JPWO2016136950A1 - Semiconductor film manufacturing method and dye-sensitized solar cell - Google Patents

Semiconductor film manufacturing method and dye-sensitized solar cell Download PDF

Info

Publication number
JPWO2016136950A1
JPWO2016136950A1 JP2017502512A JP2017502512A JPWO2016136950A1 JP WO2016136950 A1 JPWO2016136950 A1 JP WO2016136950A1 JP 2017502512 A JP2017502512 A JP 2017502512A JP 2017502512 A JP2017502512 A JP 2017502512A JP WO2016136950 A1 JPWO2016136950 A1 JP WO2016136950A1
Authority
JP
Japan
Prior art keywords
particles
semiconductor
film
aggregated
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017502512A
Other languages
Japanese (ja)
Inventor
俊介 功刀
俊介 功刀
友章 片桐
友章 片桐
尚洋 藤沼
尚洋 藤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2016136950A1 publication Critical patent/JPWO2016136950A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

[1]平均粒子径が1nm以上100nm未満の範囲である半導体粒子をアルコール中に分散させた分散液を得た後、前記分散液から前記アルコールを蒸発させて前記半導体粒子を乾燥することにより、前記半導体粒子同士が凝集した凝集粒子を得て、前記凝集粒子を基材に吹き付けることにより、前記基材上に半導体膜を製膜する、半導体膜の製造方法。[2]前記半導体粒子が前記アルコール中に沈降した状態で、前記アルコールを蒸発させて前記半導体粒子を乾燥する前記製造方法。[3]50℃未満の温度で前記アルコールを蒸発させる前記製造方法。[4]前記製造方法によって得られた半導体膜に、増感色素を吸着させてなる光電極を備えた色素増感太陽電池。[1] After obtaining a dispersion in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol, evaporating the alcohol from the dispersion and drying the semiconductor particles, A method for producing a semiconductor film, comprising obtaining aggregated particles in which the semiconductor particles are aggregated and spraying the aggregated particles on a substrate to form a semiconductor film on the substrate. [2] The manufacturing method, wherein the semiconductor particles are dried by evaporating the alcohol in a state where the semiconductor particles are settled in the alcohol. [3] The production method, wherein the alcohol is evaporated at a temperature of less than 50 ° C. [4] A dye-sensitized solar cell provided with a photoelectrode obtained by adsorbing a sensitizing dye to the semiconductor film obtained by the production method.

Description

本発明は、半導体膜の製造方法、及び色素増感太陽電池に関する。
本願は、2015年2月26日に、日本に出願された特願2015−037233号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a semiconductor film manufacturing method and a dye-sensitized solar cell.
This application claims priority based on Japanese Patent Application No. 2015-037233 for which it applied to Japan on February 26, 2015, and uses the content here.

色素増感太陽電池の光電極には、光増感色素を吸着させた半導体からなる多孔質膜用いられる。そのような多孔質膜の製造については、粉体吹付法による製膜法が各種検討されている。例としては、エアロゾルデポジション法(AD法)、スプレー法、コールドスプレー法、静電スプレー法、溶射法などが挙げられる。これらの方法は、製膜する薄膜の原料となる微粒子の粉体を搬送ガスによって被処理基材に噴き付け、その衝突エネルギーを利用して製膜する方法である。ただし、製膜時に微粒子が脆性変形を伴いながら密に充填されていく結果として、緻密な膜が形成され易く、多孔質な膜を製膜することが比較的難しいという背景がある。   For the photoelectrode of the dye-sensitized solar cell, a porous film made of a semiconductor adsorbed with a photosensitizing dye is used. For the production of such a porous membrane, various film-forming methods using a powder spraying method have been studied. Examples include an aerosol deposition method (AD method), a spray method, a cold spray method, an electrostatic spray method, and a thermal spray method. These methods are methods in which fine particle powder, which is a raw material for a thin film to be formed, is sprayed onto a substrate to be processed by a carrier gas, and a film is formed using the collision energy. However, as a result of the fine particles being densely packed with brittle deformation during film formation, there is a background that a dense film is easily formed and it is relatively difficult to form a porous film.

通常、形成する多孔質膜の比表面積を増やすためには、吹き付ける微粒子の粒径を小さくして、微粒子同士が脆性変形することなく部分的に接合することが求められる。しかし、小さい粒子は吹き付け時の衝突エネルギーが小さいため、互いに接合し難く、基材から剥離し易い圧粉体になり易い。   Usually, in order to increase the specific surface area of the porous film to be formed, it is required to reduce the particle size of the fine particles to be sprayed and to partially bond the fine particles without causing brittle deformation. However, since the small particles have a small collision energy when sprayed, they are difficult to be joined to each other and easily become a green compact that can be easily peeled off from the substrate.

上記問題を解決するために、特許文献1には、AD法において大小2種類以上の異径粒子を混合して製膜することで、脆性変形を受けない小径粒子同士が接合した多孔質膜の製膜方法が開示されている。この製膜方法によれば、粒子質量が重い大径粒子を小径粒子に添加した粉体を基材に吹き付けて、大径粒子の打ち付けによって衝突エネルギーを発生させ、小径粒子同士を接合させた多孔質膜を形成することができる。   In order to solve the above problem, Patent Document 1 discloses a porous membrane in which small-diameter particles that are not subjected to brittle deformation are joined by forming a film by mixing two or more kinds of large and small different-diameter particles in the AD method. A film forming method is disclosed. According to this film-forming method, a powder in which large particles having a large particle mass are added to small particles is sprayed on a substrate, collision energy is generated by striking the large particles, and the small particles are joined together. A membrane can be formed.

特許文献2には、小径粒子と結着剤を混ぜた圧密状態で焼成し、得られた焼成体を乳鉢等で物理的に粉砕することにより、小径粒子同士が焼結してなる多孔質の大径粒子を得て、この多孔質の大径粒子の粉体を基材に吹き付けて、多孔質膜を製膜する方法が開示されている。   Patent Document 2 discloses a porous structure in which small-diameter particles are sintered together by firing in a compacted state in which small-diameter particles and a binder are mixed, and physically pulverizing the obtained fired body in a mortar or the like. A method is disclosed in which a large-diameter particle is obtained, and a powder of the porous large-diameter particle is sprayed onto a substrate to form a porous film.

国際公開第2012/161161号International Publication No. 2012/161161 特開2004−33818号公報JP 2004-33818 A

特許文献1の製膜方法で得られた多孔質膜には大径粒子の一部が取り込まれるため(図7、図8)、多孔質膜中に多孔度が乱れたり低下したりする領域が不均一に存在する。この多孔質膜に入射した光は部分的に混入した大径粒子によって散乱されるため、当該多孔質膜の光透過性が低下する場合がある。   Since some of the large-diameter particles are taken into the porous film obtained by the film forming method of Patent Document 1 (FIGS. 7 and 8), there are regions in which the porosity is disturbed or reduced in the porous film. It exists unevenly. Since the light incident on the porous film is scattered by the large-diameter particles partially mixed, the light permeability of the porous film may be lowered.

特許文献2の製膜方法では、吹き付け用の多孔質の大径粒子を準備するために行う焼成及び粉砕等の手間が煩雑である、という問題がある。
また、粉砕して得た大径粒子の粒度分布が広く(図9)、粒径400μm超の大径粒子が混入するため、ブラスト効果が生じてしまい、製膜体が破壊される又は製膜体の一部が削られて製膜速度が低下する、という課題がある。このため、吹き付ける前に巨大な大径粒子を分級して除く手間が生じ、吹き付け可能な大径粒子の収率(原料使用率)が大幅に低下する、という問題がある。
さらに、製膜した多孔質膜には、大径粒子内部の比較的密な多孔度と、大径粒子間の空隙における比較的疎な多孔度と、が併存するため、膜構造の均一性が欠けており、結果として比表面積や膜強度が低下する、という問題がある。
In the film forming method of Patent Document 2, there is a problem that troubles such as firing and pulverization performed for preparing porous large-diameter particles for spraying are complicated.
In addition, the particle size distribution of the large-sized particles obtained by pulverization is wide (FIG. 9), and large-sized particles having a particle size of more than 400 μm are mixed, resulting in a blasting effect, which destroys the film-forming body or forms a film. There is a problem that a part of the body is cut and the film forming speed is lowered. For this reason, it takes time to classify and remove huge large-sized particles before spraying, and there is a problem that the yield of the large-sized particles that can be sprayed (raw material usage rate) is significantly reduced.
Furthermore, the porous film thus formed has a relatively dense porosity inside the large-diameter particles and a relatively sparse porosity in the voids between the large-diameter particles, so that the uniformity of the membrane structure is achieved. There is a problem that the specific surface area and film strength are reduced as a result.

本発明は、上記事情に鑑みてなされたものであり、吹き付ける粉体の準備が簡便で、半導体粒子同士が接合した多孔質膜が容易に得られる半導体膜の製造方法の提供、及びその方法で製膜された半導体膜を光電極として備えた色素増感太陽電池の提供を課題とする。   The present invention has been made in view of the above circumstances, and provides a method for manufacturing a semiconductor film, in which preparation of a powder to be sprayed is simple, and a porous film in which semiconductor particles are bonded to each other can be easily obtained. It is an object of the present invention to provide a dye-sensitized solar cell provided with a formed semiconductor film as a photoelectrode.

[1]平均粒子径が1nm以上100nm未満の範囲である半導体粒子をアルコール中に分散させた分散液を得た後、前記分散液から前記アルコールを蒸発させて前記半導体粒子を乾燥することにより、前記半導体粒子同士が凝集した凝集粒子を得て、前記凝集粒子を基材に吹き付けることにより、前記基材上に半導体膜を製膜する、半導体膜の製造方法。
[2]前記半導体粒子が前記アルコール中に沈降した状態で、前記アルコールを蒸発させて前記半導体粒子を乾燥する、前記[1]に記載の半導体膜の製造方法。
[3]50℃未満で前記アルコールを蒸発させる、前記[1]又は[2]に記載の半導体膜の製造方法。
[4]前記半導体粒子が金属酸化物半導体の粒子である、前記[1]〜[3]の何れか一項に記載の半導体膜の製造方法。
[5]前記半導体膜が多孔質膜である、前記[1]〜[4]の何れか一項に記載の半導体膜の製造方法。
[6]前記[1]〜[5]の何れか一項に記載の半導体膜の製造方法によって得られた半導体膜に、増感色素を吸着させてなる光電極を備えた、色素増感太陽電池。
[1] After obtaining a dispersion in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol, evaporating the alcohol from the dispersion and drying the semiconductor particles, A method for producing a semiconductor film, comprising obtaining aggregated particles in which the semiconductor particles are aggregated and spraying the aggregated particles on a substrate to form a semiconductor film on the substrate.
[2] The method for producing a semiconductor film according to [1], wherein the semiconductor particles are dried by evaporating the alcohol in a state where the semiconductor particles are precipitated in the alcohol.
[3] The method for producing a semiconductor film according to [1] or [2], wherein the alcohol is evaporated at a temperature lower than 50 ° C.
[4] The method for producing a semiconductor film according to any one of [1] to [3], wherein the semiconductor particles are metal oxide semiconductor particles.
[5] The method for producing a semiconductor film according to any one of [1] to [4], wherein the semiconductor film is a porous film.
[6] Dye-sensitized solar comprising a photoelectrode obtained by adsorbing a sensitizing dye to a semiconductor film obtained by the method for manufacturing a semiconductor film according to any one of [1] to [5] battery.

