JPWO2014181616A1 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JPWO2014181616A1
JPWO2014181616A1 JP2015515818A JP2015515818A JPWO2014181616A1 JP WO2014181616 A1 JPWO2014181616 A1 JP WO2014181616A1 JP 2015515818 A JP2015515818 A JP 2015515818A JP 2015515818 A JP2015515818 A JP 2015515818A JP WO2014181616 A1 JPWO2014181616 A1 JP WO2014181616A1
Authority
JP
Japan
Prior art keywords
torque
engine
power generation
motor generator
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015515818A
Other languages
Japanese (ja)
Other versions
JP5950038B2 (en
Inventor
将史 黒田
将史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Application granted granted Critical
Publication of JP5950038B2 publication Critical patent/JP5950038B2/en
Publication of JPWO2014181616A1 publication Critical patent/JPWO2014181616A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本発明では、エンジンとモータジェネレータとを備え、エンジントルクを用いてモータジェネレータにより発電した電力をバッテリに充電しながら走行するハイブリッド車両の制御装置において、バッテリの充電量が所定値以上の場合、要求駆動トルクが所定トルク以下のときはモータジェネレータによる発電トルクを増大させ、要求駆動トルクが所定トルクより大きいときはモータジェネレータによる発電トルクを減少させることとした。In the present invention, in a control device for a hybrid vehicle that includes an engine and a motor generator and travels while charging the battery with the electric power generated by the motor generator using the engine torque, a request is made when the charge amount of the battery is a predetermined value or more. When the drive torque is less than or equal to the predetermined torque, the power generation torque by the motor generator is increased, and when the required drive torque is greater than the predetermined torque, the power generation torque by the motor generator is decreased.

Description

本発明は、エンジンおよびモータジェネレータを動力源とし、モータジェネレータやエンジンを用いて発電しながら走行可能なハイブリッド車両の制御装置に関する。   The present invention relates to a control apparatus for a hybrid vehicle that can travel while generating power using an engine and a motor generator as a power source.

このようなハイブリッド車両としては従来、例えば特許文献1に記載のようなものが知られている。この公報には、エンジンを駆動してモータジェネレータで発電するとき、燃費効率の悪い低回転域での発電量を低減(もしくは停止)し、燃費効率の良い回転域での発電量を増大する基本発電トルク特性が設定される。そして、バッテリの充電状態に応じて基本発電トルク特性をトルク軸方向に移動することで、発電効率の向上を図っている。   As such a hybrid vehicle, conventionally, for example, a vehicle described in Patent Document 1 is known. In this publication, when an engine is driven and power is generated by a motor generator, the power generation amount in a low rotation region with low fuel efficiency is reduced (or stopped), and the power generation amount in a rotation region with high fuel efficiency is increased. A power generation torque characteristic is set. The power generation efficiency is improved by moving the basic power generation torque characteristics in the torque axis direction according to the state of charge of the battery.

特開2006−341708号公報JP 2006-341708 A

しかしながら、特許文献1に記載の技術にあっては、バッテリSOCに応じて基本発電トルク特性をトルク方向に移動しているため、エンジン駆動力により走行する場合、一定の発電トルクが上乗せされることでエンジン効率が向上したとしても、駆動力の大小が生じることで、高効率なエンジン運転を達成できず、十分に発電効率を改善することが困難であった。   However, in the technique described in Patent Document 1, since the basic power generation torque characteristic is moved in the torque direction according to the battery SOC, a constant power generation torque is added when traveling by engine driving force. Even if the engine efficiency is improved, the magnitude of the driving force is generated, so that a highly efficient engine operation cannot be achieved, and it is difficult to sufficiently improve the power generation efficiency.

本発明は上記課題に着目し、発電効率を向上可能なハイブリッド車両の制御装置を提供することを目的とする。   An object of the present invention is to provide a control device for a hybrid vehicle capable of improving the power generation efficiency by paying attention to the above-mentioned problem.

この目的のため、本発明では、エンジンとモータジェネレータとを備え、エンジントルクを用いてモータジェネレータにより発電した電力をバッテリに充電しながら走行するハイブリッド車両の制御装置において、バッテリの充電量が所定値以上の場合、要求駆動トルクが所定トルク以下のときはモータジェネレータによる発電トルクを増大させ、要求駆動トルクが所定トルクより大きいときはモータジェネレータによる発電トルクを減少させることとした。   For this purpose, in the present invention, in a control device for a hybrid vehicle that includes an engine and a motor generator and travels while charging the battery with the electric power generated by the motor generator using the engine torque, the charge amount of the battery is a predetermined value. In the above case, the power generation torque by the motor generator is increased when the required drive torque is less than or equal to the predetermined torque, and the power generation torque by the motor generator is decreased when the required drive torque is greater than the predetermined torque.

よって、要求駆動トルクが小さいときは発電トルクを大きくし、要求駆動トルクが大きいときは発電トルクを小さくすることで、要求駆動トルクが小さいときでもエンジンの動作点として効率の良い動作点を確保することができ、エンジン効率を高めることができる。   Therefore, by increasing the power generation torque when the required drive torque is small and decreasing the power generation torque when the required drive torque is large, an efficient operating point is ensured as the engine operating point even when the required drive torque is small. Can increase engine efficiency.

