可能性がある。   It is desirable that the content of the semi-solid electrolyte in the semi-solid electrolyte layer 300 is 70% by volume to 90% by volume. When the content of the semi-solid electrolyte is small, the interface resistance between the electrode and the semi-solid electrolyte layer 300 may increase. If the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak out of the semi-solid electrolyte layer 300.

<負極かさ密度>
負極かさ密度(以下、単に負極密度または密度ともいう)を所定の値にすることにより、二次電池1000の電池容量を向上できる。具体的には、(負極かさ密度(g/cm3))≦−0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032、特に(負極かさ密度(g/cm3))≦−0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251、とすることが望ましい。ここで、上記負極界面添加材重量比は、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比を意味する(以下、同様)。負極かさ密度の計測方法は、集電箔上に塗布した負極合剤層210の重量と厚みを計測することで求めることができる。具体的には、計測した負極合剤層210の重量を、負極合剤層210の厚みと面積の積で割ることによって求めることができる。
<Negative electrode bulk density>
By setting the negative electrode bulk density (hereinafter, also simply referred to as negative electrode density or density) to a predetermined value, the battery capacity of the secondary battery 1000 can be improved. Specifically, (negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (negative electrode interface additive material weight ratio (%)) 2 +0.4317 (negative electrode interface additive material weight ratio (%)) + 0.9032, particularly (Negative electrode bulk density (g / cm 3 )) ≦ −0.076 (negative electrode interface additive material weight ratio (%)) 2 +0.571 (negative electrode interface additive material weight ratio (%)) + 0.6251. Here, the negative electrode interface additive weight ratio means the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the applied negative electrode (the same applies hereinafter). The method of measuring the bulk density of the negative electrode can be determined by measuring the weight and thickness of the negative electrode mixture layer 210 applied on the current collector foil. Specifically, it can be obtained by dividing the measured weight of the negative electrode mixture layer 210 by the product of the thickness and the area of the negative electrode mixture layer 210.

<負極界面添加材>
負極界面添加材は、負極表面に不動態被膜を形成して半固体電解液の還元分解を抑制する。負極界面添加材として、炭酸ビニレン(VC)、リチウムビス(オキサレート)ボラート(LiBOB)、炭酸フルオロエチレン(FEC)、およびエチレンサルファイトなどが挙げられる。これらの負極界面添加材を単独または複数組み合わせて使用してもよい。
<Negative electrode interface additive>
The negative electrode interface additive forms a passive film on the negative electrode surface and suppresses reductive decomposition of the semi-solid electrolyte. Examples of the negative electrode interface additive include vinylene carbonate (VC), lithium bis (oxalate) borate (LiBOB), fluoroethylene carbonate (FEC), and ethylene sulfite. These negative electrode interface additives may be used alone or in combination.