本発明の半導体膜の製造方法によれば、吹き付ける凝集粒子を準備するために原料粒子を焼成したり粉砕したりする必要がないため簡便である。また、凝集粒子の大きさ及び強度が適度であるため、従来のAD法と同様に基材に吹き付けることによって、比表面積が大きく、膜全体の多孔度及び光透過性が均一であり、構造的強度にも優れた多孔質の半導体膜が容易に得られる。   According to the method for producing a semiconductor film of the present invention, it is not necessary to sinter or pulverize the raw material particles in order to prepare the aggregated particles to be sprayed. In addition, since the size and strength of the aggregated particles are appropriate, the specific surface area is large by spraying on the substrate in the same manner as in the conventional AD method, the porosity and light transmittance of the entire film are uniform, and the structural A porous semiconductor film having excellent strength can be easily obtained.

本発明の色素増感太陽電池は、上記の優れた特性を有する半導体膜の多孔質構造に増感色素を吸着させてなる光電極を備えているため、光電変換効率やI−V特性等の性能が優れる。   Since the dye-sensitized solar cell of the present invention includes a photoelectrode in which a sensitizing dye is adsorbed to the porous structure of the semiconductor film having the above-described excellent characteristics, the photoelectric conversion efficiency, IV characteristics, etc. Excellent performance.

本発明の半導体膜の製造方法に適用可能な製膜装置の概略構成図である。It is a schematic block diagram of the film forming apparatus applicable to the manufacturing method of the semiconductor film of this invention. 実施例1で調製した凝集粒子の粒度分布である。2 is a particle size distribution of aggregated particles prepared in Example 1. FIG. 実施例1で調製した凝集粒子を電子顕微鏡で観察したSEM像である。It is the SEM image which observed the aggregated particle prepared in Example 1 with the electron microscope. 実施例1で製膜した多孔質膜の断面を電子顕微鏡で観察したSEM像である。2 is an SEM image obtained by observing a cross section of a porous film formed in Example 1 with an electron microscope. 比較例1で調製した原料粒子を電子顕微鏡で観察したSEM像である。It is the SEM image which observed the raw material particle prepared by the comparative example 1 with the electron microscope. 実施例1及び比較例1で作製した簡易セルのV−I特性を示すグラフである。6 is a graph showing VI characteristics of simple cells produced in Example 1 and Comparative Example 1. 特許文献1の方法によって、大径粒子と小径粒子を混合した原料粉体をAD法で吹き付ける様子と、製膜された多孔質膜中に大径粒子が混入した様子と、を示した模式図である。Schematic diagram showing a state in which raw material powder in which large particles and small particles are mixed is sprayed by the AD method and a state in which large particles are mixed in the formed porous film by the method of Patent Document 1. It is. 特許文献1の方法によって製膜した多孔質膜の断面を電子顕微鏡で観察したSEM像である。小径粒子によって構成された多孔質膜中に大径粒子が不均一に散在している。It is the SEM image which observed the cross section of the porous film formed by the method of patent document 1 with the electron microscope. Large particles are scattered unevenly in a porous film composed of small particles. 特許文献2の方法に従って準備した、小径粒子及び結着剤を混合して圧密状態で焼き固めた焼成体を乳鉢で粉砕して得た、多孔質の大径粒子の粉体の粒度分布である。It is a particle size distribution of a powder of porous large-diameter particles obtained by pulverizing a sintered body prepared in accordance with the method of Patent Document 2 by mixing a small-diameter particle and a binder and baking and compacting in a compacted state. . 小径粒子(平均粒子径20nm)と大径粒子(平均粒子径200nm)を混合して、乾燥して得た混合粉体を電子顕微鏡で観察したSEM写真である。It is the SEM photograph which observed the mixed powder obtained by mixing small particle | grains (average particle diameter 20nm) and large particle | grains (average particle diameter 200nm), and drying with the electron microscope. 小径粒子(平均粒子径20nm)と大径粒子(平均粒子径200nm)をエタノール中で混合して分散する処理を行い、その後に乾燥させて得た粉体を電子顕微鏡で観察したSEM写真である。It is the SEM photograph which observed the powder obtained by performing the process which mixes and disperse | distributes a small diameter particle (average particle diameter of 20 nm) and a large diameter particle (average particle diameter of 200 nm) in ethanol, and then dried with an electron microscope. .

以下、好適な実施の形態に基づき、図面を参照して本発明を説明するが、本発明はかかる実施形態に限定されない。   Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments, but the present invention is not limited to such embodiments.

《半導体膜の製造方法》
本発明の第一実施形態の半導体膜の製造方法は、平均粒子径が1nm以上100nm未満の範囲である半導体粒子をアルコール中に分散させた分散液を得た後、前記分散液から前記アルコールを蒸発させて前記半導体粒子を乾燥することにより、前記半導体粒子同士が凝集した凝集粒子を得て、前記凝集粒子を基材に吹き付けることにより、前記基材上に半導体膜を製膜する方法である。
<< Semiconductor Film Manufacturing Method >>
In the method for producing a semiconductor film according to the first embodiment of the present invention, after obtaining a dispersion in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol, the alcohol is added from the dispersion. A method of forming a semiconductor film on the substrate by obtaining the aggregated particles in which the semiconductor particles are aggregated by evaporating and drying the semiconductor particles and spraying the aggregated particles on the substrate. .

前記半導体粒子の種類は特に限定されず、公知の色素増感太陽電池の光電極を構成する半導体粒子が適用可能である。
前記半導体粒子を構成する半導体の種類は、バンドギャップ間の遷移が生じる半導体が好ましく、例えば、TiO,TiSrO,BaTiO,Nb,MgO,ZnO,WO,Bi,CdS,CdSe,CdTe,In,SnOなどが挙げられる。これらの半導体は、色素吸着が良好であり、増感色素を担持した光電極として良好に機能するため好ましい。光電変換効率を向上させる観点及び後述する凝集粒子を容易に形成できる観点から、酸化チタン、酸化亜鉛、チタン酸ストロンチウム、酸化第二錫などの金属酸化物半導体が好適である。これらの金属酸化物半導体からなる粒子が好適であるメカニズムとして、粒子表面の水酸基、極性基又は極性部位の2次結合力が好適な凝集性に寄与していると推測される。
前記半導体粒子は、1種を単独で使用してもよいし、2種以上を併用してもよい。
The kind of the semiconductor particles is not particularly limited, and semiconductor particles constituting a photoelectrode of a known dye-sensitized solar cell can be applied.
The semiconductor that constitutes the semiconductor particles is preferably a semiconductor in which a transition between band gaps occurs. For example, TiO 2 , TiSrO 3 , BaTiO 3 , Nb 2 O 5 , MgO, ZnO, WO 3 , Bi 2 O 3 , Examples thereof include CdS, CdSe, CdTe, In 2 O 3 , and SnO 2 . These semiconductors are preferable because they have good dye adsorption and function well as a photoelectrode carrying a sensitizing dye. A metal oxide semiconductor such as titanium oxide, zinc oxide, strontium titanate, and stannic oxide is preferable from the viewpoint of improving the photoelectric conversion efficiency and from the viewpoint of easily forming the aggregated particles described later. As a mechanism by which particles made of these metal oxide semiconductors are suitable, it is presumed that the secondary bonding force of the hydroxyl group, polar group or polar site on the particle surface contributes to suitable cohesion.
The said semiconductor particle may be used individually by 1 type, and may use 2 or more types together.

本実施形態においては、前記半導体粒子として、その平均粒子径が1nm以上100nm未満の範囲である半導体粒子を使用する。
上記範囲の半導体粒子を使用することにより、多孔質膜の製膜に適した大きさと強度を有する凝集粒子が得られる。
In the present embodiment, semiconductor particles having an average particle diameter in the range of 1 nm or more and less than 100 nm are used as the semiconductor particles.
By using semiconductor particles in the above range, aggregated particles having a size and strength suitable for forming a porous membrane can be obtained.

前記半導体粒子の平均粒子径は、5nm以上70nm未満が好ましく、10nm以上50nm未満がより好ましく、15nm以上30nm未満がさらに好ましい。
上記好適な範囲の半導体粒子を使用することにより、多孔質膜の製膜に適した大きさと強度を有する凝集粒子がより容易に得られる。
The average particle size of the semiconductor particles is preferably 5 nm or more and less than 70 nm, more preferably 10 nm or more and less than 50 nm, and even more preferably 15 nm or more and less than 30 nm.
By using the semiconductor particles in the preferred range, aggregated particles having a size and strength suitable for forming a porous membrane can be obtained more easily.

ここで、多孔質膜の製膜に適した凝集粒子の強度とは、凝集した状態で基材に打ち付けられた凝集粒子を構成する個々の半導体粒子が脆性変形する前に、個々の半導体粒子同士の凝集が部分的に解れつつ、半導体粒子同士の接触する箇所で新生面が形成されて接合する程度の強度である。このような硬過ぎず柔らか過ぎない適度な強度の凝集粒子の内部においては、基材に衝突する際に、個々の半導体粒子同士の間隙が適度なクッションとしての役割を果たしていると考えられる。
一方、特許文献2に記載されているような、個々の半導体粒子が焼成によって予め接合された状態の大径粒子においては、個々の半導体粒子の接合が過度に硬いため、基材に衝突する際に解れ難く、個々の半導体粒子同士の間隙が上記の様なクッションとして機能することは困難である。
Here, the strength of the agglomerated particles suitable for the formation of the porous film refers to the strength of the individual semiconductor particles before the individual semiconductor particles constituting the agglomerated particles applied to the base material in an aggregated state are brittlely deformed. The strength is such that a new surface is formed and joined at a location where the semiconductor particles are in contact with each other while the aggregation of the particles is partially solved. In such agglomerated particles having moderate strength that is neither too hard nor too soft, it is considered that the gap between the individual semiconductor particles plays a role as an appropriate cushion when colliding with the base material.
On the other hand, in the case of large-diameter particles in which individual semiconductor particles are bonded in advance by firing as described in Patent Document 2, the bonding of the individual semiconductor particles is excessively hard, so that when colliding with the base material Therefore, it is difficult for the gap between the individual semiconductor particles to function as a cushion as described above.

<凝集粒子の調製>
本実施形態において吹き付け用の凝集粒子を調製する方法は、平均粒子径が1nm以上100nm未満の範囲である半導体粒子をアルコール中に分散させた分散液を得る第一段階と、前記分散液から前記アルコールを蒸発させて前記半導体粒子を乾燥することにより、前記半導体粒子同士が凝集した凝集粒子を得る第二段階と、を有する。
<Preparation of aggregated particles>
In the present embodiment, the method of preparing the agglomerated particles for spraying includes the first step of obtaining a dispersion in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol; A second step of obtaining aggregated particles in which the semiconductor particles are aggregated by evaporating alcohol and drying the semiconductor particles.

[第一段階]
第一段階において使用する半導体粒子の半導体材料は、1種類であってもよいし複数種類であってもよいが、1〜3種類が好ましく、1又は2種類がより好ましく、1種類がさらに好ましい。半導体粒子同士の分散と凝集を制御し易いため、適度な大きさと強度を有する凝集粒子が得られ易いからである。
[the first stage]
The semiconductor material of the semiconductor particles used in the first stage may be one kind or plural kinds, preferably 1 to 3 kinds, more preferably 1 or 2 kinds, and further preferably 1 kind. . This is because it is easy to control the dispersion and aggregation of the semiconductor particles, and it is easy to obtain aggregated particles having an appropriate size and strength.

