JPWO2018154634A1 - 投写型表示装置、投写型表示装置の制御方法、及びプログラム - Google Patents

投写型表示装置、投写型表示装置の制御方法、及びプログラム Download PDF

Info

Publication number
JPWO2018154634A1
JPWO2018154634A1 JP2019501790A JP2019501790A JPWO2018154634A1 JP WO2018154634 A1 JPWO2018154634 A1 JP WO2018154634A1 JP 2019501790 A JP2019501790 A JP 2019501790A JP 2019501790 A JP2019501790 A JP 2019501790A JP WO2018154634 A1 JPWO2018154634 A1 JP WO2018154634A1
Authority
JP
Japan
Prior art keywords
projection
coordinates
image
distortion correction
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019501790A
Other languages
English (en)
Other versions
JP6804056B2 (ja
Inventor
青柳 寿和
寿和 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Display Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Display Solutions Ltd filed Critical NEC Display Solutions Ltd
Publication of JPWO2018154634A1 publication Critical patent/JPWO2018154634A1/ja
Application granted granted Critical
Publication of JP6804056B2 publication Critical patent/JP6804056B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

プロジェクタの小型軽量化と低コスト化を図る。投写光を投写面に投写する投写部(2)と、投写部(2)による投写光を補正する歪み補正データを格納する記憶部(31)と、投写面上の一点までの距離を検出する距離検出部(53)と、投写光の座標系における一点の座標を検出する座標検出部(51)と、座標検出部(51)にて求められた投写光の座標系における一点の座標と、記憶部(31)に格納された歪み補正データから投写面の3次元形状を算出する3次元形状算出部(54)と、を備える。

