JPWO2014192823A1 - 尿素合成方法 - Google Patents

尿素合成方法 Download PDF

Info

Publication number
JPWO2014192823A1
JPWO2014192823A1 JP2015519909A JP2015519909A JPWO2014192823A1 JP WO2014192823 A1 JPWO2014192823 A1 JP WO2014192823A1 JP 2015519909 A JP2015519909 A JP 2015519909A JP 2015519909 A JP2015519909 A JP 2015519909A JP WO2014192823 A1 JPWO2014192823 A1 JP WO2014192823A1
Authority
JP
Japan
Prior art keywords
content
urea
carbon dioxide
urea synthesis
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015519909A
Other languages
English (en)
Inventor
政志 ▲高▼橋
政志 ▲高▼橋
英紀 長島
英紀 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Publication of JPWO2014192823A1 publication Critical patent/JPWO2014192823A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

特殊な二相系ステンレス鋼を用いずに、耐腐食剤としての酸素の使用量を最小限として、信頼性及び生産性に優れた尿素合成方法を提供する。
合成塔とストリッパー−と凝縮器とを有する尿素合成装置において、腐食性を有する流体と接触する箇所のうち少なくとも一部の箇所に、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼を尿素合成装置材料とし、二酸化炭素に対する酸素供給濃度が100〜2,000ppmとする。