第一段階において使用する半導体粒子の平均粒子径は、1nm以上100nm未満の範囲である。この範囲において半導体粒子の平均粒子径は、4種類以上であってもよいが、1〜3種類が好ましく、1又は2種類がより好ましく、1種類がさらに好ましい。例えば、第一段階において、平均粒子径が20nmの半導体粒子と、平均粒子径が50nmの半導体粒子と、平均粒子径が80nmの半導体粒子と、を任意の比率で混合して使用する場合は、3種類の平均粒子径を有する半導体粒子を使用する場合といえる。第一段階において使用する半導体粒子の種類が少ない程、半導体粒子同士の分散と凝集を制御し易く、適度な大きさと強度を有する凝集粒子が得られ易い。   The average particle diameter of the semiconductor particles used in the first stage is in the range of 1 nm or more and less than 100 nm. In this range, the average particle diameter of the semiconductor particles may be 4 or more types, preferably 1 to 3 types, more preferably 1 or 2 types, and even more preferably 1 type. For example, in the first stage, when using semiconductor particles having an average particle diameter of 20 nm, semiconductor particles having an average particle diameter of 50 nm, and semiconductor particles having an average particle diameter of 80 nm in an arbitrary ratio, It can be said that semiconductor particles having three kinds of average particle diameters are used. The fewer kinds of semiconductor particles used in the first stage, the easier it is to control the dispersion and aggregation of the semiconductor particles, and it is easier to obtain aggregated particles having an appropriate size and strength.

第一段階において用いる半導体粒子には、1nm以上100nm未満の範囲外の平均粒子径を有する半導体粒子を混合しないことが好ましい。つまり、平均粒子径が1nm以上100nm未満の範囲に含まれる半導体粒子のみをアルコール中に分散させた分散液を調製することが好ましい。なぜならば、例えば、平均粒子径20nmの半導体粒子(小径粒子)と、平均粒子径200nmの半導体粒子(大径粒子)とを混合して使用した場合、第二段階の凝集過程において、小径粒子と大径粒子とが不均一に凝集するからである。つまり、小径粒子同士の凝集、小径粒子と大径粒子の凝集、大径粒子同士の凝集、という少なくとも3種類の凝集状態が生じ、さらに、各粒子の混合比率や半導体材料の種類の相違等の影響を受けるため、凝集過程を制御することが難しく、適度な大きさ及び強度を有する目的の凝集粒子を得ることが難しいからである。   The semiconductor particles used in the first stage are preferably not mixed with semiconductor particles having an average particle diameter outside the range of 1 nm or more and less than 100 nm. That is, it is preferable to prepare a dispersion liquid in which only semiconductor particles contained in an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol. This is because, for example, when semiconductor particles having a mean particle size of 20 nm (small particles) and semiconductor particles having a mean particle size of 200 nm are mixed and used, in the second stage of aggregation process, This is because large particles are aggregated non-uniformly. That is, there are at least three types of agglomeration states: aggregation between small diameter particles, aggregation between small diameter particles and large diameter particles, and aggregation between large diameter particles. This is because it is difficult to control the aggregation process, and it is difficult to obtain target aggregated particles having an appropriate size and strength.

凝集状態が制御不能になった一例として、分散媒を使用せずに上記小径粒子(平均粒子径20nm)と上記大径粒子(平均粒子径200nm)を混合して、乾燥した粉体を電子顕微鏡で観察したSEM写真を図10に示す。小径粒子同士が凝集した不均一な塊が、大径粒子同士の凝集体の複数の局所に偏在している様子が観察される。   As an example in which the agglomerated state has become uncontrollable, the above-mentioned small diameter particles (average particle diameter 20 nm) and the above large diameter particles (average particle diameter 200 nm) are mixed without using a dispersion medium, and the dried powder is subjected to an electron microscope. The SEM photograph observed in FIG. 10 is shown in FIG. It is observed that the heterogeneous lump in which the small diameter particles are aggregated is unevenly distributed in a plurality of local areas of the aggregates of the large diameter particles.

上記のような不均一な凝集状態を解消するべく、上記の小径粒子及び大径粒子をエタノール中で混合して分散する処理を行い、その後に乾燥させて得た粉体を電子顕微鏡で観察したSEM写真を図11に示す。小径粒子同士の不均一な凝集が解消され、大径粒子の表面に小径粒子が比較的均一に吸着している様子が観察される。この様に調製した混合粉体を吹き付けることにより、特許文献1に記載されている様な製膜を実施できると考えられる。しかし、本実施形態で目的としている凝集粒子は得られていない。   In order to eliminate the non-uniform aggregation state as described above, the above-mentioned small diameter particles and large diameter particles were mixed and dispersed in ethanol, and then dried and observed with an electron microscope. An SEM photograph is shown in FIG. It is observed that the non-uniform aggregation of the small-diameter particles is eliminated, and the small-diameter particles are relatively uniformly adsorbed on the surface of the large-diameter particles. By spraying the mixed powder prepared in this way, it is considered that film formation as described in Patent Document 1 can be performed. However, the intended aggregated particles in this embodiment are not obtained.

第一段階において、例えば、上記範囲に含まれる2種類の平均粒子径を有する半導体粒子の粉体を使用する場合、市販されている粉体であれば平均粒子径の公称値が付与されていることが通常なので、その公称値が異なる2種類の粉体を混合して使用することができる。また、分散状態における混合粉体の粒度分布(横軸:粒子径、縦軸:粒子の個数(頻度))を測定して、上記範囲に2つのピークが観測されれば、各ピークに対応する2種類の平均粒子径の半導体粒子を使用していることが分かる。従って、1種類の平均粒子径を有する半導体粒子の粉体を使用する場合には、その粉体の粒度分布を測定したときに、通常は1つのピークが観測され(単峰性であり)、粒度分布のモード径が平均粒子径に相当する。   In the first stage, for example, when using a powder of semiconductor particles having two kinds of average particle diameters included in the above range, a nominal value of the average particle diameter is given if it is a commercially available powder. Usually, two kinds of powders having different nominal values can be mixed and used. Further, when the particle size distribution (horizontal axis: particle diameter, vertical axis: number of particles (frequency)) of the mixed powder in a dispersed state is measured and two peaks are observed in the above range, each peak corresponds to each peak. It can be seen that semiconductor particles having two types of average particle sizes are used. Therefore, when using a powder of semiconductor particles having one type of average particle size, one peak is usually observed when the particle size distribution of the powder is measured (unimodal), The mode diameter of the particle size distribution corresponds to the average particle diameter.

第一段階で分散された半導体粒子の粒度分布を測定した場合、観測されるピークの数は、1〜3つが好ましく、1又は2つがより好ましく、1つがさらに好ましい。半導体粒子同士の凝集の程度を制御し易く、適度な大きさと強度を有する凝集粒子が得られ易いからである。   When the particle size distribution of the semiconductor particles dispersed in the first stage is measured, the number of observed peaks is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1. This is because the degree of aggregation between the semiconductor particles can be easily controlled, and aggregated particles having an appropriate size and strength can be easily obtained.

平均粒子径が1nm以上100nm未満の半導体粒子をアルコール中に分散させる方法は特に限定されず、先にアルコールを入れた容器内に半導体粒子の粉体を徐々に投入しながら、当該アルコールを撹拌する方法が好ましい。逆に、半導体粒子の粉体上にアルコールを注ぐ方法であると、粉体が玉になって分散され難い場合がある。   The method for dispersing the semiconductor particles having an average particle size of 1 nm or more and less than 100 nm in the alcohol is not particularly limited, and the alcohol is stirred while gradually adding the semiconductor particle powder into the container in which the alcohol has been previously added. The method is preferred. On the other hand, in the method of pouring alcohol onto the powder of semiconductor particles, the powder may become balls and be difficult to be dispersed.

分散に使用するアルコールの級数及び価数は特に限定されず、1級、2級、3級の何れの級数であってもよいし、1価、2価、3価以上の多価の何れの価数であってもよい。   The series and valence of the alcohol used for dispersion are not particularly limited, and may be any series of primary, secondary, tertiary, and any of monovalent, divalent, trivalent or higher polyvalent. It may be a valence.

第一段階で使用する1価のアルコール分子は、1つの水酸基と炭化水素基とを有し、前記炭化水素基は直鎖状、分岐鎖状、環状の何れであってもよく、飽和炭化水素基、不飽和炭化水素基の何れであってもよい。前記炭化水素基の炭素数は特に限定されず、例えば、炭素数1〜10が好ましく、炭素数1〜5がより好ましく、炭素数2又は3がさらに好ましい。   The monovalent alcohol molecule used in the first stage has one hydroxyl group and a hydrocarbon group, and the hydrocarbon group may be linear, branched or cyclic, and saturated hydrocarbon. Either a group or an unsaturated hydrocarbon group may be used. Carbon number of the said hydrocarbon group is not specifically limited, For example, C1-C10 is preferable, C1-C5 is more preferable, C2-C3 is further more preferable.

第一段階で使用する好適なアルコールとして、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、1−ブタノール、2−ブタノール、t−ブチルアルコール、1−ペンタノール、シクロヘキサノール等が挙げられる。これらの中でも、半導体粒子の分散性に優れ、乾燥が容易であり、乾燥後に適度な大きさ及び強度の凝集粒子が得られ易い観点から、メタノール、エタノール、1−ペンタノール、n−プロパノール、イソプロパノールが好ましく、エタノールがより好ましい。   Suitable alcohols used in the first stage include, for example, methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, cyclohexanol and the like. Among these, methanol, ethanol, 1-pentanol, n-propanol, isopropanol are preferred from the viewpoints of excellent dispersibility of semiconductor particles, easy drying, and easy aggregation particles having an appropriate size and strength after drying. Is preferred, and ethanol is more preferred.

第一段階において半導体粒子を分散させるアルコールの温度は特に限定されず、例えば、4〜55℃の範囲で行うことができる。何れの温度においても、半導体粒子を投入したアルコールを充分に撹拌して、個々の半導体粒子が分散した状態にすることが好ましい。
55℃以下であると、粒子の凝集性が高くなり過ぎず、凝集粒子径を均一にすることが容易となる。好ましくは40℃以下である。4℃以上であると粒子の分散性が高まり、凝集粒子径が極度に大きくなる恐れがなくなる。好ましくは20℃以上である。
後述する半導体粒子同士の接合を高めるために、上記揮発性溶媒以外に、残留する恐れがある物質を含まないことが好ましい。よって、平均粒子径が1nm以上100nm未満の範囲である半導体粒子のみをアルコール中に分散させた分散液を調製することが好ましい。
The temperature of the alcohol in which the semiconductor particles are dispersed in the first stage is not particularly limited and can be, for example, in the range of 4 to 55 ° C. At any temperature, it is preferable to sufficiently stir the alcohol into which the semiconductor particles are charged so that the individual semiconductor particles are dispersed.
When the temperature is 55 ° C. or lower, the cohesiveness of the particles does not become too high, and it becomes easy to make the aggregated particle diameter uniform. Preferably it is 40 degrees C or less. When the temperature is 4 ° C. or higher, the dispersibility of the particles is increased, and there is no possibility that the aggregated particle diameter becomes extremely large. Preferably it is 20 degreeC or more.
In order to enhance the bonding between semiconductor particles, which will be described later, it is preferable not to include a substance that may remain in addition to the volatile solvent. Therefore, it is preferable to prepare a dispersion liquid in which only semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol.

