JPWO2014162537A1 - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JPWO2014162537A1
JPWO2014162537A1 JP2015509788A JP2015509788A JPWO2014162537A1 JP WO2014162537 A1 JPWO2014162537 A1 JP WO2014162537A1 JP 2015509788 A JP2015509788 A JP 2015509788A JP 2015509788 A JP2015509788 A JP 2015509788A JP WO2014162537 A1 JPWO2014162537 A1 JP WO2014162537A1
Authority
JP
Japan
Prior art keywords
gas
light
absorbing
unit
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015509788A
Other languages
Japanese (ja)
Other versions
JP6083466B2 (en
Inventor
亮一 東
亮一 東
幸造 赤尾
幸造 赤尾
谷口 裕
裕 谷口
和裕 小泉
和裕 小泉
平山 紀友
紀友 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2014162537A1 publication Critical patent/JPWO2014162537A1/en
Application granted granted Critical
Publication of JP6083466B2 publication Critical patent/JP6083466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0037Specially adapted to detect a particular component for NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0042Specially adapted to detect a particular component for SO2, SO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

サンプルガスに含まれ、従来では分析が容易ではなかった一酸化窒素ガス(NOガス)および二酸化窒素ガス(NO2ガス)の2成分のガス濃度の分析、または、一酸化窒素ガス(NOガス)、二酸化窒素ガス(NO2ガス)および二酸化硫黄ガス(SO2)の3成分のガス濃度の分析というように、簡易な構成で多成分のガス濃度の分析を可能とするガス分析計を提供する。ガス調整部41が酸化出力時の透過光受光部31および基準光受光部32からの信号を用いて、NO2およびSO2のガス濃度を算出し、ガス調整部41が通常出力時の透過光受光部31および基準光受光部32からの信号を用いて、NO2およびSO2のガス濃度を算出し、また、酸化出力時のNO2のガス濃度から通常出力時のNO2のガス濃度を減じてNOのガス濃度を算出するガス分析計とした。Analysis of gas concentrations of two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas) that are included in the sample gas and were not easily analyzed in the past, or nitrogen monoxide gas (NO gas), Provided is a gas analyzer capable of analyzing multi-component gas concentrations with a simple configuration, such as analysis of three-component gas concentrations of nitrogen dioxide gas (NO 2 gas) and sulfur dioxide gas (SO 2). The gas adjustment unit 41 calculates the gas concentrations of NO2 and SO2 using signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 at the time of oxidation output, and the gas adjusting unit 41 transmits the transmitted light receiving unit at the time of normal output. 31 and the reference light receiving unit 32 are used to calculate the NO2 and SO2 gas concentrations, and the NO2 gas concentration at the normal output is subtracted from the NO2 gas concentration at the oxidation output to obtain the NO gas concentration. A gas analyzer for calculating

Description

本発明は、サンプルガスに含まれる複数ガスのガス濃度を測定するガス分析計に関する。   The present invention relates to a gas analyzer that measures gas concentrations of a plurality of gases contained in a sample gas.

ガス分析計の従来技術が、例えば、特許文献1に開示されている。この従来技術について、図を参照しつつ説明する。図11は、特許文献1に記載の従来技術の吸光分析計である。
吸光分析計300は、紫外吸収法を用いてサンプルガスに含まれるNO(二酸化窒素)濃度を測定する。吸光分析計300は、紫外光源301と、可視光源302と、リファレンスセル303と、サンプルセル304と、光案内機構305と、光検出部306と、制御部307と、演算部308と、を備えている。
For example, Patent Literature 1 discloses a conventional gas analyzer. This prior art will be described with reference to the drawings. FIG. 11 is a prior art absorption spectrometer described in Patent Document 1.
The absorption spectrometer 300 measures the concentration of NO 2 (nitrogen dioxide) contained in the sample gas using an ultraviolet absorption method. The absorption spectrometer 300 includes an ultraviolet light source 301, a visible light source 302, a reference cell 303, a sample cell 304, a light guide mechanism 305, a light detection unit 306, a control unit 307, and a calculation unit 308. ing.

紫外光源301は、紫外光を発光する発光ダイオードである。この紫外光の中心発光波長は波長360〜400nmであり、図12の波長−吸光係数特性図で示すように、NOの吸光波長帯域内に含まれる。このような紫外光をNOに照射すると、NOによる吸光が行われる。The ultraviolet light source 301 is a light emitting diode that emits ultraviolet light. The central emission wavelength of the ultraviolet light is 360 to 400 nm, and is included in the absorption wavelength band of NO 2 as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Upon irradiation of such ultraviolet light into NO 2, the absorption by the NO 2 is performed.

可視光源302は、可視光を発光する発光ダイオードである。この可視光の中心発光波長は、紫外光の波長よりも大きいため、図12の波長−吸光係数特性図で示すように、NOの吸光波長帯域内に含まれるが、紫外光の中心波長とは異なる。このような可視光をNOに照射するとNOによる吸光が行われるが、上記のNOによる紫外光の吸光と比較すると、NOによる可視光の吸光が小さくなるように、可視光源302の波長が設定される。The visible light source 302 is a light emitting diode that emits visible light. Since the central emission wavelength of visible light is larger than the wavelength of ultraviolet light, it is included in the absorption wavelength band of NO 2 as shown in the wavelength-absorption coefficient characteristic diagram of FIG. Is different. Such absorption of visible light by NO 2 is irradiated to NO 2 is performed, when compared with the absorption of ultraviolet light by the above NO 2, so that absorbance of visible light is reduced by the NO 2, the visible light source 302 The wavelength is set.

