JPWO2017145954A1 - 熱伝導シートおよびその製造方法、ならびに放熱装置 - Google Patents

熱伝導シートおよびその製造方法、ならびに放熱装置 Download PDF

Info

Publication number
JPWO2017145954A1
JPWO2017145954A1 JP2018501648A JP2018501648A JPWO2017145954A1 JP WO2017145954 A1 JPWO2017145954 A1 JP WO2017145954A1 JP 2018501648 A JP2018501648 A JP 2018501648A JP 2018501648 A JP2018501648 A JP 2018501648A JP WO2017145954 A1 JPWO2017145954 A1 JP WO2017145954A1
Authority
JP
Japan
Prior art keywords
conductive sheet
heat conductive
heat
blade
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018501648A
Other languages
English (en)
Other versions
JP6947158B2 (ja
Inventor
豊和 伊藤
豊和 伊藤
明子 北川
明子 北川
元 小林
元 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2017145954A1 publication Critical patent/JPWO2017145954A1/ja
Application granted granted Critical
Publication of JP6947158B2 publication Critical patent/JP6947158B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2319/00Characterised by the use of rubbers not provided for in groups C08J2307/00 - C08J2317/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2419/00Characterised by the use of rubbers not provided for in groups C08J2407/00 - C08J2417/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • C08L2666/55Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、樹脂と粒子状炭素材料とを含み、25℃でのアスカーC硬度が60以上であり、0.5MPa加圧下の熱抵抗の値が0.20℃/W以下である、熱伝導シート、熱伝導シートの製造方法、並びに発熱体と放熱体との間に前記熱伝導シートを介在させてなる、放熱装置を提供する。

