JPWO2015040822A1 - ディスプレイ装置とその製造方法 - Google Patents

ディスプレイ装置とその製造方法 Download PDF

Info

Publication number
JPWO2015040822A1
JPWO2015040822A1 JP2015537553A JP2015537553A JPWO2015040822A1 JP WO2015040822 A1 JPWO2015040822 A1 JP WO2015040822A1 JP 2015537553 A JP2015537553 A JP 2015537553A JP 2015537553 A JP2015537553 A JP 2015537553A JP WO2015040822 A1 JPWO2015040822 A1 JP WO2015040822A1
Authority
JP
Japan
Prior art keywords
light
reflective film
display device
mirror
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015537553A
Other languages
English (en)
Inventor
高山 暁
暁 高山
浦野 妙子
妙子 浦野
務 中西
務 中西
中村 健二
健二 中村
岐津 裕子
裕子 岐津
鎬楠 権
鎬楠 権
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2015040822A1 publication Critical patent/JPWO2015040822A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

ディスプレイ装置(1)は、透明平板(31)の一方の面に形成された反射膜(32)と、反射膜(32)に形成された複数の微細窓(33)とを備えるミラー部(30)と、法線方向に光出射角分布が偏った非平行光をミラー部(30)に向けて放射する平面ディスプレイ部(10)と、ミラー部(30)と平面ディスプレイ部(10)との間に配置され、平面ディスプレイ部(10)から放射される非平行光を複数の微細窓(33)に個々に集光する複数のマイクロレンズ(21)を備えるマイクロレンズアレイ部(20)とを具備している。