Description

本発明は、酸素により装置内部の金属表面に不動態皮膜を形成させながら、アンモニアと二酸化炭素から尿素を合成する方法に関する。
尿素は、植物の成長に不可欠な三大元素の一つである窒素系肥料の重要な原料で、古くから、世界の食糧生産を支えてきた。現在でも、世界の新興国における人口増加に伴う食糧増産に対応した肥料増産が求められており、信頼性及び生産性に優れた尿素合成方法に基づく尿素合成装置の建設が重要な課題となっている。
ここで、信頼性とは、主として、金属に対する強い腐食性を有する、アンモニアと二酸化炭素から尿素を合成する際に反応中間体として生成するアンモニウムカーバメイトからこの装置内部の金属表面を保護する性質をいう。一方、生産性とは、アンモニアと二酸化炭素の反応収率を高めるだけでなく、装置建設コストの低減及び運転条件を改善したランニングコストの低減も含めた全尿素製造コストの低減をいう。
このような信頼性及び生産性を高める技術開発は、主に三つの観点から取り組まれてきた。第一には、装置の金属表面に不動態皮膜を形成させ、耐食性を高める化学的観点である。第二には、装置材料自体の改良により、アンモニウムカーバメイトに対する耐食性を向上させる材料的観点である。第三には、製造工程や装置の改善による耐食性及び反応収率の改善を図るプロセス的観点である。しかし、これらは互いに相反する関係にあり、現在もバランスのとれた尿素合成方法が求められている。
まず、金属表面に不動態皮膜を形成させる技術は、米国特許第2,680,766号、米国特許第2,727,069号、米国特許第3,137,724号、英国特許第1,153,107号、ヨーロッパ特許第0096151号等に開示されているように、酸素、硝酸、フッ化水素、過酸化水素、窒化アンモニウム、オゾン等の酸化剤を用いる方法等種々検討されてきたが、結果的には、酸素を酸化剤として用いる方法が採用されている。すなわち、出発原料である二酸化炭素やアンモニアに酸素を混合して、高温高圧下で、FeやCrの水酸化物や、Crの酸化物からなる不動態膜を1〜3nm程度形成させる方法である。
しかし、酸化剤として供給する酸素が多すぎると、イナートガスが増加すると共に、後述するH/C(H2O/CO2)比が高くなり反応収率が下がる。一方、未転化原料や他の揮発成分から酸素を最終的に分離して取り除くためのエネルギー消費型スクラバーや、尿素生成物中に含まれる痕跡量の水素と酸素とが混合される危険性を防ぐための水素燃焼除去装置も必要となる。このように、酸素は、供給量の増加と共に、耐食性を高める一方、ランニングコストに悪影響を及ぼすという問題がある。
そのため、古くは米国特許第2,680,766号に記載のオーステナイト系ステンレス鋼S31603系に認められるように、ステンレス鋼自体の耐食性を高める方向に開発が進められてきた。それと共に、装置製造に必要な加工性の改良も施されてきた。英国特許第1,192,044号、ヨーロッパ特許第0096151号、国際公開95/00674号、英国特許第775,933号、国際公開03/018861号、特開2003−301241号等に開示されているように、Cr、Ni、Mo、Nの効果に着目して改良され、特に、国際公開03/018861号では、Cr含有量が28〜35wt%、Ni含有量が3〜10wt%、Mo含有量が1.0〜4.0wt%、N含有量が0.2〜0.6wt%のオーステナイト‐フェライト二相系ステンレス鋼が提案され、防食酸素がほとんど不要な尿素合成プラントの建設が可能であることを示唆している。
しかし、このように、耐食性に優れた、Cr含有量が多いオーステナイト‐フェライト二相系ステンレス鋼の材料価格は高く、尿素プラントの建設コストが高くなるという問題があり、信頼性と生産性を兼ね備えた尿素合成装置の建設は難しい。
従って、英国特許第1,341,497号、英国特許1,287,710号、特開昭53‐14993号、特開昭56‐131558号、特開昭60‐209555号、特開平10‐182587号、特開平11‐180942号等に開示されているように、製造工程や装置の改善も行われてきた。特に、ストリッパーの導入により未反応生成物を有効に再利用することや、凝縮器に反応器同様の尿素合成機能を付与したことは、反応収率を高め、製造設備を小さくすることができ、生産性の向上に貢献しうるものである。
以上、従来技術を総合して鑑みると、二つのタイプの尿素合成方法に集約される。一つは、Cr含有量が多い耐食性に優れた高価なステンレス鋼を用いるため、極めて低い酸素濃度で運転可能であるが、建設コストに大きな負担がかかるものである。例えば、前述の国際公開03/018861号に開示されているように、Cr含有量が28〜35wt%、Ni含有量が3〜10wt%、Mo含有量が1.0〜4.0wt%、N含有量が0.2〜0.6wt%のオーステナイト‐フェライト二相系ステンレス鋼を用いると、腐食が最も進行しやすいストリッパーも含めて、ほとんど酸素が不要な状態で運転可能である。しかし、該ステンレス鋼は高価で、建設コストに大きな負担がかかる。もう一方は、S31603のような汎用ステンレス鋼を用いるため、建設コストの負担は小さくなるものの、反応収率が低く、酸素を分離するスクラバーや、水素を除去する水素燃焼除去装置等の付帯設備が必要であり、建設コスト及びランニングコストが高くなるものである。例えば、米国特許第2,727,069号においては、S31603系汎用ステンレス鋼を用いた尿素合成プラントで、二酸化炭素に対する酸素濃度が、約1,000〜30,000ppmも必要であることが開示されている。また、英国特許第1,341,497号でも、同様のS31603系ステンレス鋼を用いた尿素合成プラントで、ストリッパーには二酸化炭素に対する酸素濃度が1,000〜25,000ppm、凝縮器でも二酸化炭素に対する酸素濃度が300〜10,000ppm必要であることが開示されている。
ところで、米国特許第3,137,724号では、S31603系の、英国特許1,192,044号では、S31260系のステンレス鋼を用いた尿素合成プラントについて、二酸化炭素に対する酸素濃度が100〜500ppmで運転可能であると記載されているが、腐食の進行がストリッパーより遅い尿素合成塔における酸素濃度であり、ストリッパーに関する記載がない。
また、ヨーロッパ特許第0096151号にも、S31260系のステンレス鋼を用いているが、ストリッパーの下部から、二酸化炭素に対し200〜2,000ppm酸素濃度の供給で運転可能であると提案している。しかし、合成系内の反応器Rの上部は過酸化水素、下部は酸素、また、ストリッパーS1は反応器Rからの合成ガスに過酸化水素を混入させている。ストリッパーS2の底部に酸素を導入するが、頂部ではストリッピングによりガス量が増加し、酸素分圧が相対的に低下してしまうのを補うため、頂部から過酸化水素を導入させる必要がある。ストリッパーS2を出たガスは凝縮器Cで凝縮されて液相部分のみ反応器に送られるが、気相部分は凝縮器Cの上部よりベントされる。ストリッパーS2の底部から導入した酸素や上部から導入した過酸化水素中の酸素は凝縮器Cで生成されたベントされる気相部分に移行する。従ってトリッパーS2で導入された酸素は反応器Rにはほとんど導入されないため、反応器の金属表面を不動態化させるための酸素を別途導入する必要がある。従ってヨーロッパ特許第0096151号に開示されるプロセスでは、複数箇所で酸素を導入しなければならない。
以上、従来技術では、耐食性に必要な酸素濃度、ステンレス鋼の材質、及び、効率のよい製造工程のバランスのとれた、信頼性と生産性を満足する尿素合成方法が見出されていない。
米国特許第2,680,766号公報 米国特許第2,727,069号公報 米国特許第3,137,724号公報 英国特許第1,153,107号公報 ヨーロッパ特許第0096151号公報 英国特許第1,192,044号公報 国際公開95/00674号公報 国際公開03/018861号公報 特開2003−301241号公報 英国特許第1,341,497号公報 英国特許第1,287,710号公報 特開昭53‐149930号公報 特開昭56‐131558号公報 特開昭60‐209555号公報 特開平10‐182587号公報 特開平11‐180942号公報
本発明の課題は、尿素の合成において、反応中間体として生成する腐食性のアンモニウムカーバメイトから装置内部の金属表面を保護するため、不動態を形成させる酸化剤として酸素を用い、装置材料としてはステンレス鋼を用い、信頼性と生産性に優れた尿素合成方法を提供することである。
更に具体的には、対象とする尿素合成装置としては、凝縮器を備えて合成能力を改良した工程を有し、さらに材料として、安価な汎用ステンレス鋼を選択するにもかかわらず、酸化剤として供給する酸素(以後、防食酸素と記す。)を必要最低限とし、防食性に優れている上、高反応収率、低建設コストで、低コストで尿素を生産できる、信頼性と生産性に優れた尿素合成方法を提供することである。
本発明は、(1)尿素合成塔において、アンモニアと二酸化炭素とを尿素合成温度及び圧力において反応させ、生成された尿素、未反応のアンモニアと二酸化炭素、及び、水を少なくとも含む尿素合成液を、ストリッパーにおいて原料二酸化炭素の少なくとも一部と、該尿素合成圧力にほぼ等しい圧力において、加熱下に接触させて、該未反応アンモニア及び該未反応二酸化炭素を、アンモニア、二酸化炭素、及び、水の混合ガスとして分離し、未分離の未反応アンモニア及び未反応二酸化炭素を含有する尿素合成液を更に処理して尿素を得、一方、該ストリッパーにおいて分離された混合ガスを凝縮器の底部に導入して、吸収媒体と冷却下に接触させ、それによって該混合ガスを凝縮させ、こうして得られた凝縮液を尿素合成塔に循環する尿素合成装置を用い、(2)尿素合成塔、ストリッパー、及び凝縮器、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所に、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として適用し、(3)二酸化炭素に対する酸素供給濃度を、ストリッパーも含め、好ましくは100〜2,000ppm、更に好ましくは、100〜1,000ppm、より更に好ましくは、100〜500ppmとして運転することを特徴とする尿素合成方法である。ただし、汎用オーステナイト‐フェライト系二相ステンレス鋼のみを用いた場合は、上記下限値を、それぞれ、150ppm以上とすることが好ましい。