Description

本発明は、熱伝導シートおよびその製造方法、ならびに放熱装置に関する。
近年、プラズマディスプレイパネル(PDP)や集積回路(IC)チップ等の電子部品は、高性能化に伴って発熱量が増大している。その結果、電子部品を用いた電子機器では、電子部品の温度上昇による機能障害対策を講じる必要が生じている。
電子部品の温度上昇による機能障害対策としては、一般に、電子部品等の発熱体に対し、金属製のヒートシンク、放熱板、放熱フィン等の放熱体を取り付けることによって、放熱を促進させる方法が採られている。そして、放熱体を使用する際には、発熱体から放熱体へと熱を効率的に伝えるために、熱伝導率が高いシート状の部材(熱伝導シート)を介し、この熱伝導シートに対して所定の圧力をかけることで発熱体と放熱体とを密着させている。当該熱伝導シートとしては、熱伝導性に優れる複合材料シートを用いて成形したシートが用いられている。この様な発熱体と放熱体との間に挟み込んで使用される熱伝導シートには、高い熱伝導率に加え、高い柔軟性を有することが求められてきた。熱伝導シートの熱伝導性を向上させるためには熱伝導シートの熱抵抗を低下させることが必要であり、熱伝導シートの熱抵抗は、発熱体と放熱体との間に挟み込んで使用する場合、熱伝導シート自体の熱抵抗であるバルク熱抵抗と、発熱体および放熱体と熱伝導シートとの界面における界面熱抵抗との和であると考えられるからである。
材料自体の熱抵抗、すなわち、バルク熱抵抗は、材料の厚みおよび熱伝導率と下記式の関係で示されることが知られている:
バルク熱抵抗(m・K/W)=材料の厚み(m)/材料の熱伝導率(W/m・K)。この関係式から、熱伝導シート自体の熱抵抗、すなわち、熱伝導シートのバルク熱抵抗を小さくするには、熱伝導シートの厚みを薄くすることと、熱伝導シートの熱伝導率を向上させることが必要であることが分かる。
一方、熱伝導シートの界面熱抵抗は、発熱体および放熱体との界面における密着性(界面密着性)、発熱体と熱伝導シートのバルク熱抵抗の差、ならびに放熱体と熱伝導シートのバルク熱抵抗の差によって増減することが知られている。特に、界面密着性は、熱伝導シートに加わる圧力、熱伝導シートの硬さ(可撓性)などの影響を受け得る。そこで、熱伝導シートの界面熱抵抗を小さくするため、一般に、熱伝導シート表面にタックを持たせること、または、熱伝導シートの硬度を下げることによって、界面密着性を高めることが考えられてきた。
例えば特許文献1では、熱可塑性ゴムと、熱硬化性ゴムと、熱硬化型ゴム硬化剤と、異方性黒鉛粉とを含む組成物から一次シートを形成し、これらを積層して、垂直方向からスライスすることで、黒鉛が垂直方向に配向した熱抵抗の低い熱伝導シートを得ている。当該熱伝導シートでは、当該組成物から一次シートを形成する際に熱処理を行って熱硬化型ゴム硬化剤で熱硬化性ゴムを架橋させることで、熱可塑性ゴムと架橋された熱硬化ゴムとを共存させて柔軟性と取扱い性とを向上させている。さらに、熱硬化性ゴムとして常温固体のゴムと常温液体のゴムとを併用することで、耐熱性と柔軟性とのバランスをより向上させている。
また、例えば特許文献2では、温度によって形状が変わるフェイズチェンジマテリアル(PCM)として、シリコーン樹脂と熱伝導性充填剤と揮発性溶剤とを含有する熱伝導性シリコーン組成物を提案している。当該熱伝導性シリコーン組成物は、発熱時の温度を利用して流動化し、発熱体と放熱体双方との界面で微細な凹凸などの隙間を埋めて界面密着性を高めることにより、放熱特性を向上させている。
国際公開第2009/142290号 特開2010−18646号公報
しかし、特許文献1の熱伝導シートは、界面熱抵抗を下げるために必要以上に粘着性が付与されており、取り付け時および交換時の作業性ならびに剥離性に劣り、交換時にはシート成分が放熱装置の躯体に残る。
また、特許文献2の熱伝導性シリコーン組成物は、放熱に際して流動化して発熱体や放熱体がもつ溝などの細部に入り込むため、剥離性が非常に悪く、交換が困難であるなど、リワーク性に劣る。
すなわち、熱伝導シートの界面熱抵抗を下げる目的で、熱伝導シート表面に高い粘着性を付与したり、熱伝導性シートの可撓性を大幅に高めたりすると、熱伝導シートの取扱い性が悪化するという問題が生じる。
そこで、本発明は、取扱い性に優れ、比較的高い圧力下で熱伝導性に優れる熱伝導シートを提供することを目的とする。ここで、「比較的高い圧力」とは、0.1MPa以上を指し、「取扱い性に優れる」とは、硬さと粘着性とのバランスに優れており、取り付け時及び交換時の作業性に優れることを意味する。
また、本発明は、比較的高い圧力下で優れた放熱特性を有する放熱装置を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を行った。そして、粒子状炭素材料と樹脂とを含む組成物を用いて形成され、且つ、所定の硬度と所定の熱抵抗値とを有する熱伝導シートが、比較的高い圧力下で優れた熱伝導性を有し、取扱い性に優れていることを見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートは、樹脂と粒子状炭素材料とを含み、25℃でのアスカーC硬度が60以上であり、0.5MPa加圧下の熱抵抗の値が0.20℃/W以下であることを特徴とする。このような構成の熱伝導シートは、硬さと粘着性とのバランスに優れるため、取扱い性に優れ、比較的高い圧力下で優れた熱伝導性および放熱特性を有することができる。
本発明の熱伝導シートでは、0.1MPa加圧下の熱抵抗の値が0.40℃/W以下であることが好ましい。0.1MPa加圧下の熱抵抗の値が0.40℃/W以下であると、使用環境の加圧力が低下しても熱伝導シートの熱抵抗の増大が抑えられ、幅広い範囲の加圧下で優れた熱伝導性および放熱特性を維持することができる。
本発明の熱伝導シートでは、プローブタック試験で測定したタックが0.85N以下であることが好ましい。プローブタック試験で測定したタックが0.85N以下であると、使用時には良好な密着性を示しつつ、取り付け時および交換時に良好な剥離性を有し、発熱体や放熱体などの取付物から、熱伝導シートを破壊することなく、すなわち、当該取付物に熱伝導シート成分を残存させることなく、熱伝導シートを取り外すことができる。
本発明の熱伝導シートでは、前記樹脂が熱可塑性樹脂であることが好ましく、前記熱可塑性樹脂が、常温固体の樹脂と常温液体の樹脂との組み合わせであることがより好ましい。樹脂が熱可塑性樹脂であると、熱伝導シートの硬さと粘着性とのバランスを一層向上させることができ、取扱い性を一層向上させることができる。また、熱可塑性樹脂が常温固体の樹脂と常温液体の樹脂との組み合わせであると、取り付け時および交換時の室温環境下では、熱伝導シートの硬さと粘着性とのバランスを向上させて、取扱い性を向上さることができる。また、使用時(放熱時)の高温環境下では、界面密着性を高めて界面熱抵抗を低下させ、熱伝導シートの熱伝導性(すなわち、放熱特性)を向上させることができる。
本発明の放熱装置は、発熱体と放熱体との間に本発明の熱伝導シートを介在させてなることを特徴とする。発熱体と放熱体との間に、取扱い性に優れ、比較的高い圧力下で熱伝導性に優れる本発明の熱伝導シートを介在させることにより、比較的高い圧力下で優れた放熱特性を発揮することができる。
本発明の熱伝導シートの製造方法は、
樹脂と、粒子状炭素材料とを含む組成物を加圧してシート状に成形し、プレ熱伝導シートを得る工程と、
該プレ熱伝導シートを厚み方向に複数枚積層して、或いは、該プレ熱伝導シートを折畳または捲回して、積層体を得る工程と、
該積層体を、積層方向に対して45°以下の角度でスライスし、熱伝導シートを得る工程と、を含むことを特徴とする。
このようにして得られた熱伝導シート内では、粒子状炭素材料が厚み方向に配列しており、厚み方向の熱伝導性だけでなく、導電性も高めることができる。
本発明によれば、取扱い性に優れ、比較的高い圧力下で熱伝導性に優れる熱伝導シートを提供することができる。
また、本発明によれば、比較的高い圧力下で優れた放熱特性を有する放熱装置を提供することができる。
本発明の積層体をスライスする工程で使用できる刃の一実施形態について、刃先の断面を示す概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態である両刃の対称刃の刃先の断面を示す概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態である両刃の非対称刃の刃先の断面を示す概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態である片刃の刃先の断面を示す概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態について、刃全体を横から見た概念図(a)および、刃全体を表側から見た概念図(b)である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態について、片刃における中心軸の定め方を説明する概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態について、両刃における中心軸の定め方を説明する概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態について、2段刃の刃先の断面を示す概念図である。 本発明の積層体をスライスする工程で使用できる刃の一実施形態について、2枚刃の刃全体を横から見た概念図の例である。
以下、本発明をその実施形態に基づき詳細に例示説明する。
本発明の熱伝導シートは、例えば、発熱体に放熱体を取り付ける際に発熱体と放熱体との間に挟み込んで使用することができる。即ち、本発明の熱伝導シートは、発熱体と、ヒートシンク、放熱板、放熱フィン等の放熱体と共に放熱装置を構成することができる。そして、本発明の熱伝導シートは、例えば本発明の熱伝導シートの製造方法を用いて製造することができる。
(熱伝導シート)
本発明の熱伝導シートは、樹脂と粒子状炭素材料とを含み、25℃でのアスカーC硬度が60以上であり、0.5MPa加圧下の熱抵抗の値が0.20℃/W以下であることを特徴とする。熱伝導シートが粒子状炭素材料を含有しない場合には、十分な熱伝導性を得ることができない。また、熱伝導シートが樹脂を含有しない場合には、十分な柔軟性が得られない。
[樹脂]
ここで、樹脂としては、特に限定されることなく、熱伝導シートの形成に使用され得る既知の樹脂を用いることができるが、中でも熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂を用いれば、使用時(放熱時)の高温環境下で、熱伝導シートの柔軟性を更に向上させ、熱伝導シートを介して発熱体と放熱体とを良好に密着させることができるからである。また、樹脂として、本発明の熱伝導シートの特性及び効果を失わないことを条件として、熱硬化性樹脂を併用することができる。
なお、本発明において、ゴムおよびエラストマーは、「樹脂」に包含されるものとする。
[[熱可塑性樹脂]]
熱伝導シートの形成に使用され得る既知の熱可塑性樹脂としては、常温固体の熱可塑性樹脂、常温液体の熱可塑性樹脂などが挙げられる。本発明の熱伝導シートでは、熱可塑性樹脂として、常温固体の熱可塑性樹脂と常温液体の熱可塑性樹脂との組み合わせを用いることが好ましい。ここで、「常温」とは、23℃を指す。常温固体の熱可塑性樹脂と常温液体の熱可塑性樹脂とを組み合わせて用いることにより、取り付け時および交換時の室温環境下、すなわち、常温環境下では、固体の熱可塑性樹脂と液体の熱可塑性樹脂とが共存することにより、熱伝導シートの硬さと粘着性とのバランスを向上させて、取扱い性を向上させることができる。また、使用時(放熱時)の高温環境下では、常温固体の熱可塑性樹脂が可塑化することにより、界面密着性を高めて界面熱抵抗を低下させ、熱伝導シートの熱伝導性(すなわち、放熱特性)を向上させることができる。
熱可塑性樹脂として使用する際の常温固体の熱可塑性樹脂と常温液体の熱可塑性樹脂との割合は、特に限定されないが、熱可塑性樹脂のうち、常温固体の熱可塑性樹脂を80〜30質量%と常温液体の熱可塑性樹脂を20〜70質量%との割合で組み合わせることが好ましい。熱可塑性樹脂のうち、常温固体の熱可塑性樹脂を80〜30質量%と常温液体の熱可塑性樹脂を20〜70質量%との割合で組み合わせることにより、取扱い性および熱伝導性を一層向上させることができる。
常温固体の熱可塑性樹脂としては、例えば、ポリ(アクリル酸2−エチルヘキシル)、アクリル酸とアクリル酸2−エチルヘキシルとの共重合体、ポリメタクリル酸またはそのエステル、ポリアクリル酸またはそのエステルなどのアクリル樹脂;シリコーン樹脂;フッ素樹脂;ポリエチレン;ポリプロピレン;エチレン−プロピレン共重合体;ポリメチルペンテン;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリ酢酸ビニル;エチレン−酢酸ビニル共重合体;ポリビニルアルコール;ポリアセタール;ポリエチレンテレフタレート;ポリブチレンテレフタレート;ポリエチレンナフタレート;ポリスチレン;ポリアクリロニトリル;スチレン−アクリロニトリル共重合体;アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂);スチレン−ブタジエンブロック共重合体またはその水素添加物;スチレン−イソプレンブロック共重合体またはその水素添加物;ポリフェニレンエーテル;変性ポリフェニレンエーテル;脂肪族ポリアミド類;芳香族ポリアミド類;ポリアミドイミド;ポリカーボネート;ポリフェニレンスルフィド;ポリサルホン;ポリエーテルサルホン;ポリエーテルニトリル;ポリエーテルケトン;ポリケトン;ポリウレタン;液晶ポリマー;アイオノマー;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