Description

本発明の実施形態は、ディスプレイ装置とその製造方法に関する。
従来から、液晶ディスプレイ等の薄型ディスプレイの前面側をハーフミラーで閉鎖した装置(ミラーディスプレイ)が実用化されている。ミラーディスプレイは、薄型ディスプレイを、外光を遮断する筺体内や壁内に設置すると共に、光反射率が50%程度のハーフミラーでディスプレイの前面側空間を閉鎖することにより、ディスプレイ側を設置空間より暗くした構成を有している。このようなミラーディスプレイにおいて、通常はハーフミラーを鏡として機能させる。ディスプレイ画面上に画像を表示する場合には、ディスプレイのバックライト光を、ハーフミラーを介して前面側に透過させることによって、ハーフミラーの前面側から画像が視認される。
従来のミラーディスプレイでは、ハーフミラーを介してバックライト光を前面側に透過させることにより画像を表示するため、光の反射率および透過率がそれぞれ50%程度のハーフミラーが使用されている。ミラーディスプレイは、通常の鏡と比較して画面が暗いという難点を有している。ハーフミラーを構成する金属膜の厚さ等が影響して、全体的に画面が黄ばんで見える傾向がある。ハーフミラーによる光の反射率を高めて鏡としての機能を向上させると、ハーフミラーを透過する光量が減少するため、画像を表示する際に画面が暗くなってしまう。そこで、鏡としての機能を向上させるために光の反射率を高めつつ、画像を表示する際の透過光量を高めることが求められている。
ミラーディスプレイとは別に、光の反射と透過を利用したハイブリッド型の液晶ディスプレイが知られている。ハイブリッド型の液晶ディスプレイにおいては、その周囲で太陽光や照明光等の外光が得られる場合には外光を反射させた光を用いて反射表示し、外光が暗い場合にはバックライト光を透過させた光を用いて透過表示する。この方式は、外光が得られる場合にはバックライトを消して消費電力を抑えることができるため、バッテリ駆動するモバイル用途の液晶表示装置に用いられることが多い。ハイブリッド型の液晶ディスプレイにおいても、外光を反射させつつバックライト光を透過させる手段として、ハーフミラーが用いられている。
ハーフミラーが用いたハイブリッド型の液晶ディスプレイは、ミラーディスプレイと同様な課題を有している。すなわち、反射表示の場合に画面が暗くなりやすく、さらに色相にずれが生じやすい。ハーフミラーによる光の反射率を高めて反射表示の輝度を高めると、ハーフミラーを透過するバックライト光が減少するため、透過表示の画面が暗くなってしまう。ハーフミラーに代えて、画素電極等の金属層を部分ミラーとして用いたハイブリッド型の液晶ディスプレイも知られている。部分ミラーは反射光と透過光とが完全にトレードオフの関係にあるため、反射表示と透過表示の画質を両立させることはできない。そこで、反射表示の画質を向上させるために光の反射率を高めつつ、透過表示の画質を向上させるためにバックライト光の透過光量を高めることが求められている。
特表2009−500662号公報
本発明が解決しようとする課題は、光の反射と透過とを利用した平面ディスプレイにおいて、外光の反射率を高めつつ、平面ディスプレイから放射される光の透過量を高めることによって、光を反射させた際の性能と光を透過させた際の性能を共に向上させることを可能にしたディスプレイ装置とその製造方法を提供することにある。
実施形態のディスプレイ装置は、可視光に対して透明な平板と、透明平板の一方の面に形成された反射膜と、反射膜に形成された複数の微細窓とを備えるミラー部と、ミラー部の反射膜の形成面側に配置され、法線方向に光出射角分布が偏った非平行光をミラー部に向けて放射する平面ディスプレイ部と、ミラー部と平面ディスプレイ部との間に配置され、平面ディスプレイ部からミラー部に向けて放射される非平行光を複数の微細窓に個々に集光する複数のマイクロレンズを備えるマイクロレンズアレイ部とを具備している。
第1の実施形態によるディスプレイ装置を示す図である。 図1に示すディスプレイ装置に用いられるバックライトの構成例を示す図である。 図2に示すバックライトの光出射角分布を示す図である。 図1に示すディスプレイ装置に用いられるマイクロレンズアレイ部の第1の構成例の形状と微細窓の開口径との関係を示す図である。 図4に示すマイクロレンズアレイ部の構造と光路の計算例を示す図である。 図5の変形例を示す図である。 図4に示すマイクロレンズアレイ部の構造と光路の他の計算例を示す図である。 図1に示すディスプレイ装置に用いられるマイクロレンズアレイ部の第2の構成例の形状と微細窓の開口径との関係を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における支持体の準備工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例におけるマイクロレンズアレイの形成工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における反射膜の形成工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における感光層の形成工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における感光層の露光工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における感光層の現像工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における微細窓の形成工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における微細窓の形成工程を示す図である。 図1に示すディスプレイ装置のミラー部およびマイクロレンズアレイ部の製造工程例における透明平板の接着工程を示す図である。 アルミニウム膜の波長200nmから800nmの領域における透過スペクトルの計算結果を示す図である。 アルミニウム膜の波長200nmから800nmの領域における反射スペクトルの計算結果を示す図である。 感光層の波長200nmから800nmの領域における吸収スペクトルの一例を示す図である。 感光層の露光時間と微細孔サイズとの関係の一例を示す図である。 アルミニウム膜の透過および反射スペクトルの測定結果の一例を示す図である。 感光層を感光させる際の露光時間と反射膜の微細孔径との関係の一例を示す図である。 マイクロレンズアレイ部とミラー部との複合体のマイクロレンズアレイ部側から測定した透過スペクトルの一例を示す図である。 マイクロレンズアレイ部とミラー部との複合体のミラー部側から測定した透過スペクトルの一例を示す図である。 マイクロレンズアレイ部とミラー部との複合体のミラー部側から測定した反射スペクトルの一例を示す図である。 図1に示すディスプレイ装置の第1の変形例を示す断面図である。 図1に示すディスプレイ装置の第2の変形例を示す断面図である。 図1に示すディスプレイ装置の第3の変形例を示す断面図である。 図1に示すディスプレイ装置の第4の変形例を示す断面図である。 図1に示すディスプレイ装置の第5の変形例を示す断面図である。 図1に示すディスプレイ装置の第6の変形例を示す断面図である。 第2の実施形態によるディスプレイ装置を示す断面図である。 図25に示すディスプレイ装置における液晶表示部と反射部とマイクロレンズアレイ部を拡大して示す断面図である。 第2の実施形態のディスプレイ装置における光反射率と光透過率との関係を示す図である。 図25に示すディスプレイ装置の第1の変形例を示す断面図である。 図25に示すディスプレイ装置の第2の変形例を示す断面図である。 図29に示すディスプレイ装置の液晶ディスプレイにおける光センサ部を拡大して示す断面図である。
以下、実施形態のディスプレイ装置について、図面を参照して説明する。なお、各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる。説明中の上下等の方向を示す用語は、特に明記が無い場合には後述する平面ディスプレイ部の表示面側を上とした場合の相対的な方向を指し示し、重力加速度方向を基準とした現実の方向と異なる場合がある。
(第1の実施形態)
図1は第1の実施形態によるディスプレイ装置の構成を示す断面図である。図1に示すディスプレイ装置1は、平面ディスプレイ部10とマイクロレンズアレイ部20とミラー部30とを具備している。図1に示すディスプレイ装置1は、平面ディスプレイ部10としてバックライト型液晶ディスプレイを具備している。平面ディスプレイ部10は、表示面10aと非表示面10bとを有している。平面ディスプレイ部10としての液晶ディスプレイの非表示面10b側には、図示を省略したバックライトが配置されている。液晶ディスプレイは、画素11A、11B、11C、11Dを有しており、これら画素11A〜11Dを透過した光によりカラー画像が表示される。
液晶ディスプレイの表示面10aから放射される光は、法線方向に光出射角分布が偏った非平行光である。平面ディスプレイ部10は、バックライト型液晶ディスプレイに限られるものではなく、法線方向に光出射角分布が偏った非平行光を放射するディスプレイであればよい。平面ディスプレイ部10は、有機ELディスプレイ、電界放出型ディスプレイ、プラズマディスプレイ、LEDディスプレイ等であってもよい。後述するマイクロレンズで光を有効に絞るために、平面ディスプレイ部10から放出される光を平行光に近付けることが好ましい。平面ディスプレイ部10には、例えば台形リニアプリズムシートを交差させて、光学的に出射角を法線方向に絞ったディスプレイが適用しやすい。平面ディスプレイ部10のバックライトとしてより平行に近い面光源が要求される場合には、三角形サーキュラープリズムシートや放物面シート等を使用することが好ましい。
平面ディスプレイ部10の表示面10a側には、ミラー部30が配置される。ミラー部30は、可視光に対して透明な平板31を有している。透明平板31の一方の面31aには、反射膜32が形成されている。透明平板31の形成材料は、無機材料および有機材料のいずれであってもよい。透明平板31には、透明性の高いガラス板やアクリル樹脂板が好適に用いられる。反射膜32には、可視光の反射率が高い金属膜、あるいは誘電体多層膜が用いられる。反射膜32としての金属膜は、銀、銀合金、アルミニウム、アルミニウム合金等の薄膜であることが好ましい。ミラー部30は、反射膜32が平面ディスプレイ部10の表示面10a側に位置するように配置される。反射膜32の表面は、鏡面とされている。ミラー部30は、透明平板31の反射膜32の形成面31aとは反対側の面(表面)31bに入射した光(外光)OLを反射することによりミラーとして機能する。
反射膜32は、複数の微細窓33を有している。微細窓33は、反射膜32を部分的に開口させることにより形成されたものである。微細窓33は、平面ディスプレイ部10から放射された光の透過孔として機能する。微細窓33の形状は特に限定されず、正方形、長方形、菱形、六角形、八角形、円形、楕円形等が適用される。なお、後述のレーザ加工で微細窓33を作製する場合には、個々の孔形状が設計形状から誤差を生じることがあるが、サイズ条件を満足する範囲内でのばらつきは許容される。微細窓33は、例えば透明平板31上やマイクロレンズアレイ部20の支持体22上に一様に形成した金属膜に、レーザ光のような高エネルギー光による部分的な除去加工工程やマスクを利用したフォトエッチング工程を施すことにより形成される。微細窓33の形成方法は、特に限定されるものではなく、透明平板31やマイクロレンズアレイ部20の支持体22上に窓パターンに応じてマスキング層を形成した後、部分メッキ工程や蒸着およびリフトオフ工程を適用して微細窓33を形成してもよい。微細窓33の形成方法としては、金属膜の除去の他に、金属膜(例えばアルミニウム膜)の酸化による改質等を適用することもできる。微細窓33の形成方法については、後に詳述する。