実施例1のハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating a hybrid vehicle according to a first embodiment. 実施例1のハイブリッド車両の制御構成を表すブロック図である。FIG. 3 is a block diagram illustrating a control configuration of the hybrid vehicle according to the first embodiment. 実施例1の目標駆動力マップである。2 is a target driving force map according to the first embodiment. 実施例1の発電トルク制御処理を表すフローチャートである。3 is a flowchart illustrating a power generation torque control process according to the first embodiment. 実施例1のSOCに対する発電量の関係を表す発電量マップである。3 is a power generation amount map showing a relationship of power generation amount with respect to the SOC of the first embodiment. 実施例1のエンジントルクとエンジン回転数によって規定される運転点マップである。2 is an operating point map defined by the engine torque and the engine speed of the first embodiment. SOCが所定値を超えた時の駆動トルクと発電トルクとの関係を表すタイムチャートである。It is a time chart showing the relationship between the driving torque and the power generation torque when the SOC exceeds a predetermined value.

10 統合コントローラ
16 アクセル開度センサ
17 車速センサ
21 モータ回転数センサ
AT 自動変速機
CL1 第1クラッチ
CL2 第2クラッチ
E エンジン
MG モータジェネレータ
RR,RL 駆動輪
DESCRIPTION OF SYMBOLS 10 Integrated controller 16 Accelerator opening sensor 17 Vehicle speed sensor 21 Motor rotation speed sensor
AT automatic transmission
CL1 1st clutch
CL2 2nd clutch E engine
MG motor generator
RR, RL drive wheel

〔実施例1〕
まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1のエンジン始動制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMGと、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。尚、FLは左前輪、FRは右前輪である。
[Example 1]
First, the drive system configuration of the hybrid vehicle will be described. FIG. 1 is an overall system diagram showing a hybrid vehicle by rear wheel drive to which the engine start control device of the first embodiment is applied. As shown in FIG. 1, the drive system of the hybrid vehicle in the first embodiment includes an engine E, a first clutch CL1, a motor generator MG, a second clutch CL2, an automatic transmission AT, a propeller shaft PS, It has a differential DF, a left drive shaft DSL, a right drive shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel). FL is the front left wheel and FR is the front right wheel.

エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。尚、エンジン出力軸にはフライホイールFWが設けられている。   The engine E is, for example, a gasoline engine, and the valve opening degree of the throttle valve and the like are controlled based on a control command from an engine controller 1 described later. The engine output shaft is provided with a flywheel FW.

第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により作動し、スリップ締結を含み締結・開放が制御される。   The first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and the control created by the first clutch hydraulic unit 6 based on a control command from the first clutch controller 5 described later. Actuated by hydraulic pressure, and fastening / release including slip fastening is controlled.

モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、後述するモータコントローラ2からの制御指令に基づいて、インバータ3により作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ4からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ4を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。尚、このモータジェネレータMGのロータは、図外のダンパーを介して自動変速機ATの入力軸に連結されている。   The motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and the three-phase AC generated by the inverter 3 is generated based on a control command from a motor controller 2 described later. It is controlled by applying. The motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 4 (hereinafter, this state is referred to as “power running”), or when the rotor is rotated by an external force. Can function as a generator that generates electromotive force at both ends of the stator coil to charge the battery 4 (hereinafter, this operation state is referred to as “regeneration”). Note that the rotor of the motor generator MG is connected to the input shaft of the automatic transmission AT via a damper (not shown).

第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、第2クラッチ油圧ユニット8により作り出された制御油圧により、スリップ締結を含み締結・開放が制御される。   The second clutch CL2 is a clutch interposed between the motor generator MG and the left and right rear wheels RL and RR, and is generated by the second clutch hydraulic unit 8 based on a control command from the AT controller 7 described later. The fastening / release including slip fastening is controlled by the control hydraulic pressure.

自動変速機ATは、前進7速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える変速機であり、第2クラッチCL2は、専用クラッチとして新たに追加したものではなく、自動変速機ATの各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用している。   The automatic transmission AT is a transmission that automatically switches the stepped gear ratio, such as forward 7 speed, reverse 1 speed, etc. according to the vehicle speed, accelerator opening, etc., and the second clutch CL2 is newly added as a dedicated clutch However, some frictional engagement elements are used among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT.

そして、自動変速機ATの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右後輪RL,RRに連結されている。尚、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。   The output shaft of the automatic transmission AT is connected to the left and right rear wheels RL and RR via a propeller shaft PS, a differential DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts. The first clutch CL1 and the second clutch CL2 are, for example, wet multi-plate clutches that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.

このハイブリッド駆動系には、第1クラッチCL1の締結・開放状態に応じて3つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。第3走行モードは、第1クラッチCL1の締結状態で第2クラッチCL2をスリップ制御させ、エンジンEを動力源に含みながら走行するエンジン使用スリップ走行モード(以下、「WSC走行モード」と略称する。)である。このモードは、特にバッテリSOCが低いときやエンジン水温が低いときに、クリープ走行を達成可能なモードである。ここで、SOCとはバッテリの充電状態を表すものであり、SOCが高いときはバッテリの充電量が高く、SOCが低いときはバッテリの充電量が少ない状態を表す。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。   This hybrid drive system has three travel modes according to the engaged / released state of the first clutch CL1. The first travel mode is an electric vehicle travel mode (hereinafter abbreviated as “EV travel mode”) as a motor use travel mode that travels using only the power of the motor generator MG as a power source with the first clutch CL1 opened. It is. The second travel mode is an engine use travel mode (hereinafter, abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source. In the third travel mode, the second clutch CL2 is slip-controlled while the first clutch CL1 is engaged, and the engine travel slip travel mode (hereinafter referred to as “WSC travel mode”) is performed while the engine E is included in the power source. ). This mode is a mode in which creep running can be achieved particularly when the battery SOC is low or the engine water temperature is low. Here, the SOC represents the state of charge of the battery. When the SOC is high, the amount of charge of the battery is high, and when the SOC is low, the state of charge of the battery is low. When transitioning from the EV travel mode to the HEV travel mode, the first clutch CL1 is engaged and the engine is started using the torque of the motor generator MG.