常温液体の熱可塑性樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[[熱可塑性フッ素樹脂]]
本発明の熱伝導シートに含有される熱可塑性樹脂は、熱可塑性フッ素樹脂を含むことが好ましく、熱可塑性フッ素樹脂からなることがより好ましい。熱可塑性樹脂として熱可塑性フッ素樹脂を用いることにより、耐熱性、耐油性、および耐薬品性を向上させることができる。また、本発明の熱伝導シートに含有される熱可塑性樹脂は、常温固体の熱可塑性フッ素樹脂と常温液体の熱可塑性フッ素樹脂との組み合わせであることが更に好ましい。熱可塑性樹脂として常温固体の熱可塑性フッ素樹脂と常温液体の熱可塑性フッ素樹脂との組み合わせを用いることにより、耐熱性、耐油性、および耐薬品性を向上させることに加え、取扱い性および熱伝導性を向上させることができる。
常温固体の熱可塑性フッ素樹脂としては、例えば、フッ化ビニリデン系、テトラフルオロエチレン−プロピレン系、テトラフルオロエチレン−パープルオロビニルエーテル系等、フッ素含有モノマーを重合して得られるエラストマーなどが挙げられる。より具体的には、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、エチレン−クロロフルオロエチレン共重合体、テトラフルオロエチレン−パーフルオロジオキソール共重合体、ポリビニルフルオライド、テトラフルオロエチレン−プロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンのアクリル変性物、ポリテトラフルオロエチレンのエステル変性物、ポリテトラフルオロエチレンのエポキシ変性物およびポリテトラフルオロエチレンのシラン変性物等が挙げられる。これらの中でも、加工性の観点から、ポリテトラフルオロエチレン、ポリテトラフルオロエチレンのアクリル変性物、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ビニリデンフルオライド−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体が好ましい。
市販の常温固体の熱可塑性フッ素樹脂としては、例えば、ダイキン工業株式会社製のダイエル(登録商標)G−700シリーズ(ポリオール加硫・2元ポリマー;フッ化ビニリデン系フッ素樹脂)、ダイエルG−550シリーズ/G−600シリーズ(ポリオール加硫・3元ポリマー;フッ化ビニリデン系フッ素樹脂)、ALKEMA社製のKYNAR(登録商標)シリーズ(フッ化ビニリデン系フッ素樹脂)、KYNAR FLEX(登録商標)シリーズ(ビニリデンフロライド/テトラフルオロエチレン/ヘキサフルオロプロピレンの共重合体の三元系フッ素樹脂)が挙げられる。
常温液体の熱可塑性フッ素樹脂は、常温(23℃)で液体状のフッ素樹脂であれば、特に限定されない。例えば、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロペンテン−テトラフルオロエチレン3元共重合体、パーフルオロプロペンオキサイド重合体、テトラフルオロエチレン−プロピレン−フッ化ビニリデン共重合体などが挙げられる。これら常温液状の熱可塑性フッ素樹脂として、例えば、バイトン(登録商標)LM(デュポン株式会社製)、ダイエル(登録商標)G101(ダイキン工業株式会社製)、ダイニオンFC2210(スリーエム株式会社製)、SIFELシリーズ(信越化学工業株式会社製)などの市販品を使用することもできる。
常温液体の熱可塑性フッ素樹脂の粘度は、特には限定されないが、混練性、流動性、架橋反応性が良好で、成形性にも優れるという点から、105℃における粘度が、500〜30,000cpsであることが好ましく、550〜25,000cpsであることがより好ましい。
熱可塑性樹脂として使用する際の常温固体の熱可塑性フッ素樹脂と常温液体の熱可塑性フッ素樹脂との割合は、特に限定されないが、熱可塑性樹脂100質量%のうち、常温固体の熱可塑性フッ素樹脂を80〜30質量%と常温液体の熱可塑性フッ素樹脂を20〜70質量%との割合で組み合わせることが好ましく、常温固体の熱可塑性フッ素樹脂を65〜40質量%と常温液体の熱可塑性フッ素樹脂を35〜60質量%との割合で組み合わせることがより好ましい。
[[熱硬化性樹脂]]
本発明の熱伝導シートの特性および効果を失わないことを条件として、樹脂として、任意に使用し得る熱硬化性樹脂としては、例えば、天然ゴム;ブタジエンゴム;イソプレンゴム;ニトリルゴム;水素化ニトリルゴム;クロロプレンゴム;エチレンプロピレンゴム;塩素化ポリエチレン;クロロスルホン化ポリエチレン;ブチルゴム;ハロゲン化ブチルゴム;ポリイソブチレンゴム;エポキシ樹脂;ポリイミド樹脂;ビスマレイミド樹脂;ベンゾシクロブテン樹脂;フェノール樹脂;不飽和ポリエステル;ジアリルフタレート樹脂;ポリイミドシリコーン樹脂;ポリウレタン;熱硬化型ポリフェニレンエーテル;熱硬化型変性ポリフェニレンエーテル;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
[粒子状炭素材料]
粒子状炭素材料としては、特に限定されることなく、例えば、人造黒鉛、鱗片状黒鉛、薄片化黒鉛、天然黒鉛、酸処理黒鉛、膨張性黒鉛、膨張化黒鉛などの黒鉛;カーボンブラック;などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
中でも、粒子状炭素材料としては、膨張化黒鉛を用いることが好ましい。膨張化黒鉛を使用すれば、熱伝導シートの熱伝導性を向上させることができるからである。
[[膨張化黒鉛]]
ここで、粒子状炭素材料として好適に使用し得る膨張化黒鉛は、例えば、鱗片状黒鉛などの黒鉛を硫酸などで化学処理して得た膨張性黒鉛を、熱処理して膨張させた後、微細化することにより得ることができる。そして、膨張化黒鉛としては、例えば、伊藤黒鉛工業株式会社製のEC1500、EC1000、EC500、EC300、EC100、EC50(いずれも商品名)等が挙げられる。
[[粒子状炭素材料の性状]]
ここで、本発明の熱伝導シートに含有されている粒子状炭素材料の平均粒子径は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、250μm以下であることが好ましい。粒子状炭素材料の平均粒子径が上記範囲内であれば、熱伝導シートの熱伝導性を向上させることができるからである。
また、本発明の熱伝導シートに含有されている粒子状炭素材料のアスペクト比(長径/短径)は、1以上10以下であることが好ましく、1以上5以下であることがより好ましい。
なお、本発明において「平均粒子径」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)で観察し、任意の50個の粒子状炭素材料について最大径(長径)を測定し、測定した長径の個数平均値を算出することにより求めることができる。また、本発明において、「アスペクト比」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)で観察し、任意の50個の粒子状炭素材料について、最大径(長径)と、最大径に直交する方向の粒子径(短径)とを測定し、長径と短径の比(長径/短径)の平均値を算出することにより求めることができる。
[[粒子状炭素材料の含有割合]]
そして、本発明の熱伝導シート中の粒子状炭素材料の含有割合は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。熱伝導シート中の粒子状炭素材料の含有割合が30質量%以上90質量%以下であれば、熱伝導シートの熱伝導率、柔軟性および強度をバランス良く十分に高めることができるからである。また、粒子状炭素材料の含有割合が90質量%以下であれば、粒子状炭素材料の粉落ちを十分に防止することができるからである。
[繊維状炭素材料]
本発明の熱伝導シートは、任意に繊維状炭素材料を含有してもよい。任意に含有される繊維状炭素材料としては、特に限定されることなく、例えば、カーボンナノチューブ、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維、およびそれらの切断物などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
そして、本発明の熱伝導シートに繊維状炭素材料を含有させれば、熱伝導性を更に向上させることができると共に、粒子状炭素材料の粉落ちを防止することもできる。なお、繊維状炭素材料を配合することで粒子状炭素材料の粉落ちを防止することができる理由は、明らかではないが、繊維状炭素材料が三次元網目構造を形成することにより、熱伝導性や強度を高めつつ粒子状炭素材料の脱離を防止しているためであると推察される。
上述した中でも、繊維状炭素材料としては、カーボンナノチューブなどの繊維状の炭素ナノ構造体を用いることが好ましく、カーボンナノチューブを含む繊維状の炭素ナノ構造体を用いることがより好ましい。カーボンナノチューブなどの繊維状の炭素ナノ構造体を使用すれば、本発明の熱伝導シートの熱伝導性および強度を更に向上させることができるからである。
[[カーボンナノチューブを含む繊維状の炭素ナノ構造体]]
ここで、繊維状炭素材料として好適に使用し得る、カーボンナノチューブを含む繊維状の炭素ナノ構造体は、カーボンナノチューブ(以下、「CNT」と称することがある。)のみからなるものであってもよいし、CNTと、CNT以外の繊維状の炭素ナノ構造体との混合物であってもよい。
なお、繊維状の炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、本発明の熱伝導シートの熱伝導性および強度を更に向上させることができるからである。
また、CNTを含む繊維状の炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満の炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.50超の炭素ナノ構造体を用いることが更に好ましい。3σ/Avが0.20超0.60未満のCNTを含む繊維状の炭素ナノ構造体を使用すれば、炭素ナノ構造体の配合量が少量であっても本発明の熱伝導シートの熱伝導性および強度を十分に高めることができる。したがって、CNTを含む繊維状の炭素ナノ構造体の配合により本発明の熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、本発明の熱伝導シートの熱伝導性および柔軟性を十分に高いレベルで並立させることができる。
なお、「繊維状の炭素ナノ構造体の平均直径(Av)」および「繊維状の炭素ナノ構造体の直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択した繊維状の炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、CNTを含む繊維状の炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを含む繊維状の炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
そして、CNTを含む繊維状の炭素ナノ構造体としては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
更に、CNTを含む繊維状の炭素ナノ構造体は、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのみからなる繊維状の炭素ナノ構造体のラマンスペクトルには、RBMが存在しない。
また、CNTを含む繊維状の炭素ナノ構造体は、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上20以下であることが好ましい。G/D比が1以上20以下であれば、繊維状の炭素ナノ構造体の配合量が少量であっても本発明の熱伝導シートの熱伝導性および強度を十分に高めることができる。したがって、繊維状の炭素ナノ構造体の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、本発明の熱伝導シートの熱伝導性および柔軟性を十分に高いレベルで並立させることができる。