本発明の半固体電解質は、半固体電解質溶媒、任意の低粘度有機溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含み、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量が0.6%〜11.7%となるように負極に適用して使用される。半固体電解質の重量と負極の重量の和に対する負極界面添加材の量を規定することによって、半固体電解質と黒鉛などを含む負極200の界面との安定性が向上する。具体的には、半固体電解質の重量と適用する負極の重量の和に対する負極界面添加材の重量比(以下、負極界面添加材重量比と記す)を0.6%〜11.7%、特に1.7%〜5.8%、とすることが望ましい。負極界面添加材重量比が小さい場合、二次電池1000の安定動作に資する半固体電解質と黒鉛を含む負極200との界面が形成されないために、二次電池1000の寿命が低下する可能性がある。負極界面添加材重量比が大きい場合、正極100の表面で分解反応を誘発して、クーロン効率を下げ、電池抵抗を上昇させる可能性がある。、負極200と半固体電解質層300に用いた半固体電解質の重量和に対する、負極界面添加材重量を求めることにより、負極界面添加材重量比を決めることができる。   The semi-solid electrolyte of the present invention comprises a semi-solid electrolyte solvent, a semi-solid electrolyte solution containing an optional low-viscosity organic solvent and a negative electrode interface additive, and particles, and the weight of the semi-solid electrolyte and the sum of the weight of the applied negative electrode It is used by being applied to the negative electrode such that the weight of the negative electrode interface additive is 0.6% to 11.7%. By defining the amount of the negative electrode interface additive with respect to the sum of the weight of the semisolid electrolyte and the weight of the negative electrode, the stability of the interface between the semisolid electrolyte and the negative electrode 200 containing graphite or the like is improved. Specifically, the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode to be applied (hereinafter, referred to as the negative electrode interface additive weight ratio) is 0.6% to 11.7%, particularly 1.7% to 5.8%. %. If the weight ratio of the negative electrode interface additive is small, since the interface between the semi-solid electrolyte and the negative electrode 200 containing graphite that contributes to the stable operation of the secondary battery 1000 is not formed, the life of the secondary battery 1000 may be reduced. . When the weight ratio of the negative electrode interface additive is large, a decomposition reaction is induced on the surface of the positive electrode 100, which may lower Coulomb efficiency and increase battery resistance. By calculating the weight of the negative electrode interface additive with respect to the weight of the semisolid electrolyte used for the negative electrode 200 and the semisolid electrolyte layer 300, the weight ratio of the negative electrode interface additive can be determined.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1>
<半固体電解質の作製>
テトラグライム(G4)とリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)がモル比で1:1となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合してリチウムグライム錯体を作製した。リチウムグライム錯体と、粒子径7nmのヒュームドシリカナノ粒子が体積比80:20となるよう秤量し、さらに、低粘度有機溶媒である炭酸プロピレン(PC)、負極界面添加材として炭酸ビニレン(VC)、メタノールを攪拌子とともにビーカーに投入し、スターラーを用いて600rpmで攪拌して均一な混合物を得た。この混合物を、ナスフラスコに投入し、エバポレータを用い、100mbar、60℃で3時間かけて乾燥した。乾燥後粉末を、100μmメッシュのふるいにかけて粉末状の半固体電解質を得た。
<Example 1>
<Preparation of semi-solid electrolyte>
Tetraglyme (G4) and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) were weighed and placed in a beaker so as to have a molar ratio of 1: 1 and mixed until a uniform solvent was obtained, thereby producing a lithium glyme complex. . Lithium glyme complex and fumed silica nanoparticles having a particle diameter of 7 nm are weighed so as to have a volume ratio of 80:20. Further, low-viscosity organic solvent propylene carbonate (PC), vinylene carbonate (VC) as a negative electrode interface additive, Methanol was put into a beaker together with a stirrer, and stirred at 600 rpm using a stirrer to obtain a uniform mixture. This mixture was put into an eggplant flask, and dried at 100 mbar and 60 ° C. for 3 hours using an evaporator. After drying, the powder was sieved through a 100 μm mesh sieve to obtain a powdery semi-solid electrolyte.

<正極100の作製>
正極活物質してLiNi0.33Mn0.33Co0.33O2を、正極導電剤としてアセチレンブラックを、正極バインダとしてN-メチルピロリドンへ溶解させたポリフッ化ビニリデン(PVDF)を重量比が84:7:9となるよう秤量して混合し、正極スラリーとした。これを正極集電体120であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、正極シートを得た。正極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量37.5g/cm2、密度2.5g/cm3とする正極100を得た。
<Preparation of positive electrode 100>
LiNi 0.33 Mn 0.33 Co 0.33 O 2 was used as the positive electrode active material, acetylene black was used as the positive electrode conductive agent, and polyvinylidene fluoride (PVDF) dissolved in N-methylpyrrolidone was used as the positive electrode binder. The weight ratio was 84: 7: 9. The resulting mixture was weighed and mixed to obtain a positive electrode slurry. This was applied on a stainless steel foil as the positive electrode current collector 120, and dried at 80 ° C. for 2 hours to remove N-methylpyrrolidone, thereby obtaining a positive electrode sheet. The positive electrode sheet was punched out with a diameter of 13 mm and pressed uniaxially to obtain a positive electrode 100 having a coating amount of 37.5 g / cm 2 on both sides and a density of 2.5 g / cm 3 .

<負極200の作製>
負極活物質として黒鉛を使用した。負極導電剤と負極バインダは正極100と同様である。これらを重量比が88:2:10となるよう秤量して混合し、負極スラリーとした。これを負極集電体220であるステンレス箔上へ塗布し、80℃で2時間乾燥してN-メチルピロリドンを除去し、負極シートを得た。負極シートを、直径13mmで打ち抜き、一軸プレスすることにより、両面塗工量17mg/cm2、密度1.6g/cm3とする負極200を得た。得られた負極の重量を測定した。
<Preparation of negative electrode 200>
Graphite was used as a negative electrode active material. The negative electrode conductive agent and the negative electrode binder are the same as those of the positive electrode 100. These were weighed and mixed so that the weight ratio became 88: 2: 10 to obtain a negative electrode slurry. This was applied on a stainless steel foil as the negative electrode current collector 220, and dried at 80 ° C. for 2 hours to remove N-methylpyrrolidone, thereby obtaining a negative electrode sheet. The negative electrode sheet was punched out at a diameter of 13 mm and pressed uniaxially to obtain a negative electrode 200 having a coating amount of 17 mg / cm 2 on both sides and a density of 1.6 g / cm 3 . The weight of the obtained negative electrode was measured.