上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。   The “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”. In the “engine running mode”, the drive wheels are moved using only the engine E as a power source. In the “motor-assisted travel mode”, the drive wheels are moved using the engine E and the motor generator MG as power sources. In the “traveling power generation mode”, the motor generator MG is caused to function as a power generator while the drive wheels RR and RL are moved using the engine E as a power source.

定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。   During constant speed operation or acceleration operation, motor generator MG is operated as a generator using the power of engine E. Further, during deceleration operation, the braking energy is regenerated and generated by the motor generator MG and used for charging the battery 4. Further, as a further mode, there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.

次に、ハイブリッド車両の制御系を説明する。実施例1におけるハイブリッド車両の制御系は、図1に示すように、エンジンコントローラ1と、モータコントローラ2と、インバータ3と、バッテリ4と、第1クラッチコントローラ5と、第1クラッチ油圧ユニット6と、ATコントローラ7と、第2クラッチ油圧ユニット8と、ブレーキコントローラ9と、統合コントローラ10と、を有して構成されている。尚、エンジンコントローラ1と、モータコントローラ2と、第1クラッチコントローラ5と、ATコントローラ7と、ブレーキコントローラ9と、統合コントローラ10とは、互いの情報交換が可能なCAN通信線11を介して接続されている。   Next, the control system of the hybrid vehicle will be described. As shown in FIG. 1, the hybrid vehicle control system according to the first embodiment includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, and a first clutch hydraulic unit 6. The AT controller 7, the second clutch hydraulic unit 8, the brake controller 9, and the integrated controller 10 are configured. The engine controller 1, the motor controller 2, the first clutch controller 5, the AT controller 7, the brake controller 9, and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other. Has been.

エンジンコントローラ1は、エンジン回転数センサ12からのエンジン回転数情報を入力し、統合コントローラ10からの目標エンジントルク指令等に応じ、エンジン動作点(Ne:エンジン回転数,Te:エンジントルク)を制御する指令を、例えば、図外のスロットルバルブアクチュエータへ出力する。尚、エンジン回転数Ne等の情報は、CAN通信線11を介して統合コントローラ10へ供給される。   The engine controller 1 inputs the engine speed information from the engine speed sensor 12, and controls the engine operating point (Ne: engine speed, Te: engine torque) according to the target engine torque command from the integrated controller 10, etc. For example, to a throttle valve actuator (not shown). Information such as the engine speed Ne is supplied to the integrated controller 10 via the CAN communication line 11.

モータコントローラ2は、モータジェネレータMGのロータ回転位置を検出するレゾルバ13からの情報を入力し、統合コントローラ10からの目標モータジェネレータトルク指令等に応じ、モータジェネレータMGのモータ動作点(Nm:モータジェネレータ回転数,Tm:モータジェネレータトルク)を制御する指令をインバータ3へ出力する。尚、このモータコントローラ2では、バッテリ4の充電状態を表すバッテリSOCを監視していて、バッテリSOC情報は、モータジェネレータMGの制御情報に用いると共に、CAN通信線11を介して統合コントローラ10へ供給される。   The motor controller 2 inputs information from the resolver 13 that detects the rotor rotational position of the motor generator MG, and according to a target motor generator torque command from the integrated controller 10 or the like, the motor operating point (Nm: motor generator) of the motor generator MG. A command for controlling the rotation speed (Tm: motor generator torque) is output to the inverter 3. The motor controller 2 monitors the battery SOC indicating the state of charge of the battery 4. The battery SOC information is used as control information for the motor generator MG and is supplied to the integrated controller 10 via the CAN communication line 11. Is done.

第1クラッチコントローラ5は、第1クラッチ油圧センサ14と第1クラッチストロークセンサ15からのセンサ情報を入力し、統合コントローラ10からの第1クラッチ制御指令に応じ、第1クラッチCL1の締結・開放を制御する指令を第1クラッチ油圧ユニット6に出力する。尚、第1クラッチストロークC1Sの情報は、CAN通信線11を介して統合コントローラ10へ供給する。   The first clutch controller 5 inputs sensor information from the first clutch hydraulic pressure sensor 14 and the first clutch stroke sensor 15, and according to the first clutch control command from the integrated controller 10, the first clutch CL1 is engaged / released. A command to control is output to the first clutch hydraulic unit 6. Information on the first clutch stroke C1S is supplied to the integrated controller 10 via the CAN communication line 11.

ATコントローラ7は、アクセル開度センサ16と車速センサ17と第2クラッチ油圧センサ18と運転者の操作するシフトレバーの位置に応じた信号を出力するインヒビタスイッチからのセンサ情報を入力し、統合コントローラ10からの第2クラッチ制御指令に応じ、第2クラッチCL2の締結・開放を制御する指令をAT油圧コントロールバルブ内の第2クラッチ油圧ユニット8に出力する。尚、アクセルペダル開度APOと車速VSPとインヒビタスイッチの情報は、CAN通信線11を介して統合コントローラ10へ供給する。   The AT controller 7 inputs sensor information from the accelerator opening sensor 16, the vehicle speed sensor 17, the second clutch hydraulic pressure sensor 18, and an inhibitor switch that outputs a signal corresponding to the position of the shift lever operated by the driver. 10 is output to the second clutch hydraulic unit 8 in the AT hydraulic control valve in response to the second clutch control command from 10. Information on the accelerator pedal opening APO, the vehicle speed VSP, and the inhibitor switch is supplied to the integrated controller 10 via the CAN communication line 11.

