JPWO2018056052A1 - 導電性被膜複合体及びその製造方法 - Google Patents

導電性被膜複合体及びその製造方法 Download PDF

Info

Publication number
JPWO2018056052A1
JPWO2018056052A1 JP2017547016A JP2017547016A JPWO2018056052A1 JP WO2018056052 A1 JPWO2018056052 A1 JP WO2018056052A1 JP 2017547016 A JP2017547016 A JP 2017547016A JP 2017547016 A JP2017547016 A JP 2017547016A JP WO2018056052 A1 JPWO2018056052 A1 JP WO2018056052A1
Authority
JP
Japan
Prior art keywords
conductive film
silver fine
resin layer
fine particles
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017547016A
Other languages
English (en)
Inventor
外村 卓也
卓也 外村
祐樹 新谷
祐樹 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Publication of JPWO2018056052A1 publication Critical patent/JPWO2018056052A1/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Abstract

基材と導電性被膜とを有する導電性被膜複合体であって、耐熱性の低い基材やガラス基材を用いた場合であっても、基材に対する導電性被膜の良好な密着性と導電性被膜の優れた導電性及び耐熱性とを兼ね備えた導電性被膜複合体、及びその製造法を提供する。本発明は、基材と、基材の少なくとも一部に形成された樹脂層と、樹脂層の少なくとも一部に形成された導電性被膜と、を有し、導電性被膜は銀微粒子の焼結体であり、樹脂層の膜厚が1μm以下であること、を特徴とする導電性被膜複合体、に関する。