更に、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。繊維状の炭素ナノ構造体の平均直径(Av)が0.5nm以上であれば、繊維状の炭素ナノ構造体の凝集を抑制して炭素ナノ構造体の分散性を高めることができる。また、繊維状の炭素ナノ構造体の平均直径(Av)が15nm以下であれば、本発明の熱伝導シートの熱伝導性および強度を十分に高めることができる。
また、CNTを含む繊維状の炭素ナノ構造体は、合成時における構造体の平均長さが100μm以上5000μm以下であることが好ましい。なお、合成時の構造体の長さが長いほど、分散時にCNTに破断や切断などの損傷が発生し易いので、合成時の構造体の平均長さは5000μm以下であることが好ましい。
更に、CNTを含む繊維状の炭素ナノ構造体のBET比表面積は、600m/g以上であることが好ましく、800m/g以上であることが更に好ましく、2500m/g以下であることが好ましく、1200m/g以下であることが更に好ましい。更に、繊維状の炭素ナノ構造体中のCNTが主として開口したものにあっては、BET比表面積が1300m/g以上であることが好ましい。CNTを含む繊維状の炭素ナノ構造体のBET比表面積が600m/g以上であれば、本発明の熱伝導シートの熱伝導性および強度を十分に高めることができる。また、CNTを含む繊維状の炭素ナノ構造体のBET比表面積が2500m/g以下であれば、繊維状の炭素ナノ構造体の凝集を抑制して本発明の熱伝導シート中のCNTの分散性を高めることができる。
なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
更に、CNTを含む繊維状の炭素ナノ構造体は、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(配向集合体)として得られるが、当該集合体としての、繊維状の炭素ナノ構造体の質量密度は、0.002g/cm以上0.2g/cm以下であることが好ましい。質量密度が0.2g/cm以下であれば、繊維状の炭素ナノ構造体同士の結びつきが弱くなるので、熱伝導シート中で繊維状の炭素ナノ構造体を均質に分散させることができる。また、質量密度が0.002g/cm以上であれば、繊維状の炭素ナノ構造体の一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。
そして、上述した性状を有するCNTを含む繊維状の炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
ここで、スーパーグロース法により製造したCNTを含む繊維状の炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体が含まれていてもよい。
[[繊維状炭素材料の性状]]
そして、熱伝導シートに含まれうる繊維状炭素材料の平均繊維径は、1nm以上であることが好ましく、3nm以上であることがより好ましく、2μm以下であることが好ましく、1μm以下であることがより好ましい。繊維状炭素材料の平均繊維径が上記範囲内であれば、熱伝導シートの熱伝導性、柔軟性および強度を十分に高いレベルで並立させることができるからである。ここで、繊維状炭素材料のアスペクト比は、10を超えることが好ましい。
なお、本発明において、「平均繊維径」は、熱伝導シートの厚み方向における断面をSEM(走査型電子顕微鏡)又はTEM(透過型電子顕微鏡)で観察し、任意の50個の繊維状炭素材料について繊維径を測定し、測定した繊維径の個数平均値を算出することにより求めることができる。特に、繊維径が小さい場合は、同様の断面をTEM(透過型電子顕微鏡)にて観察することが好適である。
[[繊維状炭素材料の含有割合]]
そして、本発明の熱伝導シート中の繊維状炭素材料の含有割合は、0.05質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。熱伝導シート中の繊維状炭素材料の含有割合が0.05質量%以上であれば、熱伝導シートの熱伝導性および強度を十分に向上させることができると共に、粒子状炭素材料の粉落ちを十分に防止することができるからである。更に、熱伝導シート中の繊維状炭素材料の含有割合が5質量%以下であれば、繊維状炭素材料の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、本発明の熱伝導シートの熱伝導性および柔軟性を十分に高いレベルで並立させることができるからである。
[添加剤]
本発明の熱伝導シートには、必要に応じて、熱伝導シートの形成に使用され得る既知の添加剤を配合することができる。そして、熱伝導シートに配合し得る添加剤としては、特に限定されることなく、例えば、脂肪酸エステルなどの可塑剤;赤りん系難燃剤、りん酸エステル系難燃剤などの難燃剤;ウレタンアクリレートなどの靭性改良剤;酸化カルシウム、酸化マグネシウムなどの吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物などの接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤などの濡れ性向上剤;無機イオン交換体などのイオントラップ剤;等が挙げられる。
[熱伝導シートの性状]
そして、本発明の熱伝導シートは、特に限定されることなく、以下の性状を有していることが好ましい。
[[熱伝導シートの硬度]]
本発明の熱伝導シートは、25℃でのアスカーC硬度が、60以上であり、65以上であることが好ましく、70以上であることがより好ましい。25℃でのアスカーC硬度が60以上であれば、室温で適度な硬さを有することができ、取り付け時及び交換時の作業性を良好なものとすることができる。
また、本発明の熱伝導シートは、25℃でのアスカーC硬度が、90以下であることが好ましく、80以下であることがより好ましい。25℃でのアスカーC硬度が90以下であれば、室温環境下で十分な粘着性を有することができ、取り付け時及び交換時の作業性をより向上させることができる。
尚、「アスカーC硬度」は、日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計を用いて所定の温度で測定することができる。
また、本発明の熱伝導シートは、70℃でのアスカーC硬度が、55以上であることが好ましく、60以上であることがより好ましい。70℃でのアスカーC硬度が55以上であれば、使用時(放熱時)の高温環境下でも十分な硬さを維持することができ、交換時の剥離性を十分なものとして、放熱装置の躯体に熱伝導シート成分を残留させることなく交換することができる。
また、本発明の熱伝導シートは、70℃でのアスカーC硬度が、70以下であることが好ましく、65以下であることがより好ましい。70℃でのアスカーC硬度が70以下であれば、使用時(放熱時)の高温環境下で十分な界面密着性を有することができ、熱伝導性をより向上させることができる。
[[熱伝導シートの熱抵抗]]
本発明の熱伝導シートは、0.5MPa加圧下の熱抵抗の値が0.20℃/W以下であり、0.15℃/W以下であることが好ましく、0.13℃/W以下であることがより好ましい。0.5MPa加圧下の熱抵抗の値が0.20℃/W以下であると、比較的高い圧力が加えられる使用環境下で、優れた熱伝導性を有することができる。
ここで、熱抵抗の値は、熱伝導シートの熱抵抗を測定するのに通常用いられる既知の測定方法を用いて測定することができ、樹脂材料熱抵抗試験器(例えば、日立テクノロジーアンドサービス社製、商品名「C47108」)などで測定することができる。
また、本発明の熱伝導シートは、0.1MPa加圧下の熱抵抗の値が0.40℃/W以下であることが好ましく、0.35℃/W以下であることがより好ましく、0.30℃/W以下であることが更に好ましい。0.1MPa加圧下の熱抵抗の値が0.40℃/W以下であると、比較的高い圧力が加えられる使用環境下で、優れた熱伝導性を維持することができる。
[[熱伝導シートのタック]]
本発明の熱伝導シートは、プローブタック試験で測定したタックが0.85N以下であることが好ましく、0.83N以下であることがより好ましく、0.80N以下であることが更に好ましい。「タック」とは、JIS Z0109:2015で規定される通り、軽い力で短時間に被着体に接着する特性を意味し、本明細書中では「接着性」とも称する。本発明の熱伝導シートのタックは、プローブタック試験で測定される。具体的には、25℃の温度条件で、φ10mmの平らなプローブを荷重0.5Nの圧力を加えながら測定対象の熱伝導シートに10秒間押し付けた後、プローブを該熱伝導シートから引き離すときに要する力として測定される。プローブタック試験で測定したタックが0.85N以下であると、使用時には良好な密着性を示しつつ、取り付け時および交換時に良好な剥離性を有し、発熱体や放熱体などの取付物から、熱伝導シートを破壊することなく、すなわち、当該取付物に熱伝導シート成分を残存させることなく、熱伝導シートを取り外すことができる。言い換えると、プローブタック試験で測定したタックの数値が小さい程、取扱い性に優れる。
なお、本発明の熱伝導シートのタックは、プローブタック試験機(例えば、株式会社レスカ製、商品名「TAC1000」)などで測定することができる。
[[熱伝導シートの熱伝導率]]
熱伝導シートは、厚み方向の熱伝導率が、25℃において、20W/m・K以上であることが好ましく、30W/m・K以上であることがより好ましく、40W/m・K以上であることが更に好ましい。熱伝導率が20W/m・K以上であれば、例えば熱伝導シートを発熱体と放熱体との間に挟み込んで使用した場合に、発熱体から放熱体へと熱を効率的に伝えることができる。
[[熱伝導シートの厚み]]
熱伝導シートの厚みは、好ましくは0.1mm〜10mmである。本発明の熱伝導シートは、取扱い性を損なわない限りにおいて、厚みを薄くする程、熱抵抗値を小さくすることができ、熱伝導性および放熱装置に使用した場合の放熱特性を向上させることができる。
[[熱伝導シートの密度]]
さらに、本発明の熱伝導シートは、密度が1.8g/cm以下であることが好ましく、1.6g/cm以下であることがより好ましい。このような熱伝導シートは、汎用性が高く、例えば電子部品などの製品に実装した際に、かかる電子部品の軽量化に寄与することができるからである。
<熱伝導シート調製工程>
[プレ熱伝導シート成形工程]
プレ熱伝導シート成形工程では、樹脂および粒子状炭素材料を含み、任意に繊維状炭素材料および/または添加剤を更に含有する組成物を加圧してシート状に成形し、プレ熱伝導シートを得る。
[[組成物]]
ここで、組成物は、樹脂および粒子状炭素材料と、任意の繊維状炭素材料および/または添加剤とを混合して調製することができる。そして、樹脂、粒子状炭素材料、繊維状炭素材料および添加剤としては、本発明の熱伝導シートに含まれ得る樹脂、粒子状炭素材料、繊維状炭素材料および添加剤として上述したものを用いることができる。因みに、熱伝導シートの樹脂を架橋型の樹脂とする場合には、架橋型の樹脂を含む組成物を用いてプレ熱伝導シートを形成してもよいし、架橋可能な樹脂と硬化剤とを含有する組成物を用いてプレ熱伝導シートを形成し、プレ熱伝導シート成形工程後に架橋可能な樹脂を架橋させることにより、熱伝導シートに架橋型の樹脂を含有させてもよい。
なお、混合は、特に限定されることなく、ニーダー、ロール、ヘンシェルミキサー、ホバートミキサー等の既知の混合装置を用いて行うことができる。また、混合は、酢酸エチル等の溶媒の存在下で行ってもよい。溶媒に予め樹脂を溶解または分散させて樹脂溶液として、他の炭素材料および任意の添加剤と混合してもよい。混合時間は、例えば5分以上6時間以下とすることができる。また、混合温度は、例えば5℃以上150℃以下とすることができる。
なお、上述した成分のうち、特に繊維状炭素材料は、凝集し易く、分散性が低いため、そのままの状態で樹脂や膨張化黒鉛などの他の成分と混合すると、組成物中で良好に分散し難い。一方、繊維状炭素材料は、溶媒(分散媒)に分散させた分散液の状態で樹脂や膨張化黒鉛などの他の成分と混合すれば凝集の発生を抑制することはできるものの、分散液の状態で混合した場合には混合後に固形分を凝固させて組成物を得る際などに多量の溶媒を使用するため、組成物の調製に使用する溶媒の量が多くなる虞が生じる。そのため、プレ熱伝導シートの形成に用いる組成物に繊維状炭素材料を配合する場合には、繊維状炭素材料は、溶媒(分散媒)に繊維状炭素材料を分散させて得た分散液から溶媒を除去して得た繊維状炭素材料の集合体(易分散性集合体)の状態で他の成分と混合することが好ましい。繊維状炭素材料の分散液から溶媒を除去して得た繊維状炭素材料の集合体は、一度溶媒に分散させた繊維状炭素材料で構成されており、溶媒に分散させる前の繊維状炭素材料の集合体よりも分散性に優れているので、分散性の高い易分散性集合体となる。従って、易分散性集合体と、樹脂や膨張化黒鉛などの他の成分とを混合すれば、多量の溶媒を使用することなく効率的に、組成物中で繊維状炭素材料を良好に分散させることができる。