リファレンスセル303は、基準ガスが封入されている。この基準ガスは例えば窒素ガスである。窓303a,303bを通じて紫外光や可視光が入射される。   The reference cell 303 is filled with a reference gas. This reference gas is, for example, nitrogen gas. Ultraviolet light or visible light is incident through the windows 303a and 303b.

サンプルセル304は、測定対象であるサンプルガスが供給される。窓304a,304bを通じて紫外光や可視光が入射される。サンプルガスは、ガス入口304cを通じてサンプルセル304内に流入し、ガス出口304dを通じて流出する。   The sample cell 304 is supplied with a sample gas to be measured. Ultraviolet light or visible light is incident through the windows 304a and 304b. The sample gas flows into the sample cell 304 through the gas inlet 304c and flows out through the gas outlet 304d.

光案内機構305は、ミラー305a,ハーフミラー305bを備える。紫外光源301からの紫外光や可視光源302からの可視光がハーフミラー305bおよびミラー305aを反射し、リファレンスセル303の窓303aを介してリファレンスセル303内に一端側から導入される。また、紫外光源301からの紫外光や可視光源302からの可視光が、ハーフミラー305bを透過し、サンプルセル304の窓304aを介してサンプルセル304内に一端側から導入される。サンプルセル304内ではNOによる吸光が行われる。The light guide mechanism 305 includes a mirror 305a and a half mirror 305b. The ultraviolet light from the ultraviolet light source 301 and the visible light from the visible light source 302 are reflected from the half mirror 305b and the mirror 305a and introduced into the reference cell 303 from one end side through the window 303a of the reference cell 303. Also, ultraviolet light from the ultraviolet light source 301 and visible light from the visible light source 302 are transmitted through the half mirror 305 b and introduced into the sample cell 304 from one end side through the window 304 a of the sample cell 304. Absorption by NO 2 is performed in the sample cell 304.

光検出部306は、光検出器306a,306bを備える。光検出器306aは、リファレンスセル303の他端側に設けられ、このリファレンスセル303の窓303bを透過した紫外光や可視光を検出する。光検出器306bは、サンプルセル304の他端側に設けられ、サンプルセル304の窓304bを透過した紫外光や可視光を検出する。   The light detection unit 306 includes light detectors 306a and 306b. The photodetector 306a is provided on the other end side of the reference cell 303, and detects ultraviolet light or visible light transmitted through the window 303b of the reference cell 303. The photodetector 306b is provided on the other end side of the sample cell 304, and detects ultraviolet light and visible light transmitted through the window 304b of the sample cell 304.

制御部307は、紫外光源301および可視光源302を時分割発光させる。光検出部306は、リファレンスセル303およびサンプルセル304を透過する2波長の透過光を得る。これにより二光路、二波長を有することとなり、紫外透過光のサンプル信号、可視透過光のサンプル信号、紫外透過光のリファレンス信号、および、可視透過光のリファレンス信号という4つの信号を得る。   The control unit 307 causes the ultraviolet light source 301 and the visible light source 302 to emit light in a time-sharing manner. The light detection unit 306 obtains two-wavelength transmitted light that passes through the reference cell 303 and the sample cell 304. As a result, there are two optical paths and two wavelengths, and four signals are obtained: a sample signal for ultraviolet transmitted light, a sample signal for visible transmitted light, a reference signal for ultraviolet transmitted light, and a reference signal for visible transmitted light.

演算部308は、光検出部306からの4つの信号を制御部307経由で受信し、この4つの信号に基づいてNOガス濃度を演算する。これにより、紫外光源301および可視光源302のドリフトの補償、測定成分以外の他成分干渉の補正、サンプルセル304の透過窓304a,304bの汚れや曇りによる光量低下の補正、感度ドリフトの補正、を可能とする。これら補正を行った上でNOガス濃度を算出することができ、測定精度を向上させている。The calculation unit 308 receives the four signals from the light detection unit 306 via the control unit 307, and calculates the NO 2 gas concentration based on the four signals. Thereby, compensation of drift of the ultraviolet light source 301 and the visible light source 302, correction of interference of other components other than the measurement component, correction of light amount reduction due to dirt and clouding of the transmission windows 304a and 304b of the sample cell 304, correction of sensitivity drift, and the like. Make it possible. The NO 2 gas concentration can be calculated after performing these corrections, and the measurement accuracy is improved.

特開2011−149965号公報(発明の名称「吸光分析計」)JP 2011-149965 A (title of the invention “absorption spectrometer”)

しかしながら、上記の従来技術は、測定可能なガス成分が1種類に限られていた。したがって、2種類以上のガスの濃度を吸光法によって測定するためには、あるガスを吸光する波長を発光する発光手段と、この光を受光する受光手段と、をガス別に複数組を必要とする。このように従来技術では2種類以上のガスの濃度を測定するには、構成が多くなるという課題があった。   However, in the above-described conventional technology, the measurable gas component is limited to one type. Therefore, in order to measure the concentration of two or more kinds of gases by the absorption method, a plurality of sets of light emitting means for emitting a wavelength for absorbing a certain gas and light receiving means for receiving this light are required for each gas. . Thus, in the prior art, there is a problem that the configuration increases in order to measure the concentration of two or more kinds of gases.