[第二段階]
半導体粒子の分散後にアルコールを蒸発させる方法は特に限定されず、例えば、加熱処理、減圧処理等の公知方法を適用することができる。当該アルコール分散液を撹拌しながら蒸発させてもよいが、激しく撹拌すると目的の凝集粒子が解砕したり、粒度分布が広くなったりする可能性がある。このため、静置するか又は穏やかに撹拌しながら蒸発及び乾燥させることが好ましい。例えば、分散液の調整後、得られた分散液を30分〜48時間の間静置することにより、半導体粒子の大部分をアルコール中に沈降させた状態でアルコールを蒸発させて乾燥させることが好ましい。このように穏やかに乾燥させることにより、前記半導体粒子同士が凝集した、適度な大きさ及び強度を有する凝集粒子を容易に得ることができる。
[Second stage]
The method for evaporating the alcohol after the dispersion of the semiconductor particles is not particularly limited, and for example, a known method such as heat treatment or reduced pressure treatment can be applied. The alcohol dispersion may be evaporated with stirring, but if it is vigorously stirred, the target aggregated particles may be crushed or the particle size distribution may be widened. For this reason, it is preferable to stand still or to evaporate and dry with gentle stirring. For example, after adjusting the dispersion liquid, the obtained dispersion liquid is allowed to stand for 30 minutes to 48 hours, whereby the alcohol is evaporated and dried in a state where most of the semiconductor particles are precipitated in the alcohol. preferable. By gently drying in this manner, aggregated particles having an appropriate size and strength in which the semiconductor particles are aggregated can be easily obtained.

アルコールを蒸発させて半導体粒子を乾燥させる際の温度は特に限定されないが、例えば50℃未満で蒸発・乾燥処理を行うことにより、適度な大きさ及び強度を有する凝集粒子を容易に得ることができる。好ましくは30℃未満である。高温で加熱して、急激に乾燥させると、凝集が雑になり、個々の凝集粒子の粒子径のバラつきが大きくなる恐れがある。また、この蒸発・乾燥処理の時間は、1〜72時間であることが好ましく、2〜48時間であることがより好ましく、5〜48時間であることがさらに好ましい。   The temperature at which the semiconductor particles are dried by evaporating the alcohol is not particularly limited. For example, by performing evaporation / drying treatment at less than 50 ° C., aggregated particles having an appropriate size and strength can be easily obtained. . Preferably it is less than 30 degreeC. When heated at a high temperature and dried rapidly, the agglomeration becomes complicated, and the particle size of the individual agglomerated particles may vary greatly. The evaporation / drying time is preferably 1 to 72 hours, more preferably 2 to 48 hours, and even more preferably 5 to 48 hours.

第二段階で得る凝集粒子の形状は特に限定されないが、吹き付けに適した形状の塊であることが好ましい。前記の蒸発・乾燥処理の際に穏やかに撹拌するか、又はアルコールを除去した後の凝集粒子の粉体を穏やかに撹拌することによって、凝集粒子が互いに擦れ合って、突出した箇所が減ることにより、吹き付けに適した形状の塊にすることができる。   The shape of the aggregated particles obtained in the second stage is not particularly limited, but is preferably a lump having a shape suitable for spraying. By gently stirring during the evaporation / drying process or by gently stirring the powder of the agglomerated particles after removing the alcohol, the agglomerated particles rub against each other and the number of protruding portions is reduced. It is possible to make a lump of a shape suitable for spraying.

第二段階で得る凝集粒子の平均粒子径は、基材に吹き付けて製膜できる範囲であれば特に限定されない。公知のAD法によって製膜する場合、凝集粒子の平均粒子径は、例えば、0.2μm以上100μm未満が好ましく、0.5μm以上50μm未満がより好ましく、0.8μm以上10μm未満がさらに好ましく、1.0μm以上5.0μm未満が特に好ましい。
上記の好適な範囲の平均粒子径であると、AD法によって、強度、電気伝導性、光透過性、増感色素吸着性に優れた多孔質膜を所望の厚みで容易に製膜することができる。
The average particle diameter of the aggregated particles obtained in the second stage is not particularly limited as long as it can be formed by spraying on the substrate. When the film is formed by a known AD method, the average particle diameter of the aggregated particles is, for example, preferably 0.2 μm or more and less than 100 μm, more preferably 0.5 μm or more and less than 50 μm, further preferably 0.8 μm or more and less than 10 μm. It is particularly preferably from 0.0 μm to less than 5.0 μm.
When the average particle size is in the above preferred range, a porous film excellent in strength, electrical conductivity, light transmission, and sensitizing dye adsorption can be easily formed with a desired thickness by the AD method. it can.

第二段階で得た凝集粒子の粉体の粒度分布(横軸:粒子径、縦軸:頻度)を測定した場合、観測されるピークの数は1つ又は2つが好ましく、1つがより好ましい。   When the particle size distribution of the aggregated particle powder obtained in the second stage (horizontal axis: particle diameter, vertical axis: frequency) is measured, the number of observed peaks is preferably one or two, and more preferably one.

前記粒度分布におけるモード径は特に限定されないが、例えば、0.2μm以上100μm未満が好ましく、0.5μm以上50μm未満がより好ましく、0.8μm以上10μm未満がさらに好ましく、1.0μm以上5.0μm未満が特に好ましい。ここで、粒度分布のモード径は、頻度分布の極大値に対応する粒子径である。
上記好適な範囲であることにより、AD法によって、強度、電気伝導性、光透過性、増感色素吸着性に優れた多孔質膜を所望の厚みで容易に製膜することができる。
The mode diameter in the particle size distribution is not particularly limited, but is preferably 0.2 μm or more and less than 100 μm, more preferably 0.5 μm or more and less than 50 μm, further preferably 0.8 μm or more and less than 10 μm, 1.0 μm or more and 5.0 μm or less. Less than is particularly preferred. Here, the mode diameter of the particle size distribution is a particle diameter corresponding to the maximum value of the frequency distribution.
By being within the preferable range, a porous film excellent in strength, electrical conductivity, light transmittance, and sensitizing dye adsorptivity can be easily formed with a desired thickness by the AD method.

前記粒度分布における10%粒子径(d10)は特に限定されず、例えば、0.1μm以上5.0μm未満が好ましく、0.2μm以上3.0μm未満がより好ましく、0.3μm以上1.0μm未満がさらに好ましい。ここで、粒度分布の10%粒子径(d10)は、積算分布曲線の積算値10%が横軸と交差するポイントの粒子径である。
上記好適な範囲であることにより、AD法によって、強度、電気伝導性、光透過性、増感色素吸着性に優れた多孔質膜を所望の厚みで容易に製膜することができる。
The 10% particle diameter (d10) in the particle size distribution is not particularly limited, and is preferably 0.1 μm or more and less than 5.0 μm, more preferably 0.2 μm or more and less than 3.0 μm, and more preferably 0.3 μm or more and less than 1.0 μm. Is more preferable. Here, the 10% particle diameter (d10) of the particle size distribution is the particle diameter at the point where the integrated value 10% of the integrated distribution curve intersects the horizontal axis.
By being within the preferable range, a porous film excellent in strength, electrical conductivity, light transmittance, and sensitizing dye adsorptivity can be easily formed with a desired thickness by the AD method.

前記粒度分布における50%粒子径(d50)は特に限定されず、例えば、0.1μm以上10μm未満が好ましく、0.5μm以上5.0μm未満がより好ましく、1.0μm以上3.0μm未満がさらに好ましい。ここで、粒度分布の50%粒子径(d50)は、積算分布曲線の積算値50%が横軸と交差するポイントの粒子径であり、いわゆるメディアン径である。
上記好適な範囲であることにより、AD法によって、強度、電気伝導性、光透過性、増感色素吸着性に優れた多孔質膜を所望の厚みで容易に製膜することができる。
The 50% particle size (d50) in the particle size distribution is not particularly limited, and is preferably 0.1 μm or more and less than 10 μm, more preferably 0.5 μm or more and less than 5.0 μm, and further preferably 1.0 μm or more and less than 3.0 μm. preferable. Here, the 50% particle diameter (d50) of the particle size distribution is a particle diameter at a point where the integrated value 50% of the integrated distribution curve intersects the horizontal axis, and is a so-called median diameter.
By being within the preferable range, a porous film excellent in strength, electrical conductivity, light transmittance, and sensitizing dye adsorptivity can be easily formed with a desired thickness by the AD method.

前記粒度分布における90%粒子径(d90)は特に限定されず、例えば、1.0μm以上100μm未満が好ましく、2.0μm以上20μm未満がより好ましく、3.0μm以上10μm未満がさらに好ましい。ここで、粒度分布の90%粒子径(d90)は、積算分布曲線の積算値90%が横軸と交差するポイントの粒子径である。
上記好適な範囲であることにより、AD法によって、強度、電気伝導性、光透過性、増感色素吸着性に優れた多孔質膜を所望の厚みで容易に製膜することができる。
The 90% particle size (d90) in the particle size distribution is not particularly limited, and is preferably 1.0 μm or more and less than 100 μm, more preferably 2.0 μm or more and less than 20 μm, and further preferably 3.0 μm or more and less than 10 μm. Here, the 90% particle size (d90) of the particle size distribution is the particle size at the point where the integrated value 90% of the integrated distribution curve intersects the horizontal axis.
By being within the preferable range, a porous film excellent in strength, electrical conductivity, light transmittance, and sensitizing dye adsorptivity can be easily formed with a desired thickness by the AD method.

以上で説明した第一段階及び第二段階を経ることによって、平均粒子径1nm以上100nm未満の半導体粒子同士が凝集した凝集粒子を得ることができる。   By going through the first stage and the second stage described above, aggregated particles in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are aggregated can be obtained.

本実施形態の凝集粒子は、従来のAD法による吹き付けによって充分な加速度及び基材に対する衝突エネルギーを得ることができるので、基材上に多孔質膜、緻密膜の何れでも製膜することができる。本実施形態の凝集粒子は、上記範囲の比較的小さい平均粒子径の半導体粒子のみによって構成されているため、製膜された半導体膜の内部に、上記範囲を超える大粒の大径粒子が混入することはあり得ない。したがって、形成された膜は均一な膜構造を有する。   The agglomerated particles of the present embodiment can obtain sufficient acceleration and collision energy against the base material by spraying by the conventional AD method, so that either a porous film or a dense film can be formed on the base material. . The agglomerated particles of the present embodiment are composed only of semiconductor particles having a relatively small average particle diameter in the above range, so that large particles having a large particle size exceeding the above range are mixed in the formed semiconductor film. It is impossible. Therefore, the formed film has a uniform film structure.

<平均粒子径の測定>
前記半導体粒子及び前記凝集粒子の平均粒子径を求める方法としては、レーザー回折式粒度分布測定装置の測定により得られた体積平均径の分布のピーク値として決定する方法を採用できる。
前記半導体粒子(1次粒子)の平均粒子径はレーザー回折式粒度分布測定装置によって「湿式で」測定する。
前記凝集粒子の平均粒子径はレーザー回折式粒度分布測定装置によって「乾式で」測定する。
<Measurement of average particle diameter>
As a method for obtaining the average particle diameter of the semiconductor particles and the aggregated particles, a method of determining the peak value of the volume average diameter distribution obtained by measurement with a laser diffraction particle size distribution measuring apparatus can be employed.
The average particle diameter of the semiconductor particles (primary particles) is measured “wet” by a laser diffraction particle size distribution analyzer.
The average particle diameter of the agglomerated particles is measured “dry” by a laser diffraction particle size distribution analyzer.

<製膜工程>
本実施形態における製膜工程は、前記凝集粒子を基材に吹き付けることにより、前記基材上に半導体膜を製膜する工程である。
<Film forming process>
The film forming step in the present embodiment is a step of forming a semiconductor film on the base material by spraying the aggregated particles on the base material.