平面ディスプレイ部10を表示していないときに、ミラー部30を反射鏡として機能させるにあたって、微細窓33は人の視覚で認知不可能な大きさを有していることが好ましい。目安としては、人の視覚の分解能限界が挙げられる。すなわち、微細窓33の大きさは、視覚の分解能限界である1/16mm(62.5μm)以下とすることが好ましい。微細窓33の大きさは、円形の場合には直径、楕円形の場合には長径、多角径の場合には最も長い対角線の長さを示すものとする。微細窓33の大きさは、後に詳述するように非平行光の広がり以上であることが好ましい。そのような大きさの範囲において、微細窓33の大きさはより小さいことが好ましい。
平面ディスプレイ部10とミラー部30との間には、平面ディスプレイ部10からミラー部30に向けて放射される非平行光を、複数の微細窓33に個々に集光する複数のマイクロレンズ21を有するマイクロレンズアレイ部20が配置されている。複数のマイクロレンズ21は、微細窓33に個々に対応している。ここでは、マイクロレンズ21として凸レンズを100μmのピッチで形成している。個々のマイクロレンズ21は、平面ディスプレイ部10からレンズ開口部に入射した光が微細窓33内に集光して透過するように光学特性が調整されている。マイクロレンズアレイ部20の個々のマイクロレンズ21に対して平面ディスプレイ部10の各色の画素11A〜11Dが対応している。
図1は平面ディスプレイ部10の1個の画素11に対して1個のマイクロレンズ21および微細窓33が対応した構成を示している。画素11とマイクロレンズ21および微細窓33との対応関係は、これに限られるものではない。平面ディスプレイ部10の1個の画素11に対して複数個のマイクロレンズ21および微細窓33を対応させてもよい。例えば、拡散性の高い出力光を使用する場合、光の集束可能なサイズが相対的に大きくなるため、面積を限定する必要性から1画素11に対して複数の微細窓33を対応させることが好ましい。逆に、RGB等の複数の画素11A〜11Dに1個のマイクロレンズ21および微細窓33を対応させてもよい。出力光が法線方向に光出射角分布が偏った非平行光である場合、マイクロレンズ21で集光しやすく、微細窓33の開口径に対応するエリアを相対的に大きくできるため、多画素対応に適している。
図1はマイクロレンズ21として凸レンズを有するマイクロレンズアレイ部20を示している。マイクロレンズ21は、これに限定されない。マイクロレンズ21としては、凸レンズ、フレネルレンズ、グレーデッドインデックス(GRIN)レンズのような屈折レンズ、あるいは回折レンズが用いられる。マイクロレンズアレイ部20は、予め作製したマイクロレンズアレイシートを反射膜31上に位置合せしつつ貼り合わせる方法、ミラー部30の反射膜32上に複数のマイクロレンズ21を有するマイクロレンズアレイを印刷法で直接形成する方法等により作製される。マイクロレンズアレイ部20は、ミラー部30と別体として作製する場合に限らず、一連の工程でミラー部30と同時に形成してもよい。マイクロレンズアレイ部20とミラー部30の作製工程については、後に詳述する。
図1に示すディスプレイ装置1において、マイクロレンズアレイ部20は平面ディスプレイ部10およびミラー部30に対してそれぞれ密着するように配置されている。図1は、複数の微細窓33が形成された反射膜32を有する透明平板31と、透明シートのような透明支持体22上に複数のマイクロレンズ21を形成したマイクロレンズアレイシートとを用意し、これらをラミネートすることによりマイクロレンズアレイ部20とミラー部30とを密着させた状態を示している。反射膜32は、透明支持体22のマイクロレンズ21の形成面とは反対側の面上に形成してもよい。この場合、反射膜32上に透明平板31を接着することによりミラー部30が形成される。平面ディスプレイ部10は、マイクロレンズアレイ部20が完全に接触しない程度の隙間を空けて近接配置してもよい。
第1の実施形態のディスプレイ装置1は、平面ディスプレイ部10が非表示状態のとき、反射膜32が外光OLを反射することによりミラーとして機能する。反射膜32には複数の微細窓33が形成されているが、その大きさに基づいてミラー像中で微細窓33が視認されることはない。すなわち、人間の視覚には画像面積が小さくなるほど色差を判別しにくくなるという性質、いわゆる面積効果と呼ばれる性質がある。一方で、視覚には空間分解能の限界があり、通常は0.06度、最も見えやすい焦点距離でも1/16mm(62.5μm)程度が限界値といわれている。このような視覚の生理学的特性から、空間分解能の限界値以下の大きさで鏡(反射膜32)内に孤立して形成された微細窓33は、人間の目では反射による視認では認知できない。従って、微細窓33を形成した反射膜32は、開口率で規定される反射率を有する鏡として機能する。
例えば、平面ディスプレイ部10の画素11A〜11Dの1辺が200μm、1個の画素11に1個の微細窓33を対応させて1辺が20μmの正方形の微細窓33を形成した場合、反射膜32に対する微細窓33の開口率は1%にすぎない。そのような微細窓33を有する反射膜32は、実質的に通常の鏡と等しい光学特性を有する。すなわち、ミラー像中への微細窓33の映し込み等により鏡の機能を低下させることなく、微細窓33を有する反射膜32による光の反射率を高めることができる。従って、ディスプレイ装置1のミラーとしての機能を向上させることが可能になる。
一方、平面ディスプレイ部10が表示状態のとき、平面ディスプレイ部10からミラー部30に向けて放射される光EL1は、マイクロレンズ21により微細窓33に集光されることにより微細窓33を透過する。微細窓33を透過した光EL2が外部に放出されることによって、ミラー部30の前面(透明平板31の表面31b)側から平面ディスプレイ部10が表示する画像を視認することができる。微細窓とそこに焦点を合わせるマイクロレンズとを組合せた光学部品は、光学的に非対称であり、平行光に対する透過率と反射率は入射方向で大きく異なる。このような光学的な非対称性に基づいて、微細窓とマイクロレンズとを組合せた光学部品は、微細窓を通過した光を平行光に近い光に変える部品として、あるには平行光を1点に絞る部品として有効である。
ただし、平面ディスプレイ部10は一般的に拡散光源であり、平面ディスプレイ部10から放出される非平行光をマイクロレンズ21で微細窓33に集光することは困難である。このような点に対しては、平面ディスプレイ部10から放出される光の出射角分布の範囲を制限することが有効である。平面ディスプレイ部10の表示面10aから放射される非平行光の光出射角分布(エンベローブ)を法線方向に偏らせることが有効である。法線方向に光出射角分布が偏った非平行光は、マイクロレンズ21で微細窓33に集光させやすい。平面ディスプレイ部10からミラー部30に向けて放射される光について、ミラー部30を透過する光量を高めることができる。従って、ディスプレイ装置1のミラー部30の前面側における画像の表示機能を向上させることが可能になる。
図2は法線方向に光出射角分布を偏らせた非平行光を放出するバックライト12の一例を示している。図2に示すバックライト12は、図示しない拡散光源上に2枚のプリズムシート(例えば、住友3M社製のBEFシート)13A、13Bを直交配置した構造を有している。図3は図2に示すバックライト12の光出射角分布を示している。バックライト12から放出される光の最大強度は法線方向にあり、法線方向に対して±45度の範囲はガウス分布で近似できる。集光範囲の目安として、最大強度の1/2(半値)から最大強度までの範囲(図3では法線方向に対して±約20度)の光を選定し、その大部分が反射膜32に形成した微細窓33を通過するようにすることが好ましい。
光学設計上の要求から、光出射角分布(エンベローブ)を法線方向に偏らせる必要がある。実用上の目安として、光出射角分布は空気に対する半値幅が±25度以内であることが好ましい。すなわち、平面ディスプレイ部10としてバックライト型液晶ディスプレイを用いる場合、バックライト12から放出される光(非平行光)は、最大強度を成す角度が法線方向であり、かつ最大強度の1/2となる角度(半値角θ)が法線方向に対して±25度以内である光出射角分布を有することが好ましい。このような光出射角分布を有する非平行光を適用することによって、その大部分が微細窓33を通過する。従って、ミラー部30を透過する光量を高めることが可能になる。最大強度の1/2となる角度θは、法線方向に対して±20度以内にあることがより好ましい。
図4は、マイクロレンズアレイ部20の第1の構成例の形状と微細窓33の開口径Wとの関係を示している。図4に示すマイクロレンズアレイ部20は、可視光に対して透明な材料(屈折率n)からなるマイクロレンズ21と、マイクロレンズ21の形成材料と同一の透明材料(屈折率n)からなる支持体22とを有している。マイクロレンズアレイ部20の厚さ(レンズ厚)dは、マイクロレンズ21と支持体22との合計厚さである。平面ディスプレイ部10とマイクロレンズアレイ部20との間に空気層がない場合に、最も光の広がりが小さくなる。半値角(集光角)θを有する光は、レンズ材中でも集光角θ’(=arcsin(sinθ/n))で広がる。窓面においても、やはりマイクロレンズ21の支持体22と反射膜32との間に空気層がない場合に、最も光の広がりが小さくなり、半値角θを有する光の広がりは「d・tanθ’」となる。
微細窓33の開口径Wは、光の広がり以上の大きさを有することが好ましい。従って、微細窓33の開口径Wは、レンズ厚d、透明材料の屈折率n、半値角θに対して、
d・tan[arcsin(sinθ/n)]≦W/2
の関係を満足することが好ましい。さらに、上述した生理学的な不可視の条件(W≦1/16mm)を考慮する必要がある。これらの2つの値を比較し、そのうちのより小さい値を微細窓33の開口径Wの上限値として選択することが好ましい。各構成部間に存在する空気層は、光の広がりの原因となる。平面ディスプレイ部10とマイクロレンズアレイ部20との間、およびマイクロレンズアレイ部20とミラー部30との間には、空気層が存在していないことが好ましい。平面ディスプレイ部10とマイクロレンズアレイ部20とミラー部30は、それぞれ密着していることが好ましい。
図5は、±18度の範囲の光を集光できるように設計したマイクロレンズ21の構造と光路の計算例を示している。画素11のサイズは120μm、形成ピッチは140μmとする。画素11に密着して形成されたマイクロレンズ21のレンズ半径は75μm、レンズ材の屈折率は1.53、支持体22の厚さを含むレンズ厚dは150μmとする。この場合、微細窓33の開口径Wを45μmにすれば、選定した範囲の光を通過させることができる。図6は図5の変形例を示している。図6に示す構造では、反射膜32の裏面(外光の反射面とは反対側の面)を黒化している。このような黒化面34で対象外の光を吸収することによって、多重反射による画像の乱れを防止することができる。
図7は、図5とは異なる±18度の範囲の光を集光できるように設計したマイクロレンズ21の構造と光路の計算例を示している。画素11のサイズは120μm、形成ピッチは150μmとする。画素11に密着して形成されたマイクロレンズ21は、屈折率が1.70の高屈折率ガラスからなる真球状のボールレンズであり、球の直径は150μmとする。支持体22の厚さは50μmであるものの、この構成では主要な光は支持体22にほぼ入射しないため、レンズ厚dと開口径Wとの関係は単一材料で近似できる。マイクロレンズ21に高屈折材料を用いることによって、微細窓33の開口径Wを図5の構造より小さくでき、約30μmで選定した範囲の光を通過させることができる。