Description

本発明は、基材と導電性被膜とを有する導電性被膜複合体であって、半導体集積回路等の配線、プリント配線板の配線、透明電極、及び有機薄膜トランジスタ基板に対する配線や電極に好適に用いることができる導電性被膜複合体、及びその製造方法に関する。
従来から、基板の全面にスパッタや蒸着等で金属薄膜を形成させた後、フォトリソグラフィー法によって不要な部分をエッチングして必要な導電膜パターンを形成させる方法が知られている。しかしながら、当該方法は工程が煩雑であることに加え、高価な真空装置を用いる必要がある。
このため、より簡便かつ安価な導電膜パターンの形成方法が求められており、近年、凸版印刷法、凹版印刷法、スクリーン印刷法、インクジェット印刷法等の印刷法を用いた方法が提案されている。更に、より高精細なパターンが形成できる印刷手法として、反転印刷法やマイクロコンタクト印刷法等を用いた方法が提案されており、これらの印刷法に適した導電性インク、絶縁性インク、及び抵抗インク等の各種インクが開発されている。ここで、特に注目されているのが銀微粒子の低温焼結性を利用した導電性インクである。
例えば、特許文献1(特開2012−162767号公報)においては、炭素数が6以上のアルキルアミンと、炭素数が5以下であるアルキルアミンとを含むアミン混合液と、金属原子を含む金属化合物を混合して、当該金属化合物とアミンを含む錯化合物を生成する第1工程と、当該錯化合物を加熱することで分解して金属微粒子を生成する第2工程を含むことを特徴とする被覆金属微粒子の製造方法が開示されている。
上記特許文献1においては、金属アミン錯体分解法により被覆金属微粒子を製造する過程において、アミンと金属化合物との錯化合物を円滑に生成させることが可能となり、製造に要する時間を短縮することが可能となる、としている。また、被覆金属微粒子の用途等に応じて各種のアミンが使用可能であるため、例えば100℃以下の温度においても円滑に焼結が可能な被覆金属微粒子を提供することが可能となり、PETおよびポリプロピレンのような耐熱性の低いプラスチック基板にも導電膜、導電配線を形成させることが可能となる、としている。
また、特許文献2(特開2013−142173号公報)においては、脂肪族炭化水素基と1つのアミノ基とからなり、当該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり、当該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、アミン(A)とアミン(B)の合計を基準として、アミン(A)5モル%以上20モル%未満、及びアミン(B)80モル%を超えて95モル%以下の割合で含むアミン混合液を調製し;銀化合物と前記アミン混合液とを混合して、銀化合物及びアミンを含む錯化合物を生成させ;錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する;ことを含む銀ナノ粒子の製造方法が開示されている。
上記特許文献2においては、炭素総数6以上の脂肪族炭化水素モノアミン(A)と炭素総数5以下の脂肪族炭化水素モノアミン(B)とを含むアミン混合液を用いることで、銀ナノ粒子の適切な安定化が得られる、としている。
更に、基材との密着性に優れた導電性被膜を有する導電性基材も種々提案されており、例えば、特許文献3(特開2008−149681号公報)においては、支持体上に、現像銀を含む導電性金属からなる細線パターンと、透明導電性層とを有し、支持体と該細線パターンとの間に、水に対する膨湿率が60%未満である易接着層を有することを特徴とする、透光性導電性基材が開示されている。
上記特許文献3においては、支持体と細線パターン層との間に易接着層を設け、その層の水に対する膨潤率を60%未満に制御することによって、高温高湿環境下での耐久性や密着性が顕著に向上し、細線形状(薄さと幅広さ)と導電性との両立性や、細線形状(薄さと幅広さ)と透光性との両立性を調整しやすくなる、としている。
また、特許文献4(特開2014−196556号公報)においては、(1)絶縁性基材(A)上に、樹脂層形成用組成物(b)を塗布して樹脂層(B)を形成する工程、(2)(1)で得られた樹脂層(B)上に窒素原子、硫黄原子、リン原子又は酸素原子を有する化合物(c1)で保護されてなる金、銀、銅及び白金からなる群から選ばれる1種以上の金属微粒子(c2)を0.5質量%以上含有する分散液(C)を塗布し、非導電性層(D)を形成する工程、(3)(2)で得られた非導電性層(D)を有する基材に無電解めっきを行い、導電層(E)を形成する工程、を有する導電性材料の製造方法であって、樹脂層形成用組成物(b)が、ウレタン樹脂(b1)、ビニル重合体(b2)、及び、水性媒体(b3)を含有する樹脂層形成用組成物であることを特徴とする導電性材料の製造方法が開示されている。
上記特許文献4においては、各種の絶縁性基材上に樹脂層を形成することで、特定の化合物で保護されてなる金、銀、銅、白金を含有する金属微粒子を含有する非導電性の層が、塗布法によって容易に得られること、また、非導電性層が優れた無電解めっきの触媒活性を示し、かつ、強い密着性を誘起するめっき膜の足場として機能することから、高密度実装分野で利用しうる、高性能の導電性材料、プリント配線基板用基板、プリント配線板を、真空設備を必要とせず、低コストで製造することができる、としている。
特開2012−162767号公報 特開2013−142173号公報 特開2008−149681号公報 特開2014−196556号公報
しかしながら、上記特許文献1及び特許文献2に記載の銀ナノ粒子を用いた場合、低温で焼成して得られる導電性被膜は優れた導電性を有しているが、例えばPET(Polyethylene terephthalate)及びPEN(Ethylene naphthalate)等の非耐熱性基材やガラス基材に導電性被膜を形成する場合、基材への密着性を担保することが困難であった。
また、上記特許文献3及び特許文献4に記載の導電性材料においては、基材に対する導電性被膜の密着性は良好であるが、導電性被膜の導電性が損なわれる場合があった。
更に、実装時には導電性被膜に耐熱性(例えば、180℃環境下で1分保持)も求められるところ、当該耐熱性に加えて、基材への密着性及び導電性を全て兼ね備えた導電性被膜を形成させることは極めて困難である。
そこで、本発明の目的は、基材と導電性被膜とを有する導電性被膜複合体であって、耐熱性の低い基材やガラス基材を用いた場合であっても、基材に対する導電性被膜の良好な密着性と導電性被膜の優れた導電性及び耐熱性とを兼ね備えた導電性被膜複合体、及びその製造法を提供することにある。
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、基材に対する優れた密着性を有し、耐熱性の低い基材やガラス基材に対しても良好な導電性を発現させる耐熱性にも優れた導電性被膜複合体を得るためには、特定の厚さを有する樹脂を基材と導電性被膜との間に密着層として形成し、特定の銀ナノ粒子分散体を用いて導電性被膜を形成することが、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。
即ち、本発明は、
基材と、
前記基材の少なくとも一部に形成された樹脂層と、
前記樹脂層の少なくとも一部に形成された導電性被膜と、を有し、
前記導電性被膜は銀微粒子から形成されており、
前記樹脂層の膜厚が1μm以下であること、
を特徴とする導電性被膜複合体、を提供する。
本発明の導電性被膜複合体においては、樹脂層が基材と導電性被膜との密着層として機能するため、基材と導電性被膜とは良好な密着性を有している。また、樹脂層の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜に優れた耐熱性を付与することができる。
また、樹脂層が1μmよりも厚くなると、樹脂層の特性に起因する問題が生じる場合がある。具体的には、樹脂層の柔軟性によって導電性被膜が過剰に膨張収縮する結果、導電性被膜に欠陥が形成してしまう(断線)。また、厚い樹脂層による透明性の悪化、吸湿等による白化、熱による黄変等が生じる場合がある。ここで、樹脂層の膜厚を1μm以下とすることで、これらの悪影響を最小限に留めることができる。加えて、樹脂層の膜厚を1μm以下とすることで、必要以上に材料を使用することがないため、コスト面で有利となる。
なお、樹脂層のより好ましい膜厚は0.05〜0.8μmであり、最も好ましい膜厚は0.1〜0.5μmである。0.05μm未満であれば、樹脂層の効果が十分に発揮されず密着性に劣る場合がある。
本発明の導電性被膜複合体においては、前記樹脂層は基材と良好な密着性を発現する樹脂であれば特に限定されないが、基材との優れた密着性を発揮するために、カルボキシル基や水酸基などの官能基を有するものが好ましく、例えばポリビニルアルコール系樹脂(ポリビニルブチラールを含む)やポリビニルピロリドンなどが使用できるほか、前記樹脂層の主成分がポリウレタン樹脂であり、前記ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、が好ましい。ポリウレタン樹脂に前記架橋剤が添加されていることで、樹脂層の柔軟性を制御することができる。
また、本発明の導電性被膜複合体においては、前記ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量が10重量%以内であること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層の柔軟性が損なわれることに加えて、樹脂層と基材及び導電性被膜との密着性が損なわれる傾向がある。
また、詳細な理由については明らかになっていないが、密着層として用いるポリウレタン樹脂が−COO−H、−COOR、−COONH及び−COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有していることで、樹脂層と基材、及び樹脂層と導電性被膜との密着性が向上するものと考えられる。また、前記ポリウレタン樹脂を用いれば、高温高湿環境下での耐久性が良好になるという点でも好ましい。
また、本発明の導電性被膜複合体においては、導電性被膜は銀微粒子から形成されており、さらにそれを外部加熱などによって焼結させることで、銀微粒子が本来有する導電性と同程度の良好な導電性を有している。当該良好な導電性が発現する理由は必ずしも明らかになっていないが、密着層として用いる樹脂層の優れた変形能に起因すると思われる。
樹脂層は破断伸度が600%以上であることが好ましく、当該柔軟性及び収縮膨張性により、銀微粒子を焼結させるプロセスにおいて、基材と導電性被膜との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜が得られる。
また、本発明の導電性被膜複合体においては、前記ポリウレタン樹脂が水系ポリウレタン樹脂であること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。
また、本発明の導電性被膜複合体においては、前記樹脂層が、溶剤に溶解した前記水系ポリウレタン樹脂を前記基材に塗布して形成されたものであること、が好ましい。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合がある。
ここで、薄い樹脂層を形成させたい場合は、表面粗さが大きくなってしまう問題がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上する。
また、本発明の導電性被膜複合体においては、
前記導電性被膜が、
前記銀微粒子と、
短鎖アミンと、
溶媒と、
前記銀微粒子を分散させるための分散剤と、を含む銀微粒子分散体から形成されること、が好ましい。
また、本発明の導電性被膜複合体においては、前記短鎖アミンの炭素数は5以下であることが好ましく、前記溶媒は高極性溶媒であることが好ましく、前記分散剤は酸価を有することが好ましく、前記短鎖アミンの分配係数logPは−1.0〜1.4であることが好ましい。
上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であり、導電性被膜を当該銀微粒子複合体の焼結によって形成することで、良好な導電性を有する導電性被膜を低温で形成することができる。
アミンの一分子内におけるアミノ基は、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、アミノ基は、それぞれアルカリ性的性質を示し易い。したがって、アミンは、銀微粒子の表面の少なくとも一部に局在化(付着)すると(即ち、銀微粒子の表面の少なくとも一部を被覆すると)、有機成分と無機粒子とを十分に親和させることができ、銀微粒子同士の凝集を防ぐことができる(分散性を向上させる)。即ち、アミンは官能基が銀微粒子の表面に適度の強さで吸着し、銀微粒子同士の相互の接触を妨げるため、保管状態での銀微粒子の安定性に寄与する。また、加熱によって銀微粒子の表面から移動及び又は揮発することにより、銀微粒子同士の融着を促進するものと考えられる。
また、銀微粒子分散体を構成するアミンを炭素数が5以下である短鎖アミンとすることで、加熱によって銀微粒子の表面の少なくとも一部に付着したアミンを容易に除去することができ、銀微粒子の良好な低温焼結性(例えば、100〜350℃における焼結性)を担保することができる。
また、短鎖アミンの分配係数logPを−1.0〜1.4とするのは、分配係数logPが−1.0未満になれば、短鎖アミンの極性が高すぎるため、銀の還元が急速に進んでしまい銀微粒子生成の制御が困難となり、分配係数logPが1.4を超えると、銀に配位するアミンの極性が低い為に高極性溶媒に分散しづらくなるからである。
分配係数logPは、溶媒としてn−オクタノールと水を用いたオクタノール/水分配係数を意味しており、オクタノール中の濃度Coと水中の濃度Cwをそれぞれ求め、濃度比P=Co/Cwの常用対数 logPを分配係数として算出する。そのため、分配係数logPは銀微粒子がどの範囲の極性溶媒で分散させうることが可能かどうかを表す一つの指標であることを意味する。分配係数logPの測定方法は特に限定されず、例えば、フラスコ振盪法、高速液体クロマトグラフィー(HPLC)法、及び定量的構造活性相関アルゴリズムを用いた計算等によって求めることができるが、国立生物工学情報センター等のウェブサイトで公表されている文献値を用いてもよい。
更に、銀微粒子分散体は、銀微粒子合成後に添加される酸価を有する分散剤(即ち、銀微粒子を分散させるための酸価を有する分散剤)を含むことを特徴とする。ここでいう「酸価を有する分散剤」とは、吸着基乃至は官能基としてアミン価や水酸基価等を有さない分散剤全てを包含するものである。かかる分散剤を用いることで、溶媒中の銀微粒子の分散安定性を向上させることができる。当該分散剤の酸価は5〜200であることが好ましく、また、当該分散剤がリン酸由来の官能基を有することが好ましい。「酸価を有する分散剤」が好ましい理由は、必ずしも明らかではないが、本発明者らは、金属への吸着作用だけではなく、短鎖アミンと相互作用することによって、より密な形態で吸着することができ、低温焼結性を有しつつ高い分散性を発現させているものと考えている。