また、従来技術では、測定しようとするガスが1種類であっても、一酸化窒素ガス(NOガス)や二酸化硫黄ガス(SOガス)を測定成分とすることはできなかった。なぜならば、図12に示すように、紫外波長領域のNOガスの吸光波長では、SOガスおよびNOガスの吸光があり、他のガスの影響を受けるものであった。また、紫外波長領域のSOガスの吸光波長では、NOガスの吸光があり、他のガスの影響を受けるものであった。Further, in the prior art, even if there is only one kind of gas to be measured, nitrogen monoxide gas (NO gas) or sulfur dioxide gas (SO 2 gas) cannot be used as a measurement component. This is because, as shown in FIG. 12, at the absorption wavelength of NO gas in the ultraviolet wavelength region, there is absorption of SO 2 gas and NO 2 gas, which is influenced by other gases. Further, at the absorption wavelength of SO 2 gas in the ultraviolet wavelength region, there was absorption of NO 2 gas, which was influenced by other gases.

さらに、可視波長領域(波長400nm以上)のNOガスの吸光波長では、NOガスおよびSOガスの吸光はなく、可視透過光にNOガスおよびSOガスについての情報が含まれていない。したがって、NOガスやSOガスによる干渉を補正すること、または、NOガスやSOガスの濃度測定に利用することが不可能である。
このようにサンプルガスにNOガスおよびSOガスのガス成分が含まれている場合には、これらのNOガスおよびSOガスのガス成分の分析が困難であった。
Further, at the absorption wavelength of NO 2 gas in the visible wavelength region (wavelength of 400 nm or more), NO gas and SO 2 gas do not absorb, and visible transmitted light does not contain information about NO gas and SO 2 gas. Therefore, it is impossible to correct interference caused by NO gas or SO 2 gas, or to use it for concentration measurement of NO gas or SO 2 gas.
If it contains gas components NO gas and SO 2 gas in this manner the sample gas was analyzed gas components of these NO gas and SO 2 gas is difficult.

そこで本発明は、上記の課題を解決するためになされたものであり、その目的は、サンプルガスに含まれ、従来では分析が容易ではなかった一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度の分析、または、一酸化窒素ガス(NOガス)、二酸化窒素ガス(NOガス)および二酸化硫黄ガス(SO)の3成分のガス濃度の分析というように、簡易な構成で多成分のガス濃度の分析を可能とするガス分析計を提供することにある。Therefore, the present invention has been made to solve the above-described problems, and its purpose is to include nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (contained in the sample gas and not conventionally easy to analyze). analysis of the gas concentration of the two components of the NO 2 gas) or nitrogen gas (NO monoxide gas), and so the analysis of gas concentration 3 components of the nitrogen gas (NO 2 gas) and sulfur dioxide gas dioxide (sO 2) Another object of the present invention is to provide a gas analyzer capable of analyzing multi-component gas concentrations with a simple configuration.

上記課題を解決するため、第1の発明は、
サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光を受光する透過光受光部と、
前記第1,第2測定対象ガスを前記ガス流通セルにそれぞれ流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部および前記NOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出する信号処理部と、
を備えるガス分析計とした。
In order to solve the above problems, the first invention is
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A NO 2 gas absorption light-emitting unit that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
A gas flow cell having a detection space through which the first and second measurement target gases flow, and a light transmission window through which the irradiation light for absorbing NO 2 gas is incident on the detection space;
A transmitted light receiver that receives the irradiation light for absorbing NO 2 gas that has passed through the light transmission window and propagated through the gas flow cell;
The gas adjusting unit and the NO 2 gas absorption light emitting unit are controlled to irradiate the NO 2 gas absorption irradiation light in a state where the first and second measurement target gases are respectively circulated through the gas flow cell. A drive control unit;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas A signal processing unit for calculating the gas concentration of the nitrogen monoxide gas (NO gas)
It was set as the gas analyzer provided with.

また、第2の発明は、
サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光をおよび前記SOガス吸光用照射光を順次照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記SOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる二酸化硫黄ガス(SOガス)のガス濃度を算出する信号処理部と、
を備えるガス分析計とした。
In addition, the second invention,
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
An SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
A gas flow cell having a detection space in which the first and second measurement target gases flow, and a light transmission window for allowing the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light to enter the detection space; ,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas that has passed through the light transmission window and propagated in the gas distribution cell;
The NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are sequentially irradiated with the first measurement target gas flowing through the gas flow cell, and the second measurement target gas is supplied to the gas flow. A drive control unit for controlling the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to irradiate the irradiation light for NO 2 gas absorbing in a state of being distributed in a cell;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas The first concentration is calculated from a calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing SO 2 gas. irradiation for the NO 2 gas absorption in the target gas Calculating a gas concentration of sulfur dioxide gas (SO 2 gas) contained in the sample gas by using the calculated value representing the difference between the received light amount obtained by subtracting the calculated value obtained in accordance with the amount of received light when irradiated with light A signal processing unit to
It was set as the gas analyzer provided with.