ブレーキコントローラ9は、4輪の各車輪速を検出する車輪速センサ19とブレーキストロークセンサ20からのセンサ情報を入力し、例えば、ブレーキ踏み込み制動時、ブレーキストロークBSから求められる要求制動力に対し回生制動力だけでは不足する場合、その不足分を機械制動力(摩擦ブレーキによる制動力)で補うように、統合コントローラ10からの回生協調制御指令に基づいて回生協調ブレーキ制御を行う。   The brake controller 9 inputs sensor information from a wheel speed sensor 19 and a brake stroke sensor 20 that detect the wheel speeds of the four wheels. For example, when the brake is depressed, braking is performed with respect to the required braking force obtained from the brake stroke BS. When the braking force alone is insufficient, the regenerative cooperative brake control is performed based on the regenerative cooperative control command from the integrated controller 10 so that the shortage is supplemented by the mechanical braking force (braking force by the friction brake).

統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、モータ回転数Nmを検出するモータ回転数センサ21と、第2クラッチ出力回転数N2outを検出する第2クラッチ出力回転数センサ22と、第2クラッチ伝達トルク容量TCL2を検出する第2クラッチトルクセンサ23と、ブレーキ油圧センサ24と、第2クラッチCL2の温度を検知する温度センサ10aと、前後加速度を検出するGセンサ10bからの情報およびCAN通信線11を介して得られた情報を入力する。また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、ATコントローラ7への制御指令による第2クラッチCL2の締結・開放制御と、を行う。   The integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency. The integrated controller 10 detects the motor rotational speed Nm, and the second clutch output rotational speed N2out. A second clutch output speed sensor 22 for detecting the second clutch, a second clutch torque sensor 23 for detecting the second clutch transmission torque capacity TCL2, a brake hydraulic pressure sensor 24, and a temperature sensor 10a for detecting the temperature of the second clutch CL2. The information from the G sensor 10b for detecting the longitudinal acceleration and the information obtained through the CAN communication line 11 are input. The integrated controller 10 also controls the operation of the engine E according to the control command to the engine controller 1, the operation control of the motor generator MG based on the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1 and engagement / release control of the second clutch CL2 by a control command to the AT controller 7 are performed.

以下に、図2に示すブロック図を用いて、実施例1の統合コントローラ10にて演算される制御を説明する。例えば、この演算は、制御周期10msec毎に統合コントローラ10で演算される。統合コントローラ10は、目標駆動力演算部100と、モード選択部200と、目標充放電演算部300と、動作点指令部400と、変速制御部500と、を有する。   Below, the control calculated by the integrated controller 10 of Example 1 is demonstrated using the block diagram shown in FIG. For example, this calculation is performed by the integrated controller 10 every control cycle of 10 msec. The integrated controller 10 includes a target driving force calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, an operating point command unit 400, and a shift control unit 500.

目標駆動力演算部100では、図3に示す目標駆動力マップを用いて、アクセルペダル開度APOと車速VSPとから、目標駆動力tFoOを演算する。モード選択部200は、予め供えられたモード領域を有する変速線図から、車速とアクセルペダル開度に基づいて走行モードを選択する。モード領域としては、EV走行モードと、WSC走行モードと、HEV走行モードとを有し、アクセルペダル開度APOと車速VSPとから目標モードを演算する。但し、EV走行モードが選択されていたとしても、バッテリSOCが所定値以下であれば、強制的に「HEV走行モード」もしくは「WSC走行モード」を目標モードとする。目標充放電演算部300では、予め設定された目標充放電量マップを用いて、バッテリSOCから目標充放電電力tPを演算する。また、バッテリSOCに応じて発電トルクを制御する。詳細については後述する。   The target driving force calculation unit 100 calculates a target driving force tFoO from the accelerator pedal opening APO and the vehicle speed VSP using the target driving force map shown in FIG. The mode selection unit 200 selects a travel mode based on a vehicle speed and an accelerator pedal opening from a shift diagram having a mode region provided in advance. The mode area includes an EV travel mode, a WSC travel mode, and an HEV travel mode, and the target mode is calculated from the accelerator pedal opening APO and the vehicle speed VSP. However, even if the EV travel mode is selected, if the battery SOC is equal to or lower than the predetermined value, the “HEV travel mode” or the “WSC travel mode” is forcibly set as the target mode. Target charge / discharge calculation section 300 calculates target charge / discharge power tP from battery SOC using a preset target charge / discharge amount map. Further, the power generation torque is controlled according to the battery SOC. Details will be described later.

動作点指令部400では、アクセルペダル開度APOと、目標駆動力tFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータジェネレータトルクと目標第2クラッチ締結容量と自動変速機ATの目標変速段と第1クラッチCL1の伝達トルク容量指令である第1クラッチソレノイド電流指令を演算する。また、動作点指令部400には、EV走行モードからHEV走行モードに遷移するときに、第1クラッチCL1を締結してエンジンEを始動するエンジン始動制御部401が設けられている。
変速制御部500では、上述の変速線図に設定されたシフトスケジュールに沿って、目標第2クラッチ締結容量と目標変速段を達成するように自動変速機AT内のソレノイドバルブを駆動制御する。
The operating point command unit 400 uses the accelerator pedal opening APO, the target driving force tFoO, the target mode, the vehicle speed VSP, and the target charging / discharging power tP as a target for reaching the operating point, as a transient target engine torque. And a target motor generator torque, a target second clutch engagement capacity, a target gear position of the automatic transmission AT, and a first clutch solenoid current command which is a transmission torque capacity command of the first clutch CL1. In addition, the operating point command unit 400 is provided with an engine start control unit 401 that engages the first clutch CL1 and starts the engine E when transitioning from the EV travel mode to the HEV travel mode.
The shift control unit 500 drives and controls the solenoid valve in the automatic transmission AT so as to achieve the target second clutch engagement capacity and the target shift speed according to the shift schedule set in the shift diagram described above.