後述する高極性溶剤に銀微粒子を分散させたい場合は、一般的に極性の高い分散剤を使用することが有効である。例えばlogPがより小さい短鎖アミンを用いることが考えられるが、短鎖アミンは一般的に還元性を発揮して反応速度を適切に保てない場合がある。具体的には、反応速度を過剰に高めてしまい、分散性に優れた銀微粒子を形成できない場合がある。そこで、より高極性な分散剤を銀微粒子合成後に添加することで、銀微粒子はそのままに分散媒に対する相溶性のみを高めること(表面改質)が可能となる。
分散剤の酸価が5以上であるとアミンと配位し粒子表面が塩基性となっている金属物への酸塩基相互作用での吸着が起こり始め、200以下であると過度に吸着サイトを有さないため好適な形態で吸着するから好ましい。また、分散剤がリン酸由来の官能基を有することでリンPが酸素Oを介して金属Mと相互作用し引き合うので金属や金属化合物との吸着には最も効果的であり、必要最小限の吸着量で好適な分散性を得ることができるから好ましい。ここで「酸価」とは、試料1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのmg数で表される。酸価の測定法として、指示薬法(p−ナフトールベンゼイン指示薬)や電位差滴定法をあげることができる。
・ISO6618−1997:指示薬滴定法による中和価試験法→指示薬滴定法(酸価)に対応
・ISO6619−1988:電位差滴定法(酸価)→電位差滴定法(酸価)に対応
銀微粒子分散体は、更に、銀微粒子合成前に添加される保護剤としての酸価を有する分散剤(保護分散剤)を含んでいてもよい。ここでいう「保護分散剤」は、上記の銀微粒子合成後に添加される「酸価を有する分散剤」と同じであってもよい。
また、銀微粒子分散体においては、溶媒として種々の溶媒、特に高極性溶媒を用いることができる。高極性溶媒とは、一般的に水や炭素数の短いアルコールなど、ヘキサンやトルエンのような低極性溶剤と相溶しにくいものを意味するが、本発明においては炭素数1〜6のアルコールを用いることがより好ましい。高極性溶媒として炭素数1〜6のアルコールとすることで、低極性溶媒を用いた時の不具合、例えば樹脂上で銀微粒子分散体を積層した際に、溶媒が下地の樹脂層を侵すことを回避できる。ここで、アミンにはアルコキシアミンを用いることが好ましい。アミンをアルコキシアミンとすることで、銀微粒子を高極性溶媒に良好に分散させることができる。
銀微粒子分散体を構成する銀微粒子の粒径は、融点降下が生じるようなナノメートルサイズ、望ましくは1〜200nmが適切であるが、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。
また、本発明は、
樹脂を基材の少なくとも一部に塗布して樹脂層を形成させる第一工程と、
前記樹脂層の少なくとも一部に銀微粒子分散体を塗布する第二工程と、
前記銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜を形成させる第三工程と、を含むこと、
を特徴とする導電性被膜複合体の製造方法、も提供する。
銀微粒子分散体の塗布及び外部加熱により導電性被膜を形成することにより、導電性に優れた導電性被膜を低温で形成することができ、耐熱性の低い基板に対しても良好な導電性を発現させる導電性被膜複合体を得ることができる。
また、本発明の導電性被膜複合体の製造方法においては、密着層として樹脂層を用いることで、樹脂層と基材、及び樹脂層と導電性被膜との密着性を向上させることができる。
また、本発明の導電性被膜複合体の製造方法においては、樹脂層の主成分をポリウレタン樹脂とし、当該ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加すること、が好ましい。ポリウレタン樹脂に前記架橋剤を添加することで、樹脂層の柔軟性を制御することができる。即ち、ポリウレタン樹脂及び架橋剤を含むポリウレタン樹脂組成物を用いるのが好ましい。
ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量は10重量%以内とすること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層の柔軟性が損なわれることに加えて、樹脂層と基材及び導電性被膜との密着性が損なわれる傾向がある。
樹脂層に、例えば破断伸度600%以上のポリウレタン樹脂を用いることで、銀微粒子を焼結させる第三工程において、基材と導電性被膜との熱膨張率差を十分に緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜を得ることができる。
また、本発明の導電性被膜複合体の製造方法においては、前記ポリウレタン樹脂として水系ポリウレタン樹脂を用いること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。
また、本発明の導電性被膜複合体の製造方法においては、前記樹脂層の膜厚を1μm以下とすること、が好ましい。樹脂層の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜に優れた耐熱性を付与することができる。なお、樹脂層の膜厚はスピンコートの回転数や希釈液量等によって適宜制御することができる。
また、本発明の導電性被膜複合体の製造方法においては、第一工程において、前記樹脂層を、溶剤に溶解した前記水系ポリウレタン樹脂を前記基材に塗布して形成させることが好ましい。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合がある。
ここで、薄い樹脂層を形成したい場合は表面粗さが大きくなってしまう問題がおこる場合がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上する。
また、本発明の導電性被膜複合体の製造方法においては、
前記銀微粒子分散体として、
前記銀微粒子と、
炭素数が5以下である短鎖アミンと、
高極性溶媒と、
前記銀微粒子を分散させるための酸価を有する分散剤と、を含む前記短鎖アミンの分配係数logPが−1.0〜1.4である銀微粒子分散体を用いること、が好ましい。
上述のとおり、上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であることから、基材への塗布が容易であり(第二工程)、導電性被膜を当該銀微粒子複合体の焼結(第三工程)によって形成することで、良好な導電性を有する導電性被膜を低温で形成することができる。
本発明の導電性被膜複合体及びその製造方法によれば、基材と導電性被膜とを有する導電性被膜複合体であって、耐熱性の低い基材やガラス基材を用いた場合であっても、基材に対する導電性被膜の良好な密着性と導電性被膜の優れた導電性とを兼ね備えることに加え、耐熱性にも優れた導電性被膜複合体、及びその製造法を提供することができる。
本発明の導電性被膜複合体の概略断面図である。 本発明の導電性被膜複合体の製造方法の工程図である。
以下、本発明の導電性被膜複合体の好適な一実施形態及びその製造方法について詳細に説明する。なお、以下の説明では重複する説明は省略することがある。
(1)導電性被膜複合体
図1に、本実施形態の導電性被膜複合体の概略断面図を示す。本発明の導電性被膜複合体1は、基材2と、基材2の少なくとも一部に形成された樹脂層4と、樹脂層4の少なくとも一部に形成された導電性被膜6と、を有している。
基材2と導電性被膜6との間に密着層として樹脂層4が形成されていることから、導電性被膜6と基材2とは良好な密着性を有している。
(1−1)基材
基材2は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の基材を用いることができる。基材2に用いることができる材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、又はガラス等を挙げることができる。
(1−2)樹脂層
樹脂層4の膜厚は1μm以下となっている。樹脂層4の膜厚を1μm以下とすることで、樹脂層の膨潤・収縮の影響が小さくなり、導電性被膜6に優れた耐熱性を付与することができる。なお、樹脂層4のより好ましい膜厚は0.05〜0.8μmであり、最も好ましい膜厚は0.1〜0.5μmである。
樹脂層4が1μmよりも厚くなると、樹脂層4の特性に起因する問題が生じる場合がある。具体的には、樹脂層4の柔軟性によって導電性被膜6が過剰に膨張収縮する結果、導電性被膜6に欠陥が形成してしまう(断線)。また、厚い樹脂層4による透明性の悪化、吸湿等による白化、熱による黄変等が生じる場合がある。ここで、樹脂層4の膜厚を1μm以下とすることで、これらの悪影響を最小限に留めることができる。加えて、樹脂層4の膜厚を1μm以下とすることで、必要以上に材料を使用することがないため、コスト面で有利となる。
樹脂層4は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の樹脂を用いることができるが、主成分がポリウレタン樹脂であり、ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、が好ましい。ポリウレタン樹脂に前記架橋剤が添加されていることで、樹脂層4の柔軟性を制御することができる。
また、ポリウレタン樹脂の固形分に対する架橋剤の固形分量は10重量%以内であること、が好ましい。ポリウレタン樹脂の固形分に対する架橋剤の固形分量が10重量%よりも多くなると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層4の柔軟性が損なわれることに加えて、樹脂層4と基材2及び導電性被膜6との密着性が損なわれる傾向がある。
また、樹脂層4の主成分は、破断伸度が600%以上であるポリウレタン樹脂であることがより好ましく、当該ポリウレタン樹脂は、−COO−H、−COOR、−COONH及び−COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有すること下記で示される官能基のいずれかを有していることが好ましい。
導電性被膜複合体1においては、樹脂層4が基材2と導電性被膜6との密着層として機能するため、基材2と導電性被膜6とは良好な密着性を有している。また、詳細な理由については明らかになっていないが、密着層として用いるポリウレタン樹脂が上記特定の官能基を有していることで、樹脂層4と基材2、及び樹脂層4と導電性被膜6との密着性が向上する。
また、樹脂層4の主成分であるポリウレタン樹脂が破断伸度600%以上という特徴を有している場合、柔軟性及び収縮膨張性に富んでいることから、銀微粒子を焼結させて導電性被膜6を形成させるプロセスにおいて、基材2と導電性被膜6との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜6が得られるものと考えられる。
ポリウレタン樹脂は水系ポリウレタン樹脂であること、が好ましい。水系ポリウレタン樹脂は低臭気であり、作業環境の悪化防止及び環境負荷の低減を図ることができる。
ポリウレタン樹脂としては、エステル系、エーテル系、ポリカーボネート系のいずれのポリウレタン樹脂であっても使用することができるが、耐加水分解性に優れたエーテル系又はポリカーボネート系のポリウレタン樹脂を用いることが好ましい。
より具体的には、ポリウレタン樹脂として、第一工業製薬製のスーパーフレックスシリーズ:300、460、470、500M、740、E−2000、E−4800や、DIC株式会社のハイドランシリーズ:HW312B、HW311、AP−10、AP−70、三洋化成製のウレタン樹脂エマルション:パーマリンUA−200、ユープレンUXA−307等を好適に用いることができる。
また、樹脂層4の主成分として用いるポリウレタン樹脂は特定の官能基を有しているため、当該官能基と反応する架橋剤を添加することで、樹脂層4の柔軟性を制御することも可能である。適用できる官能基としては、アミノ基やイソシアネート基、オキサゾリン基、カルボジイミド基等を挙げることができる。ここで、官能基と架橋剤の反応は成膜時に行われることが望ましいため、常温では反応が進み難いブロックイソシアネート基やオキサゾリン基等を用いることが好ましい。
しかしながら、架橋剤を添加し過ぎると、ポリウレタン樹脂に含まれる特定の官能基と架橋剤が過剰に反応しすぎるため、樹脂層4の柔軟性が損なわれる。加えて、樹脂層4と基材2及び導電性被膜6との密着性が損なわれる傾向がある。よって、ポリウレタン樹脂の固形分に対する架橋剤の固形分量を10%以内とすることが好ましい。
架橋剤は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の架橋剤を用いることができるが、例えば、第一工業製薬製エラストロンシリーズのBN−69、BN−77や、日本触媒製エポクロスシリーズのWS−300、WS−500、WS−700等を用いることができる。
樹脂層4の成膜方法は特に限定されず、例えば、ディッピング、スプレー式、バーコート式、スピンコート、スリットダイコート式、エアナイフ式、リバースロールコート式、グラビアコート式、カーテンフロー式等を用いることができる。
また、成膜温度も特に限定されず、樹脂層4の原料として用いる組成物の最低成膜温度以上の温度を用いればよい。更に、必要に応じて、基材2の耐熱温度以下の温度で加熱処理を施してもよい。
(1−3)導電性被膜
導電性被膜6は銀微粒子から形成され、それを外部加熱によって形成した焼結体であり、銀微粒子が本来有する導電性と同程度の良好な導電性を有している。導電性被膜6の厚みは、0.1~2μmが好ましい。0.1μm未満であると厚みが薄すぎて十分な導電性が得られない場合がある。2μmを超えても導電性の面で問題はないが、使用量が多くなるためコスト高となり好ましくない。
導電性被膜6の形成に用いる銀微粒子分散体は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀微粒子分散体を用いることができるが、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、銀微粒子を分散させるための酸価を有する分散剤と、を含む短鎖アミンの分配係数logPが−1.0〜1.4である銀微粒子分散体を用いることが好ましい。
上記銀微粒子分散体は、種々の溶媒(特に高極性溶媒)に銀微粒子が均一分散した低温焼結性を有する銀微粒子分散体であり、導電性被膜6を当該銀微粒子複合体の焼結によって形成することで、良好な導電性を有する導電性被膜6を低温で形成することができる。
さらに銀微粒子に含まれる短鎖アミンと樹脂層4の主成分として用いるポリウレタン樹脂の特定の官能基が相互作用し、良好な密着性を発揮することができる。
(1−3−1)銀微粒子分散体
本実施形態の銀微粒子分散体は、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、を含んでいる。以下においてこれら各成分等について説明する。
(A)銀微粒子
本実施形態の銀微粒子分散体における銀微粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、融点降下が生じるような平均粒径を有するのが好ましく、例えば、1〜200nmであればよい。更には、2〜100nmであるのが好ましい。銀微粒子の平均粒径が1nm以上であれば、銀微粒子が良好な低温焼結性を具備すると共に銀微粒子製造がコスト高とならず実用的である。また、200nm以下であれば、銀微粒子の分散性が経時的に変化しにくく、好ましい。