Description

本発明は、投写型表示装置、投写型表示装置の制御方法、及びプログラムに関する。
投写型表示装置(以下、プロジェクタともいう。)では、パーソナルコンピュータ(以下、PCともいう。)などからプロジェクタへ出力された画像をスクリーンなどに投写する。このとき、プロジェクタと正対していないスクリーンや平面でない投写対象物(以下、これらをまとめて投写対象物という。)に対して画像を投写した場合、プロジェクタの投写レンズと投写対象物の各領域との間の投写距離の差によって生じる焦点ボケを電気的に解消するため、例えば、投写対象物の3次元形状を取得する技術が知られている。
プロジェクタには、投写対象物上で電子ペンを使用する形態のものがある。このようなプロジェクタでは、投写対象物上で使用される電子ペンのタッチ開始情報及び終了情報、投写対象物上での電子ペンの座標情報を取得するため、電子ペンの先端部から発せられる赤外線をカメラで撮影するが、平面でない投写対象物上における電子ペンの位置を取得する際には、投写対象物の3次元形状を取得する技術が用いられている。
投写対象物の3次元形状を取得する方法として次のような方法が存在する。例えば、投写レンズから投写した光が投写対象物で反射し、再び投写レンズに戻ってくるまでの時間から距離を計測することにより、3次元計測を行うTOF(Time of Flight)方式がある。また、異なる位置に配した2つのカメラで同時に投写対象物を撮影し、各カメラで得られる投写対象物の撮像画像上での位置の違いにより、三角測量の原理を用いて3次元計測を行うパッシブ三角測量方式(ステレオカメラ方式ともいう。)がある。これらの3次元形状を取得する方法は、対象となる多地点の座標を取得することを意味する。
特許文献1には、投写対象物までの距離を取得し、投写対象物の外形を検出した後、平均距離にフォーカスを合わせる技術が記載されている。
特許文献2には、投写対象物までの距離情報が入力された後、投写対象物の曲線歪みに対応して補正した画像情報を出力する技術が記載されている。
特開2005−229415号公報 特開2010−078534号公報
しかしながら、TOF方式やパッシブ三角測量方式(ステレオカメラ方式)など、対象となる多地点の座標を取得する方法を採用すると、プロジェクタのコストが上昇するという問題に加え、プロジェクタの小型軽量化を図ることができなくなるという問題がある。
特許文献1では、撮像画像中のある同一の対象点の3次元位置を検出するために三角測量の原理を用いているため、プロジェクタのコストが上昇するという問題に加え、プロジェクタの小型軽量化を図るという問題は解決されない。
特許文献2では、対象物までの距離情報を取得するためにTOF方式の一例である光パルス飛行法の原理を用いているため、プロジェクタのコストが上昇するという問題に加え、プロジェクタの小型軽量化を図るという問題は解決されない。
本発明の目的は、上記課題を解決可能な投写型表示装置、投写型表示装置の制御方法、及びプログラムを提供することである。
本発明の投写型表示装置は、投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する3次元形状算出手段と、を備える。
また、本発明の投写型表示装置の制御方法は、投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置の制御方法であって、前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する工程を備える。
さらに、本発明の投写型表示装置に実行させるためのプログラムは、投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置のコンピュータに、前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する処理を実行させる。
本発明によれば、プロジェクタの小型軽量化を図ることができることに加え、プロジェクタの低コスト化を図ることができる。
本発明の第1実施形態によるプロジェクタの概略構成を示すブロック図の一例を示す図である。 第1実施形態のプロジェクタの全体構成を示す機能ブロック図の一例を示す図である。 距離センサを搭載したプロジェクタの投写方向と投写エリアとの関係を示す図である。 距離センサを搭載したプロジェクタの投写方向と、投写対象物と、視点との関係を示す図である。 プロジェクタの3次元形状検出の原理について説明する図である。 打ち上げ有りの場合の画角、投写光軸及び投写中心点の関係を説明するための模式図(斜視図)である。 打ち上げ無しの場合の画角、投写光軸及び投写中心点の関係を説明するための図6AのA−A断面図である。 画角を拡大した場合の画角、投写光軸及び投写中心点の関係を説明するための図6AのA−A断面図である。 上方へレンズシフトを行った場合の画角、投写中心軸及び投写中心点の関係を説明するための図6AのA−A断面図である。 視点画像としての歪み補正前画像とプロジェクタの歪み補正後画像とにおける四角形領域と四隅点の座標との対応を示す図である。 視点座標系における視点画像としての歪み補正前画像の仮の物理座標上の四隅点の物理座標と、歪み補正後画像の物理座標の四隅点の物理座標とから、四角形領域に対応する投写対象物上の平面の法線ベクトルを求めることを説明する図である。 プロジェクタ座標系に変換された距離検出をした一点の座標が四隅点の内側にある唯一の平面を距離検出位置平面として特定することを説明する図である。 第1実施形態によるプロジェクタの動作を示すフローチャートである。 本発明の第2実施形態によるプロジェクタの概略構成を示すブロック図の一例を示す図である。 第2実施形態のプロジェクタの全体構成を示す機能ブロック図の一例を示す図である。 本発明の第3実施形態によるプロジェクタの概略構成を示すブロック図の一例を示す図である。
以下、本発明の実施形態について図面を参照して説明する。
(第1実施形態)
初めに、本発明の第1実施形態によるプロジェクタの概略構成を説明する。
図1は、第1実施形態によるプロジェクタの概略構成を示すブロック図の一例である。図1に示すように、本実施形態によるプロジェクタ101は、投写部2と、投写映像入力端子1と、記憶部31と、操作部32と、情報処理部30と、距離センサ106とを含む。
投写部2は、投写映像入力端子1から入力された画像を、スクリーンを一例とする投写対象物104に投写する機能を有する。
記憶部31は、プロジェクタ101の動作全体を制御するためのプログラムを格納している。また、記憶部31は、投写部2の投写位置や光源の出力、投写映像入力端子1に入力された画像を一時的に記憶する機能などを有する。
操作部32は、スイッチやボタンなどで構成され、プロジェクタ101に所定の動作を行わせるためにユーザが操作するものである。
情報処理部30は、記憶部31に格納されているプログラムをロードし、プロジェクタ101の動作全体を制御する。
距離センサ106は、後述するように、プロジェクタ101から投写対象物104上の一点(距離計測点107(図4))までの距離を計測する。
投写対象物104は画像を投写することができるものであれば、どのような構造のものであってもよい。例えば、投写対象物104として、壁などの構造体を用いることができる。
なお、本実施形態では、プロジェクタ101の投写方式は、例えば、短焦点方式など、どのような方式のものであってもよい。
次に、第1実施形態によるプロジェクタの全体構成を説明する。
図2は、第1実施形態のプロジェクタの全体構成を示す機能ブロック図の一例である。
図2を参照すると、プロジェクタ101は、投写映像入力端子1と、投写部2と、3次元形状検出部3と、フォーカス制御部4と、から構成される。
投写映像入力端子1は、プロジェクタ101から投写対象物104の投写面に投写される映像が入力される端子である。
投写部2は、投写映像入力端子1から入力された映像を投写対象物104(図4)に投写するものである。3次元形状検出部3は、投写対象物104の投写面の3次元形状を検出するものである。ここで、投写面の3次元形状とは、後述するように、プロジェクタ座標系の座標に変換された距離計測が行われた投写対象物104の一点の座標と、歪み補正データ格納部6に格納された歪み補正データから検出される投写対象物104の投写面の3次元形状である。
フォーカス制御部4は、3次元形状検出部3で検出された投写対象物104の投写面の3次元形状に基づいて、投写部2のフォーカス位置と焦点ボケ補正とを制御するものである。
投写部2の構成について説明する。投写部2は、投写映像入力端子1と、映像処理部5と、歪み補正データ格納部6と、歪み補正部7と、焦点ボケ補正部8と、投写レンズユニット部9と、から構成されている。
なお、投写部2は、図1の投写部2と、情報処理部30と、記憶部31とによって実現される。
投写映像入力端子1は、プロジェクタ101から投写対象物104の投写面に投写される映像が入力される端子である。映像処理部5は、投写映像入力端子1から入力された映像に対して、プロジェクタ101の表示デバイスの解像度への解像度変換、画質調整などを行う。
歪み補正データ格納部6は、歪み補正データを格納するものである。歪み補正部7は、映像処理部5で処理された映像が、プロジェクタ101と正対していない平面の投写対象物104や平面でない投写対象物104に投写されたとき、ユーザの視点の位置で視認される歪みを、歪み補正データ格納部6に格納されている歪み補正データにしたがって補正する。
ここで、歪みについて簡単に説明する。プロジェクタ101は、PCなどからプロジェクタ101へ出力された映像をスクリーンに投写する。このとき、プロジェクタ101がスクリーンに対して斜めに配置されており、プロジェクタに搭載されている投写レンズの光軸とスクリーン平面とが正対していない場合、スクリーン上に投写された投写映像を見ると台形に歪んだ形状となる。この台形に歪んだ形状の投写映像を歪み映像といい、スクリーンに投写された映像をより快適に視聴するためには、この台形に歪んだ形状の映像を補正する必要がある。また、平面でない面に投写された場合も投写された投写映像を見ると歪んだ形状となり、同様に補正する必要がある。
本実施形態では、プロジェクタ101と、投写対象物104と、視点108(図4)とが、それぞれ所定の位置に載置されていることを想定している。例えば、展示会の会場や美術館などでは、プロジェクタ101、投写対象物104、及び視点108の位置はある程度決まっている。ユーザが視点108から投写対象物104に投写された映像を見る場合、プロジェクタ101から投写対象物104に投写される映像は、予め歪みが補正された状態で投写対象物104に投写されている。そして、このときの歪み補正データは、歪み補正データ格納部6に予め格納されている。