図4は実施例1の発電トルク制御処理を表すフローチャートである。ここでは、HEV走行モードであって、エンジンEの駆動力によりモータジェネレータMGで発電しながら走行しているときに、SOCに応じた発電トルクを制御する処理を表す。
ステップS1では、エンジン回転数を読み込む。
ステップS2では、バッテリ残存容量であるSOCを読み込む。
FIG. 4 is a flowchart illustrating a power generation torque control process according to the first embodiment. Here, a process of controlling the power generation torque in accordance with the SOC when the vehicle is traveling in the HEV travel mode while generating power with the motor generator MG by the driving force of the engine E is shown.
In step S1, the engine speed is read.
In step S2, the SOC that is the remaining battery capacity is read.

ステップS3では、SOCに基づいて目標エンジン効率を設定する。図5はSOCに対する発電量Pbの関係を表す発電量マップである。SOCが所定値SOC1未満のときは、一定の大きな発電量が要求される。一方、所定値SOC1以上のときは、エネルギーマネージメントの要求を満たすため、SOCが大きいほど発電量Pbが小さくなるように設定され、発電量Pbの抑制に伴い、エンジン効率を低下させることで、全体のエネルギ効率の改善を図る。図6はエンジントルクとエンジン回転数によって規定される運転点マップである。マップ内において、通常時にエンジン動作点が設定される高効率運転線とは別に、SOCに応じた目標エンジン等効率線が設定され、SOCが高いほど効率が小さくなる特性に設定される。言い換えると、目標エンジン等効率線は、発電量Pbが抑制されるほど、エンジン効率が低下するように設定されたものである。   In step S3, the target engine efficiency is set based on the SOC. FIG. 5 is a power generation amount map showing the relationship of the power generation amount Pb to the SOC. When the SOC is less than the predetermined value SOC1, a certain large amount of power generation is required. On the other hand, when the SOC is equal to or greater than the predetermined value SOC1, the power generation amount Pb is set to be smaller as the SOC is larger in order to satisfy the energy management requirements. To improve energy efficiency. FIG. 6 is an operating point map defined by the engine torque and the engine speed. In the map, apart from the high-efficiency operation line in which the engine operating point is normally set, a target engine efficiency line corresponding to the SOC is set, and the efficiency is set to decrease as the SOC increases. In other words, the target engine efficiency line is set such that the engine efficiency decreases as the power generation amount Pb is suppressed.

ステップS4では、目標エンジン等効率線と現在のエンジン回転数とが交差する点である目標エンジントルクTetを決定する。
ステップS5では、運転者の要求に基づいて走行に必要な要求駆動トルクTedを読み込む。
ステップS6では、要求駆動トルクTedが目標エンジントルクTetよりも大きいか否かを判断し、大きい場合はステップS7に進み、Ted≦Tetの場合はステップS8に進む。
ステップS7では、発電トルクTegを0にセットする。すなわち、エンジントルクは全て駆動輪に伝達する。具体的には、図6のマップに示すように、目標エンジントルクよりも要求された駆動トルクのほうが大きいときは、発電することなく要求駆動トルクTedをエンジントルクとして出力する。
ステップS8では、モータジェネレータMGの発電トルクTegとして、目標エンジントルクと要求駆動トルクTedとの差(=Tet−Ted)を設定する。具体的には、図6のマップに示すように、目標エンジントルクよりも要求駆動トルクTedのほうが小さいときは、駆動輪に駆動トルクTedを出力しつつ、目標エンジントルクTetと駆動トルクTedとの差分によってモータジェネレータMGを発電させる。
ステップS9では、モータジェネレータMGに発電トルクTedを指令する。
In step S4, a target engine torque Tet, which is a point where the target engine equiefficiency line and the current engine speed intersect, is determined.
In step S5, the required drive torque Ted necessary for traveling is read based on the driver's request.
In step S6, it is determined whether or not the required drive torque Ted is larger than the target engine torque Tet. If larger, the process proceeds to step S7, and if Ted ≦ Tet, the process proceeds to step S8.
In step S7, the power generation torque Teg is set to zero. That is, all the engine torque is transmitted to the drive wheels. Specifically, as shown in the map of FIG. 6, when the requested drive torque is larger than the target engine torque, the requested drive torque Ted is output as the engine torque without generating power.
In step S8, a difference (= Tet−Ted) between the target engine torque and the required drive torque Ted is set as the power generation torque Teg of the motor generator MG. Specifically, as shown in the map of FIG. 6, when the required drive torque Ted is smaller than the target engine torque, the target engine torque Tet and the drive torque Ted are output while outputting the drive torque Ted to the drive wheels. The motor generator MG is generated based on the difference.
In step S9, the motor generator MG is commanded with a power generation torque Ted.

図7はSOCが所定値を超えた時の駆動トルクと発電トルクとの関係を表すタイムチャートである。図7中の上側のタイムチャートは、単にSOCに応じた発電トルクを駆動トルクに上乗せする比較例であり、図7中の下側のタイムチャートは、実施例1の発電制御を行った場合のタイムチャートである。図7中の実線はエンジントルクを表し、一点鎖線は駆動トルクを表し、エンジントルクと駆動トルクとの間が発電トルクTedを表す。   FIG. 7 is a time chart showing the relationship between the driving torque and the power generation torque when the SOC exceeds a predetermined value. The upper time chart in FIG. 7 is a comparative example in which the power generation torque according to the SOC is simply added to the drive torque, and the lower time chart in FIG. 7 is the case where the power generation control of the first embodiment is performed. It is a time chart. The solid line in FIG. 7 represents the engine torque, the alternate long and short dash line represents the drive torque, and the space between the engine torque and the drive torque represents the power generation torque Ted.