図8は、マイクロレンズアレイ部20の第2の構成例の形状と微細窓33の開口径Wとの関係を示している。図8に示すマイクロレンズアレイ部20は、可視光に対して透明な第1の材料(屈折率n1)からなると共に、厚さd1を有するマイクロレンズ21と、第1の材料とは異なる可視光に対して透明な第2の材料(屈折率n2)からなると共に、厚さd2を有する支持体22とを有している。このような構造においても、各構成部間に空気層がない場合に、最も光の広がりが小さくなる。図4に示した第1の構成例と同様に、微細窓33の開口径Wは、光の広がり以上の大きさを有することが好ましい。
微細窓33の開口径Wは、マイクロレンズ21の厚さd1、支持体22の厚さd2、第1の透明材料の屈折率n1、第2の透明材料の屈折率n2、半値角θに対して、
d1・tan[arcsin(sinθ/n1)]+d2・tan[arcsin
(sinθ/n2)]≦W/2
の関係を満足することが好ましい。さらに、上述した生理学的な不可視の条件(W≦1/16mm)を考慮する必要がある。これらの2つの値を比較し、そのうちのより小さい値を微細窓33の開口径Wの上限値として選択することが好ましい。
第1の実施形態のディスプレイ装置1は、例えば以下のようにして作製される。ここでは、図1に示したディスプレイ装置1の製造工程について詳述する。まず、マイクロレンズアレイ部20をミラー部30の反射膜32の形成面側に配置する。マイクロレンズアレイ部20は、複数のマイクロレンズ21がそれぞれ微細窓33と対応するように配置される。マイクロレンズアレイ部20は、ミラー部30の反射膜32と密着するように配置することが好ましい。次いで、平面ディスプレイ部10をマイクロレンズアレイ部20に沿って配置する。平面ディスプレイ部10は、放射光(非平行光)が複数のマイクロレンズ21を介して複数の微細窓33にそれぞれ集光するように配置される。平面ディスプレイ部10は、マイクロレンズアレイ部20と密着するように配置することが好ましい。
前述したように、マイクロレンズアレイ部20はミラー部30と別体として作製してもよいし、一連の工程でミラー部30と同時に形成してもよい。いずれにおいても、複数の微細窓33を複数のマイクロレンズ21のそれぞれに対して正確に位置合わせすることが重要である。マイクロレンズアレイ部20をミラー部30と別体として作製する場合、複数の微細窓33は例えば光リソグラフィーに代表される微細加工技術により形成され、複数のマイクロレンズ21は印刷法やナノインプリント等により形成される。微細窓33とマイクロレンズ21とを別工程で作製した場合、マイクロレンズ21の中央部を微細窓(微細孔部)33に高精度に位置合わせする必要がある。
マイクロレンズアレイ部20とミラー部30との複合体の製造コストを低減し、かつマイクロレンズ21と微細窓33との位置合わせ精度を向上させるために、ミラー部30は一連の工程でマイクロレンズアレイ部20と同時に形成することが好ましい。このようなマイクロレンズアレイ部20とミラー部30との複合体の作製工程について、図9Aないし図9Iを参照して説明する。図9Aないし図9Iは、複数の微細窓33を有する反射膜32と複数のマイクロレンズ21とを一連の工程で同時に形成するマイクロレンズアレイ部20とミラー部30との複合体の製造工程を示している。
図9Aに示すように、マイクロレンズアレイ部20の支持体22を準備する。支持体22の材質は、無機材料および有機材料のいずれであってもよいし、無機材料と有機材料とが混在した材料であってもよい。支持体22には、例えばガラス基板や樹脂基板のような透明基板が用いられる。支持体22のサイズは、特に限定されない。支持体22の厚さは、支持体22の第1の面22aに形成されるマイクロレンズ21の焦点距離の10%以上200%以下であることが好ましい。支持体22とマイクロレンズ21や反射膜32との密着性を考慮して、支持体22に適当な表面処理を施してもよい。
光の利用効率を高めるために、550nmの波長に対する支持体22の光透過率は70%以上であることが好ましい。さらに、後述する感光層の感光波長領域(例えば450nm以下)に対して、支持体22は光透過率が10%以上の波長領域を有することが好ましい。このような光学特性を有していれば、支持体22の材質や厚さは特に限定されない。支持体22の厚さは、マイクロメーターを用いて測定される。マイクロレンズ21の焦点距離は、例えばマイクロレンズ21のレンズ面側から単色平行光線を入射し、これを光学顕微鏡で観察しながら、レンズ形成面に焦点を合わせた場合のステージ位置と、レンズ面から入射した平行光線がレンズ中央で焦点を結ぶ位置に焦点を合わせた場合のステージ位置とのステージ変動量から求められる。支持体22の光学特性は、例えば紫外可視分光光度計を用いて、紫外可視領域での透過スペクトルを測定することにより求められる。
図9Bに示すように、支持体22の第1の面22aに複数のマイクロレンズ(マイクロレンズアレイ)21を形成する。マイクロレンズアレイ21の形成方法は特に限定されず、広く一般的な方法を適用することができる。マイクロレンズアレイ21の形成工程には、制御性よく大面積にマイクロレンズ構造を形成することが可能なナノインプリント法を適用することが好ましい。図9Bは透明原版101を用いたナノインプリントによりマイクロレンズアレイ21を形成する工程を示している。マイクロレンズアレイ21の材質は、有機材料、無機材料、無機および有機の混在材料のいずれであってもよい。マイクロレンズアレイ21の光学特性に関しては、支持体22と同様に、550nmの波長に対する光透過率が70%以上で、感光層の感光波長領域(例えば450nm以下)に光透過率が10%以上の波長領域を有することが好ましい。
マイクロレンズアレイ21の屈折率は、支持体22の屈折率の80%以上120%未満であることが好ましい。マイクロレンズアレイ21の屈折率が支持体22の屈折率の80%未満であると、支持体22との界面で生じるフレネル反射が大きくなり、光利用効率が低下する。マイクロレンズアレイ21の屈折率が支持体22の屈折率の120%以上であると、支持体22との界面で全反射が生じ、光利用効率が低下する。マイクロレンズアレイ21の屈折率は、使用した材質の平坦膜を形成し、この平坦膜をエリプソメーターや分光光度計等を用いて分光分析することにより求められる。
マイクロレンズアレイ21のレンズ構造は、アレイの垂直方向から観察した場合に、円形、楕円形、三角形、正方形、六角形のいずれでもよく、特に限定されない。マイクロレンズアレイ21のレンズサイズは、1μm以上500μm未満であることが好ましい。ここで言うレンズサイズとは、マイクロレンズアレイ21を法線方向から観察した場合の個々のレンズの大きさを指す。円形の場合は円の直径を示し、楕円形の場合は長軸の長さを指す。多角形の場合は、多角形に内接する円の直径を指す。レンズサイズが1μm未満であると、反射膜32に形成される微細窓33の間隔が短くなるため、可視光の回折パターンが顕著となり、反射膜32のミラー性能が低下する。レンズサイズが500μm以上であると、反射膜32に形成される微細窓32が視覚的に認識可能なサイズに近づき、反射膜32のミラー性能が低下する。
マイクロレンズアレイ21のレンズ曲率半径は、特に限定されない。マイクロレンズアレイ21は、周期的に配列されていてもよいし、ランダムに配列されていてもよい。ここで言うランダムな配列とは、隣接するレンズ間に秩序性がない配置や、複数のレンズが周期性を持って配列されたドメイン領域が秩序性なく隣接している配置を含む。マイクロレンズアレイ21を法線方向から観察した場合の単位領域におけるマイクロレンズが占める面積率(レンズ占有率)は、光を高効率に集光するために、より大きい方が好ましく、具体的には50%以上であることが好ましい。非レンズ領域は平坦面であるため、非レンズ領域に入射した光は集光されず、微細窓33を透過することができない。このため、レンズ占有率が50%未満であると、光損失が大きくなる。
マイクロレンズアレイ21は、非レンズ領域が生じない多角形型のレンズを隙間なく並べたレンズレット構造で配列されていることが好ましい。このような構造とすることで、レンズ占有率は100%となり、光を高効率に集光することができる。レンズ占有率の測定方法としては、以下の方法が挙げられる。マイクロレンズアレイ21を複数の領域に区切り、それぞれの領域に対して、例えば光学顕微鏡を用いてレンズが50個程度入る領域で観察を行う。得られた観察画像を画像処理ソフトで処理し、単位エリア当たりのレンズ占有率を求める。これを各領域で実施し、各領域の平均値を得ることにより求められる。
図9Cに示すように、マイクロレンズアレイ21を形成した支持体22の第1の面22aの対面である第2の面22bに、反射膜32を形成する。反射膜32の光学特性に関しては、550nmの波長に対する光反射率が70%以上であり、かつ感光層の感光波長領域(例えば450nm以下)に光透過率が0.1%以上の波長領域を有することが好ましい。波長550nmによる反射膜32の光反射率が70%未満であると、鏡像が暗くなり、ミラー性能が低下する。反射膜32が波長450nm以下の範囲に光透過率が0.1%以上の波長領域を有しないと、反射膜32上に形成する感光層をマイクロレンズアレイ21側から照射した光で良好に感光させることができない。
反射膜32の材質としては、可視光の全領域で反射率が高く、プラズマ周波数が紫外光領域に存在するアルミニウム、銀、またはこれらの少なくとも1つを含む合金を用いることが好ましい。アルミニウムのプラズマ周波数は120nm付近にあり、銀のプラズマ周波数は320nm付近にある。アルミニウムや銀は、可視光領域では金属的な光学特性を示し、紫外光領域になるにしたって誘電体的な光学特性を示すようになる。このため、アルミニウムや銀は、可視光領域で高い反射率を示し、紫外光領域に透過性を生じる。
図10および図11に、ガラス基板上にアルミニウム膜を形成した場合の波長200nmから800nmの領域における透過スペクトルおよび反射スペクトルの計算結果を示す。ここでは、膜厚15nmから50nmまでの5nm刻みで計算している。可視光領域では高い反射率を示し、紫外光領域になるにしたがって透過率が向上することが分かる。さらに、膜厚が厚くなるにしたがって紫外光領域の透過率が減少していくことが分かる。それぞれの材質に対応させて反射膜32の膜厚を制御することによって、可視光反射性と紫外光透過性を制御することができる。反射膜32の材質は、金属材料に限らない。反射膜32には、誘電体多層膜のようなスペクトル形状を設計できる材質を用いてもよい。反射膜32の形成方法は特に限定されないが、反射膜32を平坦性よく形成することが可能な真空蒸着法、スパッタ法、メッキ法等を用いることが好ましい。
図9Dに示すように、反射膜32上に感光層102を形成する。感光層102の密着性を得るために、感光層102を形成する前に反射膜32に適当な表面処理を施してもよい。感光層102の材質には、例えば感光波長領域が450nm以下にあるポジ型感光性材料が用いられる。このような材質としては、一般的な微細加工に用いられるレジスト材料が好適に用いられ、例えばノボラック/ナフトキノンジアジド系レジストが用いられる。図12に、ベース樹脂であるノボラック樹脂と感光剤であるナフトキノンジアジドを添加したノボラックレジストの波長200nmから800nmの領域における吸収スペクトルを示す。ベース樹脂であるノボラック樹脂のみの吸収スペクトルと比較して、感光剤を含むノボラックレジストでは、波長300nmから450nm領域に吸収が生じている。感光層102の感光波長領域は、このような方法により測定することができる。