ここで、繊維状炭素材料の分散液は、例えば、溶媒に対して繊維状炭素材料を添加してなる粗分散液を、キャビテーション効果が得られる分散処理または解砕効果が得られる分散処理に供して得ることができる。なお、キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。そして、キャビテーション効果が得られる分散処理の具体例としては、超音波ホモジナイザーによる分散処理、ジェットミルによる分散処理および高剪断撹拌装置による分散処理が挙げられる。また、解砕効果が得られる分散処理は、粗分散液にせん断力を与えて繊維状炭素材料の凝集体を解砕・分散させ、さらに粗分散液に背圧を負荷することで、気泡の発生を抑制しつつ、繊維状炭素材料を溶媒中に均一に分散させる分散方法である。そして、解砕効果が得られる分散処理は、市販の分散システム(例えば、商品名「BERYU SYSTEM PRO」(株式会社美粒製)など)を用いて行うことができる。
また、分散液からの溶媒の除去は、乾燥やろ過などの既知の溶媒除去方法を用いて行うことができるが、迅速かつ効率的に溶媒を除去する観点からは、減圧ろ過などのろ過を用いて行うことが好ましい。
[[組成物の成形]]
そして、上述のようにして調製した組成物は、任意に脱泡および解砕した後に、加圧してシート状に成形することができる。なお、混合時に溶媒を用いている場合には、溶媒を除去してからシート状に成形することが好ましく、例えば真空脱泡を用いて脱泡を行えば、脱泡時に溶媒の除去も同時に行うことができる。
ここで、組成物は、圧力が負荷される成形方法であれば特に限定されることなく、プレス成形、圧延成形または押し出し成形などの既知の成形方法を用いてシート状に成形することができる。中でも、組成物は、圧延成形によりシート状に形成することが好ましく、保護フィルムに挟んだ状態でロール間を通過させてシート状に成形することがより好ましい。なお、保護フィルムとしては、特に限定されることなく、サンドブラスト処理を施したポリエチレンテレフタレートフィルム等を用いることができる。また、ロール温度は5℃以上150℃とすることができる。
[[プレ熱伝導シート]]
そして、組成物を加圧してシート状に成形してなるプレ熱伝導シートでは、粒子状炭素材料が主として面内方向に配列し、特にプレ熱伝導シートの面内方向の熱伝導性が向上すると推察される。
なお、プレ熱伝導シートの厚みは、特に限定されることなく、例えば0.05mm以上2mm以下とすることができる。また、熱伝導シートの熱伝導性を更に向上させる観点からは、プレ熱伝導シートの厚みは、粒子状炭素材料の平均粒子径の20倍超5000倍以下であることが好ましい。
[積層体形成工程]
積層体形成工程では、プレ熱伝導シート成形工程で得られたプレ熱伝導シートを厚み方向に複数枚積層して、或いは、プレ熱伝導シートを折畳または捲回して、積層体を得る。ここで、プレ熱伝導シートの折畳による積層体の形成は、特に限定されることなく、折畳機を用いてプレ熱伝導シートを一定幅で折り畳むことにより行うことができる。また、プレ熱伝導シートの捲回による積層体の形成は、特に限定されることなく、プレ熱伝導シートの短手方向または長手方向に平行な軸の回りにプレ熱伝導シートを捲き回すことにより行うことができる。
ここで、通常、積層体形成工程で得られる積層体において、プレ熱伝導シートの表面同士の接着力は、プレ熱伝導シートを積層する際の圧力や折畳または捲回する際の圧力により充分に得られる。しかし、接着力が不足する場合や、積層体の層間剥離を十分に抑制する必要がある場合には、プレ熱伝導シートの表面を溶剤で若干溶解させた状態で積層体形成工程を行ってもよいし、プレ熱伝導シートの表面に接着剤を塗布した状態またはプレ熱伝導シートの表面に接着層を設けた状態で積層体形成工程を行ってもよい。
なお、プレ熱伝導シートの表面を溶解させる際に用いる溶剤としては、特に限定されることなく、プレ熱伝導シート中に含まれている樹脂成分を溶解可能な既知の溶剤を用いることができる。
また、プレ熱伝導シートの表面に塗布する接着剤としては、特に限定されることなく、市販の接着剤や粘着性の樹脂を用いることができる。中でも、接着剤としては、プレ熱伝導シート中に含まれている樹脂成分と同じ組成の樹脂を用いることが好ましい。そして、プレ熱伝導シートの表面に塗布する接着剤の厚さは、例えば、10μm以上1000μm以下とすることができる。
更に、プレ熱伝導シートの表面に設ける接着層としては、特に限定されることなく、両面テープなどを用いることができる。
なお、層間剥離を抑制する観点からは、得られた積層体は、積層方向に0.05MPa以上1.0MPa以下の圧力で押し付けながら、20℃以上100℃以下で1〜30分プレスすることが好ましい。
なお、組成物に繊維状炭素材料を加えた場合、あるいは粒子状炭素材料として膨張化黒鉛を使用した場合には、プレ熱伝導シートを積層、折畳または捲回して得られる積層体にて、膨張化黒鉛や繊維状炭素材料が積層方向に略直交する方向に配列していると推察される。
[スライス工程]
スライス工程では、積層体形成工程で得られた積層体を、積層方向に対して45°以下の角度でスライスし、積層体のスライス片よりなる熱伝導シートを得る。ここで、積層体をスライスする方法としては、特に限定されることなく、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられる。中でも、熱伝導シートの厚みを均一にし易い点で、ナイフ加工法が好ましい。また、積層体をスライスする際の切断具としては、特に限定されることなく、スリットを有する平滑な盤面と、このスリット部より突出した刃部とを有するスライス部材(例えば、鋭利な刃を備えたカンナやスライサー)を用いることができる。
ここで、前記刃部として用いることができる刃の実施形態について、図面を参照しながら説明する。
刃部を備える1枚の刃は、刃先の表裏両側が切刃となっている「両刃」であってもよく、刃の表側のみが切刃となっている「片刃」であってもよい。刃先1の断面図である図1〜4を参照すると、両刃は左右両側が切刃2,3となっており(図1〜3)、片刃は左右のうち表側に相当する片側のみが切刃2となっている(図4)。
また、刃先1の断面形状は、特に限定されず、刃先1の最先端を通る中心軸4に対して、非対称でも対称でもよい。ここで、刃先の形状が中心軸に対して対称な刃を「対称刃」(図2)、刃先の形状が中心軸に対して非対称な刃を「非対称刃」(図3)と称する。刃先の断面図において、中心軸に対し左右両側の切刃がそれぞれ構成する角度を、それぞれ、「中心角」と称し、それら中心角の和が、刃先の角度(以下、「刃角」とも称する)である。例えば、両刃の刃先の断面図である図1〜3において、中心軸4に対して左側の切刃2が構成する角度が中心角aであり、中心軸4に対して右側3の切刃が構成する角度が中心角bである。刃角は60度以下であることが好ましい。中心角a,bの角度は、特に限定されないが、好ましくは、刃角が60度以下となるように、それぞれ選択することができる。例えば、図2のような両刃の対称刃で、両側の中心角a,bがそれぞれ20度の場合、刃角はaとbとの和である40度となる。図3のような両刃の非対称刃の場合、中心角a,bは、それぞれ0度より大きく互いに異なる角度を有し、好ましくは、aとbの和(刃角)が60度以下となるように選択することができる。また、図4のように、非対称刃で片側の中心角aが0度より大きく、他方の中心角bが0度である場合は、1つの切刃2と1つの峰6とを有する片刃となる。
尚、中心軸4は、次のように設定される。刃全体7を横から見た図5(a)において、刃先の最先端から刃の根元までを「刃高」10とし、刃の表側8から裏側9までを「刃厚」11とする。図5(b)は、図5(a)に示す刃全体7を、刃の表側8から見た図である。刃全体を横から見た図6および7において、刃高10に対して垂直な面で刃を切断した断面において、刃高10から刃厚11の方向に垂線13を引き、垂線13の長さが最長となる垂線を「基準線」14とする(図6(a),7(a))。この基準線14から刃の先端方向に垂線15を引き、垂線15の長さが最長となる垂線およびその延長線を「中心軸」4とする(図6(b),7(b))。上述するように、中心軸4は、刃先の最先端を通る。
また、刃は、図1〜7に示すような、1つの切刃2または3が刃の中心軸4に対して1つの面を有する1段刃であってもよく、図8に示すような、1つの切刃2または3が刃の中心軸4に対して傾斜角度の異なる2つの面を有する2段刃でも構わない。2段刃の場合、刃先の最先端(2段目)を構成する中心角a,bの和が刃角5である。ここで、2段刃の刃角を便宜的に「刃角α」と称する。また、刃の中心軸4に対して、刃先の根元側(1段目)の傾斜角度の面を刃先の最先端方向に延長させた二点鎖線で構成される中心角をc,dとし、c、dの和である刃角16を便宜的に「刃角β」と称する。2段刃において、刃角αと刃角βの角度は、互いに異なり、好ましくは0度より大きく60度以下である(0度<刃角α,刃角β≦60度)。特に限定されないが、刃角αが刃角βより大きい(刃角α>刃角β)ことが好ましい。これによりカールを抑制する効果があるからである。一方、刃角αが刃角βより小さい(刃角α<刃角β)の場合、先端が鋭利になる反面、局所的に力がかかるため刃が折れやすくなるという欠点がある。従って、刃角αおよび刃角βは、0度<刃角β<刃角α≦60度であることが好ましい。
当該刃部を構成する刃の枚数は、特に限定されず、例えば、1枚の刃からなる1枚刃で構成されていてもよく、2枚の刃からなる2枚刃で構成されていてもよい。
図9(a),9(b)に例示するように、2枚刃は、1枚の表刃17と1枚の裏刃18とで構成され、表刃17と裏刃18とは刀身同士が接触して配置される。切削の際に、切削対象物に近い側に位置する刃が表刃17であり、切削対象物から遠い方の刃が裏刃18である。表刃と裏刃は、当該2枚刃が刃として機能を果たす(すなわち、切削機能を有する)限りにおいて、スリット部から突出した刃先の最先端同士の高さが、同じでも異なってもよい(すなわち、揃っていても、上下にずれていてもよい)。
また、2枚の刃は、それぞれ、片刃であっても両刃であってもよい。例えば、表刃と裏刃の双方が片刃であってもよく(図9(a))、表刃と裏刃の双方が両刃であってもよく、表刃と裏刃のいずれか一方が片刃であり他方が両刃であってもよい(図9(b))。表刃と裏刃の一方または両方が片刃である場合、当該2枚刃が刃として機能を果たす(すなわち、切削機能を有する)限りにおいて、他方の刃の刀身と接触する側は、切刃(表)側と峰(裏)側のどちらにも限定されない。
例えば、図9(a)は、表刃17と裏刃18双方が片刃であり、互いに峰側同士で接触し、裏刃の刃先の最先端が表刃の刃先の最先端より低く(すなわち、下に)ずれて配置された2枚刃の一実施形態である。また、図9(b)は、表刃17が片刃で裏刃18が両刃であり、表刃が峰側で裏刃と接触し、裏刃の刃先の最先端が表刃の刃先の最先端より低く(すなわち、下に)ずれて配置された2枚刃の一実施形態である。
また、2枚の刃のうちの一方または両方の刃が両刃の場合、当該両刃は、対称刃であっても非対称刃であってもよい。
また、2枚の刃は、それぞれ、1段刃であっても2段刃であってもよい。
また、刃の材質は特に特定されず、金属、セラミック、プラスチックいずれでもよいが、特に衝撃に耐える観点から超硬合金が望ましい。すべり性向上、切削性向上目的で、刃の表面にシリコーン、フッ素等をコーティングしてもよい。
なお、熱伝導シートの熱伝導性を高める観点からは、積層体をスライスする角度は、積層方向に対して30°以下であることが好ましく、積層方向に対して15°以下であることがより好ましく、積層方向に対して略0°である(即ち、積層方向に沿う方向である)ことが好ましい。
また、積層体を容易にスライスする観点からは、スライスする際の積層体の温度は−20℃以上40℃以下とすることが好ましく、10℃以上30℃以下とすることがより好ましい。更に、同様の理由により、スライスする積層体は、積層方向とは垂直な方向に圧力を負荷しながらスライスすることが好ましく、積層方向とは垂直な方向に0.1MPa以上0.5MPa以下の圧力を負荷しながらスライスすることがより好ましい。このようにして得られた熱伝導シート内では、粒子状炭素材料や繊維状炭素材料が厚み方向に配列していると推察される。従って、上述の工程を経て調製された熱伝導シートは、厚み方向の熱伝導性だけでなく、導電性も高い。
また、上述のように調製した熱伝導シートを厚み方向に複数枚重ね合わせて、所定の時間静置することによって一体化させたものを、熱伝導シートとして使用してもよい。このようにして得られた熱伝導シート内では、粒子状炭素材料や繊維状炭素材料が厚み方向に配列したままであると推察される。従って、上述のように調製した熱伝導シートを厚み方向に複数枚重ね合わせて一体化させることにより、厚み方向の熱伝導性や導電性を損なうことなく、使用目的に応じて所望の厚さの熱伝導シートを得ることができる。
(熱伝導シートの用途)
本発明の製造方法に従って製造した熱伝導シートは、熱伝導性、強度、導電性に優れている。従って、複合材料シートおよび熱伝導シートは、例えば、各種機器および装置などにおいて使用される放熱材料、放熱部品、冷却部品、温度調節部品、電磁波シールド部材、電磁波吸収部材、被圧着物を加熱圧着する場合に被圧着物と加熱圧着装置との間に介在させる熱圧着用ゴムシートとして好適である。