比較例に示すように、時刻t0において、所定のSOC1を超えたため、発電量Pbが抑制されると、抑制された発電トルクが駆動トルクに加算されることで制御される。この場合、駆動トルクが小さいときには、エンジントルクも低くなるため、エンジン効率が悪い領域にエンジン動作点がきてしまうという問題があった。   As shown in the comparative example, since the predetermined SOC1 was exceeded at time t0, when the power generation amount Pb is suppressed, the controlled power generation torque is controlled by being added to the drive torque. In this case, when the driving torque is small, the engine torque is also low, and therefore, there is a problem that the engine operating point comes in a region where the engine efficiency is poor.

これに対し、実施例1では、時刻t0以降、エンジン動作点としては目標エンジン効率を設定してエンジントルクがあまり低くならない領域での運転を継続し、その範囲内で要求された駆動トルクを出力するとともに、発電トルクTegを目標エンジントルクと要求駆動トルクTedとの差に設定することで、全体的なエンジン効率を高めることができる。
また、時刻t1に示すように、必要な駆動トルクTedが目標エンジントルクTetよりも大きい場合は、発電量Pbを0とし、エンジントルクとして必要な駆動トルクTedをエンジントルクとして出力する。時刻t2において、必要な駆動トルクTedが目標エンジントルクTetよりも小さくなると、発電量Pbを再び発電トルクTegとして目標エンジントルクと必要な駆動トルクTedとの差に設定する。これにより、発電トルクを0とすることでエンジントルクを駆動トルクとして全て活用することができると共に、エンジン効率を向上できる。
On the other hand, in the first embodiment, after time t0, the target engine efficiency is set as the engine operating point, the operation is continued in a region where the engine torque is not so low, and the requested driving torque is output within the range. In addition, overall engine efficiency can be improved by setting the power generation torque Teg to the difference between the target engine torque and the required drive torque Ted.
Further, as shown at time t1, when the required drive torque Ted is larger than the target engine torque Tet, the power generation amount Pb is set to 0, and the drive torque Ted required as the engine torque is output as the engine torque. When the necessary drive torque Ted becomes smaller than the target engine torque Tet at time t2, the power generation amount Pb is set again as the power generation torque Teg to the difference between the target engine torque and the necessary drive torque Ted. As a result, by setting the power generation torque to 0, all of the engine torque can be utilized as the drive torque, and the engine efficiency can be improved.

以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)エンジンEとモータジェネレータMGとを備え、エンジントルクを用いてモータジェネレータMGにより発電した電力をバッテリ4に充電しながら走行するハイブリッド車両の制御装置において、
SOC(バッテリの充電量)がSOC1(所定値)以上の場合、要求駆動トルクTedが目標エンジントルクTet(所定トルク)以下のときはモータジェネレータMGによる発電トルクTegを増大させ、要求駆動トルクTedが所定トルクより大きいときは前記モータジェネレータによる発電トルクTegを減少させる(発電トルク制御手段)。
よって、要求駆動トルクTedが小さいときは発電トルクTegを大きくし、要求駆動トルクTedが大きいときは発電トルクTegを小さくすることで、要求駆動トルクTedが小さいときでもエンジンEの動作点として効率の良い動作点を確保することができ、エンジン効率を高めることができる。
As described above, the effects listed below are obtained in the first embodiment.
(1) In a control apparatus for a hybrid vehicle that includes an engine E and a motor generator MG and travels while charging the battery 4 with electric power generated by the motor generator MG using engine torque.
When SOC (battery charge) is SOC1 (predetermined value) or more, when the required drive torque Ted is less than the target engine torque Tet (predetermined torque), the power generation torque Teg by the motor generator MG is increased, and the required drive torque Ted is When the torque is larger than the predetermined torque, the power generation torque Teg by the motor generator is reduced (power generation torque control means).
Therefore, when the required drive torque Ted is small, the power generation torque Teg is increased.When the required drive torque Ted is large, the power generation torque Teg is decreased. A good operating point can be secured and the engine efficiency can be increased.

(2)目標エンジントルクTet(所定トルク)は、予め設定された目標エンジン等効率線と現在のエンジン回転数とによって規定されるトルクであり、要求駆動トルクTedが目標エンジントルクTet以下のときはエンジントルクを目標エンジントルクTetまで増大させると共にモータジェネレータMGによる発電トルクTegを目標エンジントルクTetと要求駆動トルクTedとの差分トルクとする。
よって、予め設定されたエンジン効率に沿って発電トルクTegを制御することで、エンジン効率を高めることができる。
(2) The target engine torque Tet (predetermined torque) is a torque defined by a preset target engine equiefficiency line and the current engine speed, and when the required drive torque Ted is less than or equal to the target engine torque Tet The engine torque is increased to the target engine torque Tet, and the power generation torque Teg by the motor generator MG is set as a differential torque between the target engine torque Tet and the required drive torque Ted.
Therefore, the engine efficiency can be increased by controlling the power generation torque Teg along the preset engine efficiency.

(3)SOCが大きいほど目標エンジン等効率線を低エンジン効率に設定する。よって、車両全体の必要電力と発電効率を考慮したエネルギ効率を改善することができる。   (3) The target engine iso-efficiency line is set to lower engine efficiency as the SOC increases. Therefore, it is possible to improve energy efficiency in consideration of necessary power and power generation efficiency of the entire vehicle.

(4)要求駆動トルクTedが所定トルクより大きいときはモータジェネレータMGによる発電トルクを0に設定する。よって、エンジントルクを駆動トルクとして全て活用することができると共に、エンジン効率を向上できる。   (4) When the required drive torque Ted is larger than the predetermined torque, the power generation torque by the motor generator MG is set to zero. Therefore, the engine torque can be fully utilized as the drive torque, and the engine efficiency can be improved.