銀微粒子分散体を、例えばマイグレーションの問題を考慮して、イオン化列が水素より貴である金属、即ち金、銅、白金、パラジウム等の粒子を添加してもよい。
なお、本実施形態の銀微粒子分散体における銀微粒子の粒径は、一定でなくてもよい。また、銀微粒子分散体が、任意成分として、後述する分散剤等を含む場合、平均粒径が200nm超の金属粒子成分を含む場合があるが、凝集を生じたりせず、本発明の効果を著しく損なわない成分であればかかる200nm超の平均粒径を有する金属粒子成分を含んでもよい。
ここで、本実施形態の銀微粒子分散体における銀微粒子の粒径は、動的光散乱法、小角X線散乱法、広角X線回折法で測定することができる。ナノサイズの銀微粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、より具体的には、理学電機(株)製のRINT−UltimaIIIを用いて、回折法で2θが30〜80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1〜1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を粒径とすればよい。
D=Kλ/Bcosθ
ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
(B)炭素数が5以下である短鎖アミン
本実施形態の銀微粒子分散体において、銀微粒子の表面の少なくとも一部には炭素数が5以下である短鎖アミンが付着している。なお、銀微粒子の表面には、原料に最初から不純物として含まれる微量有機物、後述する製造過程で混入する微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、微量の有機物が付着していてもよい。
炭素数が5以下である短鎖アミンは分配係数logPが−1.0〜1.4であれば特に限定されず、直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。当該短鎖アミンとしては、例えば、エチルアミン(−0.3)プロピルアミン(0.5)、ブチルアミン(1.0)、N−(3−メトキシプロピル)プロパン−1,3−ジアミン(−0.6)、1,2−エタンジアミン、N−(3−メトキシプロピル)ホルムアミド(−0.2),2−メトキシエチルアミン(−0.9)、3−メトキシプロピルアミン(−0.5)、3−エトキシプロピルアミン(−0.1)、1,4−ブタンジアミン(−0.9)、1,5−ペンタンジアミン(−0.6)、ペンタノールアミン(−0.3)、アミノイソブタノール(−0.8)等が挙げられるが、なかでもアルコキシアミンを用いることが好ましい。
上記短鎖アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。
本実施形態の銀粒子分散体は、本発明の効果を損なわない範囲であれば、上記の炭素数が5以下である短鎖アミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、本実施形態の銀粒子分散体中で、銀微粒子の表面の少なくとも一部に局在化(付着)すると(即ち、銀微粒子の表面の少なくとも一部を被覆すると)、溶媒と銀微粒子とを十分に親和させることができ、銀微粒子同士の凝集を防ぐことができる(分散性を向上させる。)。
カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。
上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も銀微粒子表面に適度に吸着するため、銀微粒子表面にはアミド基が付着していてもよい。
銀微粒子と当該銀微粒子の表面に付着した有機物(上記炭素数が5以下である短鎖アミン等)によってコロイドが構成される場合、当該コロイド中の有機成分の含有量は、0.5〜50質量%であることが好ましい。有機成分含有量が0.5質量%以上であれば、得られる銀微粒子分散体の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、銀微粒子分散体を加熱して得られる焼成体の導電性が良い傾向がある。有機成分のより好ましい含有量は1〜30質量%であり、更に好ましい含有量は2〜15質量%である。
(C)高極性溶媒
本実施形態の銀微粒子分散体は、種々の高極性溶媒に銀微粒子が分散したものである。
上記溶媒としては、本発明の効果を損なわない範囲で、種々の高極性溶媒を用いることができる。高極性溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、2−ブタノール、ペンタノール、ヘキサノール、イソアミルアルコール、フルフリルアルコール、ニトロメタン、アセトニトリル、ピリジン、アセトンクレゾール、ジメチルホルムアミド、ジオキサン、エチレングリコール、グリセリン、フェノール、p−クレゾール、酢酸プロピル、酢酸イソプロピル、tert−ブタノール、1−ペンタノール、2−ペンタノール、4−メチル−2−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、2−ブタノール、1−ヘキサノール、2−ヘキサノール2−ペンタノン、2−ヘプタノン、酢酸2−(2−エトキシエトキシ)エチル、酢酸−2−ブトキシエチル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸−2−メトキシエチル、2−ヘキシルオキシエタノール等を例示することができるが、本発明では前記炭素数が5以下の短鎖アミンと相溶性が良好であるため、炭素数1〜6のアルコールを用いることが好ましい。なお、これらの溶媒はそれぞれ単独で用いてもよく、2種以上を併用してもよい。
(D)分散剤
本実施形態の銀粒子分散体には、更に、銀微粒子を分散させるために銀微粒子合成後に添加される「酸価を有する分散剤」を含む。かかる分散剤を用いることで、溶媒中の銀微粒子の分散安定性を向上させることができる。ここで、当該分散剤の酸価は5〜200であることがより好ましく、また、当該分散剤がリン酸由来の官能基を有することが更に好ましい。
分散剤の酸価が5以上であるとアミンと配位し粒子表面が塩基性となっている金属物への酸塩基相互作用での吸着が起こり始めるからであり、200以下であると過度に吸着サイトを有さないため好適な形態で吸着するからである。また、分散剤がリン酸由来の官能基を有することでリンPが酸素Oを介して金属Mと相互作用し引き合うので金属や金属化合物との吸着には最も効果的であり、必要最小限の吸着量で好適な分散性を得ることができるからである。
なお、酸価が5〜200の高分子分散剤としては、例えば、ルーブリゾール社のSOLSPERSEシリーズではSOLSPERSE−16000、21000、41000、41090、43000、44000、46000、54000等が挙げられ、ビックケミー社DISPERBYKシリーズではDISPERBYK−102、110、111、170、190.194N、2015.2090、2096等が挙げられ、エボニック社のTEGO Dispersシリーズでは610、610S、630、651、655、750W、755W等が挙げられ、楠本化成(株)製のディスパロンシリーズではDA−375、DA−1200等が挙げられ、共栄化学工業(株)製のフローレンシリーズではWK−13E、G−700、G−900、GW−1500、GW−1640、WK−13Eを例示することができる。
本実施形態の銀微粒子分散体に分散剤を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良いが、例えば、銀微粒子分散体を銀インクとして用いる場合は、分散剤の含有量を0.5〜20質量%とすることが好ましく、銀ペーストとして用いる場合は、分散剤の含有量を0.1〜10質量%とすることが好ましい。
高分子分散剤の含有量は0.1〜15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる銀微粒子分散体の分散安定性が良くなるが、含有量が多過ぎる場合は低温焼結性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.3〜10質量%であり、更に好ましい含有量は0.5〜8質量%である。
本実施形態の分散体は、更に、熱分析によって室温から200℃まで加熱したときの重量減少率が20質量%以下であり、かつ、200℃から500℃まで加熱したときの重量減少率が10質量%以下であることが好ましい。ここで、200℃までの重量減少率は主として低温焼結性に寄与する低温成分である短鎖アミンの含有量を示し、200〜500℃での高温性分の重量減少率は主として分散安定性に寄与する酸価の分散剤の含有量を示す。短鎖アミンや高温成分が過剰になると低温焼結性が損なわれる。即ち、室温から200℃まで加熱したときの重量減少率が20質量%以下で、200℃から500℃まで加熱したときの重量減少率が10質量%以下であれば低温焼結性がより優れる。
(E)保護剤(保護分散剤)
本実施形態の銀微粒子分散体は、更に、銀微粒子合成前に添加される保護剤としての酸価を有する分散剤(保護分散剤)を含んでいてもよい。ここでいう「保護分散剤」は、上記の銀微粒子合成後に添加される「酸価を有する分散剤」と同じ種類のものでも異なる種類のものであってもよい。
(F)その他の成分
本実施形態の銀微粒子分散体には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースのセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。
上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の銀微粒子分散体に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる銀微粒子分散体が得られる。
本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れかを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。なかでも、少量の添加量で効果が得られるので、フッ素系界面活性剤、シリコン系界面活性剤が好ましい。
(1−3−2)銀微粒子
本実施形態の銀微粒子分散体に含まれる銀微粒子は、表面の少なくとも一部に分配係数logPが−1.0〜1.4であり炭素数が5以下であるアルコキシアミンが付着した銀微粒子である。
銀微粒子の表面の少なくとも一部に分配係数logPが−1.0〜1.4である炭素数が5以下のアルコキシアミンを付着させることで、銀微粒子に種々の溶媒(特に高極性溶媒)に対する優れた分散性と低温焼結性とを付与することができる。
上記溶媒としては、本発明の効果を損なわない範囲で、種々の溶媒を用いることができ、SP値(溶解パラメーター)が7.0〜15.0である溶媒を用いることができる。ここで、高極性溶媒中においても銀微粒子が均一に分散していることが本発明の銀微粒子分散体の特徴の一つであり、本発明では前記炭素数が5以下の短鎖アミンと相溶性が良好であるため、炭素数1〜6のアルコールを用いることが好ましい。なお、これらの溶媒はそれぞれ単独で用いてもよく、2種以上を併用してもよい。
SP値(溶解パラメーター)が7.0〜15.0である溶媒としては、例えば、ヘキサン(7.2)、トリエチルアミン(7.3)、エチルエーテル(7.7)、n−オクタン(7.8)、シクロヘキサン(8.3)、n−アミルアセテート(8.3)、酢酸イソブチル(8.3)、メチルイソプロピルケトン(8.4)、アミルベンゼン(8.5)酢酸ブチル(8.5)、四塩化炭素(8.6)、エチルベンゼン(8.7)、p−キシレン(8.8)、トルエン(8.9)、メチルプロピルケトン(8.9)酢酸エチル(8.9)、テトラヒドロフラン(9.2)、メチルエチルケトン(9.3)、クロロホルム(9.4)、アセトン(9.8)、ジオキサン(10.1)、ピリジン(10.8)、イソブタノール(11.0)、n−ブタノール(11.1)、ニトロエタン(11.1)イソプロピルアルコール(11.2)、m−クレゾール(11.4)、アセトニトリル(11.9)、n−プロパノール(12.1)、フルフリルアルコール(12.5)、ニトロメタン(12.7)、エタノール(12.8)、クレゾール(13.3)、エチレングリコール(14.2)、メタノール(14.8)フェノール、p−クレゾール、酢酸プロピル、酢酸イソプロピル、tert−ブタノール、1−ペンタノール、2−ペンタノール、4−メチル−2−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、2−ブタノール、1−ヘキサノール、2−ヘキサノール2−ペンタノン、2−ヘプタノン、酢酸2−(2−エトキシエトキシ)エチル、酢酸−2−ブトキシエチル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸−2−メトキシエチル、2−ヘキシルオキシエタノール等を例示することができる。
本実施形態の銀微粒子の粒径は、融点降下が生じるようなナノメートルサイズ、望ましくは1〜200nmが適切であるが、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。
なお、上記銀微粒子分散体をそのまま用いて導電性被膜6を形成させてもよいが、転写印刷用に適した導電性インクとして調整して用いることで、樹脂層4の上に転写印刷した導電性被膜6を形成させることができる。以下、当該導電性インクについて説明する。
本実施形態の転写印刷用導電性インクは、金属粒子と、エタノールを含む溶媒と、水酸基を有する高沸点溶剤0.1〜3.0質量%と、を含むことを特徴とする。また、金属粒子と有機成分とからなる金属粒子分散体(換言すれば金属コロイド粒子)を主成分とする固形分と、これら固形分を分散する分散媒とを含むものである。ただし、上記コロイド液において、「分散媒」は上記固形分の一部を溶解していても構わない。
このような金属コロイド液によれば、有機成分を含んでいるため、金属コロイド液中での金属コロイド粒子の分散性を向上させることができ、したがって、金属コロイド液中の金属成分の含有量を増やしても金属コロイド粒子が凝集しにくく、良好な分散安定性を保つことができる。なお、ここでいう「分散性」とは、金属コロイド液を調製した直後において、当該金属コロイド液中での金属粒子の分散状態が優れているか否か(均一か否か)を示すものであり、「分散安定性」とは、金属コロイド液を調整して所定の時間を経過した後において、当該金属コロイド液中での金属粒子の分散状態が維持されているか否かを示すものであり、「低沈降凝集性」ともいえる。
ここで、上記の金属コロイド液において、金属コロイド粒子中の「有機成分」は、上記金属成分とともに実質的に金属コロイド粒子を構成する有機物のことである。当該有機成分には、金属中に最初から不純物として含まれる微量有機物、後述する製造過程で混入した微量の有機物が金属成分に付着した有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、金属成分に微量付着した有機物等は含まれない。なお、上記「微量」とは、具体的には、金属コロイド粒子中1質量%未満が意図される。