また、第3の発明は、
サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光および前記SOガス吸光用照射光を順次照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第2測定対象ガスに前記SOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる二酸化硫黄ガス(SOガス)のガス濃度を算出する信号処理部と、
を備えるガス分析計とした。
In addition, the third invention,
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
An SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
A gas flow cell having a detection space in which the first and second measurement target gases flow, and a light transmission window for allowing the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light to enter the detection space; ,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas that has passed through the light transmission window and propagated in the gas distribution cell;
The NO 2 gas in a state where the first measurement target gas is irradiated with the NO 2 gas absorption for the irradiation light in the state of being distributed in the gas flow cell, was passed through the second measurement target gas into the gas flow cell A drive control unit for controlling the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to sequentially emit the absorbing light for absorbing light and the irradiated light for absorbing SO 2 gas;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas The first measurement from a calculated value obtained according to the amount of light received when the second measurement object gas is irradiated with the irradiation light for absorbing SO 2 gas. irradiation for the NO 2 gas absorption in the target gas Calculating a gas concentration of sulfur dioxide gas (SO 2 gas) contained in the sample gas by using the calculated value representing the difference between the received light amount obtained by subtracting the calculated value obtained in accordance with the amount of received light when irradiated with light A signal processing unit to
It was set as the gas analyzer provided with.

そしてこれら第1,第2,第3の発明のガス分析計の前記ガス調整部は、
前記駆動制御部からの指令がない時は原料ガスを出力し、前記指令がある時は前記原料ガスからオゾンガスを生成してオゾンガスを含む原料ガスを出力するオゾン発生部と、
前記サンプルガスと前記原料ガスとを混合して出力するガス混合部と、
前記ガス混合部からの混合ガスを加熱して前記第1,第2測定対象ガスとして出力するガス加熱部と、
から構成される。
And the gas adjusting part of the gas analyzer of these first, second and third inventions
When there is no command from the drive control unit, a raw material gas is output, and when there is the command, an ozone generation unit that generates ozone gas from the raw material gas and outputs a raw material gas containing ozone gas,
A gas mixing section for mixing and outputting the sample gas and the source gas;
A gas heating unit that heats the mixed gas from the gas mixing unit and outputs the mixed gas as the first and second measurement target gases;
Consists of

また、第1の発明のガス分析計は、
基準光として前記NOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルの検出空間を通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
を更に設け、
前記信号処理部は、前記基準光受光部の基準光の受光量と前記透過光受光部の透過光の受光量との比に基づいてガス濃度を算出するガス分析計とした。
The gas analyzer of the first invention is
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas as reference light;
An optical path for allowing the NO 2 gas absorption irradiation light to pass through the light transmission window and pass through the detection space of the gas flow cell and then reach the transmitted light receiving part; and an optical path to reach the reference light receiving part; An optical path determination unit to be passed by,
Further provided,
The signal processing unit is a gas analyzer that calculates a gas concentration based on a ratio between a received amount of reference light of the reference light receiving unit and a received amount of transmitted light of the transmitted light receiving unit.

また、第1の発明のガス分析計は、
基準光として前記NOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記ガス流通セルの検出空間を不通過で前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
前記基準光受光部の基準光の受光量に基づいて、前記NOガス吸光用発光部の駆動電流を制御する補正部と、
を更に設けたガス分析計とした。
The gas analyzer of the first invention is
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas as reference light;
An optical path through which the irradiation light for absorbing NO 2 gas passes through the light transmission window and passes through the gas flow cell and then reaches the transmitted light receiving unit; and the reference light without passing through a detection space of the gas flow cell An optical path to reach the light receiving unit, an optical path determination unit to pass through,
A correction unit that controls the drive current of the light emitting unit for absorbing NO 2 gas based on the amount of received reference light of the reference light receiving unit;
The gas analyzer was further provided.

また、第2,第3の発明のガス分析計は、
基準光として前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光および前記SOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
を更に設け、
前記信号処理部は、前記基準光受光部の基準光の受光量と前記透過光受光部の透過光の受光量との比に基づいてガス濃度を算出するガス分析計とした。
The gas analyzers of the second and third inventions
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
An optical path through which the irradiation light for NO 2 gas absorption and the irradiation light for SO 2 gas absorption pass through the light transmission window and pass through the gas circulation cell to reach the transmitted light receiving unit; and the reference light receiving unit An optical path to reach, an optical path determination unit to pass through,
Further provided,
The signal processing unit is a gas analyzer that calculates a gas concentration based on a ratio between a received amount of reference light of the reference light receiving unit and a received amount of transmitted light of the transmitted light receiving unit.

また、第2,第3の発明のガス分析計は、
基準光として前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光および前記SOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
前記基準光受光部の基準光の受光量に基づいて、前記NOガス吸光用発光部および前記SOガス吸光用発光部の駆動電流を制御する補正部と、
を更に設けたガス分析計とした。
The gas analyzers of the second and third inventions
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
An optical path through which the irradiation light for NO 2 gas absorption and the irradiation light for SO 2 gas absorption pass through the light transmission window and pass through the gas circulation cell to reach the transmitted light receiving unit; and the reference light receiving unit An optical path to reach, an optical path determination unit to pass through,
A correction unit that controls drive currents of the light emitting unit for absorbing NO 2 gas and the light emitting unit for absorbing SO 2 gas based on the amount of received reference light of the reference light receiving unit;
The gas analyzer was further provided.

また、第1の発明のガス分析計は、
前記駆動制御部は、発光ダイオード(LED)またはレーザダイオード(LD)である前記NOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記NOガス吸光用発光部に出力するガス分析計とした。
The gas analyzer of the first invention is
The drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit that is a light-emitting diode (LED) or a laser diode (LD), and a duty ratio that makes the output shorter than the stop The gas analyzer is configured to output the drive current of 2 to the NO 2 gas absorption light emitting section.