該オーステナイト‐フェライト系二相ステンレス鋼は、Cr含有量:24〜26wt%、Ni含有量:5.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:1.5wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%であることが更に好ましい。
また、本発明は、ストリッパーには、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:1.0〜4.0wt%、N含有量:0.2〜0.6wt%のオーステナイト‐フェライト二相系ステンレス鋼、例えば、S32707やS32808、を用い、尿素合成塔及び凝縮器、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所には、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を用い、二酸化炭素に対する酸素供給濃度を100〜500ppmとして運転することを特徴とする尿素合成方法である。
本発明によれば、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量が0.03wt%以下、Si含有量が1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として適用するため、材料の著しいコスト低減が可能で、尿素合成装置の建設コストを低減できる効果がある。
しかも、不動態を形成して耐食性を付与する防食酸素として供給する酸素量が少ないため、イナートガスが減少し、後述するH/C(H2O/CO2)の比が低くなり反応収率が向上する。それと共に、防食酸素量が極めて少ないため、従来の尿素合成装置と比較し、酸素を除去するためのエネルギー消費型スクラバーが不要となるばかりか、生成尿素中に含まれる痕跡量の水素が酸素と混合される危険を防ぐことができるため、水素燃焼除去装置も不要となる。従って、信頼性を損なうことなく、装置全体の大きさ、設備コストを低減でき、尿素製造コストも低減できるという効果がある。
また、後述するように、腐食が進行し易いストリッパーのみに、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:0.2〜4.0wt%、N含有量:0.2〜0.6wt%:オーステナイト‐フェライト二相系ステンレス鋼、例えば、S32707、S32808、を用いれば、防食酸素量を更に低減でき、ランニングコストを低減できる。
更に、従来原料二酸化炭素中の酸素の体積換算で5,000ppm程度の防食酸素を混入した場合と、本発明の範囲で混入させた場合を比較すると、防食酸素量が減少することで合成された二相流が凝縮しやすくなるため、凝縮器の伝熱面積を5〜10%低減させることが可能である。また、防食酸素を削減することにより、尿素合成塔、凝縮器の温度をそれぞれ1〜2℃上昇させることが可能となり、反応速度が上昇し、反応収率を高めることが可能である。従って、ストリッパーに必要とされる熱量を2〜4%ほど低減でき、更に合成ループに後続する吸収塔と洗浄塔のシェル径も15〜30%小さくさせることも可能である。なお、防食酸素量を原料二酸化炭素中の濃度で評価する理由は、下記のとおりである。本発明で用いる尿素合成装置において、原料二酸化炭素の量は尿素合成装置の尿素製造キャパシティに比例するため、尿素合成装置内各部位の気液量は、原料二酸化炭素の量に比例するといえる。従って、原料二酸化炭素量に対する濃度で防食酸素量を評価することは、各尿素合成装置内の気液量に対する防食酸素量を規定することと等しい。更に、通常尿素装置では防食酸素用の圧縮機を設けず、予め原料二酸化炭素に酸素もしくは酸素を含む空気を混合し、その混合気体を、二酸化炭素圧縮機で尿素合成系運転圧まで昇圧する。このため運転管理上は、原料二酸化炭素流量に対する酸素流量(もしくは空気流量)の割合を一定に保つ調整を行う事で、規定値の酸素量を制御することが可能である。この方法は各機器の入口や出口のガスを分析・評価し、運転制御に反映させる方法と比較すると、極めて単純である。本発明において、原料二酸化炭素に混合されて投入される防食酸素量は、尿素合成装置全体に投入される防食酸素量に等しい。従って、この防食酸素量と各ラインの流量、分圧より各機器における酸素の濃度が求められる。そのため、分析の精度も得られやすい。
一方、該オーステナイト‐フェライト二相系ステンレス鋼は、主として、尿素合成塔、凝縮器、ストリッパーに採用することを検討した結果であるが、更に、配管、バルブ等、腐食環境に応じて、S31603系も含めた汎用ステンレス鋼の採用により、防食酸素量を増やすことなく、更に設備コスト低減を図ることも可能である。
このように、本発明は、各装置の材料を置き換えることができるため、その全てを新たに建造した新設プラントでなくてもよく、既存の設備に一部を追加もしくは取替えた改造プラント(いわゆるrevamping)にも適用できる。
本発明における二酸化炭素ストリッピング方式の尿素合成方法を用いた尿素合成装置のプロセスフローである。 本発明における二酸化炭素ストリッピング方式の尿素合成方法を用いた尿素合成装置の一実施態様で、特開平10‐182587号に開示された尿素合成方法のプロセスフローである。 実験で使用した測定装置を示す概略図である。 実験で使用した測定装置における測定原理を示す模式的グラフである。 実験より得られた測定結果を示す。 実験結果に基づくシミュレーション結果を示す。
本発明の一実施形態は、図1に示す二酸化炭素ストリッピング方式尿素合成方法、すなわち、原料の液体アンモニアを尿素合成塔Aに供給し、防食酸素は空気として原料のガス状二酸化炭素と共に、尿素合成塔A及びストリッパーBに供給する方法が好適である。特に、尿素合成方法として好適である実施形態は、特開平10‐182587号に開示された各種合成プロセスであって、図2には、その一実施形態を示したが、これに限定されるものではない。
例えば、原料の液体アンモニアを、尿素合成塔A及び凝縮器Cに供給し、炭酸ガス圧縮機Hから供給する防食用空気を含む原料のガス状二酸化炭素を、尿素合成塔Aには供給せずにストリッパーBのみに供給する形態でも良い。また、例えば、原料の液体アンモニアを、尿素合成塔Aには供給せずに回収系Iに供給し、炭酸ガス圧縮機Hから供給する防食酸素を含む原料のガス状二酸化炭素を、ストリッパーBには供給せずに尿素合成塔Aのみに供給する形態(アンモニアストリッピング方式)でも良い。ただし、従来技術に示したように、尿素合成方法の違いによって、尿素合成塔A、ストリッパーB、凝縮器C等、各領域の圧力及び温度条件、滞留及び通過する流体の組成が異なるため、当該方式に適用するステンレス鋼が必要とする防食酸素量に差異が生じることに留意を要する。
また、図1のプロセスフローでは、凝縮器Cからの液を昇圧し合成液を循環させる目的で、簡単な構造、耐久性、メンテナンス性に優れるという観点から、エジェクターEを使用しているが、ポンプなど他の昇圧手段を循環のために用いることもできる。しかし、各機器の配置によって尿素合成液の循環が良好に実現できる場合は、これを省略しても良い。例えば、各機器の配置を工夫すれば、重力のみによって尿素合成液を循環することが可能である。ただし、エジェクターE等の昇圧手段を設ければ、尿素合成塔A、凝縮器C、ストリッパーBを低い位置に設置可能となり、据え付け工事やメンテナンスの点で好ましい。更に、以上の各装置は、個別に設置しても、凝縮器Cとスクラバー等を組み合わせても良い。
一方、凝縮器の設置の向きとしては、横型でも縦型でもよい。例えば、横型凝縮器を地上もしくは地上に近い位置に設置すれば、その全高が低いこととあいまって、尿素合成塔の据え付け工事やメンテナンスが容易である。なお、横型凝縮器は、中空円筒体を基本構造とする圧力容器を実質的に水平に設置した物であり、通常、内部には液の逆混合やショ−トパスを防止するための邪魔板が複数枚鉛直に設置され、また底部にはガスを分散するための分散器が設けられる。また、縦型凝縮器を用いれば、設置面積を節約できるだけでなく、凝縮部において気液向流接触し、滞留時間を十分長く取れることが可能となる。
更に、本発明の尿素合成方法で用いる尿素製造装置は、その全てを新たに建造した新設装置であっても良いし、既存の設備に一部を追加もしくは取替えた改造装置(いわゆるrevamping)にしても良い。
このような尿素合成装置において、尿素合成塔A、ストリッパーB、及び、凝縮器C、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所が、下記組成のオーステナイト−フェライト二相系ステンレス鋼とすることができる。
[本発明に適用するオーステナイト−フェライト二相系ステンレス鋼の組成]
Cr:21〜26wt%
Ni:4.5〜7.5wt%
Mo:2.5〜3.5wt%
N:0.08〜0.30wt%
C:0.03wt%以下
Si:1.0wt%以下
Mn:2.0wt%以下
P:0.04wt%以下
S:0.03wt%