<半固体電解質層300の作製>
半固体電解質とバインダとしてのポリテトラフルオロエチレン(PTFE)が、重量比95:5となるよう、それぞれ秤量して乳鉢に投入し、均一混合した。この混合物を、ポリテトラフルオロエチレンのシートを介して油圧プレス機にセットし、400kgf/cm2でプレスした。さらに、ギャップを500に設定したロールプレス機で圧延し、厚み200μmのシート状の半固体電解質層300を作製した。これを直径16mmで打ち抜き、以下のリチウムイオン二次電池の作製に用いた。得られた半固体電解質層300中のリチウムグライム錯体とPCとの重量比は55.5:44.5であった。VCの重量は半固体電解質の重量と負極200の重量の和に対して0.6%(負極界面添加材重量比)であった。
<Preparation of semi-solid electrolyte layer 300>
The semi-solid electrolyte and polytetrafluoroethylene (PTFE) as a binder were each weighed so as to have a weight ratio of 95: 5, charged into a mortar, and uniformly mixed. The mixture was set on a hydraulic press through a sheet of polytetrafluoroethylene and pressed at 400 kgf / cm 2 . Further, the sheet was rolled with a roll press machine with a gap set to 500 to produce a sheet-shaped semi-solid electrolyte layer 300 having a thickness of 200 μm. This was punched out at a diameter of 16 mm and used for producing the following lithium ion secondary battery. The weight ratio of lithium glyme complex to PC in the obtained semi-solid electrolyte layer 300 was 55.5: 44.5. The weight of VC was 0.6% (weight ratio of the negative electrode interface additive) with respect to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200.

<リチウムイオン二次電池の作製>
正極100、負極200、半固体電解質層300を積層し、2032型コインセルに封入してリチウムイオン二次電池とした。
<Production of lithium ion secondary battery>
The positive electrode 100, the negative electrode 200, and the semi-solid electrolyte layer 300 were laminated and sealed in a 2032 type coin cell to obtain a lithium ion secondary battery.

<実施例2〜9>
半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 2 to 9>
Example 3 was the same as Example 1 except that the weight of VC (the weight ratio of the negative electrode interface additive) to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200 was as shown in FIG.

<実施例10〜11>
負極界面添加材としてリチウムビス(オキサレート)ボラート(LiBOB)を用い、半固体電解質の重量と負極200の重量の和に対するLiBOBの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 10 to 11>
Lithium bis (oxalate) borate (LiBOB) was used as the negative electrode interface additive, and the weight of LiBOB (the weight ratio of the negative electrode interface additive) to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200 was as shown in FIG. In the same manner as in Example 1.

<実施例12〜14>
負極界面添加材として炭酸フルオロエチレン(FEC)を用い、半固体電解質の重量と負極200の重量の和に対するFECの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 12 to 14>
Example 1 except that fluoroethylene carbonate (FEC) was used as the negative electrode interface additive and the weight of the FEC (the weight ratio of the negative electrode interface additive) to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200 was as shown in FIG. Same as 1

<実施例15>
低粘度有機溶媒として炭酸エチレン(EC)を用い、負極界面添加材として炭酸ビニレン(VC)を用い、半固体電解質層300中のリチウムグライム錯体とECとの重量比を図3のようにし、半固体電解質の重量と負極200の重量の和に対するVCの重量を1.7%とした以外は、実施例1と同様にした。
<Example 15>
Using ethylene carbonate (EC) as a low-viscosity organic solvent and vinylene carbonate (VC) as a negative electrode interface additive, the weight ratio of lithium glyme complex to EC in the semi-solid electrolyte layer 300 was determined as shown in FIG. Example 1 was repeated except that the weight of VC with respect to the sum of the weight of the solid electrolyte and the weight of the negative electrode 200 was 1.7%.

<実施例16〜33>
負極200の密度、半固体電解質の重量と負極200の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Examples 16 to 33>
Example 3 was the same as Example 1 except that the density of the negative electrode 200, the weight of the semisolid electrolyte, and the weight of the VC with respect to the sum of the negative electrode 200 (the weight ratio of the negative electrode interface additive) were as shown in FIG.

<比較例1>
負極界面添加材を使用しなかった以外は、実施例1と同様にした。
<Comparative Example 1>
Example 1 was repeated except that the negative electrode interface additive was not used.

<比較例2〜3>
半固体電解質の重量と負極200の重量の和に対するVCの重量(負極界面添加材重量比)を図3のようにした以外は、実施例1と同様にした。
<Comparative Examples 2-3>
Example 3 was the same as Example 1 except that the weight of VC (the weight ratio of the negative electrode interface additive) to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200 was as shown in FIG.