本実施形態における金属コロイド粒子は、有機成分を含んでいるため、金属コロイド液中での分散安定性が高い。そのため、金属コロイド液中の金属成分の含有量を増大させても金属コロイド粒子が凝集しにくく、その結果、良好な分散性が保たれる。
また、本実施形態における金属コロイド液の「固形分」とは、シリカゲル等を用いて金属コロイド液から分散媒を取り除いた後、例えば、30℃以下の常温(例えば25℃)で24時間乾燥させたときに残存する固形分のことをいい、通常は、金属粒子、残存有機成分及び残留還元剤等を含むものである。なお、シリカゲルを用いて金属コロイド液から分散媒を取り除く方法としては、種々の方法を採用することが可能であるが、例えばガラス基板上に金属コロイド液を塗布し、シリカゲルを入れた密閉容器に塗膜付ガラス基板を24時間以上放置することにより分散媒を取り除けばよい。
本実施形態の金属コロイド液において、好ましい固形分の濃度は1〜60質量%である。固形分の濃度が1質量%以上であれば、転写印刷用導電性インクにおける金属の含有量を確保することができ、導電効率が低くならない。また、固形分の濃度が60質量%以下であれば、金属コロイド液の粘度が増加せず取り扱いが容易で、工業的に有利であり、平坦な薄膜を形成することができる。より好ましい固形分の濃度は5〜40質量%である。
転写印刷用導電性インクは、水酸基を有する高沸点溶剤を0.1〜3.0質量%含むことを特徴とする。水酸基を有する高沸点溶剤は、1,3−ブチレングリコール(沸点:203℃)、2,4−ジエチル−1,5−ペンタンジオール(沸点:150℃/5mmHg、1気圧では200℃以上)又はオクタンジオール(沸点:243℃)から選択されるのが好ましい。
「高沸点溶剤」とは、200℃以上の沸点を有する溶剤のことをいう。また、水酸基を有することによって水に対して適度な親和性を有し、空気中の水分を吸収乃至は吸着等して保湿する傾向があるため、少ない添加量で転写印刷法に好適なインクとすることができる。更に、高沸点溶剤の添加量を必要最小限とすることで、シリコーンブランケット上に塗布したインクを短時間に半乾燥させることができ、印刷タクトを短くすることができるという効果を奏する。
水酸基を有する高沸点溶剤の添加量は、0.1〜3.0質量%である。0.1質量%未満であると、量が少なすぎて転写印刷法に好適なインク状になりにくく、3.0質量%を超えると、転写印刷法に好適な半乾燥状態に到達する時間が長くなり印刷タクトの面で不利となる。水酸基を有する高沸点溶剤の添加量は、0.3〜2.0質量%であるのが、より確実に、転写印刷法に好適なインク状になり易く、転写印刷法に好適な半乾燥状態に到達する時間を短くでき印刷タクトの面で有利となるという観点から、特に好ましい。
また、転写印刷用導電性インクにおいては、インクの乾燥性を高めるためにエタノール等の高揮発性溶剤を添加する。当該溶剤を添加することにより、転写印刷用導電性インクを素早く印刷に適した粘度に調整することができる。高揮発性溶剤としては、エタノールの他、メタノール、プロピルアルコール、イソプロピルアルコール、アセトン、n−ブタノール、sec−ブタノール、tert−ブタノール等の沸点100℃未満の溶剤の群から選ばれる1又は2以上の低沸点溶剤を用いることができる。
更に、転写印刷用導電性インクにおいては、ハイドロフルオロエーテル等のフッ素溶剤を含んでいることが好ましい。フッ素溶剤は、表面張力が低いためにシリコーンブランケットに対し良好な濡れ性を発揮させることができ、沸点が比較的低いために良好な乾燥性を付与することができる。なかでも、オゾン破壊係数の観点から、ハロゲン原子を含むフッ素溶剤よりもハイドロフルオロエーテルのほうが好ましい。
また、ハイドロフルオロエーテルは、ハイドロフルオロカーボン類よりもエーテル結合を有しているために極性が高く、シリコーンブランケットをほとんど膨潤させないという利点を有しており、エタノール等のアルコールとの相溶性が良く、アルコールに分散した金属粒子との相溶性にも優れるという効果を奏するため、より好ましい。
転写印刷用導電性インクにおいては、シリコーンブランケットに対する濡れ性を向上させる目的で、フッ素原子を有するフッ素系界面活性剤を添加してもよい。ただし、この場合、添加量が多過ぎると転写印刷用導電性インクを用いて作製した導電性被膜の導電性が低下し、添加量が少な過ぎると濡れ性改善の効果が不十分であるため、0.01〜2質量%であるのが好適である。
転写印刷用導電性インクにおいては、表面張力が22mN/m以下である。表面張力を22mN/m以下と十分に下げることで、シリコーン樹脂等のブランケットへの転写印刷用導電性インクの濡れ性を十分に担保することができる。表面張力を22mN/m以下にすることは、上記の本発明の転写印刷用導電性インクの成分比を調整することによって実現できる。表面張力の下限は13mN/m程度であればよい。なお、本発明においていう表面張力とは、プレート法(Wilhelmy法)という原理で測定して得られるものであり、例えば、協和界面科学(株)製の全自動表面張力計CBVP−Z等により測定することができる。
(1−3−3)銀微粒子及び銀微粒子分散体の製造方法
本実施形態の銀微粒子及び銀微粒子分散体の製造方法は、銀微粒子を生成する工程と、前記銀微粒子に、前記銀微粒子を分散させるための酸価を有する分散剤を添加・混合する工程と、を有するものであるが、更に、還元により分解して金属銀を生成しうる銀化合物と、分配係数logPが−1.0〜1.4である短鎖アミンと、の混合液を調整する第1前工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部に炭素数が5以下である短鎖アミンが付着した銀微粒子を生成する第2前工程と、を含んでいる。
上記第1前工程においては、短鎖アミンを金属銀1molに対して2mol以上添加すること、が好ましい。短鎖アミンの添加量を金属銀1molに対して2mol以上とすることで、還元によって生成される銀微粒子の表面に短鎖アミンを適量付着させることができ、当該銀微粒子に種々の溶媒(特に高極性溶媒)に対する優れた分散性と低温焼結性とを付与することができる。
なお、上記第1前工程における混合液の組成及び上記第2前工程における還元条件(例えば、加熱温度及び加熱時間等)によって、得られる銀微粒子の粒径を融点降下が生じるようなナノメートルサイズとすることが好ましく、1〜200nmとすることがより好ましい。ここで、必要に応じてミクロンメートルサイズの粒子が含まれていてもよい。
上記第2前工程で得られる銀微粒子分散体から銀微粒子を取り出す方法は特に限定されないが、例えば、その銀微粒子分散体の洗浄を行う方法等が挙げられる。
有機物(分配係数logPが−1.0〜1.4である短鎖アミン)で被覆された銀微粒子を得るための出発材料としては、種々の公知の銀化合物(金属塩又はその水和物)を用いることができ、例えば、硝酸銀、硫酸銀、塩化銀、酸化銀、酢酸銀、シュウ酸銀、ギ酸銀、亜硝酸銀、塩素酸銀、硫化銀等の銀塩が挙げられる。これらは還元可能なものであれば特に限定されず、適当な溶媒中に溶解させても、溶媒中に分散させたまま使用してもよい。また、これらは単独で用いても複数併用してもよい。
また、上記原料液においてこれらの銀化合物を還元する方法は特に限定されず、例えば、還元剤を用いる方法、紫外線等の光、電子線、超音波又は熱エネルギーを照射する方法、加熱する方法等が挙げられる。なかでも、操作の容易の観点から、還元剤を用いる方法が好ましい。
上記還元剤としては、例えば、ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、フェニドン、ヒドラジン等のアミン化合物;例えば、水素化ホウ素ナトリウム、ヨウ素化水素、水素ガス等の水素化合物;例えば、一酸化炭素、亜硫酸等の酸化物;例えば、硫酸第一鉄、酸化鉄、フマル酸鉄、乳酸鉄、シュウ酸鉄、硫化鉄、酢酸スズ、塩化スズ、二リン酸スズ、シュウ酸スズ、酸化スズ、硫酸スズ等の低原子価金属塩;例えば、エチレングリコール、グリセリン、ホルムアルデヒド、ハイドロキノン、ピロガロール、タンニン、タンニン酸、サリチル酸、D−グルコース等の糖等が挙げられるが、分散媒に溶解し上記金属塩を還元し得るものであれば特に限定されない。上記還元剤を使用する場合は、光及び/又は熱を加えて還元反応を促進させてもよい。
上記金属塩、有機成分、溶媒及び還元剤を用いて、有機物で被覆された銀微粒子を調製する具体的な方法としては、例えば、上記金属塩を有機溶媒(例えばトルエン等)に溶かして金属塩溶液を調製し、当該金属塩溶液に分散剤としての短鎖アミンや酸価をもつ保護分散剤を添加し、ついで、ここに還元剤が溶解した溶液を徐々に滴下する方法等が挙げられる。
上記のようにして得られた短鎖アミンや酸価をもつ保護分散剤で被覆された銀微粒子を含む分散液には、銀微粒子の他に、金属塩の対イオン、還元剤の残留物や分散剤が存在しており、液全体の電解質濃度や有機物濃度が高い傾向にある。このような状態の液は、電導度が高い等の理由で銀微粒子の凝析が起こり、沈殿し易い。あるいは、沈殿しなくても、金属塩の対イオン、還元剤の残留物、又は分散に必要な量以上の過剰な分散剤が残留していると、導電性を悪化させるおそれがある。そこで、上記銀微粒子を含む溶液を洗浄して余分な残留物を取り除くことにより、有機物で被覆された銀微粒子を確実に得ることができる。
上記洗浄方法としては、例えば、有機成分で被覆された銀微粒子を含む分散液を一定時間静置し、生じた上澄み液を取り除いた上で、銀微粒子を沈殿させる溶媒(例えば、水、メタノール、メタノール/水混合溶媒等)を加えて再度撹枠し、更に一定期間静置して生じた上澄み液を取り除く工程を幾度か繰り返す方法、上記の静置の代わりに遠心分離を行う方法、限外濾過装置やイオン交換装置等により脱塩する方法等が挙げられる。このような洗浄によって余分な残留物を取り除くと共に有機溶媒を除去することにより、本実施形態の「短鎖アミンや酸価をもつ分散剤」で被覆された銀微粒子を得ることができる。
本実施形態のうち、金属コロイド分散液は、上記において得た短鎖アミンや酸価をもつ保護分散剤で被覆された銀微粒子と、上記本実施形態で説明した分散媒と、を混合することにより得られる。かかる「短鎖アミンや酸価をもつ保護分散剤」で被覆された銀微粒子と分散媒との混合方法は特に限定されるものではなく、攪拌機やスターラー等を用いて従来公知の方法によって行うことができる。スパチュラのようなもので撹拌したりして、適当な出力の超音波ホモジナイザーを当ててもよい。
複数の金属を含む金属コロイド分散液を得る場合、その製造方法としては特に限定されず、例えば、銀とその他の金属とからなる金属コロイド分散液を製造する場合には、上記の有機物で被覆された銀微粒子の調製において、銀微粒子を含む分散液と、その他の金属粒子を含む分散液とを別々に製造し、その後混合してもよく、銀イオン溶液とその他の金属イオン溶液とを混合し、その後に還元してもよい。
還元により分解して金属銀を生成しうる銀化合物と、分配係数logPが−1.0〜1.4である短鎖アミンと、の混合液を調整する第1工程と、当該混合液中の前記銀化合物を還元することで表面の少なくとも一部に炭素数が5以下である短鎖アミンが付着した銀微粒子を生成する第2工程により、銀微粒子を製造してもよい。
例えば、銀を含むシュウ酸銀等の金属化合物と短鎖アミンから生成される錯化合物を加熱して、当該錯化合物に含まれるシュウ酸イオン等の金属化合物を分解して生成する原子状の銀を凝集させることにより、短鎖アミンの保護膜に保護された銀微粒子を製造することができる。
このように、金属化合物の錯化合物をアミンの存在下で熱分解することで、アミンにより被覆された銀微粒子を製造する金属アミン錯体分解法においては、単一種の分子である金属アミン錯体の分解反応により原子状金属が生成するため、反応系内に均一に原子状金属を生成することが可能であり、複数の成分間の反応により金属原子を生成する場合に比較して、反応を構成する成分の組成揺らぎに起因する反応の不均一が抑制され、特に工業的規模で多量の銀微粒子を製造する際に有利である。
また、金属アミン錯体分解法においては、生成する金属原子に短鎖アミン分子が配位結合しており、当該金属原子に配位した短鎖アミン分子の働きにより凝集を生じる際の金属原子の運動がコントロールされるものと推察される。この結果として、金属アミン錯体分解法によれば非常に微細で、粒度分布が狭い銀微粒子を製造することが可能となる。
更に、製造される銀微粒子の表面にも多数の短鎖アミン分子が比較的弱い力の配位結合を生じており、これらが銀微粒子の表面に緻密な保護被膜を形成するため、保存安定性に優れる表面の清浄な被覆銀微粒子を製造することが可能となる。また、当該被膜を形成する短鎖アミン分子は加熱等により容易に脱離可能であるため、非常に低温で焼結可能な銀微粒子を製造することが可能となる。
また、固体状の金属化合物とアミンを混合して錯化合物等の複合化合物が生成する際に、被覆銀微粒子の被膜を構成する酸価をもつ分散剤に対して、炭素数が5以下である短鎖アミンを混合して用いることにより、錯化合物等の複合化合物の生成が容易になり、短時間の混合で複合化合物を製造可能となる。また、当該短鎖アミンを混合して用いることにより、各種の用途に応じた特性を有する被覆銀微粒子の製造が可能である。
以上のようにして得られる本実施形態の分散体は、そのままの状態で使用することができるが、導電インク、導電性ペーストの分散安定性及び低温焼結性を損なわない範囲で種々の無機成分や有機成分を添加することができる。
(2)導電性被膜複合体の製造方法
図2は、本発明の導電性被膜複合体の製造方法の工程図である。本発明の導電性被膜複合体の製造方法は、樹脂を基材2の少なくとも一部に塗布して樹脂層4を形成させる第一工程(S01)と、樹脂層4の少なくとも一部に銀微粒子分散体を塗布する第二工程(S02)と、銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜6を形成させる第三工程(S03)と、を含んでいる。以下、樹脂層4としてポリウレタン樹脂層を形成させる場合について説明する。
(2−1)樹脂層の形成(第一工程(S01))
溶剤に溶解させた水系ポリウレタン樹脂を基材2の少なくとも一部に塗布して樹脂層4を形成させる工程である。樹脂層4の膜厚は1μm以下とすることが好ましい。当該膜厚は、スピンコートの回転数や希釈液量等によって適宜制御することができる。なお、ポリウレタン樹脂は溶剤に溶解させた水系であるのが好ましい。
破断伸度が600%以上であり、−COO−H、−COOR、−COONH及び−COONH (但し、R、Rはそれぞれ独立して、直鎖もしくは分岐の、置換基を有しても良いアルキル基、同シクロアルキル基、同アルキレン基、同オキシアルキレン基、同アリール基、同アラルキル基、同複素環基、同アルコキシ基、同アルコキシカルボニル基、同アシル基を示す。)のうちのいずれかの官能基を有する水系ポリウレタン樹脂を用いることで、第二工程(S02)及び第三工程(S03)で形成させる導電性被膜6と基材2との密着性を効率的に向上させることができると共に、優れた導電性を有する導電性被膜6を形成させることができる。
例えば、水系ポリウレタン樹脂を溶剤に溶解させた状態で基材2に塗布し、樹脂層4を形成させる。通常、水性ポリウレタン樹脂は水中に分散した状態(エマルジョン)で存在し、溶媒の揮発が進行して成膜するが、成膜条件によってはエマルジョンの粒子径の影響を受けて膜が形成される場合があり、特に、薄い樹脂層4を形成したい場合は表面粗さが大きくなってしまう問題がある。これに対し、水性ポリウレタン樹脂を溶媒(例えば、エタノールやアセトン等)に溶かすことで、エマルジョンが破泡して均一溶液となるため、成膜形成能(特に薄膜における膜質均一性)が向上し、良好な樹脂層4を形成させることができる。