また、第2,第3の発明のガス分析計は、
前記駆動制御部は、発光ダイオード(LED)またはレーザダイオード(LD)である前記NOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記NOガス吸光用発光部に出力し、また、発光ダイオード(LED)である前記SOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記SOガス吸光用発光部に出力するガス分析計とした。
The gas analyzers of the second and third inventions
The drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit that is a light-emitting diode (LED) or a laser diode (LD), and a duty ratio that makes the output shorter than the stop Is output to the NO 2 gas absorption light-emitting unit, and the output of the SO 2 gas absorption light-emitting unit, which is a light emitting diode (LED), is alternately output and stopped. The gas analyzer is configured to output a drive current having a duty ratio that is shortened to the SO 2 gas absorption light emitting unit.

本発明によれば、サンプルガスに含まれ、従来では分析が容易ではなかった一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分のガス濃度の分析、または、一酸化窒素ガス(NOガス)、二酸化窒素ガス(NOガス)および二酸化硫黄ガス(SO)の3成分のガス濃度の分析というように、簡易な構成で多成分のガス濃度の分析を可能とするガス分析計を提供することができる。According to the present invention, analysis of gas concentrations of two components of nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas), which are included in the sample gas and were not easily analyzed in the past, or monoxide Enables analysis of multi-component gas concentrations with a simple configuration, such as analysis of three-component gas concentrations of nitrogen gas (NO gas), nitrogen dioxide gas (NO 2 gas), and sulfur dioxide gas (SO 2 ). A gas analyzer can be provided.

本発明を実施するための形態に係るガス分析計の全体構成図である。It is a whole block diagram of the gas analyzer which concerns on the form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の全体構成図である。It is a whole block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 本発明を実施するための他の形態に係るガス分析計の一部構成図である。It is a partial block diagram of the gas analyzer which concerns on the other form for implementing this invention. 発光ダイオードのデューティー比−許容電流特性を示す特性図である。It is a characteristic view which shows the duty ratio-allowable current characteristic of a light emitting diode. パルス信号によって生成された発光ダイオードの駆動信号の時間変化の説明図である。It is explanatory drawing of the time change of the drive signal of the light emitting diode produced | generated by the pulse signal. 小デューティー比パルス信号によって生成された発光ダイオードの駆動信号の時間変化の説明図である。It is explanatory drawing of the time change of the drive signal of the light emitting diode produced | generated by the small duty ratio pulse signal. 従来技術の吸光分析計の構成図である。It is a block diagram of the absorption spectrometer of a prior art. NO,NO,SOガスの可視領域および紫外領域における吸光係数を示す波長−吸光係数特性図である。 NO, the wavelength showing the absorption coefficient in the visible region and ultraviolet regions of the NO 2, SO 2 gas - is the extinction coefficient characteristic diagram.

続いて、本発明を実施するための第1の形態に係るガス分析計について、図を参照しつつ以下に説明する。図1は、本形態のガス分析計の全体構成図である。図1において、太い実線の矢印はガスの流通経路を、点線の矢印は光の経路を、細い実線は電気信号の経路を、それぞれ示す。   Then, the gas analyzer which concerns on the 1st form for implementing this invention is demonstrated below, referring a figure. FIG. 1 is an overall configuration diagram of a gas analyzer according to this embodiment. In FIG. 1, thick solid arrows indicate gas flow paths, dotted arrows indicate light paths, and thin solid lines indicate electrical signal paths.

まず、本形態のガス分析計100が備える構成要素とそれらの機能について説明する。ガス分析計100は、図1で示すように、NOガス吸光用発光部11、SOガス吸光用発光部12、光路決定部13、ガス流通セル21、透過光受光部31、基準光受光部32、ガス調整部41、ガス吸引部51、信号処理・駆動制御部61を備える。First, the components provided in the gas analyzer 100 of this embodiment and their functions will be described. As shown in FIG. 1, the gas analyzer 100 includes an NO 2 gas absorbing light emitting unit 11, an SO 2 gas absorbing light emitting unit 12, an optical path determining unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit. Unit 32, gas adjustment unit 41, gas suction unit 51, and signal processing / drive control unit 61.

NOガス吸光用発光部11は、NOガスが吸光する波長であって、かつSOガスが吸光しない波長のNOガス吸光用照射光を発光する発光部である。例えば、紫外光から可視光にまたがる領域の波長320nm〜600nmに中心発光波長を有する照射光の光源、例えば現状では発光ダイオード(LED)またはレーザダイオード(LD)を選ぶことができる。図12に示されるように、この波長領域においてはNOガスのみが吸光する。NO 2 gas absorption for the light emitting unit 11 is a wavelength NO 2 gas absorption, and a light emitting unit that SO 2 gas to emit NO 2 gas absorption for the irradiation light of wavelengths not absorption. For example, a light source of irradiation light having a central emission wavelength in a wavelength range of 320 nm to 600 nm in a region extending from ultraviolet light to visible light, for example, a light emitting diode (LED) or a laser diode (LD) can be selected. As shown in FIG. 12, only NO 2 gas absorbs light in this wavelength region.

SOガス吸光用発光部12は、SOガスが吸光する波長であって、かつNOガスが吸光しない波長のSOガス吸光用照射光を発光する発光部である。例えば、紫外光領域の波長250nm〜320nmに中心発光波長を有する照射光の光源、例えば現状では発光ダイオード(LED)を選ぶことができる。なお、図12に示されるように、この波長領域においてはSOガスが吸光するのみならずNOガスも吸光する。SO 2 gas absorption for the light emitting unit 12 is a wavelength SO 2 gas absorption, and a light emitting portion for emitting SO 2 gas absorption for the irradiation light of a wavelength that NO gas is not absorption. For example, a light source of irradiation light having a central emission wavelength at a wavelength of 250 nm to 320 nm in the ultraviolet region, for example, a light emitting diode (LED) can be selected at present. As shown in FIG. 12, in this wavelength region, not only SO 2 gas but also NO 2 gas is absorbed.