焦点ボケ補正部8は、歪み補正部7で補正された映像に対し、フォーカス制御部4で算出された焦点ボケのパラメータにしたがって、投写対象物104の表面上の投写距離の差によって生じる焦点ボケを電気的に補正するものである。ここで、焦点ボケとは、投写対象物表面104が複雑な形状を有する場合や投写対象物104を移動する場合に、投写レンズから投写対象物104までの投写距離の差により生じる投写対象物104に表示される映像がぼやけることをいう。
投写レンズユニット部9は、投写対象物104に投写される映像の焦点を調整するフォーカス機能、投写対象物104に投写される映像の大きさを調整するズーム機能、及び、投写対象物104に投写される映像の位置を上下左右に調整できるレンズシフト機能を有し、焦点ボケ補正部8で補正された映像を投写する。
3次元形状検出部3の構成について説明する。3次元形状検出部3は、歪み補正対応領域抽出部10と、プロジェクタ投写設計データ格納部11と、投写視点画像物理座標算出部12と、領域対応平面の法線ベクトル算出部13と、距離センサ部14と、距離センサキャリブレーションデータ格納部15と、3次元データプロジェクタ座標変換部16と、距離検出位置平面特定部17と、平面四隅点3次元位置算出部18と、から構成されている。
なお、3次元形状検出部3は、図1の情報処理部30と、記憶部31と、距離センサ106とによって実現される。
本実施形態では、後述する図4、図5で説明するように、プロジェクタ101から投写対象物104の投写面に投写される画像を複数の四角形領域に分割し、投写対象物104の投写領域は、分割された四角形領域の四隅点を通る平面の集合からなることとしている。そして、投写対象物104の表面形状を平面の集合体122として定義している。
歪み補正対応領域抽出部10は、歪み補正データ格納部6に格納されている歪み補正データから、ユーザが或る視線方向109から見た歪み補正前の画像と歪み補正後の画像との間の四角形領域の対応と、補正前後の画像における当該四角形領域を形成する四隅点の座標を抽出するものである。
プロジェクタ投写設計データ格納部11は、プロジェクタ101の投写に関わる設計データを格納するものである。投写視点画像物理座標算出部12は、投写レンズユニット部9から得られるズーム位置及びレンズシフト位置と、プロジェクタ投写設計データ格納部11に格納されているプロジェクタ101の投写に関わる設計データと、に基づいて、次の値を算出するものである。
1つ目の値は、歪み補正後画像がプロジェクタ101の投写画像として投写対象物104に投写された場合、歪み補正対応領域抽出部10で抽出された、当該歪み補正後画像を構成する各四角形領域の四隅点の座標を、後述する投写中心102を原点とする座標系(以下、プロジェクタ座標系ともいう。)の物理座標として算出する。
2つ目の値は、歪み補正前画像をユーザが或る視点108から見た場合、歪み補正対応領域抽出部10で抽出された、当該歪み補正前画像を構成する各四角形領域の四隅点の座標を、視点108を原点とする視点座標系(以下、単に視点座標系ともいう。)の仮の物理座標として算出する。
ここで、プロジェクタ座標系について簡単に説明する。
図6Aに打ち上げ有りの場合の画角、投写光軸及び投写中心の関係を模式的に示す。図6Bに打ち上げ無しの場合の画角、投写光軸及び投写中心の関係を模式的に示す。図6Cに画角を拡大した場合の画角、投写光軸及び投写中心の関係を模式的に示す。図6Dに上方へレンズシフトを行った場合の画角、投写光軸及び投写中心の関係を模式的に示す。なお、図6Aは斜視図であり、図6B、図6C、及び図6Dは、図6AのA−A断面図である。ここで、投写光軸は、画像形成面の中心を通り、かつ、画像形成面に垂直に交わる軸である。プロジェクタ座標系の原点を投写中心102とする。以下、プロジェクタ座標系を投写座標系ともいう。
打ち上げとレンズシフトについて簡単に説明する。通常のプロジェクタでは、テーブル上に置いたときにテーブルの高さよりも上に映像が投写されるように映像を投写光軸より上に投写する打ち上げが行われる。このことを、打ち上げという。また、レンズシフトとは、映像を投写光軸に対して上下左右の位置に移動して投写することをいい、打ち上げは、レンズシフトの一部である。
例えば、図6Aに示すように、投写中心102は、投写エリア103の四隅の各点と投写レンズユニット部9からの映像信号に基づく画像を形成する表示デバイス100の画像形成領域の四隅の各点とを、それぞれ対応する点同士で直線的に結んだ線が交わる点である。ここで、投写エリア103は、表示デバイス100の画像形成領域の画像を上下左右で反転させたものである。なお、実際は、レンズでの屈折を伴うため、投写エリア103の四隅の各点と表示デバイス100の画像形成領域の四隅の各点とを結ぶ線は直線とはならない。投写中心102は、投写レンズのレンズ構成を考慮して決定する必要がある。
例えば、表示デバイス100の画像形成領域の四隅の点をそれぞれA点、B点、C点、D点とし、投写エリア103の四隅の点をそれぞれa点、b点、c点、d点とする。a点、b点、c点、d点はそれぞれA点、B点、C点、D点に対応し、a点、b点、c点、d点の配置はA点、B点、C点、D点の配置に対して上下左右が反転した位置関係になる。この場合、投写中心102は、A点から射出してレンズを介してa点に到達する主光線と、B点から射出してレンズを介してb点に到達する主光線と、C点から射出してレンズを介してc点に到達する主光線と、D点から射出してレンズを介してd点に到達する主光線とが互いに交わる点を示す。
図6Aに示した打ち上げ有りの例では、投写光軸105は投写エリア103の下端の中心部を通り、投写中心102は、投写光軸105よりも上側に位置している。この場合、投写中心軸は、投写光軸105と一致しない。
図6Bに示した打ち上げ無しの例では、投写光軸105は投写エリア103の中心部を通り、投写中心点102は、投写光軸105上に位置している。この場合、投写中心軸は、投写光軸105と一致する。
図6Cは、図6Bの例と比較して、画角を拡大した例である。図6Bと同様、投写光軸105は投写エリア103の中心部を通り、投写中心102は投写光軸105上に位置しているが、図6Bの例よりも、投写中心点102は表示デバイス100側に配置されている。この場合も、投写中心軸は、投写光軸105と一致する。
図6Dは、図6Bの例と比較して、投写エリア103が上方へシフトするようにレンズシフトを行った例である。図6Aの例と同様、投写光軸105は投写エリア103の下端の中心部を通り、投写中心102は、投写光軸105よりも上側に位置している。この場合、投写中心軸は、投写光軸105と一致しない。
図6Aから図6Dの例から分かるように、画角、投写中心軸及び投写中心点、ズーム位置やレンズシフト位置に応じて変化する。換言すると、画角、投写中心軸及び投写中心は、ズーム位置やレンズシフト位置に応じて決定する必要がある。
図2に戻り、領域対応平面の法線ベクトル算出部13は、投写視点画像物理座標算出部12で算出された各四角形領域の、歪み補正後画像の投写画像としてのプロジェクタ座標系における四隅点の物理座標と、歪み補正前画像の視点画像としての視点座標系における四隅点の仮の物理座標と、に基づいて、投写対象物104に投写された各四角形領域が平面であると仮定したときの、その平面に対する法線ベクトル123(図8)を算出するものである。
距離センサ部14は、投写対象物104の表面の一点(距離測定点107(図4))までの距離を計測するものである。
距離センサキャリブレーションデータ格納部15は、次の値を格納するものである。1つ目の値は、距離センサ106(図3)の座標系とプロジェクタ101の座標系との位置関係を計測するキャリブレーションを行った結果、計算された距離センサ106の座標系をプロジェクタの座標系に変換するためのパラメータである回転量と並進量を格納する。2つ目の値は、距離センサ106の座標系とプロジェクタ101の座標系との位置関係を計測するキャリブレーションを行ったときのズーム位置とレンズシフト位置とを、基準ズーム位置と基準レンズシフト位置として格納する。
3次元データプロジェクタ座標変換部16は、距離センサ106で検出された距離測定点107における3次元座標(0、0、Z´´)を、距離センサキャリブレーションデータ格納部15に格納されている回転量、並進量、基準ズーム位置、基準レンズシフト位置、投写レンズユニット部9から得られるズーム位置、レンズシフト位置、及び、プロジェクタ投写設計データ格納部11に格納されているプロジェクタ101の投写に関わる設計データから、投写中心102を原点とするプロジェクタ座標系に変換する。
距離検出位置平面特定部17は、3次元データプロジェクタ座標変換部16でプロジェクタ座標系に変換された距離測定点107の3次元座標を含む平面を特定し、その平面における四隅点の3次元座標を計算するものである。この計算は、投写視点画像物理座標算出部12において算出された各四角形領域の歪み補正後画像の投写画像としてのプロジェクタ座標系における四隅点の物理座標と、領域対応平面の法線ベクトル算出部13で算出された投写対象物104に投写された各四角形の領域に対する平面の法線ベクトルと、に基づいて行われる。
平面四隅点3次元位置算出部18は、距離検出位置平面特定部17で特定された距離測定点107の3次元座標を含む平面に対応する領域と、その平面の方程式のパラメータと、平面上の四隅点の3次元座標と、から、残りの領域に対応する平面の四隅点の3次元座標を算出するものである。この計算は、投写視点画像物理座標算出部12で算出された各四角形領域の、歪み補正後画像の投写画像としてのプロジェクタ座標系における四隅点の物理座標と、領域対応平面の法線ベクトル算出部13で算出された、投写対象物104に投写された各四角形の領域に対する平面の法線ベクトル123と、に基づいて行われる。
フォーカス制御部4の構成について説明する。フォーカス制御部4は、フォーカス位置テーブル格納部19と、焦点ボケパラメータテーブル格納部20と、フォーカス位置・焦点ボケパラメータ算出部21と、から構成されている。
なお、フォーカス制御部4は、図1の情報処理部30と記憶部31とによって実現される。
フォーカス位置テーブル格納部19は、ズーム位置と投写距離に対して焦点が合う投写レンズユニット部9におけるフォーカスの位置を格納するものである。焦点ボケパラメータテーブル格納部20は、フォーカス位置と投写距離に対する焦点ボケパラメータを格納するものである。フォーカス位置・焦点ボケパラメータ算出部21は、投写対象物104におけるフォーカスが最適になるようにフォーカス位置と焦点ボケパラメータを算出するものである。この計算は、3次元形状検出部3による3次元位置検出結果と、投写レンズユニット部9から得られるズーム位置からフォーカス位置テーブル格納部19に格納されているフォーカス位置テーブルと、焦点ボケパラメータテーブル格納部20に格納されている焦点ボケパラメータテーブルと、を参照して行われる。