残部は、Feならびに不純物及び添加剤
特に、汎用オーステナイト−フェライト二相系ステンレス鋼として安価に入手できる、S31803やS31260を用いることが好ましい。
更に、該オーステナイト−フェライト二相系ステンレス鋼として、下記組成のオーステナイト−フェライト二相系ステンレス鋼を用いることがより好ましい。
[本発明に適用するオーステナイト−フェライト二相系ステンレス鋼の組成]
Cr:24〜26wt%
Ni:5.5〜7.5wt%
Mo:2.5〜3.5wt%
N:0.08〜0.30wt%
C:0.03wt%以下
Si:1.0wt%以下
Mn:1.5wt%以下
P:0.04wt%以下
S:0.03wt%
残部は、Feならびに不純物及び添加剤
特に、汎用オーステナイト−フェライト二相系ステンレス鋼として安価に入手できる、S31260を用いることが好ましい。
更に、腐食が進行し易いストリッパーには、下記組成のオーステナイト−フェライト二相系ステンレス鋼を用いることが好ましい。
[本発明に適用するオーステナイト−フェライト二相系ステンレス鋼の組成]
Cr:26〜35wt%
Ni:3〜10wt%
Mo:0.2〜4.0wt%、
N:0.2〜0.6wt%
残部は、Feならびに不純物及び添加剤
特に、このようなオーステナイト‐フェライト二相系ステンレス鋼として、例えば、S32707、S32808を用いることが好ましい。
また、配管、バルブ等、腐食環境に応じて、S31603系汎用ステンレス鋼を用いることもでき、防食酸素量を増やすことなく更に設備コストの低減を図ることも可能である。
以上のような材料で作製された尿素合成装置は、主として、反応収率という観点から、尿素合成塔Aの運転条件を、圧力:130〜250バール、N/C:3.5〜5.0、H/C:1.0以下、滞留時間:10〜40分、温度:180〜200℃とし、ストリッパーの運転条件を、圧力:130〜250バール、特に好ましくは140〜200バール、温度:160〜200℃とし、凝縮器Cの運転条件を、圧力:140〜250バール、温度:130〜250℃、特に好ましくは170〜190℃、N/C:2.5〜3.5、H/C:1.0以下、滞留時間:10〜30分として稼働させることが好ましい。ここで、N/Cとは、アンモニア(アンモニウムカーバメイト及び尿素に転化したアンモニアを含む)と二酸化炭素(アンモニウムカーバメイト及び尿素に転化した二酸化炭素を含む)のモル比(以下「N/C」という)であり、H/Cとは、水(尿素合成反応で生成した水は除く)と二酸化炭素(アンモニウムカーバメイト及び尿素に転化した二酸化炭素を含む)のモル比(以下「H/C」という)である。
このような運転条件が好ましいのは、図1に示すように、尿素合成塔Aでは、下記の式1及び式2の反応が生起しているだけでなく、凝縮器Cにおいても、アンモニアガス及び/又は二酸化炭素ガスを凝縮させながら進行することに基づいている。なお、式1は、アンモニア(NH)と二酸化炭素(CO)の反応によってアンモニウムカーバメイト(NHCONH)が生成する反応である。式2は、アンモニウムカーバメイト(NHCONH)の脱水反応によって尿素(CO(NH)が生成する平衡反応である。
Figure 2014192823
すなわち、図1では、原料の液体アンモニアは、所望の圧力までアンモニアポンプ(不図示)で昇圧されて尿素合成塔Aに供給されると共に、その一部は熱交換器によって加熱されてエジェクターEにも供給される一方、エジェクターEには、凝縮器Cからも尿素合成液が供給され、このエジェクターEからアンモニアを含む尿素合成液が尿素合成塔Aに昇圧、供給される。原料のガス状二酸化炭素は、炭酸ガス圧縮機Hにより所望の圧力まで昇圧され、その大半がストリッパーBに供給される。残りの二酸化炭素の一部は、尿素合成塔Aの温度制御と防食酸素を供給する目的で、尿素合成塔Aに供給される。防食酸素として、通常空気が炭酸ガス圧縮機Hの一段目吸い込み側又は中間段に供給される。尿素合成塔Aと凝縮器Cで尿素が合成され、尿素合成塔Aを出た尿素を含む流出物は、ストリッパーBへ供給される。この流出物中には、合成された尿素、水、アンモニウムカーバメイト、未反応のアンモニアが液相として、また一部の未反応のアンモニアと二酸化炭素はイナートガスと共に気相として存在する。ここでイナートガスとは、例えば尿素合成塔A、ストリッパーB、凝縮器C、スクラバー及びそれらを結合する配管などで構成される尿素合成装置の腐食を防止するために導入された防食用空気と、原料二酸化炭素中に含まれている水素、窒素等の不純物の総称である。尿素合成塔Aからの合成液はストリッパーBに供給され、ここで未反応のアンモニアと未反応の二酸化炭素を処理する。原料二酸化炭素は、ストリッピング剤として用いられる。
従って、図1に示したような製造装置における、尿素合成塔A、ストリッパーB、凝縮器Cの各運転条件は、ルシャトリエの原理も含めて、次に示す理由により決定される。
まず、尿素合成塔A内部の圧力は、130〜250バールが好ましい。この合成圧力を130バール以上にすると、尿素の合成に好ましい温度(180℃以上)における合成平衡圧力に対して余裕のある運転圧を採用可能となり、しかもガス化による反応収率の低下を防止できる。また、合成圧力を250バール以下にすると、原料アンモニア、原料炭酸ガス及び未反応アンモニウムカーバメイト液を昇圧するためのエネルギーを抑制でき、設備コストを低減できる。ここでアンモニウムカーバメイト液とは、合成工程より下流の回収工程にて未反応アンモニア及び二酸化炭素をアンモニウムカーバメイト水溶液として回収した液である。
次いで、尿素合成塔A内部の合成温度については、それが高い程、式1の反応は左辺に進み、式2の反応は右辺に進むので、反応収率上適度な領域が存在し、180℃〜200℃とすることが好ましい。この合成温度を180℃以上にすると、尿素生成の反応速度が遅くなることを防止できる。また、合成温度を200℃以下にすると、腐食速度の増加に加えていわゆる活性腐食のリスクが高まることを防止できる。この合成温度は、例えば、エジェクターEを駆動するアンモニアの予熱温度及び/又は尿素合成塔Aへ供給する二酸化炭素の量によって制御できる。
尿素合成塔A内部のN/Cは、式1より化学両論的には2であるが、過剰の未反応アンモニアが存在する状態にあることが好ましい。しかし、N/Cが5.0を超えると、アンモニア蒸気圧が上がって気相が生成し易くなるため、3.5〜5.0であることが好ましい。
尿素合成塔A内部のH/Cは、式1及び式2より、反応収率の観点から、H/Cは低いほど良いので、この回収装置に供給する水の量は必要最小限とすることが好ましい。好ましくは1.0以下、更に好ましくは0.7以下、より更に好ましくは0.4以下である。このH/Cを可能な限り少なくすることができればよりよいが、H/Cは尿素合成装置を出る未反応物(アンモニアと二酸化炭素)を回収する回収装置(不図示)にてその吸収に必要な水の量で決まる場合が多く、実際には多少の水が存在するためである。H/Cの下限を設定する必要はない。
尿素合成塔A内部における尿素合成液の滞留時間は、10分以上40分以下が好ましい。この滞留時間を10分以上にすると、尿素合成反応の進行が促進される。一方、40分を超える滞留時間にした場合は、既に平衡反応収率近くに達しているので、それ以上の反応収率の上昇はほとんど期待できない。
以上の運転条件において、尿素合成塔A内部において、反応収率は60%以上75%以下程度となる。ここで、二酸化炭素基準の反応収率とは、考慮対象としている機器もしくは領域に供給された二酸化炭素のモル数と、供給された二酸化炭素のうち尿素に転化したモル数の比であり、通常%で示される。
ストリッパーBの運転条件は、式1の逆反応を促進することが求められ、基本的には、温度が高い程、圧力は低い程好ましいが、尿素合成装置全体のバランスから、圧力:130〜250バール、特に好ましくは140〜200バールとし、温度:160〜200℃とされる。
凝縮器Cの運転条件は、これに合成能力を付与しているため、尿素合成塔Aと同様に考えることができ、尿素合成塔Aとほぼ同じ条件、すなわち、圧力:140〜250バール、温度:130〜250℃、特に170〜190℃が好ましく、N/C:2.5〜3.5、H/C:1.0以下、滞留時間:10〜30分として、20〜60%の反応収率を達成することができる。
このような合成装置、運転条件の下、図1に示したように、二酸化炭素と同時に、空気として装置の防食酸素を供給する。尿素合成塔A、ストリッパーB、凝縮器C各装置で、必要な防食酸素量は異なり、ストリッパーBが最も腐食しやすい環境にあり、順に凝縮器、尿素合成塔である。しかし、本発明で用いる合成装置は、防食酸素が、合成装置全体に行き渡るようになっているため、ストリッパーで最低限必要な酸素供給量で決定され、好ましくは100〜2,000ppm、更に好ましくは100〜1,000ppmの防食酸素が必要である。また、合成装置の各部に使用するステンレスの材質を選択することによって、更に好ましい100〜500ppmの防食酸素量で運転することができる。ただし、汎用オーステナイト‐フェライト系二相ステンレス鋼のみを用いた場合は、上記下限値を、それぞれ、150ppm以上とすることが好ましい。
特に、腐食が進行し易いストリッパーに、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:1.0〜4.0wt%、N含有量:0.2〜0.6wt%のようなオーステナイト‐フェライト二相系ステンレス鋼、例えば、S32707、S32808を用いる場合、二酸化炭素に対する酸素供給濃度を100〜500ppmまで低減できる。