ここで、各種機器および装置などとしては、特に限定されることなく、サーバー、サーバー用パソコン、デスクトップパソコン等の電子機器;ノートパソコン、電子辞書、PDA、携帯電話、ポータブル音楽プレイヤー等の携帯電子機器;液晶ディスプレイ(バックライトを含む)、プラズマディスプレイ、LED、有機EL、無機EL、液晶プロジェクタ、時計等の表示機器;インクジェットプリンタ(インクヘッド)、電子写真装置(現像装置、定着装置、ヒートローラ、ヒートベルト)等の画像形成装置;半導体素子、半導体パッケージ、半導体封止ケース、半導体ダイボンディング、CPU、メモリ、パワートランジスタ、パワートランジスタケース等の半導体関連部品;リジッド配線板、フレキシブル配線板、セラミック配線板、ビルドアップ配線板、多層基板等の配線基板(配線板にはプリント配線板なども含まれる);真空処理装置、半導体製造装置、表示機器製造装置等の製造装置;断熱材、真空断熱材、輻射断熱材等の断熱装置;DVD(光ピックアップ、レーザー発生装置、レーザー受光装置)、ハードディスクドライブ等のデータ記録機器;カメラ、ビデオカメラ、デジタルカメラ、デジタルビデオカメラ、顕微鏡、CCD等の画像記録装置;充電装置、リチウムイオン電池、燃料電池等のバッテリー機器等が挙げられる。
(放熱装置)
本発明の放熱装置は、本発明の熱伝導シートを発熱体と放熱体の間に介在させてなることを特徴とする。本発明の放熱装置の使用温度は、250℃を超えないことが好ましく、−20〜200℃の範囲であるのがより好ましい。使用温度が250℃を超えると、樹脂成分の柔軟性が急激に低下し、放熱特性が低下する場合があるからである。当該使用温度の発熱体としては、例えば、半導体パッケージ、ディスプレイ、LED、電灯等が挙げられる。
一方、放熱体としては、例えば、アルミ、銅のフィン・板等を利用したヒートシンク、ヒートパイプに接続されているアルミや銅のブロック、内部に冷却液体をポンプで循環させているアルミや銅のブロック、ペルチェ素子及びこれを備えたアルミや銅のブロック等が挙げられる。
本発明の放熱装置は、発熱体と放熱体との間に、本発明の熱伝導シートを介在させて、その各々の面を接触させることで得ることができる。発熱体と放熱体との間に本発明の熱伝導シートを介在させ、それらを充分に密着させた状態で固定できる方法であれば、接触させる方法に特に制限はないが、密着を持続させる観点から、ばねを介してねじ止めする方法、クリップで挟む方法等のように押し付ける力が持続する接触方法が好ましい。
本発明の放熱装置は、発熱体と放熱体との間に、比較的高い圧力下で熱伝導性に優れる本発明の熱伝導シートを介在させてなるため、発熱体と放熱体との間に比較的高い圧力が加わる使用環境下で優れた放熱特性を有することができる。また、本発明の熱伝導シートは適度な硬さと粘着性とを併せ持ち、取扱い性に優れるため、本発明の放熱装置は、製造、保守点検、修理などにおける作業性や、耐用性に優れる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
実施例および比較例において、熱伝導シートのアスカーC硬度、熱抵抗、並びに、タックは、それぞれ以下の方法を使用して測定または評価した。
(評価方法)
<アスカーC硬度>
熱伝導シートのアスカーC硬度の測定は、日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計(高分子計器社製、商品名「ASKER CL−150LJ」を使用して温度25℃及び70℃で行った。
具体的には、実施例および比較例で得られた熱伝導シートを幅25mm×長さ50mm×厚さ0.5mmの大きさに切り取り、24枚重ね合わせることにより試験片を得た。得られた試験片を温度25℃に保たれた恒温室内に48時間以上静置することにより、試験体としての熱伝導シート層を得た。次に、指針が95〜98となるようにダンパー高さを調整し、熱伝導シート層とダンパーとを衝突させた。当該衝突から60秒後の熱伝導シート層のアスカーC硬度を、硬度計(高分子計器社製、商品名「ASKER CL−150LJ」)を用いて2回測定し、測定結果の平均値を採用した。アスカーC硬度が小さい程、柔軟かつ可撓性に優れることを示し、アスカーC硬度が大きい程、硬いことを示す。結果を表1に示す。
また上記の恒温室の温度を70℃にて同様の試験を行うことで70℃におけるアスカーC硬度の測定を行った。
<熱抵抗値>
熱伝導シートの熱抵抗値の測定は、樹脂材料熱抵抗試験器(株式会社日立テクノロジーアンドサービス製、商品名「C47108」)を使用した。試料サイズは1cm角に切り出し、一定の圧力を加えた時の熱抵抗値を測定した。試料温度は50℃になるように測定を行った。熱抵抗値が小さい程、熱伝導性に優れ、発熱体と放熱体との間に介在させて放熱装置とする際の放熱特性に優れていることを示す。
加圧する圧力は0.1MPaと0.5MPaの2点で評価を行った。また、加圧力を0.1MPaから0.5MPaへ上昇させたときの熱抵抗値の低下率を「圧力上昇による熱抵抗低下率(倍)」として算出した。圧力上昇による熱抵抗低下率は、0.5MPa加圧下での熱抵抗値を0.1MPa加圧下での熱抵抗値で除して算出することができる。圧力上昇による熱抵抗低下率の値が小さい程、圧力上昇に伴う放熱特性の向上率が大きいことを示す。
<タック>
熱伝導シートのタックの測定は、プローブタック試験機(株式会社レスカ製、商品名「TAC1000」)を使用した。φ10mmのフラットな形状のプローブ先端を0.5N(50gf)の荷重で樹脂シートに10s間押付け、プローブを樹脂シートから引き離す時に要する力を測定した。測定温度は25℃とした。タックの測定値が小さいほど、粘着性が低く、取扱い性に優れることを示す。
尚、柔らかすぎてプローブから取り外すことが不可能な場合は、測定不能と評価した。
(CNTを含む繊維状の炭素ナノ構造体Aの調製)
国際公開第2006/011655号の記載に従って、スーパーグロース法によってSGCNTを含む繊維状の炭素ナノ構造体Aを得た。
得られた繊維状の炭素ナノ構造体Aは、G/D比が3.0、BET比表面積が800m/g、質量密度が0.03g/cmであった。また、透過型電子顕微鏡を用い、無作為に選択した100本の繊維状の炭素ナノ構造体Aの直径を測定した結果、平均直径(Av)が3.3nm、直径の標本標準偏差(σ)に3を乗じた値(3σ)が1.9nm、それらの比(3σ/Av)が0.58、平均長さが100μmであった。また、得られた繊維状の炭素ナノ構造体Aは、主に単層CNT(「SGCNT」とも称する)により構成されていた。
(繊維状の炭素ナノ構造体Aの易分散性集合体の調製)
<分散液の調製>
繊維状炭素材料としての繊維状の炭素ナノ構造体Aを400mg量り取り、溶媒としてのメチルエチルケトン2L中に混ぜ、ホモジナイザーにより2分間撹拌し、粗分散液を得た。湿式ジェットミル(株式会社常光製、商品名「JN−20」)を使用し、得られた粗分散液を湿式ジェットミルの0.5mmの流路に100MPaの圧力で2サイクル通過させて、繊維状炭素ナノ構造体Aをメチルエチルケトンに分散させた。そして、固形分濃度0.20質量%の分散液Aを得た。
<溶媒の除去>
その後、得られた分散液Aをキリヤマろ紙(No.5A)を用いて減圧ろ過し、シート状の易分散性集合体を得た。
(実施例1)
<組成物の調製>
繊維状炭素材料としての繊維状の炭素ナノ構造体Aの易分散性集合体を0.1質量部と、粒子状炭素材料としての膨張化黒鉛(伊藤黒鉛工業株式会社製、商品名「EC−50」、平均粒子径:250μm)を85質量部と、樹脂としての常温固体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―704BP」)40質量部および常温液体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―101」)45質量部と、可塑剤としてのセバシン酸エステル(大八化学工業株式会社製、商品名「DOS」)5質量部と、溶媒としての酢酸エチル100部の存在下においてホバートミキサー(株式会社小平製作所製、商品名「ACM−5LVT型」)を用いて5分攪拌混合した。得られた混合物を30分真空脱泡し、脱泡と同時に酢酸エチルの除去を行って、繊維状の炭素ナノ構造体A(SGCNT)と、膨張化黒鉛とを含む組成物を得た。そして、得られた組成物を解砕機に投入し、10秒間解砕した。
<プレ熱伝導シートの作製>
次いで、解砕した組成物5gを、サンドブラスト処理を施した厚さ50μmのPETフィルム(保護フィルム)で挟み、ロール間隙550μm、ロール温度50℃、ロール線圧50kg/cm、ロール速度1m/分の条件にて圧延成形し、厚さ0.5mmのプレ熱伝導シートを得た。
<積層体の作製>
得られたプレ熱伝導シートを6cm×6cm×500μmに裁断し厚み方向に120枚両面テープで積層し、厚さ約6cmの積層体を得た。
<熱伝導シートの作製>
その後、プレ熱伝導シートの積層体の積層断面を、0.3MPaの圧力で押し付けながら、木工用スライサー(株式会社丸仲鐵工所製、商品名「超仕上げかんな盤スーパーメカS」を用いて、積層方向に対して0度の角度でスライス(換言すれば、積層されたプレ熱伝導シートの主面の法線方向にスライス)し、縦6cm×横6cm×厚さ500μmの熱伝導シートを得た。木工用スライサーのナイフは、2枚の片刃が、切刃の反対側同士で接触し、表刃の刃先の最先端が裏刃の刃先の最先端よりも0.5mm高くスリット部からの突出長さ0.11mmに配置され、表刃の刃角21°である2枚刃のものを用いた。
得られた熱伝導シートについて、上記評価方法に従って、アスカーC硬度、熱抵抗値、ならびにタックを測定した。結果を表1に示す。
(実施例2)
スライスの厚みを250μmとした以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(実施例3)
粒子状炭素材料の量を130質量部に変更した以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(実施例4)
粒子状炭素材料の量を60質量部に変更した以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(実施例5)
繊維状炭素材料としての炭素ナノ構造体Aの易分散性集合体を加えなかった以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(実施例6)
常温固体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―704BP」)の量を60質量部に変更し、常温液体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―101」)の量を25質量部に変更した以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(実施例7)
常温固体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―704BP」)の量を20質量部に変更し、常温液体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―101」)の量を65質量部に変更した以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(比較例1)
粒子状炭素材料の量を130質量部に変更し、樹脂として常温固体の熱可塑性フッ素ゴム(ダイキン工業株式会社製、商品名「ダイエルG―912」)80質量部および常温液体の熱可塑性アクリル樹脂(広野化学工業株式会社製、商品名「ユーロック」)10質量部を使用し、可塑剤としてリン酸エステル(大八化学工業株式会社製、商品名「TCP」)10質量部を用いた以外は実施例1と同様にして熱伝導シートを製造し、測定を行った。結果を表1に示す。
(比較例2)
熱伝導シートに替えて、熱伝導性シリコーン組成物としての市販品のシリコーングリース(信越化学工業株式会社製、商品名「G―751」)を用いて、測定を行った。結果を表1に示す。
Figure 2017145954
表1より、樹脂と粒子状炭素材料とを含み、25℃でのアスカーC硬度が60以上であり、0.5MPa加圧下の熱抵抗値が0.20℃/W以下である実施例1〜7の熱伝導シートでは、0.5MPa加圧下の熱抵抗値が0.20℃/W超である比較例1の熱伝導シートと比べ、0.1MPa加圧下の熱抵抗値が大幅に低く、比較的高く且つ幅広い圧力下で高い熱伝導性を有し、放熱特性に優れることが分かる。また、0.5MPa加圧下および0.1MPa加圧下で低い熱抵抗値を示す一方でタックが測定不能であった比較例2の熱伝導性シリコーン組成物と比べ、硬さおよび粘着性をバランス良く有し、取扱い性に優れることが分かる。
本発明の熱伝導シートは、取扱い性に優れ、比較的高い圧力下で熱伝導性に優れることから、製造、保守点検、修理などにおける作業性に優れ、耐用性に優れ、比較的高い圧力が加わる使用環境下で優れた放熱特性を有する放熱装置を提供することができる。本発明の熱伝導シートの製造方法は、取扱い性に優れ、比較的高い圧力下で熱伝導性に優れる熱伝導シートを提供することができる。また、本発明の放熱装置は、発熱体と放熱体との間に比較的高い圧力が加わる使用環境下で好適に使用することができる。
1.刃先
2.切刃
3.切刃
4.中心軸
5.刃角
6.峰
7.刃全体
8.表
9.裏
10.刃高
11.刃厚
12.刃幅
13.垂線
14.基準線
15.垂線
16.刃角
17.表刃
18.裏刃