距離センサを搭載したプロジェクタ101の投写方向と投写エリアとの関係を、図3を参照して説明する。本実施形態のプロジェクタ101では、必ず投射対象物104の表面上におけるプロジェクタ101の投射エリア内103の1点を計測できるように、距離センサ106の方向が設定されている。すなわち、プロジェクタ101のズーム機能により投写映像が拡大されたり、レンズシフト機能により投写映像の位置が上下左右に移動されたりしても、投写対象物104の表面上における投写エリア103内の一点を必ず計測できるようになっている。この点について図4を用いて説明する。
図4は、距離センサ106を搭載したプロジェクタ101の投写方向と、投写対象物104と、視点108との関係を示したものである。図4に示すように、プロジェクタ101から投写対象物104に対して歪み補正を施された映像が投写され、視点108の位置において、投写された映像を歪みのない状態で視線方向109から視認している状態となっている。この場合、投写映像上の一点である距離測定点107までの距離から距離測定点107の3次元座標(0、0、Z´´)を算出し、歪み補正のためのデータを使って投射対象物104の3次元形状を算出するようになっている。さらに、その3次元形状を使用して投写対象物104におけるフォーカスが最適になるよう、フォーカス位置の調整と焦点ボケ補正を行うようにしている。このように、本実施形態では、視点108の位置(視線方向109)において歪みが視認されないように歪み補正データが事前に作成されている。
歪み補正データの作成方法としては、例えば、次のような方法が挙げられる。第1の方法として、視点108の位置にカメラを設置し、投写対象物104に投写された画像を撮像し、その歪み具合から歪み補正データを作成する方法がある。第2の方法として、視点108の位置に立ったユーザが、投写対象物104に投写され歪んだ画像を見ながらユーザインタフェースを使用して歪みが解消するように調整し、歪み補正データを作成する方法がある。
本実施形態のプロジェクタ101の動作を、図2を参照しつつ簡単に説明する。
本実施形態のプロジェクタ101は、投射部2、3次元形状検出部3、フォーカス制御部4で構成されている。
投射部2において、投射映像入力端子1へ入力された映像の解像度を、プロジェクタ101の表示デバイスの解像度へ解像度を変換し、画質調整などを行う。投射対象物104に投射されたときの視点の位置で視認される画像に歪みが生じないように歪み補正を行い、投射対象物104の表面上の投射距離の差により生じる焦点ボケを補正し、投写レンズによりフォーカス、ズーム、レンズシフト調整を行って投写する。
3次元形状検出部3において、歪み補正のためのデータと、投写レンズのズーム位置、レンズシフト位置を参照しながら距離センサ106を使って投射対象物104の3次元形状を検出する。
フォーカス制御部4において、投射部2における投写レンズのズーム位置と3次元形状検出部3で検出した投射対象物104の3次元形状から、フォーカス位置と焦点ボケ補正のためのパラメータを算出し、投写部2に設定することにより、投射対象物104に投写された映像の焦点ボケを低減する構成となっている。
本実施形態のプロジェクタ101の動作を、図2を参照しつつ詳細に説明する。
まず、投写部2の動作について説明する。投写部2に対して投写映像入力端子1から映像が入力されると、映像処理部5において、プロジェクタ101の表示デバイスの解像度に変換され、画質調整などが行われる。
歪み補正部7では、予め歪み補正データ格納部6に格納されている歪み補正データにしたがって、プロジェクタ101と正対していない平面の投写対象物104や平面でない投写対象物104に映像が投写されたとき、図4の視点108の位置において視線方向109から視認される映像に歪みが生じないよう歪み補正が行われる。
焦点ボケ補正部8では、投写対象物104の表面上の投写距離の差により生じる焦点ボケが補正される。投写レンズユニット部9では、投写対象物104に投写される映像の焦点を調整するフォーカス調整、投写対象物104に投写される映像の大きさを調整するズーム調整、及び、投写対象物104に投写される映像の位置を上下左右に調整するレンズシフト調整が行われ、投写対象物104に投写される。焦点ボケ補正部8における焦点ボケ補正のためのパラメータと、投写レンズユニット部9における投写映像の焦点調整のためのフォーカス調整の位置は、後述するフォーカス制御部4によって設定される。
3次元形状検出部3の動作について説明する前に3次元形状検出の原理について図5を参照して説明する。
図5は、プロジェクタ101から歪み補正を施されて投写された映像が、平面でない投写対象物104に投写され、その映像を、図4の視点108の位置で視線方向109から歪みのない映像を視認している状態、及び、距離センサ106を使用して投写対象物104上の一点(距離測定点107)までの距離を計測している状態を示している。
プロジェクタ101から投写された画像を複数の四角形領域に分け、投写対象物104を、投写されたそれぞれの四角形の領域の四隅点を通る平面の集合とし、その表面形状を平面の集合体122のように定義する。1つは、プロジェクタ101の投写画像として投写対象物104に投写される歪み補正を施された歪み補正後画像118を構成する各四角形領域のプロジェクタ座標系における四隅点の座標である。もう1つは、これらに対応した視点108の位置で視線方向109から視認される歪みのない画像である視点画像としての歪み補正前画像120を構成する四角形領域の視点画像系における四隅点の座標である。両者の対応により、この四角形領域に対する投写対象物104におけるそれぞれの平面の法線ベクトルを求めることができる。
距離センサ106による投写対象物104上の距離測定点107の3次元座標(0、0、Z´´)が、距離センサ106の距離測定開始点を原点とする距離センサ座標系からプロジェクタ座標系に変換されると、距離測定点107が含まれる平面が分かる。この平面の法線ベクトルを有し距離測定点107を通る平面という条件から、その平面の方程式のパラメータが分かる。そして、その平面に映像が投写された四角形領域の四隅点の3次元座標が分かり、その平面に投写された四角形領域の四隅点の3次元座標を元にして、隣接する平面のそれぞれについて、その法線ベクトルを有し、この四隅点のいくつかを通る平面という条件から、その平面の方程式のパラメータが分かる。すなわち、その平面に画像が投写された四角形領域の四隅点の3次元座標が分かるため、これらのさらに隣接する平面といった具合に同様の方法で次々とそれぞれの平面に投写された四角形領域の四隅点の3次元座標が分かることになる。
結果的に、各四角形領域の四隅点の投写対象物104上での3次元座標が分かることになるので、投写対象物104の3次元形状が分かることになる。
3次元形状検出部3の各部の動作について図2に戻り説明する。歪み補正対応領域抽出部10は、歪み補正データ格納部6に格納されている歪み補正データから図5に示すような視点画像としての歪み補正前画像120と歪み補正後画像118の四角形領域の対応とその補正前後の画像における四隅点の座標を抽出する。
具体的には、図7に示すように、視点画像としての歪み補正前画像120において、画像を四角形領域に分割し、分割したそれぞれの四角形領域の四隅点の座標に対する歪み補正後画像118の四隅点の座標を、歪み補正データ格納部6に格納されている歪み補正データを使って計算する。この結果、歪み補正後画像118と視点画像としての歪み補正前画像120との間における各四角形領域と四隅点の座標の対応が抽出される。
なお、歪み補正データ格納部6に格納されているデータは、例えば、歪み補正前画像と歪み補正後画像の点の対応テーブルであってもよいし、歪み補正前画像から歪み補正後画像への変換式のパラメータであってもよい。すなわち、どのような形式で格納されていたとしても、歪み補正前画像から歪み補正後画像を作成するためのデータであれば、上述した両者に対応する四隅点の座標を求めることができる。
次に、投写視点画像物理座標算出部12では、図5で説明した歪み補正後画像118について、プロジェクタの投射画像として歪み補正対応領域抽出部10で抽出した歪み補正後画像118上の各四角形の領域の四隅点の座標から、プロジェクタ座標系における歪み補正後画像118の物理座標119を算出する。
また、視点画像としての歪み補正前画像120について、視点位置における画像として歪み補正対応領域抽出部10で抽出した視点画像としての歪み補正前画像120上の各四角形の領域の四隅点の座標から、視点座標系における歪み補正前の仮の物理座標121を算出する。このとき、視点座標系における画像の絶対的な座標値は未知であるため、歪み補正前の仮の物理座標121は仮のスケールを設定して算出する。
そして、この算出の際には、投写レンズユニット部9から得られるズーム位置、レンズシフト位置と、プロジェクタ投写設計データ格納部11に格納されているプロジェクタの画角、ズーム特性、レンズシフト特性などの投写に関わる設計データと、が使用される。
ここで、図5で説明を行ったプロジェクタ座標系(X、Y、Z)における歪み補正後画像の物理座標119は同次座標
=(x、y、1)の形で求められ、
視点座標系(X´、Y´、Z´)における歪み補正前画像の仮の物理座標121は同次座標
ν=(xν、yν、1)の形で求められる。
次に、領域対応平面の法線ベクトル算出部13では、投写対象物104に投写された各四角形領域が平面であるとしたときのその法線ベクトル123を算出する。この計算は、次の2つの座標に基づいて算出される。1つは、投射視点画像物理座標算出部12で算出された歪み補正後画像118上の各四角形の領域の投射画像としてのプロジェクタ座標系における歪み補正後画像の物理座標119上の四隅点の物理座標である。もう1つは、視点画像としての歪み補正前の画像120上のそれに対応する各四角形の領域の視点画像としての視点座標系における歪み補正前の仮の物理座標121上の四隅点の仮の物理座標である。
ここで、プロジェクタ座標系(X、Y、Z)における歪み補正後画像の物理座標119の同次座標x=(x、y、1)と、視点座標系(X´、Y´、Z´)における歪み補正前画像の仮の物理座標121の同次座標xν=(xν、yν、1)は、3×3の行列であるTを使って次の数式(1)で表すことができる。
ν∝Tx (1)
ここで、Tは、プロジェクタ座標系から視点座標系への回転R、並進X、平面の方程式Z=pX+qY+rのパラメータp、q、rを用いて次の数式(2)で表され、
Figure 2018154634