この防食酸素の供給方法は、図1のプロセスフローに示したように、原料二酸化炭素中に防食用空気を混合して供給することが、昇圧装置を新たに設ける必要が無いという観点から好ましい。しかし、本発明は、この供給方法に限定されない。例えば、各機器に個別に防食用空気の導入口及び所定の圧力に昇圧させる装置を設けて、機器毎に防食用空気を供給しても良い。この場合も、防食酸素が、合成装置全体に行き渡るようになっているため、供給する防食用空気の量、即ち防食酸素濃度に変わりはない。
このように、防食酸素を低減することで爆発範囲からガス組成を外すことになり、水素燃焼除去装置を省略することができるが、安全のため設置してもよい。設置する場合には、導入した防食酸素の一部を用いて水素除去装置内で水素を触媒燃焼により除去することができ、かつストリッパーのように高温の条件での爆発範囲より手前であるということから、防食用空気の下流の二酸化炭素コンプレッサーの中段もしくは出口、あるいは、ストリッパーの二酸化炭素を導入する段階より上流にあることが好ましい。
以下、実施例により、本発明を、より具体的に、より分かりやすく説明する。
図3に示す測定装置を用いて、以下の条件で試験を実施した。図3に示す測定装置は、尿素を合成するためのオートクレーブ(34)と材料の腐食挙動を測定する電気化学測定装置からなる。オートクレーブ(34)には、3つの電極[作用電極(31)(working electrode)、Ptから成る基準電極(32)(reference electrode)、Ptから成る対向電極(33)(counter electrode]が設置されており、ポテンシオスタットモジュール(36)を用いて、電極間の電位の制御と測定、並びに、電流の測定を実施する。また、尿素合成液はアジテータ(35)により撹拌され、防食用空気(防食酸素)は空気供給ノズル(37)から供給される。
図4には、この測定の原理と、不動態皮膜形成による防食性能との関係を模式的に示した。すなわち、オートクレーブ(34)内で合成した尿素合成液に浸漬されている作用電極(31)と基準電極(32)の間に生じる電位差(自然電位)により、作用電極(31)の腐食挙動を把握することができる。両者の電位差が小さければ、作用電極(31)には十分な不動態皮膜が形成されておらず、電極が活性溶解しているのに対し、電位差が大きければ不動態化していることを示している。よって、電位差の上昇直後にサンプリングした合成ガスを分析することで、不動態化に必要な防食酸素濃度を把握することができる。
以下、実験方法を示す。
[ステンレス材料]
オーステナイト−フェライト二相系ステンレス鋼:S31260(住友金属工業社製)
オーステナイト−フェライト二相系ステンレス鋼:S32808(住友金属工業社製)
オーステナイト系ステンレス鋼:S31603(住友金属工業社製)
[実験装置]
オートクレーブ:日東高圧社製/特注品
アスピレーター:EYELA社製/A−1000S
電流・電位測定装置(ポテンショスタット):北斗電工社製/HA−151B
ガスクロマトグラフィ:島津製作所社製/GC−14A
[試験]
(1)水、炭酸アンモニウム、尿素をオートクレーブ(34)に入れる。
(2)オートクレーブ(34)に蓋をした後、アスピレーターでオートクレーブ(34)内を脱気する。
(3)He置換(1MPa×5回)し、オートクレーブ(34)内部の酸素を除去する。
(4)アンモニアをオートクレーブ(34)内に供給する。
(5)H/C=4、H/C=1とし、温度を195℃に設定する。その時、圧力は160バール程度となった。
(6)195℃まで昇温後、分極抵抗法により、不動態化時の腐食速度を測定する。
(7)カソ−ド処理(−0.8V/5分)を実施し、表面の不動態化皮膜を除去する。
(8)作用電極(31)と基準電極(32)の間の電位差が低く、活性域を示した後、分極抵抗法により、作用電極(31)と対向電極(33)間に流れる電流を測定した。この電流値より、活性溶解時の腐食速度を得た。
(9)活性域の状態で、空気供給ノズル(37)から空気をオートクレーブ(34)内に供給する。
(10)電位が不動態化域に達していることを確認する。
(11)分極抵抗法にて腐食速度を測定する。
(12)オートクレーブ(34)内のガスをサンプリングする。
(13)サンプリングしたガスをガスクロマトグラフィで分析し、酸素濃度を確認する。
(14)この酸素量を、その材料の不動態化に必要な酸素量とする。
[シミュレーション及びその結果]
図2の装置については、特開平10‐182587号に詳しく記載されているが、プロセスフローを簡単に説明する。原料液体アンモニアは、ライン1から150〜300バールの圧力で熱交換器Dに入り、ここで、100〜200℃に予熱されて駆動流体としてエジェクターEに入る。エジェクターの吐出圧力と吸い込み圧力との差圧が2〜10バールとなるよう原料液体アンモニアはエジェクターEを通って膨張され、これによって凝縮器Cのダウンパイプ3を通ってエジェクターEの吸い込み側に供給される凝縮液が吸引されて昇圧され、駆動流体である原料液体アンモニアとの混合物として尿素合成塔Aの底部に導入される。原料二酸化炭素のうち、二酸化炭素のストリッピングに必要とされる量はライン2および2bを経てストリッパーBの底部に供給され、残りの量はライン2aを経て尿素合成塔Aの底部に供給される。エジェクターEからの原料液体アンモニアと、凝縮液の混合物と、ライン2aから供給される二酸化炭素は尿素合成塔Aを上昇しながら反応し、尿素合成塔Aの運転条件は、圧力:130〜250バール、N/C:3.5〜5.0、H/C:1.0以下、滞留時間:10〜40分、温度:180〜200℃とされる。尿素合成塔Aで生成した尿素、未反応アンモニア、未反応二酸化炭素および水からなる尿素合成液は尿素合成塔の頂部から抜き出され、ライン4を経て尿素合成塔の圧力と実質的に等しいか、やや低い圧力のストリッパーBの頂部に供給される。この尿素合成液はストリッパーBを流下しながらライン2bを経てストリッパーBの底部に供給される原料二酸化炭素と加熱下に接触せしめられて未反応アンモニアおよび未反応二酸化炭素がアンモニア、二酸化炭素、イナートガスおよび水の混合ガスとして分離される。この混合ガスはストリッパーBの頂部からライン5を経て凝縮器Cの底部に導入される。ストリッパーBには防食用空気がストリッピング用の原料二酸化炭素に混合されて導入される。ストリッパーの運転条件は、圧力:130〜250バール、温度:160〜200℃とされる。ストリッパーBの底部からは、未分離の未反応アンモニアおよび未反応二酸化炭素を含む尿素合成液がライン8を経て抜き出され、低圧分解工程に送られて処理され尿素が得られる。凝縮器Cの頂部にはスクラバーFが一体化されている。スクラバーFの頂部にはライン6を経て低圧回収工程(図示されない)からの回収液が吸収媒体として供給される。この吸収媒体は凝縮器Cからのイナートガスと接触して、イナートガスと同伴するアンモニアおよび二酸化炭素を吸収して除去する。イナートガスはライン10を経て放出される。一方、スクラバーFからの吸収液(イナートガスに同伴していたアンモニアおよび二酸化炭素を吸収した吸収媒体)はスクラバーFの底部に設けられた受器9に流下し、ダウンパイプ7を流下し、凝縮器Cの底部にストリッパーからの混合ガスの吸収媒体となる。前記ストリッパーからの混合ガスの吸収媒体は、冷却器Gによる冷却下で上記混合ガスと接触してこれを凝縮する。生成した凝縮液は凝縮器C内を上昇し、頂部に開口を有するダウンパイプ3を経てエジェクターEの吸い込み側に供給され、前記のとおり原料液体アンモニアとともに尿素合成塔Aの底部に供給される。凝縮器Cの運転条件は、尿素合成塔Aのそれとほぼ同じであって、圧力:140〜250バール、温度:130〜250℃、N/C:2.5〜3.5、H/C:1.0以下、滞留時間:10〜30分とされる。
このような運転条件を鑑み、下記に示す方法によって腐食速度と原料二酸化炭素に対する酸素濃度の関係を求めた。まず、段落0059に示す方法で材料毎に不動態化時および活性溶解時の腐食速度および不動態化に必要なガス相中の酸素量を得る(図5)。次に、設計用プロセスシミュレータを用いて尿素合成塔、凝縮器、ストリッパーそれぞれについてガス相中の酸素濃度を求め、原料二酸化炭素に対する酸素供給濃度との関係を得る。両者を用いて、各機器における、各材料の原料二酸化炭素に対する防食酸素濃度と腐食速度の関係を得る。
段落0061で求めた結果を図6に示す。この結果から明らかなように、同じ汎用オーステナイト/フェライト二相系ステンレス鋼を使用した場合であっても、原料二酸化炭素中の防食酸素濃度に対して、尿素合成塔A、凝縮器C、ストリッパーBの各々の機器でその腐食速度が異なり、ストリッパーの環境が最も厳しいことが分かる。従って、本発明で用いる合成装置内は、防食酸素の全量が行き渡るため、ストリッパーの防食に必要な防食酸素濃度が最低限必要である。
すなわち、図6は、図2に示した尿素合成装置において、尿素合成塔A、ストリッパーB、及び、凝縮器C、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所に、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として用い、温度:195℃、圧力:160バールの運転条件で、二酸化炭素に対する酸素供給濃度が100〜2,000ppm程度必要であることを示している。汎用オーステナイト‐フェライト系二相ステンレス鋼のみを用いた場合は、上記下限値を150ppm以上とすることが好ましい。
従って、上記ステンレス鋼として、ストリッパーに、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:0.2〜4.0wt%、N含有量:0.2〜0.6wt%のようなオーステナイト‐フェライト二相系ステンレス鋼、例えば、S32707、S32808を用いれば、二酸化炭素に対する酸素供給濃度を100〜500ppmまで減少可能である。