<比較例4〜9>
負極界面添加材を使用しなかった以外は、実施例16〜21と同様にした。
<Comparative Examples 4 to 9>
The procedures were the same as in Examples 16 to 21, except that the negative electrode interface additive was not used.

<放電容量の測定>
実施例および比較例のリチウムイオン二次電池について、測定電圧範囲を2.7V〜4.2Vとし、充電は定電流−定電圧モードで、放電は定電流モードで電池動作させ、初回サイクル放電後の放電容量(初回放電容量)、30サイクル放電後の放電容量(30サイクル放電容量)を測定した。
<Measurement of discharge capacity>
For the lithium ion secondary batteries of Examples and Comparative Examples, the measurement voltage range was 2.7 V to 4.2 V, charging was performed in a constant current-constant voltage mode, discharging was performed in a constant current mode, and discharging after the first cycle discharging was performed. The capacity (initial discharge capacity) and the discharge capacity after 30 cycle discharge (30 cycle discharge capacity) were measured.

<考察>
図3に、実施例および比較例の測定結果を示す。初回放電容量を30サイクル放電容量で割った値(放電容量維持率)を図3に示す。二次電池1000の電池容量には初回放電容量が、二次電池1000の寿命には放電容量維持率が強く影響すると考えられている。そこで、電池容量の評価基準としては、初回放電容量が105(mAh/g)以上あることを条件とし、寿命の評価基準としては、放電容量維持率が65%以上であることを条件とした。
<Discussion>
FIG. 3 shows the measurement results of the example and the comparative example. FIG. 3 shows the value obtained by dividing the initial discharge capacity by the 30-cycle discharge capacity (discharge capacity retention ratio). It is considered that the initial discharge capacity has a strong influence on the battery capacity of the secondary battery 1000, and the discharge capacity retention rate has a strong influence on the life of the secondary battery 1000. Therefore, the evaluation criteria of the battery capacity were such that the initial discharge capacity was 105 (mAh / g) or more, and the evaluation criteria of the life were that the discharge capacity retention rate was 65% or more.

負極界面添加材の組成に依らず、いずれの実施例についても、放電容量維持率が望ましい値であった。特に、負極界面添加材重量比が1.7%〜5.8%の場合、低粘度溶媒が同一であり、負極界面添加材を含まない比較例よりも30サイクル放電容量が大きかった。   Regardless of the composition of the negative electrode interface additive, the discharge capacity retention ratio was a desirable value in each of the examples. In particular, when the weight ratio of the negative electrode interface additive was 1.7% to 5.8%, the low-viscosity solvent was the same, and the 30-cycle discharge capacity was larger than that of the comparative example not including the negative electrode interface additive.

負極かさ密度に依らず、負極界面添加材が添加されていない比較例に比べて、負極界面添加材が添加されている実施例の方が、初回放電容量が大きかった。   Irrespective of the bulk density of the negative electrode, the initial discharge capacity of the example in which the negative electrode interface additive was added was larger than that of the comparative example in which the negative electrode interface additive was not added.

図4に、劣化係数と負極界面添加材重量比との関係図を示す。放電容量維持率を、サイクル数の1/2乗に対してプロットし、直線近似により傾きを求めて劣化係数と定義した。劣化係数は常に負の値をとり、その絶対値が小さいほど容量維持率が高いことを示す。図4に示したように、負極界面添加材重量比に対して劣化係数をプロットし、両者の関係を最小二乗法によりフィッティングしたところ、(劣化係数)=−0.1375(負極界面添加材重量比)2+2.0857(負極界面添加材重量比)−7.5141なる関係があった。この関係から、負極界面添加材を含まない比較例1よりも劣化係数の絶対値が小さくなるのは、負極界面添加材重量比が15.2%以下であることがわかった。なお、負極界面添加材を含まない二次電池1000の劣化係数は−7.5141であり、100サイクル後の放電容量維持率は24.9%であることが期待される。劣化係数が−5(100サイクル後の放電容量維持率が50%)となるのは、負極界面添加材重量比が1.3%〜13.9%であり、さらに、劣化係数が−3(100サイクル後の放電容量維持率が70%)となるのは、負極界面添加材重量比が2.6%〜12.6%であった。FIG. 4 shows a relationship diagram between the deterioration coefficient and the weight ratio of the negative electrode interface additive. The discharge capacity retention ratio was plotted with respect to the half power of the number of cycles, and the slope was determined by linear approximation to define the deterioration coefficient. The deterioration coefficient always takes a negative value, and a smaller absolute value indicates a higher capacity retention rate. As shown in FIG. 4, when the deterioration coefficient was plotted against the weight ratio of the negative electrode interface additive material, and the relationship between the two was fitted by the least square method, (deterioration coefficient) = − 0.1375 (the weight ratio of the negative electrode interface additive material) 2 +2.0857 (weight ratio of negative electrode interface additive material)-7.5141. From this relationship, it was found that the absolute value of the deterioration coefficient was smaller than that in Comparative Example 1 not including the negative electrode interface additive, when the weight ratio of the negative electrode interface additive was 15.2% or less. The deterioration coefficient of the secondary battery 1000 containing no negative electrode interface additive is −7.5141, and the discharge capacity retention rate after 100 cycles is expected to be 24.9%. The deterioration coefficient is -5 (the discharge capacity retention rate after 100 cycles is 50%) when the weight ratio of the negative electrode interface additive is 1.3% to 13.9%, and the deterioration coefficient is -3 (after 100 cycles). The discharge capacity retention ratio was 70% when the weight ratio of the negative electrode interface additive material was 2.6% to 12.6%.