前記凝集粒子を前記基材に吹き付ける方法としては、搬送ガスと前記凝集粒子を混合したエアロゾルを吹き付けるエアロゾルデポジション法(AD法)、静電引力により前記凝集粒子を加速する静電微粒子コーティング法、コールドスプレー法等が挙げられる。これらの吹き付け方法の中でも、光電極に適した多孔質膜を容易に製膜することが可能なAD法が好ましい。AD法による製膜方法としては、例えば、国際公開第WO2012/161161A1号に開示された方法が適用できる。以下、AD法の適用について具体的に説明する。   As a method of spraying the aggregated particles on the substrate, an aerosol deposition method (AD method) of spraying an aerosol in which a carrier gas and the aggregated particles are mixed, an electrostatic fine particle coating method of accelerating the aggregated particles by electrostatic attraction, The cold spray method etc. are mentioned. Among these spraying methods, the AD method capable of easily forming a porous film suitable for the photoelectrode is preferable. As a film forming method by the AD method, for example, a method disclosed in International Publication No. WO2012 / 161161A1 can be applied. Hereinafter, application of the AD method will be specifically described.

<AD法による製膜>
以下、図1を参照して製膜方法の一例を説明する。なお、説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更できる。本実施形態の製膜方法に用いる製膜装置は特に限定されず、例えば、図1に示す製膜装置60が挙げられる。
<Film formation by AD method>
Hereinafter, an example of the film forming method will be described with reference to FIG. The drawings used in the description are schematic, and the ratios of length, width, and thickness are not necessarily the same as actual ones, and can be changed as appropriate. The film forming apparatus used for the film forming method of the present embodiment is not particularly limited, and examples thereof include a film forming apparatus 60 shown in FIG.

<製膜装置>
製膜装置60は、ガスボンベ55と、搬送管56と、ノズル52と、基台63と、製膜室51と、を備えている。ガスボンベ55には、凝集粒子54を加速させて基材53に吹き付けるためのガス(搬送ガス)が充填されている。ガスボンベ55には、搬送管56の一端が接続されている。ガスボンベ55から供給される搬送ガスは搬送管56に供給される。
<Film forming device>
The film forming apparatus 60 includes a gas cylinder 55, a transfer pipe 56, a nozzle 52, a base 63, and a film forming chamber 51. The gas cylinder 55 is filled with a gas (carrier gas) for accelerating the agglomerated particles 54 and spraying them on the base material 53. One end of a transfer pipe 56 is connected to the gas cylinder 55. The carrier gas supplied from the gas cylinder 55 is supplied to the carrier pipe 56.

搬送管56には、前段側から順に、マスフロー制御器57、エアロゾル発生器58、搬送ガス中の凝集粒子54の分散具合を適度に調整できる解砕器59及び分級器61、が設けられている。解砕器59により、凝集粒子54同士が湿気等で互いに付着した状態を解くことができる。仮に、互いに付着した状態で解砕器59を通過した凝集粒子があったとしても、そのような過度に大きな粒子は分級器61で除くことができる。なお、凝集粒子54が解砕機59によって個々の半導体粒子に解砕される恐れがある場合には、解砕機59を使用しなくても構わない。   The transport pipe 56 is provided with a mass flow controller 57, an aerosol generator 58, a disintegrator 59 and a classifier 61 that can appropriately adjust the dispersion state of the aggregated particles 54 in the transport gas in order from the front side. . By the crusher 59, the state where the aggregated particles 54 adhere to each other due to moisture or the like can be solved. Even if there are aggregated particles that have passed through the crusher 59 in a state of being attached to each other, such excessively large particles can be removed by the classifier 61. Note that if there is a possibility that the aggregated particles 54 may be crushed into individual semiconductor particles by the crusher 59, the crusher 59 may not be used.

マスフロー制御器57により、ガスボンベ55から搬送管56に供給される搬送ガスの流量を調整することができる。エアロゾル発生器58には、凝集粒子54が装填されている。凝集粒子54はマスフロー制御器57から供給された搬送ガス中に分散されて、解砕器59及び分級器61へ搬送される。   The mass flow controller 57 can adjust the flow rate of the carrier gas supplied from the gas cylinder 55 to the carrier pipe 56. The aerosol generator 58 is loaded with agglomerated particles 54. The agglomerated particles 54 are dispersed in the carrier gas supplied from the mass flow controller 57 and conveyed to the crusher 59 and the classifier 61.

ノズル52は、図示略の開口部が基台63上の基材53に対向するように配置されている。ノズル52には、搬送管56の他端が接続されている。凝集粒子54を含む搬送ガスは、ノズル52の開口部から基材53に噴射される。   The nozzle 52 is disposed such that an opening (not shown) faces the base material 53 on the base 63. The other end of the transport pipe 56 is connected to the nozzle 52. The carrier gas containing the agglomerated particles 54 is injected from the opening of the nozzle 52 onto the base material 53.

基台63の上面72には、基材53の一方の面73が当接するように、基材53が載置されている。また、基材53の他方の面71(製膜面)はノズル52の開口部に対向している。ノズル52から搬送ガスと共に噴射される凝集粒子54は、製膜面に衝突し、凝集粒子54を構成する半導体粒子からなる多孔質膜が製膜される。   The base material 53 is placed on the upper surface 72 of the base 63 so that one surface 73 of the base material 53 comes into contact therewith. Further, the other surface 71 (film forming surface) of the substrate 53 faces the opening of the nozzle 52. Aggregated particles 54 injected together with the carrier gas from the nozzle 52 collide with the film forming surface, and a porous film made of semiconductor particles constituting the aggregated particles 54 is formed.

基材53は、吹き付けられた凝集粒子54が製膜面71を貫通せずに接合可能な材質からなることが好ましい。このような基材としては、例えば、ガラス基板、樹脂製基板、樹脂製フィルム、樹脂製シート、金属製基板等が挙げられる。ここで挙げた基材のうち、非導電性基材の表面には、ITO等の透明導電膜が予め形成されていることが好ましい。基材上に製膜された多孔質膜は、光電極の用途に適した充分な構造的強度及び導電性を有するため、別途焼成処理を施す必要がない。このため、耐熱性の低い樹脂製基材を使用することができる。前記基材の厚みは特に制限されず、吹き付けられた凝集粒子が貫通しない程度の厚みを有することが好ましい。より具体的な基材53の選択は、凝集粒子54の材料、吹き付け速度等の製膜条件、製膜した膜の用途に応じて適宜行う。   The substrate 53 is preferably made of a material that allows the sprayed aggregated particles 54 to be joined without penetrating the film forming surface 71. Examples of such a substrate include a glass substrate, a resin substrate, a resin film, a resin sheet, and a metal substrate. Among the substrates mentioned here, it is preferable that a transparent conductive film such as ITO is formed in advance on the surface of the non-conductive substrate. Since the porous film formed on the substrate has sufficient structural strength and conductivity suitable for the use of the photoelectrode, it does not need to be separately fired. For this reason, a resin base material with low heat resistance can be used. The thickness of the substrate is not particularly limited, and preferably has a thickness that prevents the sprayed aggregated particles from penetrating. More specific selection of the base material 53 is appropriately performed according to the material of the aggregated particles 54, the film forming conditions such as the spraying speed, and the use of the formed film.

製膜室51は減圧雰囲気で製膜を行うために設けられている。製膜室51には真空ポンプ62が接続されており、必要に応じて製膜室51内が減圧される。   The film forming chamber 51 is provided for film formation in a reduced pressure atmosphere. A vacuum pump 62 is connected to the film forming chamber 51, and the inside of the film forming chamber 51 is depressurized as necessary.

<吹き付け方法>
以下、凝集粒子54の吹き付け方法の一例を説明する。
まず、真空ポンプ62を稼動させて製膜室51内を減圧する。製膜室51内の圧力は特に制限されないが、5〜1000Paに設定することが好ましい。この程度に減圧することにより、製膜室51内の対流を抑制し、凝集粒子54を製膜面71の所定の位置に吹き付けることが容易になる。
<Blowing method>
Hereinafter, an example of a method for spraying the aggregated particles 54 will be described.
First, the vacuum pump 62 is operated to depressurize the film forming chamber 51. The pressure in the film forming chamber 51 is not particularly limited, but is preferably set to 5 to 1000 Pa. By reducing the pressure to this extent, convection in the film forming chamber 51 is suppressed, and it becomes easy to spray the aggregated particles 54 to a predetermined position on the film forming surface 71.

次に、ガスボンベ55から搬送ガスを搬送管56へ供給し、搬送ガスの流速及び流量をマスフロー制御器57により調整する。搬送ガスとしては、例えば、O、N、Ar、He又は空気などを用いることができる。搬送ガスの流速及び流量は、ノズル52から吹き付ける凝集粒子54の材料、平均粒径、流速及び流量に応じて適宜設定することができる。Next, the carrier gas is supplied from the gas cylinder 55 to the carrier pipe 56, and the flow rate and flow rate of the carrier gas are adjusted by the mass flow controller 57. As the carrier gas, for example, O 2 , N 2 , Ar, He, air, or the like can be used. The flow rate and flow rate of the carrier gas can be appropriately set according to the material, average particle size, flow rate and flow rate of the agglomerated particles 54 sprayed from the nozzle 52.

凝集粒子54をエアロゾル発生器58に装填し、搬送管56内を流れる搬送ガス中に凝集粒子54を分散させて、加速する。ノズル52の開口部から、亜音速から超音速の速度で凝集粒子54を噴射させて、基材53の製膜面71に積層させる。この際、凝集粒子54の製膜面71への吹き付け速度は、例えば、10〜1000m/sに設定することができる。吹き付け速度は特に限定されず、基材53の材質、凝集粒子54の種類や大きさ等に応じて適宜設定することができる。   The agglomerated particles 54 are loaded into the aerosol generator 58, and the agglomerated particles 54 are dispersed in the carrier gas flowing in the carrier pipe 56 and accelerated. Aggregated particles 54 are ejected from the opening of the nozzle 52 at a subsonic to supersonic speed, and are laminated on the film forming surface 71 of the substrate 53. At this time, the spraying speed of the aggregated particles 54 onto the film forming surface 71 can be set to 10 to 1000 m / s, for example. The spraying speed is not particularly limited, and can be appropriately set according to the material of the base material 53, the type and size of the aggregated particles 54, and the like.

搬送ガスの流速及び流量を調整することにより、凝集粒子54を構成する半導体粒子からなる半導体膜の構造を緻密膜にすることもできるし、多孔質膜にすることもできる。さらに、前記多孔質膜の多孔度を制御することができる。通常、凝集粒子54を吹き付ける速度が速い程、製膜される膜の構造は緻密になり易い(多孔度が小さくなり易い)傾向がある。また、極端に遅い吹き付け速度で製膜した場合には、十分な強度を有する半導体膜が得られず、圧粉体になることがある。十分な構造的強度を有する多孔質膜を製膜するためには、緻密膜が得られる速度と圧粉体が得られる速度との中間程度の吹き付け速度で製膜することが好ましい。   By adjusting the flow rate and flow rate of the carrier gas, the structure of the semiconductor film made of the semiconductor particles constituting the aggregated particles 54 can be made into a dense film or a porous film. Furthermore, the porosity of the porous membrane can be controlled. Usually, the higher the speed at which the agglomerated particles 54 are sprayed, the more the structure of the film to be formed tends to become dense (porosity tends to decrease). In addition, when a film is formed at an extremely slow spraying speed, a semiconductor film having sufficient strength may not be obtained and a green compact may be obtained. In order to form a porous film having a sufficient structural strength, it is preferable to form a film at a spraying speed that is approximately between the speed at which a dense film is obtained and the speed at which a green compact is obtained.