一方、防食酸素量の低減は、酸素/空気が減少することにより合成された二相流が凝縮しやすくなるため、凝縮器伝熱面積を低減することができる。また、防食酸素を削減することにより、尿素合成塔、凝縮器の温度を上昇させることが可能となり、反応速度が上昇し、反応収率を高めることが期待される。
段落0061に示す検討に基づき、使用材料とそれに対応する防食酸素量の組み合わせを決定し、段落0065に示す効果について、各ステンレス鋼の防食酸素量に対する、凝縮器伝熱面積及びストリッパー熱量を前出のプロセスシミュレータで評価した。
その結果を表1に示す。表1から明らかなように、凝縮器の伝熱面積を約7〜12%低減させることが可能である。同時に、尿素合成塔A、凝縮器Cの温度をそれぞれ1〜2℃上昇させることが可能となり、反応速度が上昇し、反応収率を高められ、ストリッパーに必要とされる熱量を約4%低減できた。
Figure 2014192823
A 尿素合成塔
B ストリッパー
C 凝縮器
D 熱交換器
E エジェクター
F スクラバー
G 冷却器
H 炭酸ガス圧縮器
I 回収系
1 アンモニア供給ライン
2 二酸化炭素供給ライン
3 ダウンパイプ
4 未反応アンモニア、未反応二酸化炭素を含む尿素合成液伝送ライン
5 アンモニア、二酸化炭素、イナートガス、水を含む混合ガス伝送ライン
6 低圧回収工程からの回収液導入ライン
7 ダウンパイプ
8 未反応アンモニア、未反応二酸化炭素を含む尿素合成液回収ライン
9 受器
10 イナートガス排出ライン
31 作用電極
32 基準電極
33 対向電極
34 オートクレーブ
35 アジテータ
36 ポテンシオスタットモジュール
37 空気供給ノズル
しかし、酸化剤として供給する酸素が多すぎると、イナートガスが増加すると共に、後述するH/C(H O/CO )比が高くなり反応収率が下がる。一方、未転化原料や他の揮発成分から酸素を最終的に分離して取り除くためのエネルギー消費型スクラバーや、尿素生成物中に含まれる痕跡量の水素と酸素とが混合される危険性を防ぐための水素燃焼除去装置も必要となる。このように、酸素は、供給量の増加と共に、耐食性を高める一方、ランニングコストに悪影響を及ぼすという問題がある。
また、ヨーロッパ特許第0096151号にも、S31260系のステンレス鋼を用いているが、ストリッパーの下部から、二酸化炭素に対し200〜2,000ppm酸素濃度の供給で運転可能であると提案している。しかし、合成系内の反応器Rの上部は過酸化水素、下部は酸素、また、ストリッパーS1は反応器Rからの合成ガスに過酸化水素を混入させている。ストリッパーS2の底部に酸素を導入するが、頂部ではストリッピングによりガス量が増加し、酸素分圧が相対的に低下してしまうのを補うため、頂部から過酸化水素を導入させる必要がある。ストリッパーS2を出たガスは凝縮器Cで凝縮されて液相部分のみ反応器に送られるが、気相部分は凝縮器Cの上部よりベントされる。ストリッパーS2の底部から導入した酸素や上部から導入した過酸化水素中の酸素は凝縮器Cで生成されたベントされる気相部分に移行する。従ってトリッパーS2で導入された酸素は反応器Rにはほとんど導入されないため、反応器の金属表面を不動態化させるための酸素を別途導入する必要がある。従ってヨーロッパ特許第0096151号に開示されるプロセスでは、複数箇所で酸素を導入しなければならない。
本発明は、(1)尿素合成塔において、アンモニアと二酸化炭素とを尿素合成温度及び圧力において反応させ、生成された尿素、未反応のアンモニアと二酸化炭素、及び、水を少なくとも含む尿素合成液を、ストリッパーにおいて原料二酸化炭素の少なくとも一部と、該尿素合成圧力にほぼ等しい圧力において、加熱下に接触させて、該未反応アンモニア及び該未反応二酸化炭素を、アンモニア、二酸化炭素、及び、水の混合ガスとして分離し、未分離の未反応アンモニア及び未反応二酸化炭素を含有する尿素合成液を更に処理して尿素を得、一方、該ストリッパーにおいて分離された混合ガスを凝縮器の底部に導入して、吸収媒体と冷却下に接触させ、それによって該混合ガスを凝縮させ、こうして得られた凝縮液を尿素合成塔に循環する尿素合成装置を用い、(2)尿素合成塔、ストリッパー、凝縮器、並びに、尿素合成塔、ストリッパー、及び、凝縮器の内の少なくとも2つをつなぐ配管と、の内の少なくとも1つに、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%以下である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として適用し、(3)二酸化炭素に対する酸素供給濃度を、ストリッパーも含め、好ましくは100〜2,000ppm、更に好ましくは、100〜1,000ppm、より更に好ましくは、100〜500ppmとして運転することを特徴とする尿素合成方法である。ただし、汎用オーステナイト‐フェライト系二相ステンレス鋼のみを用いた場合は、上記下限値を、それぞれ、150ppm以上とすることが好ましい。
該オーステナイト‐フェライト系二相ステンレス鋼は、Cr含有量:24〜26wt%、Ni含有量:5.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:1.5wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%以下であることが更に好ましい。
また、本発明は、ストリッパーには、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:1.0〜4.0wt%、N含有量:0.2〜0.6wt%のオーステナイト‐フェライト二相系ステンレス鋼、例えば、S32707やS32808、を用い、尿素合成塔と、凝縮器、並びに、尿素合成塔、及び、凝縮器をつなぐ配管と、の内の少なくとも1つには、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%以下である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を用い、二酸化炭素に対する酸素供給濃度を100〜500ppmとして運転することを特徴とする尿素合成方法である。
本発明によれば、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量が0.03wt%以下、Si含有量が1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%以下である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として適用するため、材料の著しいコスト低減が可能で、尿素合成装置の建設コストを低減できる効果がある。
しかも、不動態を形成して耐食性を付与する防食酸素として供給する酸素量が少ないため、イナートガスが減少し、後述するH/C(HO/CO)の比が低くなり反応収率が向上する。それと共に、防食酸素量が極めて少ないため、従来の尿素合成装置と比較し、酸素を除去するためのエネルギー消費型スクラバーが不要となるばかりか、生成尿素中に含まれる痕跡量の水素が酸素と混合される危険を防ぐことができるため、水素燃焼除去装置も不要となる。従って、信頼性を損なうことなく、装置全体の大きさ、設備コストを低減でき、尿素製造コストも低減できるという効果がある。
このような尿素合成装置において、尿素合成塔A、ストリッパーB、凝縮器C、並びに、尿素合成塔A、ストリッパーB、及び、凝縮器Cの内の少なくとも2つをつなぐ配管と、の内の少なくとも1つが、下記組成のオーステナイト−フェライト二相系ステンレス鋼とすることができる。
[本発明に適用するオーステナイト−フェライト二相系ステンレス鋼の組成]
Cr:21〜26wt%
Ni:4.5〜7.5wt%
Mo:2.5〜3.5wt%
N:0.08〜0.30wt%
C:0.03wt%以下
Si:1.0wt%以下
Mn:2.0wt%以下
P:0.04wt%以下
S:0.03wt%以下
残部は、Feならびに不純物及び添加剤
特に、汎用オーステナイト−フェライト二相系ステンレス鋼として安価に入手できる、S31803やS31260を用いることが好ましい。
更に、該オーステナイト−フェライト二相系ステンレス鋼として、下記組成のオーステナイト−フェライト二相系ステンレス鋼を用いることがより好ましい。
[本発明に適用するオーステナイト−フェライト二相系ステンレス鋼の組成]
Cr:24〜26wt%
Ni:5.5〜7.5wt%
Mo:2.5〜3.5wt%
N:0.08〜0.30wt%
C:0.03wt%以下
Si:1.0wt%以下
Mn:1.5wt%以下
P:0.04wt%以下
S:0.03wt%以下
残部は、Feならびに不純物及び添加剤
特に、汎用オーステナイト−フェライト二相系ステンレス鋼として安価に入手できる、S31260を用いることが好ましい。
すなわち、図6は、図2に示した尿素合成装置において、尿素合成塔A、ストリッパーBと、凝縮器C、並びに、尿素合成塔A、ストリッパーB、及び、凝縮器Cの内の少なくとも2つをつなぐ配管と、の内の少なくとも1つに、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%以下である、汎用オーステナイト‐フェライト系二相ステンレス鋼、例えば、汎用のS31803やS31260、を尿素合成装置材料として用い、温度:195℃、圧力:160バールの運転条件で、二酸化炭素に対する酸素供給濃度が100〜2,000ppm程度必要であることを示している。汎用オーステナイト‐フェライト系二相ステンレス鋼のみを用いた場合は、上記下限値を150ppm以上とすることが好ましい。