図9Eに示すように、感光層102に対してマイクロレンズアレイ21の形成面側から波長450nm以下の発光領域を持つ光ELを照射する。照射された光ELは、マイクロレンズアレイ21により集光され、紫外光透過性を有する反射膜32を透過して、感光層102を感光する。図9Fに示すように、感光層102を現像すると、感光層102に微細孔パターン103が形成される。照射する光ELは、平行光、もしくは法線方向に偏りを持った指向性分布光のいずれであってもよい。光ELの指向性半値幅は30度以下であることが好ましい。指向性分布は、光源から放射される光強度を−90度から+90度の範囲で角度依存性を評価することで測定され、一般的には法線方向(0度)にピークトップを持つガウス型の分布曲線で近似される。指向性半値幅とは、指向性分布の0度から90度までの領域において、0度付近のピーク光強度に対して光強度が1/2に低下する角度のことを指す。指向性半値幅が30度を超えると、感光層102が全体的に感光されやすくなり、微細孔パターン103を制御よく形成することが困難になる。
図13に、指向性半値幅が約1度の水銀ランプを用いて、ガラス基板上に形成したノボラックレジストを感光させた際の、露光時間と微細孔サイズとの関係を示す。露光時間の増加と共に微細孔サイズが増加している。露光時間により微細孔サイズを制御することができる。平面ディスプレイ部10として用いる液晶ディスプレイの指向性分布に合わせて、透過特性の高い微細孔サイズを決定することが好ましい。微細孔パターンとマイクロレンズアレイとの位置関係は、光学顕微鏡の焦点面を微細孔パターンとマイクロレンズアレイの位置にそれぞれ合わせて画像を撮影し、それぞれの画像を重ね合わせることにより確認される。実施形態の方法を適用することによって、レンズ中心部に微細孔パターンを形成することができる。これは上記した方法により確認される。
図9Gに示すように、微細孔パターン103を有する感光層102をマスクとして用いて、下地の反射膜32に微細窓33を形成する。反射膜32のパターニング方法は特に限定されず、ウェットエッチング法、ドライエッチング法、イオンミリング法等の公知の方法を用いることができる。微細窓33の形成コストを低減することが可能なウェットエッチング法を適用することが好ましい。図9Hに示すように、感光層102除去する。場合によっては、感光層102を残しておいてもよい。図9Iに示すように、反射膜32上に透明接着層104を介して透明平板31を貼り合わせる。このようにして、マイクロレンズアレイ部20とミラー部30との複合体105を一連の工程で作製する。
上述した複合体105の製造工程においては、支持体22上に形成したマイクロレンズアレイ21の集光効果を用いて、感光層102に微細孔パターン103を形成している。さらに、反射膜32を形成する前に感光層102を形成し、感光層102に微細孔パターン103を形成し、感光層102に無電解メッキを行うための活性化核を析出させ、無電解メッキを行うことによっても、微細孔パターン5を有する反射膜32を形成することができる。反射膜32を形成する前にネガ型感光性材料を感光層102として形成し、感光層103の感光された領域を残し、リフトオフ法により反射膜32を形成することによっても、微細窓33を有する反射膜32を形成することができる。反射膜32の代わりに電解メッキのシード層を形成し、感光層102を形成し、感光層102に微細孔パターン103を形成し、シード層に微細孔パターンを形成し、感光層102を除去した後、微細孔パターンが形成されたシード層を用いて電解メッキすることによっても、微細窓33を有する反射膜32を形成することができる。
上述した複合体105の製造工程の具体例について、以下に述べる。支持体22として150μmの厚さを有するホウケイ酸ガラス基板を用意した。ガラス基板上にマイクロレンズアレイ21を光インプリント法により形成した。マイクロレンズアレイには、周期50μm、ザグ深さ12μm、曲率半径64μm、レンズ占有率100%のレンズレット型マイクロレンズを最密充填配置した構造を適用した。マイクロレンズアレイを形成するためのモールドを作製し、ガラス基板上に紫外線硬化型樹脂を塗布し、光インプリント装置によりモールドを押印した状態で、紫外光を照射して紫外線硬化樹脂を硬化させた。モールドを離型して、ガラス基板上にマイクロレンズアレイを形成した。
マイクロレンズアレイのガラス基板内における焦点距離を計測した結果、焦点距離はレンズ頂点から175μmの位置であった。ガラス基板のマイクロレンズアレイを形成した面とは反対側の面に、真空蒸着法により厚さ28nmのアルミニウム膜を成膜した。成膜したアルミニウム膜の透過および反射スペクトルを測定した。それらの結果を図14に示す。アルミニウム膜の光学特性に関しては、波長365nmにおける光透過率が3.4%で、波長550nmにおける光反射率が86.6%であった。
アルミニウム膜上にノボラックレジストをスピンコート法により形成した。指向性半値幅が1度の紫外光源を用いて、マイクロレンズアレイ側から紫外光を照射した。波長365nmにおける光量をパワーメーターで測定した結果、3.7mW/cmであった。110度のホットプレート上で90秒間ベークした後、アルカリ現像液で1分間現像を行うことによって、ノボラックレジストに微細孔パターンを形成した。ガラス基板をレジストの現像液と同じアルカリ現像液中に15秒間浸漬し、アルミニウム膜をウェットエッチングした。エタノール溶液でノボラックレジストを溶解した。最後に、アルミニウム膜上にガラス基板を透明平板31として貼り合わせた。
図15に露光時間とアルミニウム膜に形成した微細孔径との関係を示す。露光時間により微細孔径をコントロールできることが確認された。露光時間を60秒として形成した微細孔径の平均値は25.5μmであった。このマイクロレンズアレイ部20とミラー部30との複合体(特殊ミラー)105の透過スペクトルおよび反射スペクトルの測定結果を図16ないし図18に示す。図16はマイクロレンズアレイ部側から測定した透過スペクトル、図17はミラー部側から測定した透過スペクトル、図18はミラー部側から測定した反射スペクトルである。ミラー部側から測定した透過率および反射率においては、微細孔の面積率に等しい透過率の上昇、および反射率の低下が見られる。マイクロレンズアレイ部側から測定した透過率は90%程度であり、レンズ焦点と微細孔の位置が一致しており、高透過性および高反射性を有する特殊ミラーであることが確認された。
上述した特殊ミラーを液晶ディスプレイ(指向性半値幅:5度)上に配置し、ミラーディスプレイを作製した。このようなミラーディスプレイにおいて、液晶ディスプレイの表示エリアにおける透過率分布と反射率分布を測定した結果、ミラーディスプレイの平均透過率は59%、平均反射率は68%であり、表示エリア内で均一な光学特性が得られた。このように、上述した製造工程を適用して作製した特殊ミラーを、ミラーディスプレイの表示面に用いることによって、高反射性と高透過性とを両立させることができる。実施形態による特殊ミラーは、ミラーディスプレイに限らず、半透過型液晶ディスプレイの反射層、プロジェクタの投影面、太陽電池や受光素子等における光の非対称性を用いた光学部品等、各種の光学デバイスに用いることができる。
第1の実施形態によるディスプレイ装置の変形例について、図19ないし図24を参照して説明する。図19は図1に示すディスプレイ装置1の第1の変形例の構成を示している。図19に示すディスプレイ装置1Aは、平面ディスプレイ部10とマイクロレンズアレイ部20との間の隙間に設けられた屈折率調整層23を有している。それ以外の構成は図1と同様である。屈折率調整層23は、マイクロレンズ21を構成するレンズ材および平面ディスプレイ部10の表面材より屈折率が小さい透明材料で形成されている。このような屈折率調整層23を配置することで、界面反射による光ロスを低減できると同時に、マイクロレンズ21の焦点距離を調整することができる。屈折率調整層23は、平面ディスプレイ部10とマイクロレンズアレイ部20との間の緩衝材としても機能する。
図20は図1に示すディスプレイ装置1の第2の変形例の構成を示している。図20に示すディスプレイ装置1Bでは、マイクロレンズをマイクロボールレンズ24で構成している。マイクロボールレンズ24は、屈折率調整層23により平面ディスプレイ部10とミラー部30との間に固定されている。反射膜32に形成された微細窓33は、マイクロボールレンズ24の位置に合わせて、後工程で形成される。微細窓33の形状は、円形に近い形状となっている。微細窓33の大きさ(直径)は、視覚の分解能限界(約1/16mm)以下であることが好ましく、ここでは20μmとしている。
図21は図1に示すディスプレイ装置1の第3の変形例の構成を示している。図21に示すディスプレイ装置1Cでは、平面ディスプレイ部10の1個の画素11に対して複数個のマイクロレンズ21が対応している。個々のマイクロレンズ21がそれぞれ1個の微細窓33に対応している構成は、図1に示すディスプレイ装置1と同様である。このような構成は、平面ディスプレイ部10の画素11が大きく、単一のマイクロレンズ21で光を微細窓33に導くことが光学的に難しい場合や、マイクロレンズアレイ部20をできるだけ薄くしたいような場合に有効である。図21に示すディスプレイ装置1Cにおいて、微細窓33の形状は一辺が20μmの正方形とし、凸型のマイクロレンズ21は50μmのピッチで形成している。画素11は200μmのピッチで形成されている。
図22は図1に示すディスプレイ装置1の第4の変形例の構成を示している。図22に示すディスプレイ装置1Dでは、平面ディスプレイ部10の複数の画素11A、11B、11Cの集団(画素群)に対して1個のマイクロレンズ21が対応している。個々のマイクロレンズ21がそれぞれ1個の微細窓33に対応している構成は、図1と同様である。このような構成は、平面ディスプレイ部10の画素11が極めて小さい場合や、製造コストの点からできるだけ大きな径のマイクロレンズ21を使用したい場合に有効である。図22に示すディスプレイ装置1Dにおいて、微細窓33の形状は一辺が50μmの正方形とし、凸型のマイクロレンズ21は200μmのピッチで形成している。
図23は図1に示すディスプレイ装置1の第5の変形例の構成を示している。図23に示すディスプレイ装置1Eでは、マイクロレンズをフレネルレンズ25で構成している。フレネルレンズ25における個々のマイクロレンズがそれぞれ1個の微細窓33に対応している構成は、図1と同様である。このような構成は、マイクロレンズアレイ部(マイクロレンズシート)20の厚さを制限したい場合に有効である。ここではフレネルレンズ25を使用しているが、それに換えて回折レンズを適用することも可能である。
図24は図1に示すディスプレイ装置1の第6の変形例の構成を示している。図24に示すディスプレイ装置1Fでは、平面ディスプレイ部10の画素11側およびミラー部30の反射膜32側の両方にマイクロレンズ21A、21Bが配置されている。個々のマイクロレンズ対(21A、21B)がそれぞれ1個の微細窓33に対応している構成は、図1と同様である。このような構成においても、マイクロレンズ対(21A、21B)と微細窓33とは一対一の対応関係を有する場合に限らず、図21や図22に示したような対応関係を有していてもよい。さらに、マイクロレンズ対(21A、21B)は凸レンズに限らず、フレネルレンズや回折レンズで形成してもよい。