<負極界面添加材がVC>
主溶媒がG4、低粘度有機溶媒がPC、負極界面添加材がVCである二次電池では、半固体電解質の重量と負極200の重量の和に対する負極界面添加材重量比が0.6%〜11.7%(実施例1〜9)で、負極界面添加材を含まない比較例1、負極界面添加材重量比が14.6%以上の比較例2および3と比較して、30サイクル放電容量が大きかった。負極界面添加材重量比が0.6%〜5.8%(実施例1〜7)では、比較例1、2および3よりも30サイクル放電容量が大きかった。さらに、負極界面添加材重量比が1.7%〜5.8%(実施例3〜7)では、少なくとも30回の繰り返し電池動作中、放電容量が130mAh/g以上と高かった。
<The negative electrode interface additive is VC>
For a secondary battery in which the main solvent is G4, the low-viscosity organic solvent is PC, and the negative electrode interface additive is VC, the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode 200 is 0.6% to 11.7%. In Examples 1 to 9, the 30-cycle discharge capacity was larger than Comparative Example 1 containing no negative electrode interface additive and Comparative Examples 2 and 3 in which the weight ratio of the negative electrode interface additive was 14.6% or more. When the weight ratio of the negative electrode interface additive was 0.6% to 5.8% (Examples 1 to 7), the discharge capacity at 30 cycles was larger than Comparative Examples 1, 2 and 3. Further, when the weight ratio of the negative electrode interface additive was 1.7% to 5.8% (Examples 3 to 7), the discharge capacity was as high as 130 mAh / g or more during at least 30 times of operation of the battery.

負極界面添加材重量比が小さい場合、半固体電解質と負極200との界面が十分に安定化されず、リチウムグライム錯体の共挿入や還元分解が部分的に進行して初回放電容量が小さくなったことが考えられる。一方、負極界面添加材重量比が大きい場合、サイクル動作に伴って徐々に正極100の表面でVCが分解して高抵抗を誘発し、これによって放電容量が小さくなったと考えられる。   When the weight ratio of the negative electrode interface additive was small, the interface between the semi-solid electrolyte and the negative electrode 200 was not sufficiently stabilized, and the co-insertion and reductive decomposition of the lithium glime complex partially proceeded, resulting in a decrease in the initial discharge capacity. It is possible. On the other hand, when the weight ratio of the negative electrode interface additive is large, it is considered that VC gradually decomposes on the surface of the positive electrode 100 with the cycling operation and induces high resistance, thereby reducing the discharge capacity.

低粘度有機溶媒がECである実施例15について、負極界面添加材重量比を1.7%とすることにより、初回放電容量および30サイクル放電容量は大きかった。   In Example 15 in which the low-viscosity organic solvent was EC, the initial discharge capacity and the 30-cycle discharge capacity were large by setting the weight ratio of the negative electrode interface additive to 1.7%.

<負極界面添加材がLiBOB>
負極界面添加材をLiBOBとした実施例10および11では、負極界面添加材重量比の最大値を1.7%としている。これよりも重量比が大きい場合には、導入したLiBOBが混合溶媒に溶解しきらない可能性があるためである。負極界面添加材重量比を0.6%〜1.7%とすることで、LiBOBを含まない比較例1よりも初回放電容量および30サイクル放電容量は大きかった。
<The negative electrode interface additive is LiBOB>
In Examples 10 and 11 in which the negative electrode interface additive was LiBOB, the maximum value of the negative electrode interface additive weight ratio was 1.7%. If the weight ratio is larger than this, the introduced LiBOB may not be completely dissolved in the mixed solvent. By setting the weight ratio of the negative electrode interface additive to 0.6% to 1.7%, the initial discharge capacity and the 30-cycle discharge capacity were larger than those in Comparative Example 1 containing no LiBOB.