Claims (7)

  1. (1)尿素合成塔において、アンモニアと二酸化炭素とを尿素合成温度及び圧力において反応させ、生成された尿素、未反応のアンモニアと二酸化炭素、及び、水を少なくとも含む尿素合成液を、ストリッパーにおいて原料二酸化炭素の少なくとも一部と、該尿素合成圧力にほぼ等しい圧力において、加熱下に接触させて、該未反応アンモニア及び該未反応二酸化炭素を、アンモニア、二酸化炭素、及び、水の混合ガスとして分離し、未分離の未反応アンモニア及び未反応二酸化炭素を含有する尿素合成液を更に処理して尿素を得、一方、該ストリッパーにおいて分離された混合ガスを凝縮器の底部に導入して、吸収媒体と冷却下に接触させ、それによって該混合ガスを凝縮させ、こうして得られた凝縮液を尿素合成塔に循環する尿素合成装置において、(2)合成塔、ストリッパー、及び、凝縮器、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所に、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼を尿素合成装置材料とし、(3)二酸化炭素に対する酸素供給濃度が100〜2,000ppmであることを特徴とする尿素合成方法。
  2. 前記二酸化炭素に対する酸素供給濃度が100〜1,000ppmであることを特徴とする請求項1に記載の尿素合成方法。
  3. 前記二酸化炭素に対する酸素供給濃度が100〜500ppmであることを特徴とする請求項1に記載の尿素合成方法。
  4. 前記汎用オーステナイト−フェライト系二相ステンレス鋼が、Cr含有量:24〜26wt%、Ni含有量:5.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:1.5wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%であることを特徴とする請求項1乃至3のいずれか一つに記載の尿素合成法。
  5. 前記汎用オーステナイト−フェライト系二相ステンレス鋼が、S31803あるいはS31260であることを特徴とする請求項1乃至4のいずれか一つに記載の尿素合成方法。
  6. (1)尿素合成塔において、アンモニアと二酸化炭素とを尿素合成温度及び圧力において反応させ、生成された尿素、未反応のアンモニアと二酸化炭素、及び、水を少なくとも含む尿素合成液を、ストリッパーにおいて原料二酸化炭素の少なくとも一部と、該尿素合成圧力にほぼ等しい圧力において、加熱下に接触させて、該未反応アンモニア及び該未反応二酸化炭素を、アンモニア、二酸化炭素、及び、水の混合ガスとして分離し、未分離の未反応アンモニア及び未反応二酸化炭素を含有する尿素合成液を更に処理して尿素を得、一方、該ストリッパーにおいて分離された混合ガスを凝縮器の底部に導入して、吸収媒体と冷却下に接触させ、それによって該混合ガスを凝縮させ、こうして得られた凝縮液を尿素合成塔に循環する尿素合成装置において、(2)合成塔及び凝縮器、並びにこれらをつなぐ配管が腐食性を有する流体と接触する箇所のうち、少なくとも一部の箇所に、Cr含有量:21〜26wt%、Ni含有量:4.5〜7.5wt%、Mo含有量:2.5〜3.5wt%、N含有量:0.08〜0.30wt%、C含有量:0.03wt%以下、Si含有量:1.0wt%以下、Mn含有量:2.0wt%以下、P含有量:0.04wt%以下、S含有量:0.03wt%である、汎用オーステナイト‐フェライト系二相ステンレス鋼を尿素合成装置材料とし、(3)ストリッパーに、Cr含有量:26〜35wt%、Ni含有量:3〜10wt%、Mo含有量:0.2〜4.0wt%、N含有量:0.2〜0.6wt%であるオーステナイト−フェライト系二相ステンレス鋼を用い、(4)二酸化炭素に対する酸素供給濃度が100〜500ppmであることを特徴とする尿素合成方法。
  7. 前記ストリッパーのオーステナイト‐フェライト系二相ステンレス材料が、S32707、あるいは、S32808のいずれかであることを特徴とする請求項6に記載の尿素合成方法。
JP2015519909A 2013-05-28 2014-05-28 尿素合成方法 Pending JPWO2014192823A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013112144 2013-05-28
JP2013112144 2013-05-28
PCT/JP2014/064159 WO2014192823A1 (ja) 2013-05-28 2014-05-28 尿素合成方法