また、密着層(樹脂層4)に破断伸度600%以上のポリウレタン樹脂を用いることで、銀微粒子を焼結させる第三工程(S03)において、基材2と導電性被膜6との熱膨張率差を緩和することができる。その結果、銀微粒子の焼結が円滑に進行し、優れた導電性を有する導電性被膜6を得ることができる。
基材2の表面に樹脂層4を形成する際に、基材2と樹脂層4の密着性を高めるために、基材2の表面処理を行ってもよい。当該表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法等を挙げることができる。
樹脂層4の成膜方法は特に限定されず、例えば、ディッピング、スプレー式、バーコート式、スピンコート、スリットダイコート式、エアナイフ式、リバースロールコート式、グラビアコート式、カーテンフロー式等を用いることができ、また、成膜温度も特に限定されず、樹脂層4の原料として用いる組成物の最低成膜温度以上の温度を用いればよい。更に、必要に応じて、基材2の耐熱温度以下の温度で加熱処理を施してもよい。
(2−2)銀微粒子分散体の塗布(第二工程(S02))
基材2の表面に銀微粒子分散体を塗布する工程である。銀微粒子分散体は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の銀微粒子分散体を用いることができるが、銀微粒子と、炭素数が5以下である短鎖アミンと、高極性溶媒と、銀微粒子を分散させるための酸価を有する分散剤と、を含む短鎖アミンの分配係数logPが−1.0〜1.4である銀微粒子分散体を用いること、が好ましい。
銀微粒子分散体を塗布する方法としては、種々の方法を用いることが可能であるが、例えば、ディッピング、スクリーン印刷、反転印刷、マイクロコンタクト印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、スタンピング法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、オフセット法、転写法、親疎水パターン法、又はシリンジ式等のなかから適宜選択して用いることができる。
樹脂層4の表面に導電性被膜6を形成する際に、樹脂層4と導電性被膜6の密着性を高めるために、樹脂層4の表面処理を行ってもよい。当該表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法等を挙げることができる。
(2−3)銀微粒子の焼成(第三工程(S03))
第二工程(S02)で銀微粒子分散体を塗布した基材2を加熱し、銀微粒子を焼結することによって導電性被膜6を形成させる工程である。
本実施形態の銀微粒子分散体を用いれば、基材2に塗布した後、比較的低温(例えば300℃以下、好ましくは100〜250℃)で加熱・焼成して銀微粒子を焼結させて導電性被膜6を得ることができる。焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、銀微粒子分散体を塗布する面に、予め界面活性剤又は表面活性化剤等を塗布しておくことも可能である。
本実施形態においては、銀微粒子分散体がバインダー成分を含む場合は、塗膜の強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために銀微粒子分散体の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。
上記加熱・焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、基材2上に塗布または描画した上記銀微粒子分散体の温度が、例えば300℃以下となるように加熱・焼成することによって焼結させることができる。上記加熱・焼成の温度の下限は必ずしも限定されず、本発明の効果を損なわない範囲の温度であればよい。ここで、上記焼結後の導電性被膜6においては、なるべく高い強度及び優れた導電性を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
以下、実施例及び比較例を挙げて本発明の導電性被膜複合体及びその製造方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
≪調製例1≫
3−メトキシプロピルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:−0.5)8.9gと、高分子分散剤であるDISPERBYK−111を0.3gと、を混合し、マグネティックスターラーにてよく撹拌してアミン混合液を生成した(添加したアミンのモル比は銀に対して10)。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した。
得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀微粒子がアミン混合物中に懸濁した懸濁液を得た。
次に、当該懸濁液の分散媒を置換するため、メタノール/水の混合溶媒10mLを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール/水の混合溶媒10mLを加え、撹拌、遠心分離を行うことで銀微粒子を沈殿させて分離し、分散溶媒としてエタノール/イソブタノール/IPA(40/40/30 v/v)混合溶媒2.1gを加えることで固形分濃度48wt%の銀微粒子分散体Aを得た。
≪調製例2≫
3−メトキシプロピルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:−0.5)8.9gと、高分子分散剤であるDISPERBYK−102を0.3gと、を混合し、マグネティックスターラーにてよく撹拌してアミン混合液を生成した(添加したアミンのモル比は銀に対して5)。次いで、撹拌を行いながら、シュウ酸銀3.0gを添加した。シュウ酸銀の添加後、室温で攪拌を続けることでシュウ酸銀を粘性のある白色の物質へと変化させ、当該変化が外見的に終了したと認められる時点で撹拌を終了した。
得られた混合液をオイルバスに移し、120℃で加熱撹拌を行った。撹拌の開始直後に二酸化炭素の発生を伴う反応が開始し、その後、二酸化炭素の発生が完了するまで撹拌を行うことで、銀微粒子がアミン混合物中に懸濁した懸濁液を得た。
次に、当該懸濁液の分散媒を置換するため、メタノール/水の混合溶媒10mLを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、分離した銀微粒子に対して再度メタノール/水の混合溶媒10mLを加え、撹拌、遠心分離を行うことで銀微粒子を沈殿させて分離し、SOLSPERSE41000(日本ルーブリゾール(株)製)0.06gを含むエタノール2.1gを加えることで固形分濃度48wt%の銀微粒子分散体Bを得た。
≪調製例3≫
10N−NaOH水溶液を3mL添加してアルカリ性にした水50mLに、クエン酸3ナトリウム2水和物17g、タンニン酸0.36gを溶解した。得られた溶液に対して3.87mol/L硝酸銀水溶液3mLを添加し、2時間攪拌を行い、銀コロイド水溶液を得た。得られた銀コロイド水溶液に対し、導電率が30μS/cm以下になるまで透析することで脱塩を行った。透析後、濃縮を行い、2100rpm(920G)、10分の条件で遠心分離を行うことで、粗大金属コロイド粒子を除去し、固形分濃度48wt%の銀微粒子分散体Cを得た。
≪調整例4≫
トルエン(和光純薬工業(株)製の試薬一級)200mlとブチルアミン(和光純薬工業(株)製試薬一級、炭素数:4、logP:1.0)11gと、を混合してマグネティックスターラーで十分に撹拌した(添加したアミンのモル比は銀に対して2.5)。ここに、撹拌を行いながら硝酸銀(東洋化学工業(株)製の試薬特級)10gを添加し、硝酸銀が溶解した後、高分子分散剤であるDISPERBYK−2090を10gとヘキサン酸(和光純薬工業(株)製の試薬特級)10gを添加した。ここに、イオン交換水50mlに水素化ホウ素ナトリウム(和光純薬工業(株)製)1gを添加して調製した0.02g/mlの水素化ホウ素ナトリウム水溶液を滴下し、銀微粒子を含む液を得た。1時間撹拌した後、メタノール(和光純薬工業(株)製の試薬特級)200mlを添加して銀微粒子を凝集、沈降させた。さらに、遠心分離にて銀微粒子を完全に沈降させた後、上澄みであるトルエン及びメタノールを除去し、過剰の有機物を除去して、2−ペンタノール6gを加え、固形分濃度50wt%の銀微粒子分散体Dを得た。
上記銀微粒子分散体A〜Dと、表1に示すその他の成分を添加・混合して、導電性インクA〜Dを得た。なお、表1に示す成分の量は重量%で示している。また、樹脂層形成インクに用いた樹脂を表2に示す。
≪実施例1≫
DIC社製ハイドランHW−312Bをエタノールで3倍希釈することで樹脂層形成インクとした。この際、HW−312Bは目視では完全に溶解していた。スピンコーターを用いて、ガラス基板上に樹脂層形成インクを2000rpm、30秒の条件で成膜した後、120℃で30分加熱することで樹脂層を形成させた。次いで、導電性インクBをシリコーン製ブランケット上にバーコーター(No.7)で塗布し、樹脂層付き基板をブランケットに押圧することで、導電性被膜を樹脂層付き基板に転写した。その後、120℃で30分の焼成を施すことで、実施導電性被膜複合体1を得た。
≪実施例2≫
DIC社製ハイドランHW−311をN−メチル−2−ピロリドンで3倍希釈することで樹脂層形成インクとした。このとき、HW−311は目視では完全に溶解していた。それ以外は実施例1と同様とし、実施導電性被膜複合体2を得た。
≪実施例3≫
導電性インクCを用いた以外は実施例1と同様とし、実施導電性被膜複合体3を得た。
≪実施例4≫
実施例2の樹脂層形成インクに日本触媒製エポクロスWS−700を樹脂層形成インクに対し5重量%の割合で添加したこと以外は実施例2と同様にし、実施導電性被膜複合体4を得た。
≪実施例5≫
導電性インクDを用いた以外は実施例1と同様とし、実施導電性被膜複合体5を得た。
≪実施例6≫
第一工業製薬社製スーパーフレックス420を水で3倍希釈することで樹脂層形成インクとした。スピンコーターを用いてガラス基板上に樹脂層形成インクを2000rpm、30秒の条件で成膜した後、120℃で30分加熱することで樹脂層を形成した。次いで、実施例1と同様の方法で導電性インクAを用いて、実施導電性被膜複合体6を得た。
≪実施例7≫
積水化学社製のエスレックBL−Sをエタノール/トルエン(=1/1 W/W)溶液に固形分濃度10wt%となるように溶解させ、樹脂層形成インクとした。その他は実施例1と同様とし、実施導電性被膜複合体7を得た。
≪実施例8≫
第一工業製薬社製スーパーフレックス150HSを水で3倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体8を得た。
≪実施例9≫
第一工業製薬社製スーパーフレックス650を水で2倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体9を得た。
≪実施例10≫
DIC社製ハイドランADS−120を水で3倍希釈することで樹脂層形成インクとしたこと以外は、実施例1と同様とし、実施導電性被膜複合体10を得た。
≪実施例11≫
DIC社製ハイドランHW−312Bをエタノールで1.5倍希釈し、スピンコーターによる成膜条件を1000rpm、30secとしたこと以外は実施例1と同様とし、実施導電性被膜複合体11を得た。
≪比較例1≫
DIC社製ハイドランHW−312Bを水で3倍希釈することで樹脂層形成インクとした。バーコーターNo.10を用いてガラス基板上に樹脂層形成インクを塗布し、樹脂層を成膜した後、120℃で30分加熱することで、樹脂層を形成させた。次いで、導電性インクAをシリコーン製ブランケット上にバーコーター(No.7)で塗布し、樹脂層付き基板をブランケットに押圧することで、導電性被膜を樹脂層付き基板に転写した。その後、120℃で30分の焼成を施すことで、比較導電性被膜複合体1を得た。
≪比較例2≫
第一工業製薬社製スーパーフレックス470をバーコーターNO.10を用いて樹脂層を成膜したのち、120℃で30分加熱することで樹脂層を形成した。それ以外は実施例1と同様とし、比較導電性被膜複合体2を得た。
≪比較例3≫
樹脂層形成インクを用いなかったこと以外は比較例1と同様とし、比較導電性被膜複合体3を得た。
≪比較例4≫
第一工業製薬社製スーパーフレックス210を用いたこと以外は比較例2と同様とし、比較導電性被膜複合体4を得た。
≪比較例5≫
導電性インクCを用いたこと以外は比較例4と同様とし、比較導電性被膜複合体5を得た。
≪比較例6≫
樹脂層形成インクとして東亜合成社製のアロンマイティAS−60を用いたこと以外は比較例1と同様とし、比較導電性被膜複合体6を得た。
≪比較例7≫
バーコーターNo.6を用いたこと以外は比較例1と同様とし、比較導電性被膜複合体7を得た。
[評価試験]
(1)樹脂層の膜厚測定
カミソリなど鋭利な刃物で樹脂層を削り取り、ガラス基板と樹脂層の厚み差を共焦点顕微鏡(キーエンス VK−X150)で計測することで樹脂層の膜厚を計測した。得られた値を表3に示した。
(2)密着性評価
実施例及び比較例で得られた導電性被膜複合体にセロテープ(ニチバン 18mm)を貼りつけ、一気に引きはがし、試験を行った。目視上剥離が見られない場合を◎、ごく一部分のみ(2%以下)剥離した箇所が見られた場合を○、10%以下の面積しか剥離が見られなかった場合を△、20%以上剥離が見られた場合を×とし、結果を表3に示した。
(3)導電性評価
導電性被膜複合体の導電性を三菱化学アナリテック社製ロレスタGP MCP−T610を用いて表面抵抗を測定し、膜厚を乗することで体積抵抗値を算出した。体積抵抗値が20μΩ・cm以下を◎、50μΩ・cm以下を○、50μΩ・cm超を×とし、結果を表3に示した。なお、密着性評価で○以上かつ導電性評価で○となったサンプルについて、総合評価を○とし、結果を表3に示した。
(4)耐熱性評価
導電性被膜複合体の耐熱性を評価した。各種導電性インクを塗布したブランケット上にガラス凸版を押圧し、非画像部(不要部分)を転写して除去した。更に、ブランケット材に樹脂層付き基材を押圧することでパターンを基材に転写した。パターンは細線とし、ライン幅10、20、30、50、100μm、長さ10mmとした。更に、120℃、30分の条件で焼成することで導電性被膜複合体を得た。得られた導電性被膜の厚みは約0.3μmであった。次に、得られた導電性被膜複合体を180℃×1分の高温短時間暴露を5回繰り返した後、パターン形状を顕微鏡観察した。パターン曲がりや断線など変形が認められた場合を×、殆ど認められなかった場合を○、全く認められなかった場合を◎とし、結果を表3に示した。
全ての実施導電性被膜複合体について、密着性と良好な導電性を兼ね備えていることが確認できる。これに対し、比較導電性被膜複合体3と実施導電性被膜複合体の比較により、樹脂層を形成させない場合は良好な密着性が得られていない。
また、実施導電性被膜複合体における耐熱性評価の結果、樹脂層の膜厚を1μm以下とすることで、導電性被膜複合体に良好な耐熱性が付与されることが分かる。
1・・・導電性被膜複合体、
2・・・基材、
4・・・樹脂層、
6・・・導電性被膜。