4組のxとxνが分かれば、数式(1)、(2)を解くことで法線ベクトル123(p、q、−1)を求めることができる。
すなわち、図8に示すように、歪み補正後画像118上の各四角形の領域の投射画像としてのプロジェクタ座標系における歪み補正後画像の物理座標119上の四隅点の物理座標と、視点画像としての歪み補正前画像120上のそれに対応する各四角形の領域の視点画像としての視点座標系における視点画像としての歪み補正前画像の仮の物理座標121上の四隅点の仮の物理座標から、各四角形の領域に対応する投写対象物104上の平面の法線ベクトル123を求めることができる。
図8は、視点座標系における視点画像としての歪み補正前画像の仮の物理座標上の四隅点の物理座標と、歪み補正後画像の物理座標の四隅点の物理座標とから、四角形領域に対応する投写対象物上の平面の法線ベクトルを求めることを説明する図である。
一方、距離センサ106では、投写対象物104の一点(距離測定点107)までの距離を計測し、その3次元座標(0、0、Z´´)を検出し、距離測定点107の3次元位置とする。このとき、上記したように、投写対象物104の表面における距離測定点107は、必ず投写エリア103内に位置する。
なお、距離センサ106を用いて距離を計測する方法としては様々な方式が存在し、本実施形態では距離センサ106を用いて距離を計測する方法を特に限定しない。距離センサ106を用いて距離を計測する方法としては、(A)投写した光が対象物で反射し、戻ってくるまでの時間から距離を計測するTOF方式、(B)投写し対象物で反射した光を検出し、その検出位置から三角測量の原理を用いて距離を計測する三角測量方式、などがある。何れにしろ、一点の距離のみを取得する距離センサで足りるので、簡易な距離センサで構成することが可能であり、プロジェクタの小型化と低コスト化を図ることが可能である。
次に、3次元データプロジェクタ座標変換部16では、距離センサ106の距離測定開始点を原点とする距離センサ座標系で計測した距離測定点107の3次元座標(0、0、Z´´)を、投写中心102を原点としたプロジェクタ座標系に変換する。この変換では、次の3つのものが使用される。
1つ目は、距離センサ座標系とプロジェクタ座標系の位置関係を計測するキャリブレーションを行って距離センサキャリブレーションデータ格納部15に予め格納されている距離センサ座標系をプロジェクタ座標系に変換するためのパラメータである回転量と並進量である。2つ目は、このキャリブレーションを行ったときの基準ズーム位置と基準レンズシフト位置である。3つ目は、投写レンズユニット部9から得られるズーム位置とレンズシフト位置である。
この点について図4を用いて説明する。距離センサ106は、プロジェクタ101の投写中心102と異なる位置に備えられており、距離測定の原点(距離測定開始点)は投写中心102と一致せず、また、その方向もプロジェクタ101の投写方向と一致していない。したがって、距離センサ106で計測した距離測定点107の3次元座標(0、0、Z´´)は、プロジェクタ座標系と異なっている。このため、距離センサ106で計測した距離測定点107における投写対象物104の3次元座標(0、0、Z´´)を、プロジェクタ座標系に変換する必要がある。そして、この変換は、3つの座標軸に対する回転量と、3つの座標軸に対する移動を表す並進量と、によって定義することができる。この回転量と並進量とを求めることをキャリブレーションという。
プロジェクタ101においては、プロジェクタ座標系(X、Y、Z)の原点となる投写中心102の位置がいつも同じではなく、ズームやレンズシフトにより移動する。このため、距離センサキャリブレーションデータ格納部15には、上記回転量と並進量と共に、キャリブレーションを行ったときのズーム位置、レンズシフト位置が、それぞれ基準ズーム位置、基準レンズシフト位置として格納されている。
3次元位置データプロジェクタ座標変換部16では、具体的に、次の(a)から(e)の処理を行う。
(a)プロジェクタ投写設計データ格納部11に格納されている投写に関わる設計データと、基準ズーム位置、基準レンズシフト位置に基づいて、キャリブレーションを行ったときの基準投写中心点の座標を求める。
(b)投写レンズユニット9から得られる現在のズーム位置、レンズシフト位置から、同様に現在の投写中心点の座標を求める。
(c)(a)で求めた基準投写中心点の座標から、(b)で求めた現在の投写中心点の座標への変換するための並進量を求める。
(d)距離センサ106で計測した距離測定点107の3次元座標(0、0、Z´´)を、距離センサキャリブレーションデータ格納部15に格納されている回転量と並進量により座標変換する。
(e)現在のズーム位置とレンズシフト位置に合わせて、基準投写中心点の座標から現在の投写中心点の座標への並進量分だけ座標を移動する。
これらの処理を行うことにより、距離センサ106からの距離センサ座標系(X´´、Y´´、Z´´)における3次元座標(0、0、Z´´)を、現在の投写中心102を原点とするプロジェクタ座標系(X、Y、Z)に変換する。
以上により、歪み補正後画像118上の各四角形の領域の投写画像としてのプロジェクタ座標系における歪み補正後画像の物理座標119上の四隅点の物理座標、投写対象物104に投写された各四角形の領域に対する平面の法線ベクトル123、プロジェクタ座標系(X、Y、Z)に変換された距離測定点107の3次元座標が求められた。そして、ここからは、各四角形の領域に対する平面の方程式を算出し、それぞれの平面における四隅点の3次元座標を求めていく。
まず、距離検出位置平面特定部17では、3次元位置データプロジェクタ座標変換部16でプロジェクタ座標系に変換された距離測定点107の3次元座標を含む平面を特定する。これは、投写視点画像物理座標算出部12で算出されたプロジェクタ座標系における歪み補正後画像の物理座標119上の四隅点の物理座標と、領域対応平面の法線ベクトル算出部13で算出された各四角形の領域に対する平面の法線ベクトル123と、に基づいて特定される。距離検出位置平面特定部17では、特定された平面の方程式のパラメータと四隅点の3次元座標とを取得する。
この点に関し図9を用いて説明する。具体的には、各四角形の領域について、その対応する平面について、それぞれの法線ベクトル123を有し、距離センサ部14で検出された距離測定点107の3次元座標を通る平面の方程式のパラメータを求める。次に、平面に投写されたプロジェクタ座標系における四隅点の3次元座標を、この平面と、歪み補正後画像の物理座標119上の四隅点の物理座標とプロジェクタ座標系の原点(投写中心102)を結ぶ直線との交点として求める。そして、平面における距離センサ部14で検出された距離測定点107の3次元座標が四隅点の内側にある唯一の平面を距離検出位置平面として特定する。
次に、平面四隅点3次元位置算出部18では、距離検出位置平面特定部17で特定された距離検出位置平面における四隅点の3次元座標を使用して、残りの四角形領域に対応する平面の四隅点の3次元位置を算出する。この計算は、投写視点画像物理座標算出部12で算出された歪み補正後画像の物理座標119上の四隅点の物理座標と、領域対応平面の法線ベクトル算出部13で算出された各四角形領域に対する平面の法線ベクトル123と、に基づいて行われる。
具体的には、距離検出位置平面特定部17で特定された平面上の四隅点から、隣接する平面の方程式のパラメータを、その法線ベクトル123を使用して算出する。次に、平面に投写された、その対応する領域のプロジェクタ座標系における四隅点の3次元座標を、平面と、歪み補正後画像の物理座標119上の四隅点の物理座標とプロジェクタ座標系の原点(投写中心102)を結ぶ直線との交点として求める。隣接する平面のパラメータ及び四隅点の3次元座標が求まれば、そのさらに隣接する平面といった具合に次々に各四角形の領域に対する平面上の四隅点の3次元座標が求まる。
次に、フォーカス制御部4の動作について説明する。フォーカス制御部4は、フォーカス位置テーブル格納部19と、焦点ボケパラメータテーブル格納部20と、フォーカス位置・焦点ボケパラメータ算出部21と、から構成される。
なお、フォーカス制御部4は、図1の情報処理部30と記憶部31とによって実現される。
フォーカス位置・焦点ボケパラメータ算出部21では、焦点ボケパラメータテーブル格納部20に格納されているフォーカス位置と投写距離に対する焦点ボケパラメータのテーブルとから、各四角形の領域に対応する平面における四隅点におけるボケ具合が最も小さくなる投写距離を求める。このとき、平面四隅点3次元位置算出部18で算出された各四角形領域に対応する投写対象物104上の平面の四隅点の3次元座標のZ座標を投写距離とする。
また、フォーカス位置・焦点ボケパラメータ算出部21では、投射レンズユニット部9から得られるズーム位置と、フォーカス位置テーブル格納部19に格納されているズーム位置と投射距離に対して焦点が合うフォーカスの位置のテーブルから、その投射距離に対するフォーカスの位置を取得し、投射レンズユニット部9のフォーカスをその位置に調整する。
さらに、フォーカス位置・焦点ボケパラメータ算出部21では、その投写距離から、焦点ボケパラメータテーブル格納部20に格納されているフォーカス位置と投写距離に対する焦点ボケパラメータのテーブルとを使って、各四角形の領域に対応する平面における四隅点に対する焦点ボケパラメータを取得する。そして、四隅点内の各点に対する焦点ボケパラメータを補間によって求め、焦点ボケ補正部8へ出力し焦点ボケを補正する。
ここで、焦点ボケは、例えば、次の数式(3)の点広がり関数で表現され、σが唯一のパラメータである。この場合、焦点ボケパラメータテーブル格納部20には、フォーカス位置と投写距離に対するσが格納されることになる。
Figure 2018154634