凝集粒子54の吹き付けを継続することにより、基材53の製膜面71に接合した半導体粒子に対して、次々に凝集粒子54が衝突し、凝集粒子54を構成する半導体粒子同士の衝突によってそれぞれの半導体粒子の表面に新生面が形成され、この新生面において半導体粒子同士が接合される。この際、凝集粒子54を構成する個々の半導体粒子が脆性変形する前に、個々の半導体粒子同士の凝集が部分的に解れつつ、半導体粒子同士の接触する箇所で新生面が形成されて接合する。   By continuing the spraying of the agglomerated particles 54, the agglomerated particles 54 collide with the semiconductor particles bonded to the film forming surface 71 of the base material 53 one after another, and the semiconductor particles constituting the agglomerated particles 54 collide with each other. A new surface is formed on the surface of the semiconductor particles, and the semiconductor particles are bonded to each other on the new surface. At this time, before the individual semiconductor particles constituting the aggregated particles 54 are brittlely deformed, agglomeration between the individual semiconductor particles is partially solved, and a new surface is formed and joined at a location where the semiconductor particles are in contact with each other.

半導体粒子からなる多孔質膜が所定の膜厚(例えば1μm〜100μm)になった時点で、凝集粒子54の吹き付けを停止する。
以上の工程により、基材53の製膜面71の上に凝集粒子54を構成する半導体粒子からなる所定の膜厚の多孔質膜を製膜することができる。
When the porous film made of semiconductor particles reaches a predetermined film thickness (for example, 1 μm to 100 μm), the spraying of the agglomerated particles 54 is stopped.
Through the above steps, a porous film having a predetermined film thickness made of semiconductor particles constituting the aggregated particles 54 can be formed on the film forming surface 71 of the substrate 53.

《半導体膜》
第一実施形態の半導体膜の製造方法により基材上に形成された半導体膜の膜構造は緻密膜(非多孔質膜)であってもよいし、多孔質膜であってもよい。その膜厚は特に限定されず、例えば1μm〜500μm程度の厚みが挙げられる。
<Semiconductor film>
The film structure of the semiconductor film formed on the substrate by the semiconductor film manufacturing method of the first embodiment may be a dense film (non-porous film) or a porous film. The film thickness is not specifically limited, For example, the thickness of about 1 micrometer-500 micrometers is mentioned.

第一実施形態の製膜方法によれば、比較的小さい平均粒子径を有する半導体粒子のみからなる凝集粒子を使用して、従来の吹き付け法を適用して製膜できるため、半導体膜の内部に、平均粒子径を大きく超える大粒の大径粒子が数多く混入することはあり得ない。従って、半導体膜は均一な膜構造を有するので、強度、電気伝導性、光透過性に優れた半導体膜が得られる。当該半導体膜が多孔質膜である場合にも、その膜強度は充分且つ均一であり、フィルム等のフレキシブルな基材に充分に密着し、剥離や割れ等が起き難い。このような特性は、フレキシブル色素増感太陽電池の光電極に使用する多孔質膜として好適である。   According to the film forming method of the first embodiment, since it is possible to form a film by applying a conventional spraying method using aggregated particles consisting only of semiconductor particles having a relatively small average particle size, the inside of the semiconductor film A large number of large-sized particles greatly exceeding the average particle diameter cannot be mixed. Accordingly, since the semiconductor film has a uniform film structure, a semiconductor film having excellent strength, electrical conductivity, and light transmittance can be obtained. Even when the semiconductor film is a porous film, the film strength is sufficient and uniform, and the semiconductor film is sufficiently adhered to a flexible substrate such as a film, and peeling and cracking are unlikely to occur. Such characteristics are suitable as a porous film used for a photoelectrode of a flexible dye-sensitized solar cell.

前記半導体膜の用途は、光電極に限られず、前記半導体膜の物理的特性又は化学的特性を活かすことが可能な用途に広く適用できる。   The application of the semiconductor film is not limited to the photoelectrode, and can be widely applied to applications that can make use of the physical characteristics or chemical characteristics of the semiconductor film.

《光電極》
第一実施形態の半導体膜の製造方法により基材上に形成された半導体膜に増感色素を吸着させることによって、光電極として使用することができる。半導体膜は緻密膜であってもよいが、より多くの増感色素を吸着させる観点から、多孔質膜であることが好ましい。
増感色素の種類は特に制限されず、公知の増感色素が適用できる。光電極の用途において、前記半導体膜は公知の透明導電膜が形成された基材上に製膜されていることが好ましい。前記半導体膜に増感色素を吸着させる方法は特に限定されず、例えば、半導体膜を色素溶液中に浸漬させる方法が挙げられる。
<< Photoelectrode >>
It can be used as a photoelectrode by adsorbing a sensitizing dye to a semiconductor film formed on a substrate by the method for producing a semiconductor film of the first embodiment. The semiconductor film may be a dense film, but is preferably a porous film from the viewpoint of adsorbing more sensitizing dye.
The type of sensitizing dye is not particularly limited, and known sensitizing dyes can be applied. In the use of a photoelectrode, the semiconductor film is preferably formed on a substrate on which a known transparent conductive film is formed. The method for adsorbing the sensitizing dye to the semiconductor film is not particularly limited, and examples thereof include a method of immersing the semiconductor film in a dye solution.

前記光電極は、第一実施形態の製膜方法によって得られた半導体膜を用いること以外は、常法により製造することができる。例えば、ITOガラス基板の導電面に前記多孔質膜を形成し、この多孔質膜に増感色素を吸着させた光電極を形成し、さらに必要に応じて、多孔質膜近傍の前記導電面に引き出し配線を接続することにより、光電極基板を作製することができる。   The photoelectrode can be manufactured by a conventional method except that the semiconductor film obtained by the film forming method of the first embodiment is used. For example, the porous film is formed on the conductive surface of the ITO glass substrate, a photoelectrode having a sensitizing dye adsorbed on the porous film is formed, and if necessary, the conductive surface near the porous film is formed on the conductive surface. A photoelectrode substrate can be manufactured by connecting the lead wiring.

前記半導体膜が多孔質膜である場合、その空隙率(空孔率、細孔率又は多孔度と呼ばれることもある。)は、50%以上が好ましく、50〜85%がより好ましく、50〜75%が更に好ましく、50〜65%が特に好ましい。
上記範囲の下限値以上であると、増感色素をより多く担持することができる。上記範囲の上限値以下であると多孔質膜の強度をより強固にすることができる。
When the semiconductor film is a porous film, the porosity (sometimes referred to as porosity, porosity, or porosity) is preferably 50% or more, more preferably 50 to 85%, and more preferably 50 to 85%. 75% is more preferable, and 50 to 65% is particularly preferable.
When it is at least the lower limit of the above range, more sensitizing dyes can be carried. The intensity | strength of a porous membrane can be strengthened more as it is below the upper limit of the said range.

ここで、空隙率とは「製膜した多孔質膜の単位体積あたりの空隙の体積が占める百分率」を意味する。この空隙率は、空隙率=嵩比重/真比重×100(%)によって算出される。嵩比重は、多孔質膜の単位体積あたりの質量を単位体積あたりの無機物質の粒子の質量(理論値)で除したものであり、真比重は、半導体粒子の比重(理論値)を意味する。
空隙率の測定は、公知のガス吸着試験又は水銀圧入試験によって行うことができる。
Here, the porosity means “percentage occupied by the volume of the void per unit volume of the formed porous membrane”. This porosity is calculated by porosity = bulk specific gravity / true specific gravity × 100 (%). Bulk specific gravity is obtained by dividing the mass per unit volume of the porous membrane by the mass (theoretical value) of inorganic substance particles per unit volume, and the true specific gravity means the specific gravity (theoretical value) of semiconductor particles. .
The porosity can be measured by a known gas adsorption test or mercury intrusion test.

前記半導体膜が多孔質膜である場合、多孔質膜の厚さは、1μm〜200μmであることが好ましく、2μm〜100μmであることがより好ましく、5μm〜50μmであることが更に好ましい。
上記範囲の下限値以上であると、多孔質膜に担持させた増感色素が光エネルギーを吸収する確率を一層高めることができ、色素増感太陽電池における光電変換効率を一層向上できる。また、上記範囲の上限値以下であると、バルクの電解質(太陽電池セル内の電解質)と多孔質膜内の電解質との交換が、拡散によって一層効率よく行われ、光電変換効率を一層向上できる。
When the semiconductor film is a porous film, the thickness of the porous film is preferably 1 μm to 200 μm, more preferably 2 μm to 100 μm, and still more preferably 5 μm to 50 μm.
When it is at least the lower limit of the above range, the probability that the sensitizing dye supported on the porous film absorbs light energy can be further increased, and the photoelectric conversion efficiency in the dye-sensitized solar cell can be further improved. Further, when the amount is not more than the upper limit of the above range, the exchange between the bulk electrolyte (electrolyte in the solar battery cell) and the electrolyte in the porous film is more efficiently performed by diffusion, and the photoelectric conversion efficiency can be further improved. .

《色素増感太陽電池》
本発明の第二実施形態の色素増感太陽電池は、第一実施形態の半導体膜の製造方法によって得られた半導体膜に増感色素を吸着させてなる光電極と、対向電極と、電解液又は電解質層とを備えている。電解液は、光電極と対向電極の間において封止材によって封止されていることが好ましい。
《Dye-sensitized solar cell》
The dye-sensitized solar cell according to the second embodiment of the present invention includes a photoelectrode obtained by adsorbing a sensitizing dye to a semiconductor film obtained by the method for manufacturing a semiconductor film according to the first embodiment, a counter electrode, and an electrolytic solution. Or an electrolyte layer. The electrolytic solution is preferably sealed with a sealing material between the photoelectrode and the counter electrode.

光電極を構成する半導体膜が形成された基材として、透明導電膜が表面に形成された樹脂フィルム若しくは樹脂シートを用いることができる。
前記樹脂としては、可視光の透過性を有するものが好ましく、例えばポリアクリル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。これらのうち、ポリエステル、特にポリエチレンテレフタレートが、透明耐熱フィルムとして好適であり、薄くて軽いフレキシブルな色素増感太陽電池を製造することができる。
As the substrate on which the semiconductor film constituting the photoelectrode is formed, a resin film or a resin sheet having a transparent conductive film formed on the surface can be used.
As the resin, those having visible light permeability are preferable, and examples thereof include polyacryl, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide. Among these, polyester, especially polyethylene terephthalate is suitable as a transparent heat-resistant film, and a thin and light flexible dye-sensitized solar cell can be produced.

前記電解液は特に限定されず、例えば、公知の色素増感太陽電池の電解液が適用できる。電解液には、酸化還元対(電解質)が溶解されており、フィラーや増粘剤などの他の添加剤を含んでいてもよい。また、電解液に代えて公知の固体電解質を適用してもよい。
前記固体電解質は、ゲル状又は固体状の何れかの状態である。ゲル状又は固体状の電解質層を用いることにより、色素増感太陽電池から電解液が漏出する虞がなくなる。
The said electrolyte solution is not specifically limited, For example, the electrolyte solution of a well-known dye-sensitized solar cell is applicable. In the electrolytic solution, a redox couple (electrolyte) is dissolved and may contain other additives such as a filler and a thickener. Moreover, you may apply a well-known solid electrolyte instead of electrolyte solution.
The solid electrolyte is in a gel state or a solid state. By using the gel or solid electrolyte layer, there is no possibility of the electrolyte solution leaking from the dye-sensitized solar cell.

前記封止材の種類は特に限定されず、公知の色素増感太陽電池で使用されている封止樹脂を適用できる。例えば、紫外線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。前記封止材の厚みは特に限定されず、光電極と対向電極膜が所定の間隔を置いて離隔し、電解液又は電解質層が所定の厚みとなるように適宜調整される。   The kind of the sealing material is not particularly limited, and a sealing resin used in a known dye-sensitized solar cell can be applied. For example, an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, etc. are mentioned. The thickness of the sealing material is not particularly limited, and is appropriately adjusted so that the photoelectrode and the counter electrode film are separated from each other with a predetermined interval, and the electrolytic solution or the electrolyte layer has a predetermined thickness.