Claims (7)

  1. 樹脂と粒子状炭素材料とを含み、25℃でのアスカーC硬度が60以上であり、0.5MPa加圧下の熱抵抗の値が0.20℃/W以下である、熱伝導シート。
  2. 0.1MPa加圧下の熱抵抗の値が0.40℃/W以下である、請求項1に記載の熱伝導シート。
  3. プローブタック試験で測定したタックが0.85N以下である、請求項1又は2に記載の熱伝導シート。
  4. 前記樹脂が熱可塑性樹脂である、請求項1〜3のいずれか1項に記載の熱伝導シート。
  5. 前記熱可塑性樹脂が、常温固体の熱可塑性樹脂と常温液体の熱可塑性樹脂との組み合わせである、請求項4に記載の熱伝導シート。
  6. 発熱体と放熱体との間に請求項1〜5のいずれか1項に記載の熱伝導シートを介在させてなる、放熱装置。
  7. 樹脂と、粒子状炭素材料とを含む組成物を加圧してシート状に成形し、プレ熱伝導シートを得る工程と、
    該プレ熱伝導シートを厚み方向に複数枚積層して、或いは、該プレ熱伝導シートを折畳または捲回して、積層体を得る工程と、
    該積層体を、積層方向に対して45°以下の角度でスライスし、熱伝導シートを得る工程と、
    を含む、熱伝導シートの製造方法。
JP2018501648A 2016-02-25 2017-02-17 熱伝導シートおよびその製造方法、ならびに放熱装置 Active JP6947158B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016034816 2016-02-25
JP2016034816 2016-02-25
PCT/JP2017/006010 WO2017145954A1 (ja) 2016-02-25 2017-02-17 熱伝導シートおよびその製造方法、ならびに放熱装置