このとき、投写画像をf(x、y)、ボケ画像をg(x、y)とすると、ボケ画像は、次の数式(4)に示すような投写画像f(x、y)と、点広がり関数h(x、y)との畳み込みで表される。
g(x、y)=f(x、y)*h(x、y) (4)
したがって、焦点ボケ補正部8では、焦点ボケを補正するため、次の数式(5)に示すように、歪み補正部7からの映像に対して、点広がり関数との逆畳み込みを行い、投写対象物上でボケが解消するように逆補正を行う。
Figure 2018154634

なお、焦点ボケは必ずしも数式(3)で表されるとは限らず、実際はプロジェクタ101により、数式やそのパラメータの数が異なる場合もある。
図10は、第1実施形態による投写型表示装置の動作を示すフローチャートである。
図10を参照すると、まず、前提として、投写対象物104に投写される画像が視点108の視点位置における視線方向109から視認されたときに歪みが生じないよう、歪み補正部7において、歪み補正データ格納部6に格納されている歪み補正データに基づいて、視線方向109から視認される歪み補正前画像120を歪み補正後画像118に補正する処理が行われているものとする。また、投写画像の投写対象物104における投写領域は複数の四角形に分割された四角形領域の集合から構成されているものとする。
ステップS901の処理で、歪み補正対応領域抽出部10により、歪み補正データ格納部6に格納されている歪み補正データから、視点画像としての歪み補正前画像120と歪み補正後画像118の四角形領域の対応とその補正前後の画像における四隅点の座標とが抽出される。
ステップS902の処理で、投写視点画像物理座標算出部12により、歪み補正後画像118上の各四角形の領域の四隅点の座標から、プロジェクタ座標系における歪み補正後画像118の物理座標119が算出される。また、視点画像としての歪み補正前画像120上の各四角形の領域の四隅点の座標から、視点座標系における歪み補正前の仮の物理座標121が算出される。
ステップS903の処理で、領域対応平面の法線ベクトル算出部13により、投写対象物104に投写された各四角形領域が平面であるとしたときのその法線ベクトル123が算出される。
ステップS904の処理で、距離センサ106により、投写対象物104の一点(距離測定点107)までの距離が計測され、その3次元座標(0、0、Z´´)が検出され、距離測定点107の3次元位置とされる。
ステップS905の処理で、3次元プロジェクタ座標変換部16により、距離センサ106の距離測定開始点を原点とする距離センサ座標系で計測した距離測定点107の3次元座標(0、0、Z´´)が、投写中心102を原点としたプロジェクタ座標系に変換される。
ステップS906の処理で、距離検出位置平面特定部17により、プロジェクタ座標系における歪み補正後画像の物理座標119上の四隅点の物理座標と、各四角形の領域に対する平面の法線ベクトル123に基づいて、プロジェクタ座標系に変換された距離測定点107の3次元座標を含む平面が特定される。
(第2実施形態)
次に、本発明の第2実施形態によるプロジェクタの概略構成を説明する。
図11は、第2実施形態によるプロジェクタの概略構成を示すブロック図の一例である。第2実施形態のプロジェクタは、基本的には図1に示した構成を有するものであるが、図11に示すように、図1の構成に加え、カメラ33と電子ペン34とが設けられている点が第1実施形態と異なる。この異なる点について以下説明する。
電子ペン34の先端部には、スイッチと、スイッチが押下された状態で赤外線を発する発光部とが設けられている。使用者が、電子ペン34の先端部を投写対象物104の表面に押し当てると、スイッチが押下され、発光部から赤外線が出力される。
カメラ33は、電子ペン34の先端部から発せられる赤外線を撮影する。カメラ33が赤外線を撮影することにより、プロジェクタ101は、カメラ33の撮像画面の座標系を投写部2の投写画面の座標系に変換する。
次に、第2実施形態によるプロジェクタの全体構成を説明する。
第2実施形態のプロジェクタは、基本的には図2に示した構成を有するものであるが、図12に示すように、フォーカス制御部4に代えて、電子ペン位置検出部22が設けられている点、プロジェクタ投写設計データ格納部11が、3次元形状検出部3から独立している点、及び歪み補正データ格納部6が電子ペンの画像上座標算出部27に接続されている点が第1実施形態と異なる。
電子ペン位置検出部22では、投写対象物104の表面上の電子ペン34のペン先から発光される赤外線を赤外線カメラ部23で撮像し、その投写対象物104の表面上における3次元位置を算出し、投写対象物104に表示されている表示画像上における電子ペン34のペン先の座標を算出する。
最初の状態として、図4で説明したように、プロジェクタ101から投写対象物104に歪み補正を施された映像が投写され、視点108の位置において、投写された映像を歪みのない状態で視線方向109から視認している状態となっている。
この状態で、第1実施形態と同様に、3次元形状検出部3において、投写対象物104の3次元位置が検出される。
そして、赤外線カメラ部23では、投写対象物104の表面上の電子ペンのペン先から発光される赤外線を撮像し、その撮像画像内の撮像位置から、赤外線カメラ座標系における原点を始点として、投写対象物104の表面上の電子ペンのペン先の方向を向いた電子ペンへの方向ベクトルを算出する。
次に、電子ペン方向プロジェクタ座標変換部25では、赤外線カメラ部23で算出された電子ペンへの方向ベクトルを、投写中心点を原点としたプロジェクタ座標系に変換する。このとき使用されるのは、次の4つである。1つ目は、赤外線カメラキャリブレーションデータ格納部24に予め格納されている、赤外線カメラの座標系とプロジェクタ座標系との位置関係を計測するキャリブレーションを行い、赤外線カメラの座標系をプロジェクタ座標系に変換するためのパラメータである回転量と並進量である。2つ目は、キャリブレーションを行ったときの基準ズーム位置と基準レンズシフト位置である。3つ目は、投写レンズユニット9から得られるズーム位置とレンズシフト位置である。4つ目は、プロジェクタ投写設計データ格納部11に格納されているプロジェクタの投写に関わる設計データである。
なお、具体的な処理の内容は、第1実施形態における3次元データプロジェクタ座標変換部16において行われる処理と同様であるので、詳細な説明は省略する。
電子ペン3次元位置算出部26では、電子ペン方向プロジェクタ座標変換部25から得られた電子ペンへの方向ベクトルと、3次元形状検出部3から得られた3次元位置データで表される面との交点を求め、電子ペンのペン先の3次元位置を算出する。
電子ペンの画像上座標算出部27では、プロジェクタ座標系における電子ペンのペン先の投写映像入力端子1から入力された映像における物理座標を算出する(図5における歪み補正後画像の物理座標119に対応する。)。
また、電子ペンの画像上座標算出部27では、歪み補正後画像における座標(図5における歪み補正後画像118に対応する。)を算出し、歪み補正データ格納部6を参照して投写映像入力端子1から入力された映像における座標(図5における歪み補正前画像120に対応する。)を算出し、電子ペン位置出力端子28から出力する。
そして、これらの計算は、投写レンズユニット部9から得られるズーム位置とレンズシフト位置、プロジェクタ投写設計データ格納部11に格納されているプロジェクタの投写に関わる設計データ、及び歪み補正データ格納部6に格納されている歪み補正データを使用して行われる。
以上により、この電子ペン位置出力端子28から出力された投写映像入力1から入力された映像における電子ペンのペン先の座標は、投写映像を出力するPCなどの情報処理装置に入力される。これにより、投写対象物104上で電子ペンが示した投写映像の位置に対応するPC上の表示画面上の位置に対する文字や図形の書き込みを行うことができる。よって、電子ペンのユーザは、投写対象物104上の投写映像に、あたかも直接描いているかのように文字や図形を描くことができる。
(第3実施形態)
次に、第3実施形態によるプロジェクタの概略構成を説明する。
図13は、第3実施形態のプロジェクタの概略構成を示すブロック図の一例である。
図13を参照すると、プロジェクタ101は、投写部2と、記憶部31と、距離検出部53と、座標検出部51と、3次元形状算出部54とから構成される。