第二実施形態の色素増感太陽電池は、前記光電極を用いること以外は、常法により製造することができる。例えば、前記光電極と前記対向電極の間に前記電解液又は電解質を配置して封止し、必要に応じて引き出し配線を光電極及び/又は対向電極に電気的に接続することにより、作製することができる。   The dye-sensitized solar cell of the second embodiment can be manufactured by a conventional method except that the photoelectrode is used. For example, the electrolytic solution or the electrolyte is disposed between the photoelectrode and the counter electrode and sealed, and if necessary, the lead-out wiring is electrically connected to the photoelectrode and / or the counter electrode. be able to.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

[実施例1]
基材として、あらかじめITO(スズドープ酸化インジウム)がPEN(ポリエチレンナフタレート)基板に製膜されたITO−PEN基板を用いた。
<凝集粒子の調製>
無機酸化物半導体粒子として、平均粒子径が約21nmのアナターゼ型TiO粒子を使用した。このチタニア粒子をエタノール中に30wt%で分散させ、充分に分散して得られた分散液を静置して、容器の底にチタニア粒子を沈降させた。この静置状態を保ったまま、30℃未満の減圧下でエタノールを蒸発させて、チタニア粒子を乾燥させた。
乾燥して得られた凝集粒子の粒度分布をレーザー回折式粒度分布計で測定し、図2に示す様に、粒径分布が0.1μm〜10μmであり、単峰性のピークを有する凝集粒子であることを確認した。図2の粒度分布グラフから、調製した凝集粒子は、d10=約0.4μm、d50=約1.5μm、モード径=約1.8μm、d90=約4.0μmというパラメータを有することが分かる。
さらに、凝集粒子を電子顕微鏡で観察し、図3に示すSEM像を得た。このSEM像から、凝集粒子は球体に近似し易い形状の塊であり、凝集粒子を構成する各半導体粒子が互いに密に凝集していることが確認された。このような密な凝集状態であるため、凝集粒子の吹き付け時に、凝集粒子が基材に到達する前に解砕することなく、凝集粒子として基材に衝突し得ることが確認された。
[Example 1]
As a base material, an ITO-PEN substrate in which ITO (tin-doped indium oxide) was previously formed on a PEN (polyethylene naphthalate) substrate was used.
<Preparation of aggregated particles>
As the inorganic oxide semiconductor particles, anatase TiO 2 particles having an average particle diameter of about 21 nm were used. The titania particles were dispersed in ethanol at 30 wt%, and a dispersion obtained by sufficiently dispersing the titania particles was allowed to stand to allow the titania particles to settle on the bottom of the container. While maintaining this stationary state, ethanol was evaporated under reduced pressure below 30 ° C. to dry the titania particles.
The particle size distribution of the agglomerated particles obtained by drying was measured with a laser diffraction particle size distribution meter, and as shown in FIG. 2, the agglomerated particles having a particle size distribution of 0.1 μm to 10 μm and having a unimodal peak It was confirmed that. From the particle size distribution graph of FIG. 2, it can be seen that the prepared aggregated particles have parameters of d10 = about 0.4 μm, d50 = about 1.5 μm, mode diameter = about 1.8 μm, d90 = about 4.0 μm.
Furthermore, the aggregated particles were observed with an electron microscope to obtain an SEM image shown in FIG. From this SEM image, it was confirmed that the aggregated particles are lumps having a shape that can be approximated to a sphere, and the semiconductor particles constituting the aggregated particles are closely aggregated. Due to such a dense aggregate state, it was confirmed that the aggregated particles could collide with the substrate as aggregated particles without being crushed before the aggregated particles reached the substrate when sprayed.

<製膜>
図1に示す製膜装置60を使用して、製膜室51内において、10mm×0.5mmの長方形の開口部を持つノズル52からITO−PEN基板に対して前記凝集粒子を吹き付けた。この際、搬送ガスであるNをボンベ55から搬送管56へ供給し、その流速をマスフロー制御器57で調整した。吹き付け用の凝集粒子をエアロゾル発生器58に装填し、搬送ガスに分散させて、解砕器59および分級器61へ搬送し、ノズル52から基材53へ噴射した。製膜室51には真空ポンプ62が接続されており、製膜室内を陰圧にした。ノズル52における搬送速度は5mm/secとした。
前記凝集粒子を前記基材に吹き付けることにより、凝集粒子を構成するチタニア粒子同士が互いに接合してなる多孔質膜を製膜することができた。この多孔質膜の断面を電子顕微鏡で観察したSEM像を図4に示す。このSEM像から、チタニア粒子が充分に接合した均一な膜構造が形成されていることが確認できた。
<Film formation>
The film forming apparatus 60 shown in FIG. 1 was used to spray the aggregated particles on the ITO-PEN substrate from the nozzle 52 having a rectangular opening of 10 mm × 0.5 mm in the film forming chamber 51. At this time, the carrier gas N 2 was supplied from the cylinder 55 to the carrier pipe 56, and the flow rate was adjusted by the mass flow controller 57. Aggregated particles for spraying were loaded into an aerosol generator 58, dispersed in a carrier gas, conveyed to a pulverizer 59 and a classifier 61, and jetted from a nozzle 52 onto a substrate 53. A vacuum pump 62 is connected to the film forming chamber 51, and the film forming chamber is set to a negative pressure. The conveyance speed in the nozzle 52 was 5 mm / sec.
By spraying the agglomerated particles on the substrate, it was possible to form a porous film in which the titania particles constituting the agglomerated particles were joined together. FIG. 4 shows an SEM image obtained by observing a cross section of the porous film with an electron microscope. From this SEM image, it was confirmed that a uniform film structure in which the titania particles were sufficiently joined was formed.

[比較例1]
<原料粒子の準備>
実施例1で使用したチタニア粒子をエタノール中に分散せず、乾燥して、原料粒子とした。
この原料粒子を電子顕微鏡で観察し、図5に示すSEM像を得た。このSEM像から、原料粒子の中には凝集した塊が複数観察された。しかし、これらの凝集塊は、実施例1の凝集粒子と比べると粒子径が不均一かつ小粒である。また、凝集塊の表面に多数の影が濃く観察されることから、凝集の程度が弱く、比較的疎な凝集状態であることが確認された。このような疎な凝集状態であるため、原料粒子の吹き付け時に、凝集粒子が基材に到達する前に解砕し、凝集塊として基材に衝突することが比較的難しく、仮に凝集塊として衝突したとしても、基材表面で解砕し易く、製膜(粒子同士の接合)に必要なエネルギーが得られ難いと考えられた。
[Comparative Example 1]
<Preparation of raw material particles>
The titania particles used in Example 1 were not dispersed in ethanol but dried to obtain raw material particles.
The raw material particles were observed with an electron microscope to obtain an SEM image shown in FIG. From this SEM image, a plurality of aggregated lumps were observed in the raw material particles. However, these agglomerates have a non-uniform particle size and small particles compared to the agglomerated particles of Example 1. Moreover, since many shadows were observed deeply on the surface of the agglomerate, it was confirmed that the degree of aggregation was weak and the aggregation state was relatively sparse. Because of this sparse aggregation state, when the raw material particles are sprayed, it is relatively difficult to disintegrate before the aggregated particles reach the base material and collide with the base material as aggregates. Even if it did, it was thought that it was easy to crush on the base-material surface and it was difficult to obtain energy required for film formation (joining of particle | grains).

<製膜>
前記原料粒子を使用して、実施例1と同様に吹き付けを行い、多孔質膜を製膜した。
その結果、所定厚みの多孔質膜は辛うじて得られたが、実施例1に比べて、製膜に要する吹き付け時間が長く、吹き付ける粒子量が多く必要であった。
<Film formation>
Using the raw material particles, spraying was performed in the same manner as in Example 1 to form a porous film.
As a result, a porous film having a predetermined thickness was barely obtained. However, compared with Example 1, the spraying time required for film formation was long, and a large amount of particles to be sprayed was required.

《色素増感太陽電池の製造、及びその性能評価》
実施例1及び比較例1の多孔質膜を備えた各基板を、0.3mMのRu錯体色素(N719、ソラロニクス社製)のアルコール溶液中に、室温で18時間浸漬させて、当該多孔質膜に色素を吸着させることにより、光電極基板を得た。
光電極基板と、白金コーティング付きガラス基板からなる対極基板とを対向配置し、この間にスペーサーとして厚み30μmの樹脂フィルム(ハイミラン、三井・デュポン ポリケミカル社製)を挟んで、ダブルクリップで留めて圧着した。さらに、対極基板に予め空けておいた注入孔から、両基板の間に、電解液(Iodolyte50、ソラロニクス社製)を注入した後、注入孔をガラス板で塞ぐことにより、色素増感太陽電池の簡易セルを作製した。受光する有効面積は0.16cmであった。
得られた各試験例の簡易セルの光電変換効率等の性能を、ソーラーシミュレーター(AM1.5、100mW/cm)を用いて評価した。その結果を表1に示す。また、各簡易セルのV−I特性を比較した結果を図6に示す。
<< Production of dye-sensitized solar cell and performance evaluation >>
Each substrate provided with the porous membrane of Example 1 and Comparative Example 1 was immersed in an alcohol solution of 0.3 mM Ru complex dye (N719, manufactured by Solaronics) at room temperature for 18 hours, and the porous membrane was used. A photoelectrode substrate was obtained by adsorbing a dye on the substrate.
A photoelectrode substrate and a counter electrode substrate made of a glass substrate with platinum coating are placed facing each other, and a 30 μm thick resin film (Hi-Milan, made by Mitsui / DuPont Polychemical Co., Ltd.) is sandwiched between them as a spacer. did. Further, after injecting an electrolyte solution (Iodolyte 50, manufactured by Solaronics Corporation) between the two substrates from the injection hole previously opened in the counter electrode substrate, the injection hole is closed with a glass plate, so that the dye-sensitized solar cell A simple cell was produced. The effective area for receiving light was 0.16 cm 2 .
Performances such as photoelectric conversion efficiency of the obtained simple cells of each test example were evaluated using a solar simulator (AM1.5, 100 mW / cm 2 ). The results are shown in Table 1. Moreover, the result of having compared the VI characteristic of each simple cell is shown in FIG.

実施例1及び比較例1の多孔質膜が形成された基板をそれぞれ曲率半径R=3cmの円柱に添わせるように曲げた。実施例1の多孔質膜は基板の変形においても剥離せず、多孔質膜を構成するチタニア粒子が脱落する様子も無かった。この結果から、粒子同士の接合、および粒子と基板との接合がともに優れることが確認された。
比較例1の多孔質膜は基板の変形において直ぐに剥離した。比較例1の多孔質膜は圧粉体(粉の塊が基板上に載っているだけ)に近い状態であると考えられた。この結論は、色素吸着量が少なく、発電特性が劣ることからも支持された。
The substrates on which the porous films of Example 1 and Comparative Example 1 were formed were bent so as to follow a cylinder having a curvature radius R = 3 cm. The porous film of Example 1 did not peel off even when the substrate was deformed, and the titania particles constituting the porous film did not fall off. From this result, it was confirmed that the bonding between the particles and the bonding between the particles and the substrate are both excellent.
The porous film of Comparative Example 1 was peeled off immediately after deformation of the substrate. The porous film of Comparative Example 1 was considered to be in a state close to a green compact (only a lump of powder was placed on the substrate). This conclusion was supported by the fact that the amount of dye adsorption was small and the power generation characteristics were inferior.