<負極界面添加材がFEC>
負極界面添加材をFECとした実施例12〜14は、FECを含まない比較例1よりも初回放電容量は大きく、30サイクル放電容量も100mAh/g以上を示した。
<The negative electrode interface additive is FEC>
In Examples 12 to 14 in which the negative electrode interface additive was FEC, the initial discharge capacity was larger than Comparative Example 1 containing no FEC, and the 30-cycle discharge capacity also showed 100 mAh / g or more.

負極界面添加材重量比が1.7%、3.5%および5.8%の時、放電容量維持率はそれぞれ97%、88%および85%と、単調に減少した。これは、負極界面添加材重量比が1.7%以上の組成範囲では、黒鉛含有の負極200と半固体電解質との界面を部分的には安定化させる効果がある一方、最適重量比よりも過剰であり、繰り返し電池動作に伴って、正極100と半固体電解質との界面でFECの分解反応が起き、これによって高抵抗が誘発されたことが要因として考えられる。   When the weight ratio of the negative electrode interface additive material was 1.7%, 3.5% and 5.8%, the discharge capacity retention ratio monotonously decreased to 97%, 88% and 85%, respectively. This is because in the composition range where the weight ratio of the negative electrode interface additive is 1.7% or more, while the effect of partially stabilizing the interface between the graphite-containing negative electrode 200 and the semi-solid electrolyte is obtained, the excess is more than the optimum weight ratio. There is a possibility that the FEC decomposition reaction occurs at the interface between the positive electrode 100 and the semi-solid electrolyte with the repeated operation of the battery, thereby inducing high resistance.

<負極界面添加材重量比と負極かさ密度>
電極塗工量が一定である場合、電池容量は、負極界面添加材重量比だけでなく、負極かさ密度にも依存する。これは、負極かさ密度が小さい場合には、負極200が厚くなるために二次電池の抵抗が上昇する可能性があるからである。また、負極かさ密度が大きい場合には、電極内部の空隙が小さくなり、初回充電中に負極界面添加材が電極集電体近くまで到達しないために半固体電解質の分解反応が誘発されて、二次電池の抵抗が上昇する可能性があるからである。
<Negative electrode interface additive weight ratio and negative electrode bulk density>
When the electrode coating amount is constant, the battery capacity depends on not only the negative electrode interface additive weight ratio but also the negative electrode bulk density. This is because, when the bulk density of the negative electrode is low, the resistance of the secondary battery may increase because the negative electrode 200 becomes thick. If the bulk density of the negative electrode is high, the voids inside the electrode become small, and the negative electrode interface additive does not reach the vicinity of the electrode current collector during the first charge, so that a decomposition reaction of the semi-solid electrolyte is induced. This is because the resistance of the secondary battery may increase.

図5に、実施例16〜33および比較例4〜9について、負極かさ密度を一定(1.12〜1.77g/cm3)とし、負極界面添加材重量比に対する初回放電容量の関係を示した。この場合、初回放電容量は負極界面添加材重量比に依存して、二次関数で近似できた。一方、近似曲線の定数項は負極かさ密度に依存した。FIG. 5 shows the relationship between the initial discharge capacity and the weight ratio of the negative electrode interface additive, with the negative electrode bulk density being constant (1.12 to 1.77 g / cm 3 ) for Examples 16 to 33 and Comparative Examples 4 to 9. In this case, the initial discharge capacity could be approximated by a quadratic function depending on the weight ratio of the negative electrode interface additive. On the other hand, the constant term of the approximation curve depended on the negative bulk density.

図6に、実施例16〜33および比較例4〜9について、負極界面添加材重量比を一定(0〜5.8%)とし、負極かさ密度に対する初回放電容量の関係を示した。この場合、初回放電容量は負極かさ密度に対して負の傾きをもつ直線で近似できた。直線の傾きの大きさは、負極界面添加材重量比に依存した。これら図5および図6の結果は、負極かさ密度と負極界面添加材の両方が初回放電容量のパラメータとして寄与していることを示している。   FIG. 6 shows the relationship between the negative electrode bulk density and the initial discharge capacity with the negative electrode interface additive weight ratio being constant (0 to 5.8%) for Examples 16 to 33 and Comparative Examples 4 to 9. In this case, the initial discharge capacity could be approximated by a straight line having a negative slope with respect to the negative electrode bulk density. The magnitude of the slope of the straight line depended on the weight ratio of the negative electrode interface additive. The results in FIGS. 5 and 6 show that both the negative electrode bulk density and the negative electrode interface additive contribute as parameters of the initial discharge capacity.