投写部2は、投写光を投写対象物104の投写面に投写する。記憶部31は、投写部2による投写光を補正する歪み補正データを格納する。距離検出部53は、投写面上の一点までの距離を検出する。座標検出部51は、投写光の座標系における一点の座標を検出する。3次元形状算出部54は、座標検出部51にて求められた投写光の座標系における一点の座標と、記憶部31に格納された歪み補正データから投写面の3次元形状を算出する。
そして、記憶部31は、第1及び第2実施形態における歪み補正データ格納部6、プロジェクタ投写設計データ格納部11、距離センサキャリブレーションデータ格納部15で実現される。また、距離検出部53は、距離センサ部14で実現される。さらに、座標検出部51は、3次元データプロジェクタ座標変換部16で実現される。そして、3次元形状算出部54は、歪み補正対応領域抽出部10、投写視点画像物理座標算出部12、領域対応平面の法線ベクトル算出部13、距離検出位置平面特定部17、平面四隅点3次元位置算出部18で実現される。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[付記1]
投写光を投写面に投写する投写手段と、
前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、
前記投写面上の一点までの距離を検出する距離検出手段と、
前記投写光の座標系における前記一点の座標を検出する座標検出手段と、
前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する3次元形状算出手段と、
を備える投写型表示装置。
[付記2]
座標変換手段は、前記距離検出手段の距離測定開始点を原点とする座標系における前記投写面上の一点までの距離から求められた座標から、前記投写光の座標系における前記一点の座標を検出する、付記1に記載の投写型表示装置。
[付記3]
前記投写面上の投写領域は複数の四角形に分割されて構成されており、
前記3次元形状算出手段は、
前記投写領域を構成する複数の四角形のうち、前記歪み補正データによる歪み補正前画像と歪み補正後画像との間における前記投写領域における四角形領域の対応と、前記歪み補正前画像と歪み補正後画像との間における前記四角形領域を形成する四隅点の座標を抽出する歪み補正対応領域抽出手段、を備える付記1又は2に記載の投射型表示装置。
[付記4]
前記3次元形状算出手段は、
前記歪み補正後画像が前記投写面に投写されたとき、前記歪み補正対応領域抽出手段で抽出された前記歪み補正後画像が投写される投写領域を構成する四角形領域の四隅点の座標を、前記投写手段の投写中心を原点とする座標系の座標として算出し、前記歪み補正前画像が或る視点から視認されたとき、歪み補正対応領域抽出手段で抽出された前記歪み補正前画像が投写される投写領域を構成する四角形領域の四隅点の座標を、前記視点を原点とする座標系の座標として算出する投写視点画像物理座標算出手段、を備える付記3に記載の投写型表示装置。
[付記5]
前記3次元形状算出手段は、
前記投写手段の投写中心を原点とする座標系の座標と、前記視点を原点とする座標系の座標に基づいて、前記投写面に投写された四角形領域が平面であると仮定したときの、前記平面に対する法線ベクトルを算出する領域対応平面の法線ベクトル算出手段、を備える付記4に記載の投写型表示装置。
[付記6]
前記3次元形状算出手段は、
前記投写手段の投写中心を原点とする座標系の座標と、前記投写面に投写された四角形領域が平面であると仮定したときの、前記平面に対する法線ベクトルに基づいて、前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標を含む平面を特定し、前記平面における四隅点の3次元座標を計算する距離検出位置平面特定手段、を備える付記5に記載の投写型表示装置、
[付記7]
前記3次元形状算出手段は、
前記投写手段の投写中心を原点とする座標系の座標と、前記法線ベクトルに基づいて、前記一点の座標を含む平面に対応する領域と、前記平面の方程式のパラメータと、前記平面上の四隅点の3次元座標から、前記投写領域に構成された複数の四角形領域のうち、残りの領域に対応する平面の四隅点の3次元座標を算出する平面四隅点3次元位置算出手段をさらに備える、付記6に記載の投射型表示装置。
[付記8]
前記平面四隅点3次元位置座標算出手段で算出された前記投写面の3次元形状に基づいて、前記投写面に投写される投写光の焦点補正を制御するフォーカス制御手段を備える、付記7に記載の投写型表示装置。
[付記9]
前記投写面に電子ペンのペン先がタッチされることにより発光する赤外線を撮像し、前記撮像された領域における前記電子ペンの位置に基づいて、前記撮像された領域の座標系における原点から前記電子ペンのペン先方向へ向けた方向ベクトルを算出する赤外線撮像手段と、
前記方向ベクトルを、前記投写手段の投写中心を原点とする座標系に変換する電子ペン方向プロジェクタ座標変換手段と、
前記投写手段の投写中心を原点とする座標系に変換された方向ベクトルと、前記平面四隅点3次元位置算出手段により算出された前記残りの領域に対応する平面の四隅点の3次元座標に基づいて、前記電子ペンのペン先の位置を算出する電子ペン位置算出手段と、
前記投写手段の投写中心を原点とする座標系における前記電子ペンのペン先の座標の前記投写面上における座標、前記歪み補正後画像の前記投写手段の投写中心を原点とする座標、前記歪み補正後画像における座標、前記記憶手段に格納された歪み補正データから歪み補正前画像における座標を算出し、電子ペン位置を出力する電子ペンの画像上座標算出手段と、を備える、付記7に記載の投写型表示装置。
[付記10]
投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置の制御方法であって、
前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する工程を備える、投射型表示装置の制御方法。
[付記11]
投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置のコンピュータに、
前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する処理を実行させるためのプログラム。
1 投写映像入力端子
2 投写部
3 3次元形状検出部
4 フォーカス制御部
5 映像処理部
6 歪み補正データ格納部
7 歪み補正部
8 焦点ボケ補正部
9 投写レンズユニット部
10 歪み補正対応領域抽出部
11 プロジェクタ投写設計データ格納部
12 投写視点画像物理座標算出部
13 領域対応平面の法線ベクトル算出部
14 距離センサ部
15 距離センサキャリブレーションデータ格納部
16 3次元データプロジェクタ座標変換部
17 距離検出位置平面特定部
18 平面四隅点3次元位置算出部
19 フォーカス位置テーブル格納部
20 焦点ボケパラメータテーブル格納部
21 フォーカス位置・焦点ボケパラメータ算出部
22 電子ペン位置検出部
23 赤外線カメラ部
24 赤外線カメラキャリブレーションデータ格納部
25 電子ペン方向プロジェクタ座標変換部
26 電子ペン3次元位置算出部
27 電子ペンの画面上座標産出部
28 電子ペン位置出力端子
30 情報処理部
31 記憶部
32 操作部
33 カメラ
34 電子ペン
51 座標検出部
53 距離検出部
54 3次元形状算出部
100 表示デバイス
101 プロジェクタ
102 投写中心
103 投写エリア
104 投写対象物
105 投写光軸
106 距離センサ
107 距離測定点
108 視点
109 視線方向
110 レンズシフト右上/ズーム最小時の投写エリア
111 レンズシフト右上/ズーム最大時の投写エリア
112 レンズシフト左上/ズーム最小時の投写エリア
113 レンズシフト左上/ズーム最大時の投写エリア
114 レンズシフト右下/ズーム最小時の投写エリア
115 レンズシフト右下/ズーム最大時の投写エリア
116 レンズシフト左下/ズーム最小時の投写エリア
117 レンズシフト左下/ズーム最大時の投写エリア
118 歪み補正後画像
119 歪み補正後画像の物理座標
120 視点画像としての歪み補正前画像
121 視点画像としての歪み補正前画像の仮の物理画像
122 平面の集合体
123 法線ベクトル