Publications (1)

Publication Number Publication Date
JPWO2014192823A1 true JPWO2014192823A1 (ja) 2017-02-23

Family

ID=51988846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519909A Pending JPWO2014192823A1 (ja) 2013-05-28 2014-05-28 尿素合成方法

Country Status (5)

Country Link
US (1) US9890114B2 (ja)
JP (1) JPWO2014192823A1 (ja)
CN (1) CN105246874B (ja)
GB (1) GB2530447B (ja)
WO (1) WO2014192823A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105246874B (zh) * 2013-05-28 2018-06-12 东洋工程株式会社 尿素合成方法
ITMI20131139A1 (it) * 2013-07-05 2015-01-06 Saipem Spa Sistema e metodo di diffusione di gas per immettere un flusso gassoso, in particolare un flusso gassoso passivante, in un apparato di un impianto urea
CN105899706A (zh) * 2013-12-27 2016-08-24 山特维克知识产权股份有限公司 耐蚀性二联钢合金,由其制成的物体和制造该合金的方法
ES2903181T3 (es) * 2017-10-27 2022-03-31 Stamicarbon Condensador de carbamato de alta presión
CA3094945A1 (en) * 2018-04-13 2019-10-17 Toyo Engineering Corporation Urea manufacturing method
CN110095404B (zh) * 2019-05-06 2022-07-29 上海电力学院 一种水介质中不锈钢腐蚀状态监测方法与装置
CA3235221A1 (en) * 2021-10-13 2023-04-20 Casale Sa Corrosion monitoring method
JP2023108791A (ja) * 2022-01-26 2023-08-07 東洋エンジニアリング株式会社 尿素合成方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867661A (ja) * 1981-10-16 1983-04-22 Mitsui Toatsu Chem Inc 尿素合成法
JPS5927863A (ja) * 1982-08-06 1984-02-14 Mitsubishi Heavy Ind Ltd 尿素製造装置より排出される混合ガスの爆発性消去法
WO1995000674A1 (en) * 1993-06-21 1995-01-05 Sandvik Ab Ferritic-austenitic stainless steel and use of the steel
JPH10182587A (ja) * 1996-10-07 1998-07-07 Toyo Eng Corp 改良された尿素合成方法および装置
WO2003018861A1 (en) * 2001-08-31 2003-03-06 Dsm Ip Assets B.V. Process for rendering metals corrosion resistant
JP2003301241A (ja) * 2002-02-05 2003-10-24 Sumitomo Metal Ind Ltd 尿素製造プラント用二相ステンレス鋼、溶接材料、尿素製造プラントおよびその機器
JP2005097429A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd フェノール類ノボラック樹脂の製造方法
JP2006102590A (ja) * 2004-10-01 2006-04-20 Toyo Eng Corp 反応装置
WO2008141832A1 (en) * 2007-05-22 2008-11-27 Saipem S.P.A. Enhanced process for the synthesis of urea
WO2011162610A1 (en) * 2010-06-24 2011-12-29 Stamicarbon B.V. Urea plant
JP2012207295A (ja) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp 表面処理二相ステンレス鋼及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680766A (en) 1951-03-23 1954-06-08 Du Pont Method of inhibiting corrosion in urea synthesis reactors
BE527914A (ja) * 1953-04-15
US3137724A (en) 1956-04-16 1964-06-16 Lonza Electric & Chem Works Process for the pressure synthesis of urea
US3488293A (en) * 1964-10-16 1970-01-06 Allied Chem Prevention of corrosion due to urea fertilizer effluent
ES341669A1 (es) 1966-06-13 1968-07-01 Lummus Co Mejoras introducidas en un procedimiento para la sintesis de urea.
ES344834A1 (es) 1966-09-16 1968-11-01 Toyo Koatsu Ind Inc Mejoras en los medios de obtencion de urea sintetica.
NL164328C (nl) 1970-04-02 1980-12-15 Stamicarbon Werkwijze voor het verhogen van de weerstand tegen cor- rosie van austenitische chroom-nikkelstalen, alsmede werkwijze voor de bereiding van ureum in apperatuur waarvan de weerstand tegen corrosie aldus is verhoogd.
IL36465A (en) 1970-04-02 1974-07-31 Zardi U Process for the production of urea
NL174548C (nl) 1977-05-05 1988-05-16 Montedison Spa Werkwijze voor het bereiden van ureum door reaktie van ammoniak en kooldioxyde.
JPS5849537B2 (ja) 1980-03-18 1983-11-05 三菱化学株式会社 尿素の製造方法
EP0096151B1 (en) 1982-06-03 1986-07-23 Montedison S.p.A. Method for avoiding the corrosion of strippers in urea manufacturing plants
NL8400839A (nl) 1984-03-16 1985-10-16 Unie Van Kunstmestfab Bv Werkwijze voor de bereiding van ureum.
JP4112056B2 (ja) 1997-12-18 2008-07-02 東洋エンジニアリング株式会社 改良された尿素の合成方法および装置
US6351381B1 (en) 2001-06-20 2002-02-26 Thermal Corp. Heat management system
AR038192A1 (es) 2002-02-05 2005-01-05 Toyo Engineering Corp Acero inoxidable duplex para plantas de produccion de urea, planta de produccion de urea y material de soldadura fabricado con dicho acero inoxidable duplex.
EP1688511A1 (en) * 2005-02-02 2006-08-09 DSM IP Assets B.V. Process for the production of urea in a conventional urea plant
DE102007024094A1 (de) * 2007-05-22 2008-11-27 Evonik Degussa Gmbh Hydrophobe pyrogen hergestellte Kieselsäure und Silikonkautschukmassen, enthaltend die pyrogene Kieselsäure
CN105246874B (zh) * 2013-05-28 2018-06-12 东洋工程株式会社 尿素合成方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867661A (ja) * 1981-10-16 1983-04-22 Mitsui Toatsu Chem Inc 尿素合成法
JPS5927863A (ja) * 1982-08-06 1984-02-14 Mitsubishi Heavy Ind Ltd 尿素製造装置より排出される混合ガスの爆発性消去法
WO1995000674A1 (en) * 1993-06-21 1995-01-05 Sandvik Ab Ferritic-austenitic stainless steel and use of the steel
JPH10182587A (ja) * 1996-10-07 1998-07-07 Toyo Eng Corp 改良された尿素合成方法および装置
WO2003018861A1 (en) * 2001-08-31 2003-03-06 Dsm Ip Assets B.V. Process for rendering metals corrosion resistant
JP2003301241A (ja) * 2002-02-05 2003-10-24 Sumitomo Metal Ind Ltd 尿素製造プラント用二相ステンレス鋼、溶接材料、尿素製造プラントおよびその機器
JP2005097429A (ja) * 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd フェノール類ノボラック樹脂の製造方法
JP2006102590A (ja) * 2004-10-01 2006-04-20 Toyo Eng Corp 反応装置
WO2008141832A1 (en) * 2007-05-22 2008-11-27 Saipem S.P.A. Enhanced process for the synthesis of urea
WO2011162610A1 (en) * 2010-06-24 2011-12-29 Stamicarbon B.V. Urea plant
JP2012207295A (ja) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp 表面処理二相ステンレス鋼及びその製造方法

Also Published As

Publication number Publication date
CN105246874B (zh) 2018-06-12
WO2014192823A1 (ja) 2014-12-04
CN105246874A (zh) 2016-01-13
GB2530447A (en) 2016-03-23
GB201521902D0 (en) 2016-01-27
US9890114B2 (en) 2018-02-13
GB2530447B (en) 2020-02-26
US20160075642A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
WO2014192823A1 (ja) 尿素合成方法
US8158824B2 (en) Process for the production of urea from ammonia and carbon dioxide
CN103936033B (zh) 从Andrussow工艺的氨解吸塔中回收热量的方法
JP4994226B2 (ja) 尿素合成装置
EP2279170B1 (en) Process for increasing the capacity of an existing urea plant
US20150322000A1 (en) Urea synthesis process and plant
WO2014180761A1 (en) Use of duplex stainless steel in an ammonia-stripping of urea plants
WO2023145821A1 (ja) 尿素合成方法
CN105008327B (zh) 尿素设备改造方法
JPWO2007040087A1 (ja) 酢酸の製造方法
WO2019198600A1 (ja) 尿素の製造方法
WO2021117434A1 (ja) 精製シアン化水素の製造方法
KR102676905B1 (ko) 아세트산의 제조 방법
CN203833630U (zh) 热整合装置
MXPA06013105A (es) Proceso para la produccion de urea y planta relacionada.
WO2023121443A1 (en) Thermal stripping urea production
AU2022420708A1 (en) Thermal stripping urea production
CN115315310A (zh) 铁素体钢在尿素设备的高压工段中的用途
JP2012505138A (ja) アンモニウムイオンの分解
JPWO2019211904A1 (ja) 酢酸の製造方法
WO2018163448A1 (ja) 酢酸の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180814