図5および図6から得た近似曲線と近似直線から、一定の初回放電容量Qを得るために必要な負極かさ密度と負極界面添加材重量比の関係を求め、図7に示した。負極かさ密度に依らず、負極界面添加材を添加することにより、初回放電容量Qが大きくなった。また、(負極かさ密度(g/cm3))≦−0.05042(負極界面添加材重量比(%))2+0.4317(負極界面添加材重量比(%))+0.9032で示される領域では、初回放電容量Qが120mAh/g以上であった。さらに、(負極かさ密度(g/cm3))≦−0.076(負極界面添加材重量比(%))2+0.571(負極界面添加材重量比(%))+0.6251で示される領域では、初回放電容量Qは130mAh/g以上であった。From the approximate curves and the approximate straight lines obtained from FIGS. 5 and 6, the relationship between the bulk density of the negative electrode and the weight ratio of the negative electrode interface additive necessary to obtain a constant initial discharge capacity Q was obtained, and is shown in FIG. Regardless of the negative electrode bulk density, the initial discharge capacity Q was increased by adding the negative electrode interface additive. In the region indicated by (negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (negative electrode interface additive material weight ratio (%)) 2 +0.4317 (negative electrode interface additive material weight ratio (%)) + 0.9032 And the initial discharge capacity Q was 120 mAh / g or more. Further, in a region indicated by (negative electrode bulk density (g / cm 3 )) ≦ −0.076 (negative electrode interface additive material weight ratio (%)) 2 +0.571 (negative electrode interface additive material weight ratio (%)) + 0.6251 And the initial discharge capacity Q was 130 mAh / g or more.

100 正極
110 正極合剤層
120 正極集電体
130 正極タブ部
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ部
300 半固体電解質層
400 電極体
500 外装体
1000 二次電池
100 Positive
110 Positive electrode mixture layer
120 Positive electrode current collector
130 Positive electrode tab
200 negative electrode
210 Negative electrode mixture layer
220 Negative electrode current collector
230 Negative electrode tab
300 semi-solid electrolyte layer
400 electrode body
500 exterior
1000 rechargeable battery

本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。   All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (8)

半固体電解質溶媒および負極界面添加材を含む半固体電解液、ならびに粒子を含む半固体電解質であって、
前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が0.6%〜11.7%である半固体電解質。
A semi-solid electrolyte including a semi-solid electrolyte solvent and a negative electrode interface additive, and a semi-solid electrolyte including particles,
A semisolid electrolyte in which the weight ratio of the negative electrode interface additive to the sum of the weight of the semisolid electrolyte and the weight of the applied negative electrode is 0.6% to 11.7%.
請求項1の半固体電解質において、
前記半固体電解質の重量と適用する負極の重量の和に対する前記負極界面添加材の重量比が1.7%〜5.8%である半固体電解質。
In the semi-solid electrolyte of claim 1,
A semi-solid electrolyte in which the weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the applied negative electrode is 1.7% to 5.8%.
請求項1の半固体電解質において、
前記負極界面添加材は炭酸ビニレン(VC)である半固体電解質。
In the semi-solid electrolyte of claim 1,
A semisolid electrolyte in which the negative electrode interface additive is vinylene carbonate (VC).
請求項1の半固体電解質において、
前記半固体電解液は低粘度有機溶媒をさらに含む半固体電解質。
In the semi-solid electrolyte of claim 1,
The semi-solid electrolyte further includes a low-viscosity organic solvent.
請求項1の半固体電解質を含む半固体電解質層を有する電極。   An electrode having a semi-solid electrolyte layer containing the semi-solid electrolyte according to claim 1. 請求項1の半固体電解質を含む半固体電解質層および電極を有する半固体電解質層付き電極。   An electrode with a semi-solid electrolyte layer comprising a semi-solid electrolyte layer containing the semi-solid electrolyte according to claim 1 and an electrode. 請求項6の半固体電解質層付き電極であって、
前記電極は負極であり、
以下を満たす半固体電解質層付き電極。
(負極かさ密度(g/cm3))≦−0.05042(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%))2+0.4317(前記半固体電解質の重量と負極の重量の和に対する前記負極界面添加材の重量比(%))+0.9032
An electrode with a semi-solid electrolyte layer according to claim 6,
The electrode is a negative electrode,
An electrode with a semi-solid electrolyte layer that satisfies the following.
(Negative electrode bulk density (g / cm 3 )) ≦ −0.05042 (weight ratio of the negative electrode interface additive to the sum of the weight of the semi-solid electrolyte and the weight of the negative electrode (%)) 2 +0.4317 (of the semi-solid electrolyte Weight ratio of the negative electrode interface additive to the sum of the weight of the negative electrode and the weight of the negative electrode (%)) + 0.9032
請求項1の半固体電解質を含む半固体電解質層を有する二次電池であって、
所定サイクル後の前記二次電池の容量維持率が、前記負極界面添加材を含まない場合の前記二次電池の容量維持率よりも大きい二次電池。
A secondary battery having a semi-solid electrolyte layer containing the semi-solid electrolyte of claim 1,
A secondary battery in which a capacity retention rate of the secondary battery after a predetermined cycle is larger than a capacity retention rate of the secondary battery when the secondary battery does not include the negative electrode interface additive.
JP2019525229A 2017-06-15 2018-05-16 Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries Active JP6875522B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017117337 2017-06-15
JP2017117337 2017-06-15
PCT/JP2018/018977 WO2018230238A1 (en) 2017-06-15 2018-05-16 Semisolid electrolyte, electrode, electrode having semisolid electrolyte layer, and secondary battery