第1の実施形態のディスプレイ装置1によれば、平面ディスプレイ部10のオフ時には人間の視覚に自然な鏡と同等の鏡像を与える。平面ディスプレイ部10のオン時には、ハーフミラーを用いた従来の構成より高い光透過率を有するため、画像をより鮮明に見せることができる。ハーフミラーを使用した従来のミラーディスプレイに比べて、より高性能なミラーディスプレイとしてのディスプレイ装置1を提供することができる。さらに、特殊ミラーの製造工程においては、ハーフミラーが反射層の膜厚に敏感で、大面積化に技術を要するのに対して、鏡面反射膜は印刷による窓部の被覆と部分メッキ等のプロセスで容易に形成できる。マイクロレンズの作製も印刷プロセスの適用が可能なサイズであるため、鏡面上に形成することが容易である。これらによって、ミラーディスプレイとして機能するディスプレイ装置1の製造コストを低減することができる。
(第2の実施形態)
次に、第2の実施形態によるディスプレイ装置について説明する。図25は第2の実施形態によるディスプレイ装置の構成を示す断面図である。図25に示すディスプレイ装置2は、透過型の液晶ディスプレイ40と反射部50とマイクロレンズアレイ部20とバックライト60とを具備している。液晶ディスプレイ40は、表示面40aと非表示面40bとを有している。液晶ディスプレイ40の非表示面40b側には、バックライト60が配置されている。バックライト60から液晶ディスプレイ40に向けて放射される光は、法線方向に光出射角分布が偏った非平行光である。液晶ディスプレイ40は、画素41A、41B、41Cを有しており、これら画素41A〜41Cを透過した光(外光の反射光またはバックライト光)によりカラー画像が表示される。
液晶ディスプレイ40は、図26の拡大図に示すように液晶層42を有している。液晶層42は、配向膜43A、43Bを介して配置された透明電極44A、44Bで挟持されている。液晶層42は、さらに偏光板45A、45Bで挟持されている。液晶ディスプレイ40は、画素41A〜41C毎に液晶層42をオン・オフさせる駆動TFT46を有している。符号47は透明基体である。液晶ディスプレイ40の表示面40a側には、カラーフィルタ48が配置されている。カラーフィルタ48の各画素41A〜41C間に相当する部分には、遮光層49が形成されている。液晶ディスプレイ40は、太陽光や照明光のような外光が得られる場合には外光を反射させた光で反射表示し、外光が暗い場合にはバックライト光を透過させた光で透過表示する。液晶ディスプレイ40は、ハイブリッド型液晶ディスプレイである。
液晶ディスプレイ40とバックライト60との間には、反射部50とマイクロレンズアレイ部20とが配置されている。反射部50は第1の実施形態におけるミラー部30と同様な構成を有している。反射部50は、透明平板31、透明平板31の一方の面に設けられた反射膜32、および反射膜32に形成された複数の微細窓33を有している。これらは基本的に第1の実施形態におけるミラー部30の各要素と同様な構成を有し、それらの形状、形成材料、形成方法等も同様である。ただし、第2の実施形態のディスプレイ装置2において、反射部50は外光を反射させた光で液晶ディスプレイ40を反射表示するものであり、ミラーとしての機能を有していない。微細窓33の大きさは、人の視覚の分解能限界以下にする必要がない。反射部50は、反射膜32が液晶ディスプレイ40の非表示面40b側に位置するように配置されている。
反射部50とバックライト60との間には、バックライト60から反射部50を介して液晶ディスプレイ40に向けて放射される非平行光を、複数の微細窓33に個々に集光する複数のマイクロレンズ21を有するマイクロレンズアレイ部20が配置されている。複数のマイクロレンズ21は、微細窓33に個々に対応している。個々のマイクロレンズ21は、バックライト60からレンズ開口部に入射した光が微細窓33内に集光して透過するように光学特性が調整されている。個々のマイクロレンズ21に対しては、液晶ディスプレイ40の各色の画素41A〜41Cが対応している。液晶ディスプレイ40の画素41とマイクロレンズ21との対応関係は、第1の実施形態と同様に一対一の対応関係に限らず、1画素41に対して複数の微細窓33を対応させたり、複数の画素41A〜41Cに1個のマイクロレンズ21を対応させてもよい。
図25に示すディスプレイ装置2において、マイクロレンズ21は反射部50の透明平板31と共通する基板上に形成されている。マイクロレンズアレイ部20は、反射部50の透明平板31とは別体の透明支持体上に形成してもよい。このような場合には、マイクロレンズ21が形成されたマイクロレンズアレイシートと反射部50とを位置合せしつつ貼り合わせることによって、反射部50とマイクロレンズアレイ部20との積層体を形成することができる。マイクロレンズ21には、第1の実施形態と同様な屈折レンズや回折レンズを用いることができる。マイクロレンズアレイ部20の形成方法も、第1の実施形態と同様である。マイクロレンズ21および微細窓33は、図9Aないし図9Iに示した製造工程を適用して形成することが好ましい。
第2の実施形態のディスプレイ装置2は、太陽光や照明光のような外光が得られる場合には外光を反射膜32で反射し、この反射光を用いて液晶ディスプレイ40を表示させる。この際、微細窓33を形成した反射膜32は、開口率で規定される反射率を有する反射体として機能するため、従来の部分ミラーに比べて外光の反射率を高めることができる。外光が暗い場合には、バックライト60を点灯させ、バックライト60から放射される光(バックライト光)で液晶ディスプレイ40を表示させる。この際、バックライト光はマイクロレンズ21で微細窓33に集光されることにより微細窓33を透過する。液晶ディスプレイ40は、微細窓33を透過した光により表示される。
前述したように、微細窓とそこに焦点を合わせたマイクロレンズとを組合せた光学部品は、光学的に非対称であり、平行光に対する透過率と反射率は入射方向で大きく異なる。微細窓とマイクロレンズとを組合せた光学部品は、微細窓を通過した光を平行光に近い光に変える部品として、あるには平行光を1点に絞る部品として有効である。ただし、バックライト60は一般的に拡散光源であり、拡散光源から放出される非平行光をマイクロレンズ21で微細窓33に集光することは困難である。そこで、バックライト60から放出される光の出射角分布の範囲を制限している。具体的には、光出射角分布(エンベローブ)を法線方向に偏らせている。法線方向に光出射角分布が偏った非平行光は、マイクロレンズ21で微細窓33に集光させやすい。従って、液晶ディスプレイ40に到達するバックライト光量を増加させることができる。
バックライト60の具体例としては、図2に示したバックライト12が挙げられる。図3に示したように、バックライト12から放出される光の最大強度は法線方向にあり、最大強度の1/2(半値)から最大強度までの範囲は法線方向に対して±約20度である。実用上の目安として、光出射角分布は空気に対する半値幅が±25度以内であることが好ましい。バックライト12から放出される光(非平行光)は、最大強度を成す角度が法線方向で、かつ最大強度の1/2となる角度(半値角θ)が法線方向に対して±25度以内である光出射角分布を有することが好ましい。このような光出射角分布を有する非平行光を適用することによって、その大部分が微細窓33を通過する。従って、反射部50を透過する光量を高めることができる。最大強度の1/2となる角度θは、法線方向に対して±20度以内にあることがより好ましい。
2枚のプリズムシート(例えば、住友3M社製のBEFシート)を直交配置したバックライト12(60)と、48μmピッチで最密配置した半球形状レンズアレイ(直径48μm、シート厚48μm、屈折率1.47)20とを用いて、微細窓33の開口径を変えた場合に、光反射率と光透過率を計算した結果を図27に示す。例えば、微細窓33の開口径(直径)が27μmの場合に、光反射率と光透過率はそれぞれ約70%(光反射率と光透過率の和は約140%)となる。第2の実施形態のディスプレイ装置2によれば、従来の光反射率と光透過率の和が100%となる部分ミラーを用いたハイブリッド型液晶ディスプレイと比較して、光反射率と光透過率のトレードオフの関係を大幅に緩和できる。すなわち、反射表示特性と透過表示特性を共に向上させることが可能となる。
反射膜32に形成する微細窓33の開口径Wは、第1の実施形態と同様に、光の広がり以上の大きさを有することが好ましい。可視光に対して透明な材料(屈折率n)からなるマイクロレンズ21と、マイクロレンズ21の形成材料と同一の透明材料(屈折率n)からなる支持体22とを用いた場合、微細窓33の開口径Wは、レンズ厚d、透明材料の屈折率n、半値角θに対して、
d・tan[arcsin(sinθ/n)]≦W/2
の関係を満足することが好ましい。
可視光に対して透明な第1の材料(屈折率n1)からなると共に、厚さd1を有するマイクロレンズ21と、第1の材料とは異なる可視光に対して透明な第2の材料(屈折率n2)からなると共に、厚さd2を有する支持体22とを用いた場合、微細窓33の開口径Wは、マイクロレンズ21の厚さd1、支持体22の厚さd2、第1の透明材料の屈折率n1、第2の透明材料の屈折率n2、半値角θに対して、
d1・tan[arcsin(sinθ/n1)]+d2・tan[arcsin
(sinθ/n2)]≦W/2
の関係を満足することが好ましい。マイクロレンズ21の構造と光路の具体例は、図5ないし図7に示した通りであり、第2の実施形態でも同様な構造が適用される。
図25に示したディスプレイ装置2において、カラーフィルタ48の微細窓33に対応する領域は色濃度を濃くし(濃部D)、その周囲は色濃度を淡くしている(淡部L)。従来のハイブリッド型液晶ディスプレイでは、透過表示で鮮やかな色彩を表示することが難しい。図25に示したように、濃部Dと淡部Lを有するカラーフィルタ48と微細窓23とマイクロレンズ21とを組合せることによって、鮮やかな色彩を発現させることが可能なハイブリッド型液晶ディスプレイが提供される。図28に示すように、カラーフィルタ48の微細窓33に対応する領域を無色化することによって、鮮やかな白画像を表示することが可能なハイブリッド型液晶ディスプレイが提供される。
次に、第2の実施形態によるディスプレイ装置の変形例について、図29および図30を参照して説明する。図29および図30に示すディスプレイ装置2Aにおいては、液晶ディスプレイ40の画素領域の一部に光センサ部70が付加されている。光センサ部70は、図30の拡大図に示すように光センサ71を有している。光センサ71の上部には、外光とバックライト光の強度バランスを取るように、形状と開口面積が調整された調光窓72が設けられている。光センサ部70も他の画素領域と同様に、その下部に反射膜32に設けられた微細窓33とマイクロレンズ21とを有している。
バックライト60は、面内の光強度を調整するLED61を有している。光センサ71で外光の強度を測定し、それに応じてバックライト60の面内の光強度がLED61により調整される。バックライト60の面内の光強度は、光センサ71で測定された外光の強度との間で強度バランスを取るように調整される。すなわち、外光とバックライト光を合わせた強度が液晶ディスプレイ40の面内で一様になるように、バックライト60の面内の光強度が調整される。このようなディスプレイ装置2Aによれば、高品質表示と省エネルギーとを同時に達成することができる。
なお、第1および第2の実施形態の構成は、それぞれ組合せて適用することができ、さらに一部置き換えることも可能である。本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (15)