【0002】
エンジントルクを用いてモータジェネレータにより発電した電力をバッテリに充電しながら走行するハイブリッド車両の制御装置において、バッテリの充電量が大きいほどエンジン効率が低下するように目標エンジン等効率線を設定し、設定された目標エンジン等効率線と現在のエンジン回転数とに基づいて目標エンジントルクを設定し、運転者の要求に基づく要求駆動トルクが目標エンジントルク以下の場合はエンジントルクを目標エンジントルクとし、要求駆動トルクが目標エンジントルクより大きい場合はエンジントルクを要求駆動トルクとし、要求駆動トルクが目標エンジントルク以下の場合はモータジェネレータによる発電トルクを目標エンジントルクと要求駆動トルクとの差分トルクとし、要求駆動トルクが目標エンジントルクより大きい場合は発電トルクをゼロとする。
発明の効果
[0007]
よって、要求駆動トルクが小さいときでもエンジントルクがあまり低くならない領域での運転を継続でき、エンジンの動作点として比較的効率の良い動作点を確保できるため、車両全体の必要電力と発電効率を考慮したエネルギ効率を改善できる。
図面の簡単な説明
[0008]
[図1]実施例1のハイブリッド車両を示す全体システム図である。
[図2]実施例1のハイブリッド車両の制御構成を表すブロック図である。
[図3]実施例1の目標駆動力マップである。
[図4]実施例1の発電トルク制御処理を表すフローチャートである。
[図5]実施例1のSOCに対する発電量の関係を表す発電量マップである。
[図6]実施例1のエンジントルクとエンジン回転数によって規定される運転点マップである。
[図7]SOCが所定値を超えた時の駆動トルクと発電トルクとの関係を表すタイムチャートである。
符号の説明
[0009]
10 統合コントローラ
16 アクセル開度センサ
17 車速センサ
21 モータ回転数センサ
AT 自動変速機
CL1 第1クラッチ
[0002]
In a hybrid vehicle control device that travels while charging the battery with the electric power generated by the motor generator using engine torque, the target engine efficiency line is set and set so that the engine efficiency decreases as the battery charge increases. The target engine torque is set based on the target engine iso-efficiency line and the current engine speed. If the requested drive torque based on the driver's request is less than or equal to the target engine torque, the engine torque is set as the target engine torque, If the drive torque is greater than the target engine torque, the engine torque is the required drive torque. If the required drive torque is less than or equal to the target engine torque, the power generation torque by the motor generator is the differential torque between the target engine torque and the required drive torque. Torque is the target engine torque If Ri is greater, the power generation torque to zero.
Effects of the Invention [0007]
Therefore, even when the required drive torque is small, it is possible to continue the operation in the region where the engine torque is not so low and to secure a relatively efficient operating point as the operating point of the engine. Energy efficiency can be improved.
BRIEF DESCRIPTION OF THE DRAWINGS [0008]
FIG. 1 is an overall system diagram showing a hybrid vehicle according to a first embodiment.
FIG. 2 is a block diagram showing a control configuration of the hybrid vehicle of the first embodiment.
FIG. 3 is a target driving force map according to the first embodiment.
FIG. 4 is a flowchart showing a power generation torque control process according to the first embodiment.
FIG. 5 is a power generation amount map showing the relationship of the power generation amount to the SOC of the first embodiment.
FIG. 6 is an operating point map defined by the engine torque and engine speed of the first embodiment.
FIG. 7 is a time chart showing the relationship between drive torque and power generation torque when SOC exceeds a predetermined value.
Explanation of symbols [0009]
DESCRIPTION OF SYMBOLS 10 Integrated controller 16 Accelerator opening degree sensor 17 Vehicle speed sensor 21 Motor rotation speed sensor AT Automatic transmission CL1 1st clutch

この目的のため、本発明では、エンジンとモータジェネレータとを備え、エンジントルクを用いてモータジェネレータにより発電した電力をバッテリに充電しながら走行するハイブリッド車両の制御装置において、バッテリの充電量が大きいほどエンジン効率が低下するように目標エンジン等効率線を設定し、設定された目標エンジン等効率線と現在のエンジン回転数とに基づいて目標エンジントルクを設定し、運転者の要求に基づく要求駆動トルクが目標エンジントルク以下の場合はエンジントルクを目標エンジントルクとし、要求駆動トルクが目標エンジントルクより大きい場合はエンジントルクを要求駆動トルクとし、要求駆動トルクが目標エンジントルク以下の場合はモータジェネレータによる発電トルクを目標エンジントルクと要求駆動トルクとの差分トルクとし、要求駆動トルクが目標エンジントルクより大きい場合は発電トルクをゼロとする。
For this purpose, in the present invention, in a control device for a hybrid vehicle that includes an engine and a motor generator and travels while charging the battery with the electric power generated by the motor generator using the engine torque, the larger the charge amount of the battery, A target engine iso-efficiency line is set so that the engine efficiency is lowered, a target engine torque is set based on the set target engine iso-efficiency line and the current engine speed, and a required drive torque based on the driver's request Is the target engine torque, the engine torque is the required engine torque when the required drive torque is greater than the target engine torque, and the motor generator generates power when the required drive torque is less than the target engine torque. Torque is required with target engine torque The difference torque between the drive torque, the required drive torque is higher than the target engine torque is the generator torque to zero.