Claims (11)

  1. 基材と、
    前記基材の少なくとも一部に形成された樹脂層と、
    前記樹脂層の少なくとも一部に形成された導電性被膜と、を有し、
    前記導電性被膜は銀微粒子から形成されており、
    前記樹脂層の膜厚が1μm以下であること、
    を特徴とする導電性被膜複合体。
  2. 前記樹脂層の主成分がポリウレタン樹脂であり、
    前記ポリウレタン樹脂には、イソシアネート基がブロック剤で保護された重合体及び/又はオキサゾリン基を含む重合体が架橋剤として添加されていること、
    を特徴とする請求項1に記載の導電性被膜複合体。
  3. 前記ポリウレタン樹脂の固形分に対する前記架橋剤の固形分量が10重量%以内であること、
    を特徴とする請求項2に記載の導電性被膜複合体。
  4. 前記導電性被膜が、
    前記銀微粒子と、
    短鎖アミンと、
    溶媒と、
    前記銀微粒子を分散させるための分散剤と、を含む銀微粒子分散体から形成されること、
    を特徴とする請求項1〜3のいずれかに記載の導電性被膜複合体。
  5. 前記短鎖アミンの炭素数が5以下であること、
    を特徴とする請求項4に記載の導電性被膜複合体。
  6. 前記溶媒が高極性溶媒であること、
    を特徴とする請求項4又は5に記載の導電性被膜複合体。
  7. 前記分散剤が酸価を有すること、
    を特徴とする請求項4〜6のいずれかに記載の導電性被膜複合体。
  8. 前記短鎖アミンの分配係数logPが−1.0〜1.4であること、
    を特徴とする請求項4〜7のいずれかに記載の導電性被膜複合体。
  9. 前記短鎖アミンがアルコキシアミンであること、
    を特徴とする請求項4〜8のいずれかに記載の導電性被膜複合体。
  10. 樹脂を基材の少なくとも一部に塗布して樹脂層を形成させる第一工程と、
    前記樹脂層の少なくとも一部に銀微粒子分散体を塗布する第二工程と、
    前記銀微粒子分散体に含まれる銀微粒子を外部加熱によって焼結させ、導電性被膜を形成させる第三工程と、を含むこと、
    を特徴とする導電性被膜複合体の製造方法。
  11. 前記樹脂層の膜厚を1μm以下とすること、
    を特徴とする請求項10に記載の導電性被膜複合体の製造方法。
JP2017547016A 2016-09-21 2017-09-06 導電性被膜複合体及びその製造方法 Pending JPWO2018056052A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016184186 2016-09-21
JP2016184186 2016-09-21
PCT/JP2017/032036 WO2018056052A1 (ja) 2016-09-21 2017-09-06 導電性被膜複合体及びその製造方法