  1. 可視光に対して透明な平板と、前記透明平板の一方の面に形成された反射膜と、前記反射膜に形成された複数の微細窓とを備えるミラー部と、
    前記ミラー部の前記反射膜の形成面側に配置され、法線方向に光出射角分布が偏った非平行光を前記ミラー部に向けて放射する平面ディスプレイ部と、
    前記ミラー部と前記平面ディスプレイ部との間に配置され、前記平面ディスプレイ部から前記ミラー部に向けて放射される前記非平行光を前記複数の微細窓に個々に集光する複数のマイクロレンズを備えるマイクロレンズアレイ部と
    を具備するディスプレイ装置。
  2. 前記微細窓の開口径Wは1/16mm以下である、請求項1に記載のディスプレイ装置。
  3. 前記非平行光は、最大強度を成す角度が前記反射膜に対して法線方向で、かつ前記最大強度の1/2となる角度θが前記法線方向に対して±25°以内である光出射角分布を有する、請求項1に記載のディスプレイ装置。
  4. 前記マイクロレンズアレイ部は、可視光に対して透明な材料からなる前記複数のマイクロレンズと、前記透明材料と同一の材料からなり、前記複数のマイクロレンズを支持する支持体とを備え、
    前記微細窓の開口径Wは、前記マイクロレンズと前記支持体との合計厚さd、前記透明材料の屈折率n、および前記非平行光の最大強度の1/2となる前記角度θに対し、
    d・tan[arcsin(sinθ/n)]≦W/2
    の関係を満足する、請求項3に記載のディスプレイ装置。
  5. 前記マイクロレンズアレイ部は、可視光に対して透明な第1の材料からなる前記複数のマイクロレンズと、前記第1の材料とは異なる、可視光に対して透明な第2の材料からなり、前記複数のマイクロレンズを支持する支持体とを備え、
    前記微細窓の開口径Wは、前記マイクロレンズの厚さd1、前記支持体の厚さd2、前記第1の材料の屈折率n1、前記第2の材料の屈折率n2、および前記非平行光の最大強度の1/2となる前記角度θに対し、
    d1・tan[arcsin(sinθ/n1)]+d2・tan[arcsin
    (sinθ/n2)]≦W/2
    の関係を満足する、請求項3に記載のディスプレイ装置。
  6. 前記平面ディスプレイ部の画素のそれぞれに対して、複数個の前記微細窓が対応している、請求項1に記載のディスプレイ装置。
  7. 表示面と非表示面とを有する光透過型の液晶ディスプレイと、
    可視光に対して透明な平板と、前記透明平板の一方の面に形成された反射膜と、前記反射膜に形成された複数の微細窓とを備え、前記反射膜が前記液晶ディスプレイ側に位置するように前記液晶ディスプレイの前記非表示面に沿って配置された反射部と、
    法線方向に光出射角分布が偏った非平行光を前記反射部を介して前記液晶ディスプレイに放射するバックライトと、
    前記反射部と前記バックライトとの間に配置され、前記バックライトから前記反射部に向けて放射される前記非平行光を前記複数の微細窓に個々に集光する複数のマイクロレンズを備えるマイクロレンズアレイ部と
    を具備するディスプレイ装置。
  8. 前記非平行光は、最大強度を成す角度が前記反射膜に対して法線方向で、かつ前記最大強度の1/2となる角度θが前記法線方向に対して±25°以内である光出射角分布を有する、請求項7に記載のディスプレイ装置。
  9. 前記マイクロレンズアレイ部は、可視光に対して透明な材料からなる前記複数のマイクロレンズと、前記透明材料と同一の材料からなり、前記複数のマイクロレンズを支持する支持体とを備え、
    前記微細窓の開口径Wは、前記マイクロレンズと前記支持体との合計厚さd、前記透明材料の屈折率n、および前記非平行光の最大強度の1/2となる前記角度θに対し、
    d・tan[arcsin(sinθ/n)]≦W/2
    の関係を満足する、請求項8に記載のディスプレイ装置。
  10. 前記マイクロレンズアレイ部は、可視光に対して透明な第1の材料からなる前記複数のマイクロレンズと、前記第1の材料とは異なる、可視光に対して透明な第2の材料からなり、前記複数のマイクロレンズを支持する支持体とを備え、
    前記微細窓の開口径Wは、前記マイクロレンズの厚さd1、前記支持体の厚さd2、前記第1の材料の屈折率n1、前記第2の材料の屈折率n2、および前記非平行光の最大強度の1/2となる前記角度θに対し、
    d1・tan[arcsin(sinθ/n1)]+d2・tan[arcsin
    (sinθ/n2)]≦W/2
    の関係を満足する、請求項8に記載のディスプレイ装置。
  11. 可視光に対して透明な平板と、前記透明平板の一方の面に形成された反射膜と、前記反射膜に形成された複数の微細窓とを備えるミラー部を用意する工程と、
    法線方向に光出射角分布が偏った非平行光を前記複数の微細窓に個々に集光する複数のマイクロレンズを備えるマイクロレンズアレイ部を、前記ミラー部の前記反射膜の形成面側に配置する工程と、
    前記マイクロレンズアレイ部を介して前記非平行光を前記ミラー部に向けて放射する平面ディスプレイ部を、前記マイクロレンズアレイ部に沿って配置する工程と
    を具備するディスプレイ装置の製造方法。
  12. 前記ミラー部を用意する工程は、
    支持体の第1の面に前記複数のマイクロレンズを形成する工程と、
    前記支持体の第2の面に前記反射膜を形成する工程と、
    前記反射膜上に感光層を形成する工程と、
    前記支持体の前記第2の面側から前記複数のマイクロレンズを介して前記感光層に光を照射し、前記感光層に前記複数の微細窓に対応するパターンを形成する工程と、
    前記パターンを前記反射膜に転写することにより、前記反射膜に前記複数の微細窓を形成する工程とを具備し、
    前記反射膜は、前記感光層の感光波長領域に対して透過性を有する、請求項11に記載のディスプレイ装置の製造方法。
  13. 前記感光層の前記感光波長領域は450nm以下であり、
    550nmの波長に対する前記反射膜の光反射率が70%以上であり、かつ前記反射膜は波長が450nm以下の範囲に光透過率が0.1%以上の波長領域を有する、請求項12に記載のディスプレイ装置の製造方法。
  14. 550nmの波長に対する前記支持体および前記マイクロレンズの光透過率が70%以上であり、前記支持体および前記マイクロレンズは波長が450nm以下の範囲に光透過率が10%以上の波長領域を有する、請求項13に記載のディスプレイ装置の製造方法。
  15. 前記反射膜は、アルミニウムおよび銀からなる群から選ばれる少なくとも1つを含む金属膜、また誘電体多層膜を具備する、請求項13に記載のディスプレイ装置の製造方法。
JP2015537553A 2013-09-20 2014-09-09 ディスプレイ装置とその製造方法 Pending JPWO2015040822A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013195040 2013-09-20
JP2013195040 2013-09-20
PCT/JP2014/004627 WO2015040822A1 (ja) 2013-09-20 2014-09-09 ディスプレイ装置とその製造方法