Claims (4)

エンジンとモータジェネレータとを備え、エンジントルクを用いてモータジェネレータにより発電した電力をバッテリに充電しながら走行するハイブリッド車両の制御装置において、
前記バッテリの充電量が所定値以上の場合、要求駆動トルクが所定トルク以下のときは前記モータジェネレータによる発電トルクを増大させ、要求駆動トルクが所定トルクより大きいときは前記モータジェネレータによる発電トルクを減少させる発電トルク制御手段を備えたことを特徴とするハイブリッド車両の制御装置。
In a control apparatus for a hybrid vehicle that includes an engine and a motor generator and travels while charging the battery with electric power generated by the motor generator using engine torque,
When the charge amount of the battery is greater than or equal to a predetermined value, the power generation torque by the motor generator is increased when the required drive torque is less than the predetermined torque, and the power generation torque by the motor generator is decreased when the required drive torque is greater than the predetermined torque A control device for a hybrid vehicle, comprising: a power generation torque control means for causing the power generation torque to be controlled.
請求項1に記載のハイブリッド車両の制御装置において、
前記所定トルクは、予め設定された目標エンジン等効率線と現在のエンジン回転数とによって規定される目標エンジントルクであり、要求駆動トルクが前記所定トルク以下のときはエンジントルクを前記所定トルクまで増大させると共に前記モータジェネレータによる発電トルクを前記目標エンジントルクと要求駆動トルクとの差分トルクとすることを特徴とするハイブリッド車両の制御装置。
In the hybrid vehicle control device according to claim 1,
The predetermined torque is a target engine torque defined by a preset target engine isoefficiency line and the current engine speed. When the required drive torque is equal to or less than the predetermined torque, the engine torque is increased to the predetermined torque. And a power generation torque generated by the motor generator as a differential torque between the target engine torque and the required drive torque.
請求項2に記載のハイブリッド車両の制御装置において、
前記発電トルク制御手段は、前記バッテリの充電量が大きいほど前記目標エンジン等効率線を低エンジン効率に設定することを特徴とするハイブリッド車両の制御装置。
In the hybrid vehicle control device according to claim 2,
The control device for a hybrid vehicle, wherein the power generation torque control means sets the target engine efficiency line to a lower engine efficiency as the charge amount of the battery is larger.
請求項1ないし3いずれか一つに記載のハイブリッド車両の制御装置において、
前記発電トルク制御手段は、要求駆動トルクが所定トルクより大きいときは前記モータジェネレータによる発電トルクを0に設定することを特徴とするハイブリッド車両の制御装置。
In the hybrid vehicle control device according to any one of claims 1 to 3,
The power generation torque control means sets the power generation torque generated by the motor generator to 0 when the required drive torque is greater than a predetermined torque.
JP2015515818A 2013-05-08 2014-04-03 Control device for hybrid vehicle Active JP5950038B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013098815 2013-05-08
JP2013098815 2013-05-08
PCT/JP2014/059793 WO2014181616A1 (en) 2013-05-08 2014-04-03 Hybrid vehicle control device

Publications (2)

Publication Number Publication Date
JP5950038B2 JP5950038B2 (en) 2016-07-13
JPWO2014181616A1 true JPWO2014181616A1 (en) 2017-02-23

Family

ID=51867098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015515818A Active JP5950038B2 (en) 2013-05-08 2014-04-03 Control device for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP5950038B2 (en)
WO (1) WO2014181616A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019077358A (en) * 2017-10-25 2019-05-23 トヨタ自動車株式会社 Control device for hybrid vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447433B2 (en) * 1995-05-18 2003-09-16 株式会社エクォス・リサーチ Hybrid vehicle
JP2006341708A (en) * 2005-06-08 2006-12-21 Fuji Heavy Ind Ltd Controller for hybrid vehicle
JP2010125877A (en) * 2008-11-25 2010-06-10 Mitsubishi Fuso Truck & Bus Corp Controller for hybrid electric vehicle
JP5176935B2 (en) * 2008-12-17 2013-04-03 日産自動車株式会社 Control device for hybrid vehicle
JP5051117B2 (en) * 2008-12-19 2012-10-17 日産自動車株式会社 Hybrid vehicle start control device
JP2011255824A (en) * 2010-06-10 2011-12-22 Mitsubishi Motors Corp Device for control of hybrid vehicle
JP5512621B2 (en) * 2011-09-05 2014-06-04 本田技研工業株式会社 Control device and control method for hybrid vehicle

Also Published As

Publication number Publication date
JP5950038B2 (en) 2016-07-13
WO2014181616A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5561435B2 (en) Control device for hybrid vehicle
JP5371200B2 (en) An engine start control device for a hybrid vehicle and an engine start control method for a hybrid vehicle.
WO2013021765A1 (en) Hybrid vehicle control unit
JP2010155590A (en) Start control device for hybrid car
JP2007069787A (en) Deceleration controller for hybrid vehicle
JPWO2012053576A1 (en) Control device for hybrid vehicle
JP6012026B2 (en) Vehicle control device
JP5742248B2 (en) Vehicle control device
JP2007307995A (en) Controller for hybrid car and control method for hybrid car
JP5251483B2 (en) Control device for hybrid vehicle
JP2012157213A (en) Vehicle controller
JP5556580B2 (en) Control device for hybrid vehicle
JP2010149712A (en) Drive controller and drive control method of hybrid vehicle
JP5239841B2 (en) Control device for hybrid vehicle
JP5182072B2 (en) Oil pump drive device for hybrid vehicle
JP2012131497A (en) Engine start control device of hybrid vehicle and method of controlling engine start of hybrid vehicle
JP5239819B2 (en) Control device for hybrid vehicle
JP2009090898A (en) Driving force controller
JP5598256B2 (en) Control device for hybrid vehicle
JP5696430B2 (en) Vehicle control device
JP5874165B2 (en) Control device for hybrid vehicle
JP5950038B2 (en) Control device for hybrid vehicle
JP2007313959A (en) Control device and method for hybrid vehicle
JP5527159B2 (en) Control device for hybrid vehicle
JP5223378B2 (en) Vehicle start control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5950038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151