光路決定部13はハーフミラーであり、所定透過率でNOガス吸光用照射光を透過させ、また、所定反射率で照射光を反射させる。また、光路決定部13は、SOガス吸光用照射光を透過させ、また、所定反射率で照射光を反射させる。なお、後述するがNOガス吸光用照射光とSOガス吸光用照射光とは同時に出力されることはなく、例えば時間別に単独で一方のみが出力される。The optical path determination unit 13 is a half mirror that transmits the irradiation light for absorbing NO 2 gas with a predetermined transmittance and reflects the irradiation light with a predetermined reflectance. Further, the optical path determination unit 13 transmits the irradiation light for absorbing the SO 2 gas and reflects the irradiation light with a predetermined reflectance. As will be described later, the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are not output at the same time. For example, only one of them is output independently for each time.

NOガス吸光用発光部11から照射されたNOガス吸光用照射光は、光路決定部13に入射する。光路決定部13において、NOガス吸光用照射光の一部は反射し、NOガス吸光用照射光の残りは透過する。光路決定部13で反射したNOガス吸光用照射光は基準光受光部32へ入射される。また、光路決定部13を透過したNOガス吸光用照射光はガス流通セル21へ入射される。同様に、SOガス吸光用発光部12から照射された照射光についても光路決定部13に入射する。光路決定部13において、SOガス吸光用照射光の一部は反射し、SOガス吸光用照射光の残りは透過する。光路決定部13で反射したSOガス吸光用照射光は基準光受光部32へ入射される。また、光路決定部13を透過したSOガス吸光用照射光はガス流通セル21へ入射される。The irradiation light for NO 2 gas absorption irradiated from the NO 2 gas absorption light emitting unit 11 enters the optical path determination unit 13. In the optical path determination unit 13, a part of the irradiation light for absorbing NO 2 gas is reflected, and the remaining irradiation light for absorbing NO 2 gas is transmitted. The irradiation light for absorbing NO 2 gas reflected by the optical path determination unit 13 enters the reference light receiving unit 32. Further, the irradiation light for absorbing NO 2 gas that has passed through the optical path determination unit 13 enters the gas flow cell 21. Similarly, the irradiation light emitted from the SO 2 gas absorption light emitting unit 12 also enters the optical path determination unit 13. In the optical path determination unit 13, part of the irradiation light for absorbing SO 2 gas is reflected and the rest of the irradiation light for absorbing SO 2 gas is transmitted. SO 2 irradiation light gas absorption reflected by the optical path determining part 13 is incident on the reference light receiving unit 32. In addition, the irradiation light for absorbing SO 2 gas transmitted through the optical path determination unit 13 is incident on the gas flow cell 21.

ガス流通セル21は、さらに管22、光透過窓23,24、検出空間25、ガス流入口26、ガス流出口27を備える。   The gas flow cell 21 further includes a tube 22, light transmission windows 23 and 24, a detection space 25, a gas inlet 26, and a gas outlet 27.

管22は、筒体である。管22の内面は、例えば研磨されたステンレスの内面とすることができる。これにより測定対象ガスの吸着を防ぎつつ、照射光の反射率を良好に保つことができる。管22内では、照射光は、管22の内面により反射しつつ伝播する。   The tube 22 is a cylinder. The inner surface of the tube 22 can be, for example, a polished stainless steel inner surface. Thereby, the reflectance of irradiation light can be kept favorable, preventing adsorption of measurement object gas. In the tube 22, the irradiation light propagates while being reflected by the inner surface of the tube 22.

光透過窓23、光透過窓24は、NOガス吸光用発光部11およびSOガス吸光用発光部12から照射される照射光の発光波長領域において光透過性を示す材料で作られている。例えば、合成石英、フッ化カルシウムを材料とすることができる。The light transmission window 23 and the light transmission window 24 are made of a material exhibiting light transmittance in the emission wavelength region of the irradiation light irradiated from the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12. . For example, synthetic quartz or calcium fluoride can be used as the material.

検出空間25は、管22、光透過窓23、および、光透過窓24により区画された閉空間である。
ガス流入口26、ガス流出口27はこの検出空間25と連通する。測定対象ガスは、ガス流入口26から検出空間25へ流入し、ガス流出口27から流出する。
このようなガス流通セル21内では、流通する測定対象ガスに照射光が照射されて吸光が起こる。
The detection space 25 is a closed space defined by the tube 22, the light transmission window 23, and the light transmission window 24.
The gas inlet 26 and the gas outlet 27 communicate with the detection space 25. The measurement target gas flows into the detection space 25 from the gas inlet 26 and flows out of the gas outlet 27.
In such a gas flow cell 21, irradiation light is irradiated to the flowing measurement target gas and light absorption occurs.