Publications (2)

Publication Number Publication Date
JPWO2018230238A1 true JPWO2018230238A1 (en) 2020-01-09
JP6875522B2 JP6875522B2 (en) 2021-05-26

Family

ID=64660269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525229A Active JP6875522B2 (en) 2017-06-15 2018-05-16 Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries

Country Status (4)

Country Link
JP (1) JP6875522B2 (en)
KR (1) KR102272029B1 (en)
CN (1) CN110521049B (en)
WO (1) WO2018230238A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231188B2 (en) * 2018-10-02 2023-03-01 エリーパワー株式会社 Manufacturing method of lithium ion battery
CN114792793B (en) * 2021-01-25 2024-01-26 中国科学院物理研究所 Sodium ion battery additive and high-power sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207217A (en) * 2013-03-19 2014-10-30 ソニー株式会社 Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
JP2016527176A (en) * 2013-08-02 2016-09-08 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177574B2 (en) * 2001-11-02 2008-11-05 松下電器産業株式会社 Lithium secondary battery
JP5408702B2 (en) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 Lithium ion battery
WO2013128679A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
US20140322576A1 (en) * 2012-02-29 2014-10-30 Shin-Kobe Electric Machinery Co., Ltd. Lithium Ion Battery
KR20150041978A (en) * 2013-10-10 2015-04-20 에스케이케미칼주식회사 Electrolyte for secondary cell and secondary cell comprising same
JP2016058252A (en) 2014-09-10 2016-04-21 株式会社リコー Nonaqueous electrolyte power storage device and lithium ion secondary battery
CN104993135A (en) * 2015-06-13 2015-10-21 田东 Lithium ion battery with long cycle performance
JPWO2017077986A1 (en) * 2015-11-06 2018-06-14 株式会社日立製作所 Lithium ion secondary battery and method for producing lithium ion secondary battery
CN105720300B (en) * 2016-03-31 2019-06-21 成都国珈星际固态锂电科技有限公司 Gel polymer lithium ion battery and preparation method thereof and electric vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207217A (en) * 2013-03-19 2014-10-30 ソニー株式会社 Battery, electrolytic layer, battery pack, electronic device, electrically-powered vehicle, power storage device, and electric power system
JP2016527176A (en) * 2013-08-02 2016-09-08 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for size reduction of silicon and use of size-reduced silicon in lithium ion batteries

Also Published As

Publication number Publication date
KR102272029B1 (en) 2021-07-01
JP6875522B2 (en) 2021-05-26
CN110521049B (en) 2022-03-15
WO2018230238A1 (en) 2018-12-20
KR20190119654A (en) 2019-10-22
CN110521049A (en) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6686229B2 (en) Semi-solid electrolyte layer, battery cell sheet and secondary battery
JP2015111552A (en) Lithium secondary battery
JP6924264B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
JP6875522B2 (en) Semi-solid electrolyte, electrodes, electrodes with semi-solid electrolyte layer, and secondary batteries
JP6843966B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes, secondary battery
WO2019176174A1 (en) Positive electrode slurry, positive electrode, cell sheet, secondary battery
JP6894973B2 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrodes and secondary battery
JP2020004598A (en) battery
JP2020202158A (en) Insulation layer, battery cell sheet, and battery cell
WO2019142502A1 (en) Negative electrode, half secondary battery and secondary battery
JP2019204689A (en) Insulating layer, battery cell sheet, and secondary battery
WO2019087815A1 (en) Positive electrode mixture layer, positive electrode, half secondary battery, and secondary battery
WO2020003864A1 (en) Negative electrode, battery cell sheet, and secondary battery
CN115461907A (en) Nonaqueous electrolyte solution, semisolid electrolyte layer, sheet for secondary battery, and secondary battery
WO2019064645A1 (en) Half secondary battery and secondary battery
WO2019065287A1 (en) Lithium ion secondary battery
JP2019185989A (en) Insulating layer, battery cell sheet, and battery
JP2019204690A (en) Battery cell sheet and battery
JP2019061812A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R150 Certificate of patent or registration of utility model

Ref document number: 6875522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150