以上の結果から、実施例1の簡易セルの光電変換効率(Eff.)は比較例1よりも大きく、太陽電池としてより優れていることが明らかである。この結果は、光電極を構成する多孔質膜において、半導体粒子同士の接合が優れ、電子伝導性、光透過性が向上していることを反映していると考えられる。   From the above results, it is clear that the photoelectric conversion efficiency (Eff.) Of the simple cell of Example 1 is larger than that of Comparative Example 1 and is more excellent as a solar cell. This result is considered to reflect that in the porous film constituting the photoelectrode, the bonding between the semiconductor particles is excellent, and the electron conductivity and light transmittance are improved.

[実施例2]
エタノールに替えてメタノールを使用した以外は、実施例1と同様の方法で、凝集粒子を調製し、チタニア粒子からなる多孔質膜を製膜した。得られた多孔質膜のSEM像を観察したところ、チタニア粒子が充分に接合した均一な膜構造を有することが確認できた。この多孔質膜を備えた簡易セルを実施例1と同様に作製し、良好な発電特性が得られた。
[Example 2]
Aggregated particles were prepared in the same manner as in Example 1 except that methanol was used in place of ethanol to form a porous film made of titania particles. When an SEM image of the obtained porous membrane was observed, it was confirmed that it had a uniform membrane structure in which titania particles were sufficiently joined. A simple cell equipped with this porous membrane was produced in the same manner as in Example 1, and good power generation characteristics were obtained.

[実施例3]
エタノールに替えて1−ペンタノールを使用した以外は、実施例1と同様の方法で、凝集粒子を調製し、チタニア粒子からなる多孔質膜を製膜した。得られた多孔質膜のSEM像を観察したところ、チタニア粒子が充分に接合した均一な膜構造を有することが確認できた。この多孔質膜を備えた簡易セルを実施例1と同様に作製し、良好な発電特性が得られた。
[Example 3]
Aggregated particles were prepared in the same manner as in Example 1 except that 1-pentanol was used in place of ethanol to form a porous film made of titania particles. When an SEM image of the obtained porous membrane was observed, it was confirmed that it had a uniform membrane structure in which titania particles were sufficiently joined. A simple cell equipped with this porous membrane was produced in the same manner as in Example 1, and good power generation characteristics were obtained.

[実施例4]
エタノールに替えて2級アルコールであるイソプロパノールを使用した以外は、実施例1と同様の方法で、凝集粒子を調製し、チタニア粒子からなる多孔質膜を製膜した。得られた多孔質膜のSEM像を観察したところ、チタニア粒子が充分に接合した均一な膜構造を有することが確認できた。この多孔質膜を備えた簡易セルを実施例1と同様に作製し、良好な発電特性が得られた。
[Example 4]
Aggregated particles were prepared in the same manner as in Example 1 except that isopropanol, which is a secondary alcohol, was used in place of ethanol, and a porous film made of titania particles was formed. When an SEM image of the obtained porous membrane was observed, it was confirmed that it had a uniform membrane structure in which titania particles were sufficiently joined. A simple cell equipped with this porous membrane was produced in the same manner as in Example 1, and good power generation characteristics were obtained.

[実施例5]
エタノールに替えて3級アルコールであるt−ブタノールを使用した以外は、実施例1と同様の方法で、凝集粒子を調製し、チタニア粒子からなる多孔質膜を製膜した。得られた多孔質膜のSEM像を観察したところ、チタニア粒子が充分に接合した均一な膜構造を有することが確認できた。この多孔質膜を備えた簡易セルを実施例1と同様に作製し、良好な発電特性が得られた。
[Example 5]
Aggregated particles were prepared in the same manner as in Example 1 except that t-butanol, which is a tertiary alcohol, was used instead of ethanol, and a porous film made of titania particles was formed. When an SEM image of the obtained porous membrane was observed, it was confirmed that it had a uniform membrane structure in which titania particles were sufficiently joined. A simple cell equipped with this porous membrane was produced in the same manner as in Example 1, and good power generation characteristics were obtained.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。   The configurations and combinations thereof in the embodiments described above are examples, and the addition, omission, replacement, and other modifications of the configurations can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.

本発明に係る半導体膜の製造方法は、太陽電池の分野に広く適用可能である。   The method for producing a semiconductor film according to the present invention is widely applicable in the field of solar cells.

51 製膜室、
52 ノズル
53 基材
54 半導体粒子
55 ボンベ
56 搬送管
57 マスフロー制御器
58 エアロゾル発生器
59 解砕器
60 製膜装置
61 分級器
62 真空ポンプ
63 基台
71 製膜面
72 基台の載置面(上面)
73 製膜面の反対側の面
51 Film deposition chamber,
52 Nozzle 53 Base Material 54 Semiconductor Particle 55 Cylinder 56 Transport Pipe 57 Mass Flow Controller 58 Aerosol Generator 59 Crusher 60 Film Forming Device 61 Classifier 62 Vacuum Pump 63 Base 71 Film Forming Surface 72 Base Placement Surface ( Top view)
73 Surface opposite to the film-forming surface

Claims (6)

平均粒子径が1nm以上100nm未満の範囲である半導体粒子をアルコール中に分散させた分散液を得た後、前記分散液から前記アルコールを蒸発させて前記半導体粒子を乾燥することにより、前記半導体粒子同士が凝集した凝集粒子を得て、
前記凝集粒子を基材に吹き付けることにより、前記基材上に半導体膜を製膜する、半導体膜の製造方法。
After obtaining a dispersion liquid in which semiconductor particles having an average particle diameter of 1 nm or more and less than 100 nm are dispersed in alcohol, the semiconductor particles are dried by evaporating the alcohol from the dispersion liquid. To obtain agglomerated particles that are aggregated together,
A method for producing a semiconductor film, comprising forming a semiconductor film on the substrate by spraying the aggregated particles on the substrate.
前記半導体粒子が前記アルコール中に沈降した状態で、前記アルコールを蒸発させて前記半導体粒子を乾燥する、請求項1に記載の半導体膜の製造方法。   The method for producing a semiconductor film according to claim 1, wherein the semiconductor particles are dried by evaporating the alcohol in a state where the semiconductor particles are precipitated in the alcohol. 50℃未満の温度で前記アルコールを蒸発させる、請求項1又は2に記載の半導体膜の製造方法。   The method of manufacturing a semiconductor film according to claim 1, wherein the alcohol is evaporated at a temperature of less than 50 ° C. 前記半導体粒子が金属酸化物半導体の粒子である、請求項1〜3の何れか一項に記載の半導体膜の製造方法。   The method for producing a semiconductor film according to claim 1, wherein the semiconductor particles are metal oxide semiconductor particles. 前記半導体膜が多孔質膜である、請求項1〜4の何れか一項に記載の半導体膜の製造方法。   The manufacturing method of the semiconductor film as described in any one of Claims 1-4 whose said semiconductor film is a porous film. 請求項1〜5の何れか一項に記載の半導体膜の製造方法によって得られた半導体膜に、増感色素を吸着させてなる光電極を備えた、色素増感太陽電池。   A dye-sensitized solar cell comprising a photoelectrode obtained by adsorbing a sensitizing dye to a semiconductor film obtained by the method for producing a semiconductor film according to claim 1.
JP2017502512A 2015-02-26 2016-02-26 Semiconductor film manufacturing method and dye-sensitized solar cell Withdrawn JPWO2016136950A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015037233 2015-02-26
JP2015037233 2015-02-26
PCT/JP2016/055845 WO2016136950A1 (en) 2015-02-26 2016-02-26 Method for producing semiconductor film, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JPWO2016136950A1 true JPWO2016136950A1 (en) 2017-12-21

Family

ID=56789581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017502512A Withdrawn JPWO2016136950A1 (en) 2015-02-26 2016-02-26 Semiconductor film manufacturing method and dye-sensitized solar cell

Country Status (5)

Country Link
JP (1) JPWO2016136950A1 (en)
KR (1) KR20170125800A (en)
CN (1) CN107109662B (en)
TW (1) TWI684297B (en)
WO (1) WO2016136950A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015701B (en) * 2019-01-31 2023-07-28 日本瑞翁株式会社 Titanium dioxide paste, porous semiconductor electrode substrate, photoelectrode, and dye-sensitized solar cell
US20220243086A1 (en) * 2019-06-27 2022-08-04 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same
JP7093812B2 (en) * 2019-06-27 2022-06-30 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821357B2 (en) * 1994-02-22 1998-11-05 株式会社日本触媒 Manufacturing method of zinc oxide fine particles
JP4304343B2 (en) * 2005-09-08 2009-07-29 国立大学法人 千葉大学 Zinc oxide fine particles, method for producing aggregates thereof and dispersion solution
CN100511727C (en) * 2007-06-04 2009-07-08 西安交通大学 Method for manufacturing dye sensitized nano crystal solar cell photo-anode membrane
JP5322017B2 (en) * 2011-05-20 2013-10-23 独立行政法人産業技術総合研究所 Film-forming method, film-forming body, and dye-sensitized solar cell
JPWO2015002285A1 (en) * 2013-07-05 2017-02-23 積水化学工業株式会社 Manufacturing method of semiconductor film, raw material particles for manufacturing semiconductor film, semiconductor film, photoelectrode, and dye-sensitized solar cell

Also Published As

Publication number Publication date
TW201703304A (en) 2017-01-16
TWI684297B (en) 2020-02-01
CN107109662B (en) 2019-07-12
CN107109662A (en) 2017-08-29
KR20170125800A (en) 2017-11-15
WO2016136950A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US8932898B2 (en) Deposition and post-processing techniques for transparent conductive films
KR20150046537A (en) Method for pregaring graphene nanoplate, graphene nanoplate by the method, graphene nanoplate paste, and conductive layer including the same
CN109890190B (en) Transparent electromagnetic shielding film and preparation method thereof
WO2016136950A1 (en) Method for producing semiconductor film, and dye-sensitized solar cell
JP2012243629A (en) Film forming method, film body, and dye-sensitized solar cell
JP5322017B2 (en) Film-forming method, film-forming body, and dye-sensitized solar cell
KR101302975B1 (en) MANUFACTORING METHOD OF SPUTTERING TARGET OF Aluminium doped ZnO USING SPRAY PYROLYSIS
CN113782824B (en) Sulfide electrolyte membrane and preparation method and application thereof
WO2012032092A2 (en) Methods of manufacturing photovoltaic electrodes
Lee et al. Effects of spin speed on the photoelectrochemical properties of Fe2O3 thin films
WO2014115763A1 (en) Film-forming method, porous film, photo-electrode, and dye-sensitized solar cell
JP6641167B2 (en) Method for producing coated semiconductor particles, method for producing semiconductor film, method for producing laminate, method for producing electrode, and method for producing dye-sensitized solar cell
JP4251448B2 (en) Aluminum-substituted tin-containing indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet using the particles
CN110931723A (en) Preparation method of 0D/2D nano-layered structure Si-RGO composite material
JPH11330506A (en) Manufacture of solar battery and its electrode
JP6134106B2 (en) Method for producing porous membrane
JP6228414B2 (en) Method for producing composite membrane
WO2015002285A1 (en) Method for manufacturing semiconductor film, raw-material particles for semiconductor film manufacture, semiconductor film, photoelectrode, and dye-sensitized solar cell
JP6595849B2 (en) Photoelectrode, method for manufacturing the same, and solar cell
JP2005194125A (en) Silver added tin-containing indium oxide particle and method of manufacturing the same, and conductive coating material, conductive coating film and conductive sheet
JP2013181233A (en) Method of producing film, film body, and dye-sensitized solar cell
JP2010037464A (en) Porous membrane and transparent electrode using this
JP2013062202A (en) Electrode molding device and electrode molding method
TW202000985A (en) Method for preparing conductive copper films
JP2013181234A (en) Apparatus of producing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20181225