透過光受光部31は、NOガス吸光用発光部11から照射され、ガス流通セル21を透過したNOガス吸光用照射光を受光して光強度に応じた検出信号を出力する。また、透過光受光部31は、SOガス吸光用発光部12から照射され、ガス流通セル21を透過したSOガス吸光用照射光を受光して光強度に応じた検出信号を出力する。透過光受光部31には、NOガス吸光用照射光やSOガス吸光用照射光の発光波長に対して感度を有するような、フォトダイオードや光電子増倍管などを選ぶことができる。例えば、シリコンフォトダイオードを選ぶことができる。Transmitted light receiving unit 31 is irradiated from the NO 2 gas absorption for the light emitting unit 11, and receives the irradiated light for NO 2 gas absorption which has passed through the gas flow cell 21 and outputs a detection signal corresponding to the light intensity. Further, the transmitted light receiving unit 31 is irradiated from the SO 2 gas absorption for the light emitting unit 12, and outputs a detection signal corresponding to the light intensity by receiving the irradiated light for SO 2 gas absorption which has passed through the gas flow cell 21. As the transmitted light receiving unit 31, a photodiode, a photomultiplier tube, or the like having sensitivity to the emission wavelength of the NO 2 gas absorption irradiation light or the SO 2 gas absorption irradiation light can be selected. For example, a silicon photodiode can be selected.

このような透過光受光部31は、測定対象ガスによる吸光を検出するものであり、受光した照射光の光量に比例する光量強度信号を信号処理・駆動制御部61へ出力する機能を有する。すなわち、測定対象ガスによる吸光が無い場合と比較して、吸光がある場合は透過光受光部31で受光される照射光の光強度が減少するために、その光強度の減少量と測定ガス濃度の相関とを利用してガス濃度を測定する。   The transmitted light receiving unit 31 detects light absorption by the measurement target gas, and has a function of outputting a light intensity signal proportional to the amount of received irradiation light to the signal processing / drive control unit 61. That is, compared with the case where there is no light absorption by the measurement target gas, the light intensity of the irradiation light received by the transmitted light receiving unit 31 decreases when there is light absorption. The gas concentration is measured using the correlation between the two.

このように光路決定部13を透過したNOガス吸光用照射光やSOガス吸光用照射光がガス流通セル21の一端を構成する光透過性の光透過窓23を透過し、管22の内部の検出空間25を伝播し、もう一端を構成する光透過性の光透過窓24を透過し、透過光受光部31に入射する。Thus, the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light transmitted through the optical path determining unit 13 pass through the light-transmitting light transmission window 23 constituting one end of the gas flow cell 21, and The light propagates through the internal detection space 25, passes through the light-transmitting light transmitting window 24 that forms the other end, and enters the transmitted light receiving unit 31.

基準光受光部32は、NOガス吸光用発光部11から照射され、光路決定部13で反射されたNOガス吸光用照射光を受光し、受光した光量に比例する光量強度信号を信号処理・駆動制御部61へ出力する機能を有する。また、基準光受光部32は、SOガス吸光用発光部12から照射され、光路決定部13で反射されたSOガス吸光用照射光を受光し、受光した光量に比例する光量強度信号を信号処理・駆動制御部61へ出力する機能を有する。基準光受光部32には、NOガス吸光用照射光やSOガス吸光用照射光の発光波長に対して感度を有する、フォトダイオードや光電子増倍管などを選ぶことができる。例えば、シリコンフォトダイオードを選ぶことができる。Reference-light receiving part 32 is radiated from the NO 2 gas absorption for the light emitting unit 11 receives the NO 2 gas absorption irradiation light reflected by the optical path determining section 13, the signal processing light amount intensity signal proportional to the amount of light that is received A function for outputting to the drive control unit 61 is provided. The reference light receiving unit 32 is irradiated from the SO 2 gas absorption for the light emitting unit 12 receives the SO 2 gas absorption irradiation light reflected by the optical path determining section 13, the light amount intensity signal proportional to the amount of light that is received It has a function of outputting to the signal processing / drive control unit 61. As the reference light receiving unit 32, a photodiode, a photomultiplier tube, or the like having sensitivity to the emission wavelength of the NO 2 gas absorption irradiation light or the SO 2 gas absorption irradiation light can be selected. For example, a silicon photodiode can be selected.

NOガス吸光用発光部11およびSOガス吸光用発光部12の温度上昇等の影響によりNOガス吸光用照射光やSOガス吸光用照射光の強度に変動がある場合には基準光受光部32で受光されるNOガス吸光用照射光やSOガス吸光用照射光の光量強度信号が変動する。この光強度の変動量を利用してガス濃度の補正が行われる。Reference light when the intensity of the irradiation light for NO 2 gas absorption or the irradiation light for SO 2 gas absorption varies due to the temperature rise or the like of the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12 The light intensity signal of the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light received by the light receiving unit 32 varies. The gas concentration is corrected using the fluctuation amount of the light intensity.

ガス調整部41は、さらにオゾン発生部42、ガス混合部43,ガス加熱部44を備えている。   The gas adjustment unit 41 further includes an ozone generation unit 42, a gas mixing unit 43, and a gas heating unit 44.

オゾン発生部42は、オゾンを発生する機能を有する。オゾン発生部42に酸素を含む大気、計装空気、または、酸素ガスなどの原料ガスGが流入する。オゾン発生部42は、信号処理・駆動制御部61により動作制御がなされている。オゾン発生部42の動作時では、オゾン発生部42は、無声放電などの電気的な手段により、原料ガスGの酸素ガスを用いてOガスを生成し、Oガスを充分に含む原料ガスGを流出させる。不動作時では、オゾン発生部42は、Oガスを生成せずに原料ガスGをそのまま通過させる。このように信号処理・駆動制御部61が、オゾン発生部42の動作・不動作の動作制御を行う。The ozone generator 42 has a function of generating ozone. Atmosphere containing oxygen to the ozone generator 42, instrument air, or the raw material gas G O such as oxygen gas flows. The operation of the ozone generator 42 is controlled by a signal processing / drive controller 61. Material In operation of the ozone generator 42, ozone generator 42, by electrical means, such as silent discharge, using an oxygen gas of the raw material gas G O generates O 3 gas, containing O 3 gas sufficiently The gas GO is discharged. In an off-state, the ozone generator 42 is directly passing the raw material gas G O without generating the O 3 gas. In this way, the signal processing / drive control unit 61 controls the operation / non-operation of the ozone generation unit 42.