Publications (1)

Publication Number Publication Date
JPWO2018056052A1 true JPWO2018056052A1 (ja) 2018-09-20

Family

ID=61690357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547016A Pending JPWO2018056052A1 (ja) 2016-09-21 2017-09-06 導電性被膜複合体及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2018056052A1 (ja)
CN (1) CN109716450B (ja)
TW (1) TWI783947B (ja)
WO (1) WO2018056052A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210023828A (ko) * 2018-06-26 2021-03-04 디아이씨 가부시끼가이샤 프린트 배선판의 제조 방법
JP2020047378A (ja) * 2018-09-14 2020-03-26 バンドー化学株式会社 導電性微粒子分散体
JP7238712B2 (ja) * 2019-09-18 2023-03-14 トヨタ自動車株式会社 配線基板の製造方法および配線基板
JP7446598B2 (ja) * 2019-11-12 2024-03-11 国立大学法人京都工芸繊維大学 触媒、その触媒を含む触媒溶液、およびその触媒溶液を用いた無電解めっき方法
CN112040662A (zh) * 2020-08-25 2020-12-04 江西华创触控科技有限公司 线路基材的制备方法、线路基材以及电路板
WO2022190859A1 (ja) * 2021-03-09 2022-09-15 株式会社ダイセル 金属ナノ粒子含有分散液組成物
WO2023189945A1 (ja) * 2022-03-29 2023-10-05 バンドー化学株式会社 導電性インク

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (ja) * 2006-05-01 2007-12-20 Bridgestone Corp 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、
JP2009049124A (ja) * 2007-08-17 2009-03-05 Konica Minolta Holdings Inc 導電性パターン及びその作製方法
JP2010013550A (ja) * 2008-07-03 2010-01-21 Toyobo Co Ltd 光学用易接着性ポリエステルフィルム
WO2012147815A1 (ja) * 2011-04-28 2012-11-01 富士フイルム株式会社 導電性部材、その製造方法、タッチパネル及び太陽電池
WO2014115629A1 (ja) * 2013-01-23 2014-07-31 Dic株式会社 受容層形成用組成物、それを用いて得られる受容基材、印刷物、導電性パターン及び電気回路
JP2014194057A (ja) * 2013-03-29 2014-10-09 Kyocera Chemical Corp 銀微粒子の製造方法及び銀微粒子
JP2015156459A (ja) * 2014-02-21 2015-08-27 Dic株式会社 積層体、導電性パターン及び電子回路
WO2015190076A1 (ja) * 2014-06-11 2015-12-17 バンドー化学株式会社 銀微粒子分散体、銀微粒子及びその製造方法
WO2016047359A1 (ja) * 2014-09-24 2016-03-31 富士フイルム株式会社 光学フィルム、導電性フィルム、タッチパネル、表示装置
WO2016084312A1 (ja) * 2014-11-25 2016-06-02 バンドー化学株式会社 導電性インク
WO2016104249A1 (ja) * 2014-12-25 2016-06-30 Dic株式会社 導電性パターン、電子回路及び電磁波シールド
WO2016152017A1 (ja) * 2015-03-23 2016-09-29 バンドー化学株式会社 導電性被膜複合体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450915A4 (en) * 2009-06-30 2014-10-22 Dainippon Ink & Chemicals METHOD FOR FORMING THE STRUCTURE FOR A TRANSPARENT CONDUCTIVE FILM
CN102660013A (zh) * 2012-05-08 2012-09-12 江苏苏博特新材料股份有限公司 一种单组份聚氨酯潜固化剂、其制备方法及其应用
EP3008129A1 (de) * 2013-06-14 2016-04-20 Basf Se Beheizbare formkörper aus elektrisch leitfähigem thermoplastischem polyurethan

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329461A (ja) * 2006-05-01 2007-12-20 Bridgestone Corp 光透過性電磁波シールド性窓材の製造方法、及び光透過性電磁波シールド性窓材、
JP2009049124A (ja) * 2007-08-17 2009-03-05 Konica Minolta Holdings Inc 導電性パターン及びその作製方法
JP2010013550A (ja) * 2008-07-03 2010-01-21 Toyobo Co Ltd 光学用易接着性ポリエステルフィルム
WO2012147815A1 (ja) * 2011-04-28 2012-11-01 富士フイルム株式会社 導電性部材、その製造方法、タッチパネル及び太陽電池
WO2014115629A1 (ja) * 2013-01-23 2014-07-31 Dic株式会社 受容層形成用組成物、それを用いて得られる受容基材、印刷物、導電性パターン及び電気回路
JP2014194057A (ja) * 2013-03-29 2014-10-09 Kyocera Chemical Corp 銀微粒子の製造方法及び銀微粒子
JP2015156459A (ja) * 2014-02-21 2015-08-27 Dic株式会社 積層体、導電性パターン及び電子回路
WO2015190076A1 (ja) * 2014-06-11 2015-12-17 バンドー化学株式会社 銀微粒子分散体、銀微粒子及びその製造方法
WO2016047359A1 (ja) * 2014-09-24 2016-03-31 富士フイルム株式会社 光学フィルム、導電性フィルム、タッチパネル、表示装置
WO2016084312A1 (ja) * 2014-11-25 2016-06-02 バンドー化学株式会社 導電性インク
WO2016104249A1 (ja) * 2014-12-25 2016-06-30 Dic株式会社 導電性パターン、電子回路及び電磁波シールド
WO2016152017A1 (ja) * 2015-03-23 2016-09-29 バンドー化学株式会社 導電性被膜複合体及びその製造方法

Also Published As

Publication number Publication date
WO2018056052A1 (ja) 2018-03-29
TW201819546A (zh) 2018-06-01
CN109716450B (zh) 2021-05-04
TWI783947B (zh) 2022-11-21
CN109716450A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2018056052A1 (ja) 導電性被膜複合体及びその製造方法
JP6659665B2 (ja) 導電性被膜複合体及びその製造方法
JP6220920B2 (ja) 銀微粒子分散体、銀微粒子及びその製造方法
JP6329703B1 (ja) 導電性ペースト及び導電性パターンの形成方法
KR20120028918A (ko) 도전성 잉크 및 이것을 사용한 도전성 피막 부착 기재의 제조방법
JP6101403B2 (ja) 導電性インク
JP6348241B1 (ja) グラビアオフセット印刷用導電性ペースト、導電性パターンの形成方法、及び、導電性基板の製造方法
JP6053246B1 (ja) 電極の製造方法
WO2018150697A1 (ja) グラビアオフセット印刷用導電性ペースト、導電性パターンの形成方法、及び、導電性基板の製造方法
WO2017017911A1 (ja) 電極の製造方法
JP2016207439A (ja) 導電性被膜の製造方法
JP2016225126A (ja) 導電性被膜及びその製造方法
TW202338023A (zh) 導電性墨水
JP2020186421A (ja) 導電性微粒子分散体、導電性パターンの形成方法及び導電性基板の製造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724