Claims (11)

  1. 投写光を投写面に投写する投写手段と、
    前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、
    前記投写面上の一点までの距離を検出する距離検出手段と、
    前記投写光の座標系における前記一点の座標を検出する座標検出手段と、
    前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する3次元形状算出手段と、
    を備える投写型表示装置。
  2. 座標変換手段は、前記距離検出手段の距離測定開始点を原点とする座標系における前記投写面上の一点までの距離から、前記投写光の座標系における前記一点の座標を検出する、請求項1に記載の投写型表示装置。
  3. 前記投写面上の投写領域は複数の四角形に分割されて構成されており、
    前記3次元形状算出手段は、
    前記投写領域を構成する複数の四角形のうち、前記歪み補正データによる歪み補正前画像と歪み補正後画像との間における前記投写領域における四角形領域の対応と、前記歪み補正前画像と歪み補正後画像との間における前記四角形領域を形成する四隅点の座標を抽出する歪み補正対応領域抽出手段、を備える請求項1又は2に記載の投射型表示装置。
  4. 前記3次元形状算出手段は、
    前記歪み補正後画像が前記投写面に投写されたとき、前記歪み補正対応領域抽出手段で抽出された前記歪み補正後画像が投写される投写領域を構成する四角形領域の四隅点の座標を、前記投写手段の投写中心を原点とする座標系の座標として算出し、前記歪み補正前画像が或る視点から視認されたとき、歪み補正対応領域抽出手段で抽出された前記歪み補正前画像が投写される投写領域を構成する四角形領域の四隅点の座標を、前記視点を原点とする座標系の座標として算出する投写視点画像物理座標算出手段、を備える請求項3に記載の投写型表示装置。
  5. 前記3次元形状算出手段は、
    前記投写手段の投写中心を原点とする座標系の座標と、前記視点を原点とする座標系の座標に基づいて、前記投写面に投写された四角形領域が平面であると仮定したときの、前記平面に対する法線ベクトルを算出する領域対応平面の法線ベクトル算出手段、を備える請求項4に記載の投写型表示装置。
  6. 前記3次元形状算出手段は、
    前記投写手段の投写中心を原点とする座標系の座標と、前記投写面に投写された四角形領域が平面であると仮定したときの、前記平面に対する法線ベクトルに基づいて、前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標を含む平面を特定し、前記平面における四隅点の3次元座標を計算する距離検出位置平面特定手段、を備える請求項5に記載の投写型表示装置、
  7. 前記3次元形状算出手段は、
    前記投写手段の投写中心を原点とする座標系の座標と、前記法線ベクトルに基づいて、前記一点の座標を含む平面に対応する領域と、前記平面の方程式のパラメータと、前記平面上の四隅点の3次元座標から、前記投写領域に構成された複数の四角形領域のうち、残りの領域に対応する平面の四隅点の3次元座標を算出する平面四隅点3次元位置算出手段をさらに備える、請求項6に記載の投射型表示装置。
  8. 前記平面四隅点3次元位置算出手段で算出された前記投写面の3次元形状に基づいて、前記投写面に投写される投写光の焦点補正を制御するフォーカス制御手段を備える、請求項7に記載の投写型表示装置。
  9. 前記投写面に電子ペンのペン先がタッチされることにより発光する赤外線を撮像し、前記撮像された領域における前記電子ペンの位置に基づいて、前記撮像された領域の座標系における原点から前記電子ペンのペン先方向へ向けた方向ベクトルを算出する赤外線撮像手段と、
    前記方向ベクトルを、前記投写手段の投写中心を原点とする座標系に変換する電子ペン方向プロジェクタ座標変換手段と、
    前記投写手段の投写中心を原点とする座標系に変換された方向ベクトルと、前記平面四隅点3次元位置算出手段により算出された前記残りの領域に対応する平面の四隅点の3次元座標に基づいて、前記電子ペンのペン先の位置を算出する電子ペン位置算出手段と、
    前記投写手段の投写中心を原点とする座標系における前記電子ペンのペン先の座標の前記投写面上における座標、前記歪み補正後画像の前記投写手段の投写中心を原点とする座標、前記歪み補正後画像における座標、前記記憶手段に格納された歪み補正データから歪み補正前画像における座標を算出し、電子ペン位置を出力する電子ペンの画像上座標算出手段と、を備える、請求項7に記載の投写型表示装置。
  10. 投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置の制御方法であって、
    前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する工程を備える、投射型表示装置の制御方法。
  11. 投写光を投写面に投写する投写手段と、前記投写手段による投写光を補正する歪み補正データを格納する記憶手段と、前記投写面上の一点までの距離を検出する距離検出手段と、前記投写光の座標系における前記一点の座標を検出する座標検出手段と、を備えた投射型表示装置のコンピュータに、
    前記座標検出手段にて求められた前記投写光の座標系における前記一点の座標と、前記記憶手段に格納された歪み補正データから前記投写面の3次元形状を算出する処理を実行させるためのプログラム。
JP2019501790A 2017-02-21 2017-02-21 投写型表示装置、投写型表示装置の制御方法、及びプログラム Active JP6804056B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006408 WO2018154634A1 (ja) 2017-02-21 2017-02-21 投写型表示装置、投写型表示装置の制御方法、及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2018154634A1 true JPWO2018154634A1 (ja) 2020-01-23
JP6804056B2 JP6804056B2 (ja) 2020-12-23

Family

ID=63253207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019501790A Active JP6804056B2 (ja) 2017-02-21 2017-02-21 投写型表示装置、投写型表示装置の制御方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP6804056B2 (ja)
WO (1) WO2018154634A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166242A1 (ja) * 2019-02-14 2020-08-20 ソニー株式会社 情報処理装置、情報処理方法及び記録媒体
JP7352768B2 (ja) * 2019-06-10 2023-09-29 パナソニックIpマネジメント株式会社 プロジェクタのオートフォーカス制御システム
CN113163186B (zh) * 2020-12-03 2022-06-10 深圳市当智科技有限公司 基于距离传感器水平校正的投影方法、***及存储介质
CN115150599B (zh) * 2021-03-31 2023-11-28 成都极米科技股份有限公司 确定目标坐标的方法及装置
CN115733963A (zh) * 2021-08-31 2023-03-03 成都极米科技股份有限公司 一种校正方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061121A (ja) * 1999-08-23 2001-03-06 Nec Corp プロジェクタ装置
JP3951984B2 (ja) * 2003-08-22 2007-08-01 日本電気株式会社 画像投影方法、及び画像投影装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061121A (ja) * 1999-08-23 2001-03-06 Nec Corp プロジェクタ装置
JP3951984B2 (ja) * 2003-08-22 2007-08-01 日本電気株式会社 画像投影方法、及び画像投影装置

Also Published As

Publication number Publication date
WO2018154634A1 (ja) 2018-08-30
JP6804056B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6804056B2 (ja) 投写型表示装置、投写型表示装置の制御方法、及びプログラム
JP5961945B2 (ja) 画像処理装置、その画像処理装置を有するプロジェクタ及びプロジェクタシステム、並びに、画像処理方法、そのプログラム、及び、そのプログラムを記録した記録媒体
JP6195915B2 (ja) 画像計測装置
JP6075122B2 (ja) システム、画像投影装置、情報処理装置、情報処理方法およびプログラム
US10091489B2 (en) Image capturing device, image processing method, and recording medium
KR102354299B1 (ko) 단일 영상을 이용한 카메라 캘리브레이션 방법 및 이를 위한 장치
US20110249117A1 (en) Imaging device, distance measuring method, and non-transitory computer-readable recording medium storing a program
JP5951043B2 (ja) 画像計測装置
US8896688B2 (en) Determining position in a projection capture system
JP7145432B2 (ja) 投影システム、画像処理装置および投影方法
JP2015203652A (ja) 情報処理装置および情報処理方法
US9924066B2 (en) Image processing apparatus, information processing method, and program
JP6990694B2 (ja) プロジェクタ、マッピング用データ作成方法、プログラム及びプロジェクションマッピングシステム
US10073614B2 (en) Information processing device, image projection apparatus, and information processing method
WO2015159835A1 (ja) 画像処理装置、画像処理方法、プログラム
JP5996233B2 (ja) 画像撮像装置
KR100808536B1 (ko) 패턴 영상을 이용한 캘리브레이션 방법
JP2013190281A (ja) 設置状態検出システム、設置状態検出装置、及び設置状態検出方法
JP2018049498A (ja) 画像処理装置、操作検出方法、コンピュータプログラム、及び記憶媒体
JP2014235063A (ja) 情報処理装置および情報処理方法
JP6733789B2 (ja) 入力装置、入力操作検出方法及び入力操作検出用コンピュータプログラム
KR20200028485A (ko) 측거 장치 및 측거 방법
JP2013165344A (ja) 画像処理装置及び画像処理方法
JP2010203826A (ja) 測定方法、測定装置、測定制御プログラム
JP2017129525A (ja) 計測装置及びその制御方法、並びにプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6804056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150