Publications (1)

Publication Number Publication Date
JPWO2015040822A1 true JPWO2015040822A1 (ja) 2017-03-02

Family

ID=52688492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537553A Pending JPWO2015040822A1 (ja) 2013-09-20 2014-09-09 ディスプレイ装置とその製造方法

Country Status (3)

Country Link
US (1) US20160178965A1 (ja)
JP (1) JPWO2015040822A1 (ja)
WO (1) WO2015040822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129839A (ja) * 2020-02-20 2021-09-09 国立大学法人 東京大学 マイクロレンズアレイおよび製造方法、並びにマイクロニードルデバイス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269266B2 (ja) * 2014-04-01 2018-01-31 セイコーエプソン株式会社 液晶装置及び電子機器並びに液晶装置の製造方法
US9857594B2 (en) 2015-01-29 2018-01-02 Kabushiki Kaisha Toshiba Optical device and head-mounted display device and imaging device equipped with the same
CN106018343B (zh) * 2016-06-15 2019-02-12 暨南大学 一种微透镜或微透镜阵列成像检测板
JP2019020484A (ja) * 2017-07-12 2019-02-07 株式会社クラレ ディスプレイ用スクリーン、及びその製造方法
CN107452283A (zh) * 2017-08-07 2017-12-08 京东方科技集团股份有限公司 显示组件及其制造方法、显示装置
US11209687B2 (en) * 2018-12-28 2021-12-28 Santec Corporation Spatial phase modulator
US20200409191A1 (en) * 2019-06-28 2020-12-31 Shenzhen GOODIX Technology Co., Ltd. Enhancement film for under-screen optical fingerprint sensor
JP6863505B2 (ja) * 2019-07-01 2021-04-21 大日本印刷株式会社 拡散部材、積層体、拡散部材のセット、ledバックライトおよび表示装置
CN110782781B (zh) * 2019-11-08 2024-01-12 京东方科技集团股份有限公司 显示模组、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171617A (ja) * 1998-12-08 2000-06-23 Matsushita Electric Ind Co Ltd 光制御デバイスとその製造方法および画像表示装置
JP2001201611A (ja) * 2000-01-21 2001-07-27 Hitachi Ltd 光学的機能性シート及びこれを用いた面状光源並びに画像表示装置
JP2003098327A (ja) * 2001-09-26 2003-04-03 Seiko Epson Corp 半透過反射基板及びその製造方法
JP4125198B2 (ja) * 2003-07-23 2008-07-30 シャープ株式会社 液晶表示素子
JP2005077545A (ja) * 2003-08-29 2005-03-24 Sharp Corp 偏光変換光学系とその製造方法及び液晶表示装置
JP2005332616A (ja) * 2004-05-18 2005-12-02 Seiko Epson Corp 有機エレクトロルミネッセンス表示装置および電子機器
JP2006337845A (ja) * 2005-06-03 2006-12-14 Asahi Kasei Corp 明所コントラスト向上部材
JP2007264341A (ja) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd 発光型ディスプレイのコントラストを高めるオプティカルシート及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129839A (ja) * 2020-02-20 2021-09-09 国立大学法人 東京大学 マイクロレンズアレイおよび製造方法、並びにマイクロニードルデバイス

Also Published As

Publication number Publication date
US20160178965A1 (en) 2016-06-23
WO2015040822A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2015040822A1 (ja) ディスプレイ装置とその製造方法
TWI812690B (zh) 光學裝置
US7318644B2 (en) Compact projection system including a light guide array
US7722194B2 (en) Optical element having a reflected light diffusing function and a polarization separation function and a projection display device
WO2011135755A1 (ja) バックライトシステムおよびこれを用いた液晶表示装置
TW200538817A (en) Display apparatus and electronic device
WO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
JP6732094B2 (ja) 輝度均一化部材、バックライトユニットおよび液晶表示装置
CN101878437A (zh) 光管理膜、背光单元以及相关结构
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
US20180059475A1 (en) Optics component with double-layered micro-lens array
CN109709719A (zh) 背光模组及显示装置
TW201640212A (zh) 小型投影系統及相關組件
JP2005222061A (ja) 半透過シート、それを備えた液晶表示装置、及び半透過シートの製造方法
JP6430048B1 (ja) 拡散板及び光学機器
JP6046916B2 (ja) マイクロレンズの形成方法
JP2006323328A (ja) マイクロレンズアレイ及びマイクロレンズアレイの製造方法並びに当該マイクロレンズアレイを搭載した液晶表示装置
WO2005084245A2 (en) Compact projection system including a light guide array
JP4125198B2 (ja) 液晶表示素子
TW201224623A (en) Display device
KR100952144B1 (ko) 경사 곡면이 형성된 마이크로 렌즈 및 그 제조방법, 그리고이를 이용한 도광판, 백라이트유닛 및 표시장치
JP2005215417A (ja) マイクロレンズアレイ
JP2006337543A (ja) 半透過型液晶表示装置
JP4385646B2 (ja) 液晶表示装置
KR20060106415A (ko) 마이크로렌즈를 구비한 광 시트,이의 제조방법 및 이를이용한 반 투과형 액정표시장치