Publications (2)

Publication Number Publication Date
JPWO2017145954A1 true JPWO2017145954A1 (ja) 2018-12-13
JP6947158B2 JP6947158B2 (ja) 2021-10-13

Family

ID=59685212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018501648A Active JP6947158B2 (ja) 2016-02-25 2017-02-17 熱伝導シートおよびその製造方法、ならびに放熱装置

Country Status (6)

Country Link
US (1) US10731067B2 (ja)
EP (1) EP3422831B1 (ja)
JP (1) JP6947158B2 (ja)
KR (1) KR20180116261A (ja)
CN (1) CN108605422B (ja)
WO (1) WO2017145954A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705329B2 (ja) * 2016-07-27 2020-06-03 日本ゼオン株式会社 複合シートおよび熱圧着方法
JP7031275B2 (ja) * 2017-12-14 2022-03-08 日本ゼオン株式会社 熱圧着用シート
JP7172031B2 (ja) * 2017-12-19 2022-11-16 日本ゼオン株式会社 熱伝導シートの製造方法
JP7214971B2 (ja) * 2018-03-29 2023-01-31 日本ゼオン株式会社 複合シート及びその製造方法
EP3778752A4 (en) * 2018-03-30 2022-04-13 Zeon Corporation UNCROSSED ELASTOMERIC COMPOSITION AND CROSSLINKED PRODUCT THEREOF
JP7167527B2 (ja) * 2018-07-31 2022-11-09 日本ゼオン株式会社 熱伝導シートの製造方法
JP7354554B2 (ja) * 2019-02-26 2023-10-03 日本ゼオン株式会社 熱伝導シートおよび熱伝導シートの製造方法
JP7434712B2 (ja) 2019-02-26 2024-02-21 日本ゼオン株式会社 熱伝導シートおよびその製造方法
US10724810B1 (en) 2019-05-22 2020-07-28 Zeon Corporation Heat conductive sheet
KR102047831B1 (ko) 2019-07-09 2019-11-22 한국생산기술연구원 전자파 차폐 기능 및 방열 기능을 갖는 액체 금속 입자 코팅 시트 부재 및 그 제조 방법
KR20210007103A (ko) 2019-07-10 2021-01-20 한국생산기술연구원 액체 금속 입자를 포함하는 필름 부재
US20220120512A1 (en) * 2020-10-20 2022-04-21 The Boeing Company Thermal transfer blanket system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132856A (ja) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
JP2011077160A (ja) * 2009-09-29 2011-04-14 Denki Kagaku Kogyo Kk 太陽電池モジュール
JP2011162642A (ja) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP2018501651A (ja) * 2014-12-04 2018-01-18 ソイテック 高周波用途のための構造

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781412A (en) * 1996-11-22 1998-07-14 Parker-Hannifin Corporation Conductive cooling of a heat-generating electronic component using a cured-in-place, thermally-conductive interlayer having a filler of controlled particle size
JP2002138205A (ja) * 2000-11-02 2002-05-14 Polymatech Co Ltd 熱伝導性成形体
JP3608612B2 (ja) * 2001-03-21 2005-01-12 信越化学工業株式会社 電磁波吸収性熱伝導組成物及び熱軟化性電磁波吸収性放熱シート並びに放熱施工方法
US7138029B2 (en) * 2003-10-14 2006-11-21 Advanced Energy Technology Inc. Heat spreader for plasma display panel
WO2006011655A1 (ja) 2004-07-27 2006-02-02 National Institute Of Advanced Industrial Scienceand Technology 単層カーボンナノチューブおよび配向単層カーボンナノチューブ・バルク構造体ならびにそれらの製造方法・装置および用途
KR100840484B1 (ko) * 2004-12-20 2008-06-20 닛폰 바루카 고교 가부시키가이샤 고무 조성물, 플라즈마 처리장치용 실링재
JP4686274B2 (ja) * 2005-06-30 2011-05-25 ポリマテック株式会社 放熱部品及びその製造方法
JP5381102B2 (ja) * 2006-11-01 2014-01-08 日立化成株式会社 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
CN103396642A (zh) 2008-05-23 2013-11-20 日立化成工业株式会社 散热片及散热装置
JP4993135B2 (ja) 2008-07-08 2012-08-08 信越化学工業株式会社 熱伝導性シリコーン組成物
KR101623781B1 (ko) * 2009-02-19 2016-05-24 닛폰 바루카 고교 가부시키가이샤 기능성 성형체 및 그 제조 방법
JP2012049496A (ja) * 2010-01-29 2012-03-08 Nitto Denko Corp 放熱構造体
JP5699556B2 (ja) * 2010-11-15 2015-04-15 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法、及び放熱装置
JP5738652B2 (ja) * 2011-03-30 2015-06-24 日東電工株式会社 熱伝導性シートの製造方法および熱伝導性シート
JP2013177564A (ja) 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シート、熱伝導性シート形成用粒子集合物粉体、および、これらの製造方法
CN102675857A (zh) * 2012-06-11 2012-09-19 佛山市南海区研益机电有限公司 导热绝缘热固性组合物及其制备方法和应用
TWI486387B (zh) * 2012-07-07 2015-06-01 Dexerials Corp Method for manufacturing thermally conductive sheets
JP6152030B2 (ja) * 2013-03-29 2017-06-21 積水化学工業株式会社 電子機器用熱伝導性発泡体シート
JP6069112B2 (ja) * 2013-06-19 2017-02-01 デクセリアルズ株式会社 熱伝導性シート及び熱伝導性シートの製造方法
JP5779693B2 (ja) * 2013-06-27 2015-09-16 デクセリアルズ株式会社 熱伝導性シート、及びその製造方法、並びに半導体装置
EP3258489B1 (en) * 2015-02-10 2022-05-11 Zeon Corporation Heat transfer sheet and method for producing same
TWI561623B (en) * 2015-09-07 2016-12-11 Polytronics Technology Corp Thermal interface material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132856A (ja) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
JP2011077160A (ja) * 2009-09-29 2011-04-14 Denki Kagaku Kogyo Kk 太陽電池モジュール
JP2011162642A (ja) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP2018501651A (ja) * 2014-12-04 2018-01-18 ソイテック 高周波用途のための構造

Also Published As

Publication number Publication date
WO2017145954A1 (ja) 2017-08-31
EP3422831A4 (en) 2019-10-16
EP3422831B1 (en) 2021-12-01
US20190048244A1 (en) 2019-02-14
JP6947158B2 (ja) 2021-10-13
US10731067B2 (en) 2020-08-04
CN108605422A (zh) 2018-09-28
CN108605422B (zh) 2019-12-17
KR20180116261A (ko) 2018-10-24
EP3422831A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
WO2017145954A1 (ja) 熱伝導シートおよびその製造方法、ならびに放熱装置
JP6930523B2 (ja) 熱伝導シートおよびその製造方法、ならびに放熱装置
JP7327574B2 (ja) 放熱装置
WO2017145956A1 (ja) 積層体およびその製造方法、ならびに二次シートおよび二次シートの製造方法
WO2017081867A1 (ja) 複合材料シートおよび熱伝導シートの製造方法
JP2017183680A (ja) プレ熱伝導シートの製造方法および熱伝導シートの製造方法
JP2017183679A (ja) プレ熱伝導シートの製造方法および熱伝導シートの製造方法
WO2018025587A1 (ja) 熱伝導シート
JP7131142B2 (ja) 熱伝導シート
JP6705325B2 (ja) 熱伝導シート用複合粒子およびその製造方法、熱伝導一次シートおよび熱伝導二次シートの製造方法、熱伝導一次シート付き発熱体の製造方法、並びに、積層シート付き発熱体の製造方法
JP7218510B2 (ja) 熱伝導シート
TWI731124B (zh) 熱傳導片材
JP2020055895A (ja) 熱伝導シート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6947158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150