ガス混合部43は、サンプルガスGとオゾン発生部42からの原料ガスG(動作時ではOガスを大量に含む原料ガスGであり、また、不動作時ではOガスを含まない原料ガスGである)を混合するために設けられている。オゾン発生部42の動作時には、後述するがガス混合部43においてOガスの一部とサンプルガスGの一部とで化学反応が発生して中間反応ガスが生成され、この中間反応ガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGを流出させる。また、オゾン発生部42の不動作時には、オゾン発生部42からの原料ガスGとサンプルガスGとをそのまま混合して流出させる。また、後述するがガス混合部43は、ゼロガスGZEROやスパンガスGSPANが流入したとき、そのまま流出させる。Gas mixing unit 43, at the time the raw material gas G O (operation from the sample gas G S and ozone generator 42 is a raw material gas G O containing O 3 gas in large quantities, also in an off-state free of O 3 gas is provided to mix the free feed gas is G O). During operation of the ozone generator 42, intermediate reactant gas portion and a chemical reaction occurs in a portion sample gas G S of the O 3 gas in the gas mixing portion 43 will be described later is generated, the intermediate reaction gas, excess O 3 gas, thereby discharging the material gas G O and excess sample gas G S excess. Also, when not in operation of the ozone generator 42 is allowed to flow out by mixing it with a raw material gas G O and the sample gas G S from the ozone generator 42. Further, as will be described later, when the zero gas G ZERO or the span gas G SPAN flows in, the gas mixing unit 43 flows out as it is.

ガス加熱部44は、ガス混合部43から流入したガスを加熱する。オゾン発生部42の動作時では、中間反応ガス、Oガス、余剰の原料ガスGおよびサンプルガスGを加熱して更に反応を進めたガスを測定対象ガスとして流出させる。また、オゾン発生部42の不動作時では、オゾン発生部42からの原料ガスGとサンプルガスGとを加熱しても反応がないため、そのまま原料ガスGとサンプルガスGとを測定対象ガスとして流出させる。このガス加熱部44から流出した測定対象ガスは、ガス流入口26からガス流通セル21内の検出空間25を流通し、ガス流出口27から流出する。The gas heating unit 44 heats the gas flowing in from the gas mixing unit 43. In operation of the ozone generator 42, the intermediate reaction gas, O 3 gas, and heating the raw material gas G O and the sample gas G S excess is further flow out proceeded a reaction gas as a measurement target gas. Further, in the off-state of the ozone generator 42, because there is no even react by heating the raw material gas G O and the sample gas G S from the ozone generator 42, and a directly feed gas G O and the sample gas G S Let it flow out as the gas to be measured. The measurement target gas flowing out from the gas heating unit 44 flows through the detection space 25 in the gas flow cell 21 from the gas inlet 26 and flows out from the gas outlet 27.

ガス吸引部51は、ガスを吸引する機能を有している。ガス流通セル21の検出空間25内を排気することで検出空間25内へガス加熱部44からの測定対象ガスを引き入れる。なお、このガス吸引部51は、ガス加熱部44とガス流入口26との間に設けることもできる。   The gas suction unit 51 has a function of sucking gas. By exhausting the detection space 25 of the gas flow cell 21, the measurement target gas from the gas heating unit 44 is drawn into the detection space 25. The gas suction part 51 can also be provided between the gas heating part 44 and the gas inlet 26.

信号処理・駆動制御部61は、本発明の信号処理部と駆動制御部とを一体化したものであって、信号処理部としての機能と、駆動制御部としての機能と、を共に果たすものである。信号処理・駆動制御部61は、NOガス吸光用発光部11およびSOガス吸光用発光部12を発光させるために必要な駆動電流を供給する機能を有する。また、信号処理・駆動制御部61は、透過光受光部31および基準光受光部32から出力される光量強度信号に基づいてガス濃度を算出するための受光信号処理機能を有する。また、信号処理・駆動制御部61は、オゾン発生部42の動作・不動作を切り替える制御機能を有する。
ガス分析計100の構成はこのようなものである。
The signal processing / drive control unit 61 is an integration of the signal processing unit and the drive control unit of the present invention, and performs both a function as a signal processing unit and a function as a drive control unit. is there. The signal processing / drive control unit 61 has a function of supplying a drive current necessary for causing the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12 to emit light. Further, the signal processing / drive control unit 61 has a received light signal processing function for calculating the gas concentration based on the light intensity signal output from the transmitted light receiving unit 31 and the reference light receiving unit 32. Further, the signal processing / drive control unit 61 has a control function for switching operation / non-operation of the ozone generation unit 42.
The configuration of the gas analyzer 100 is as described above.

続いて、ガス分析計100による分析について説明する。まず、吸光による測定の原理について説明する。測定の原理は、下記のランベルト−ベールの法則に基づく吸光法である。   Subsequently, analysis by the gas analyzer 100 will be described. First, the principle of measurement by absorption will be described. The principle of measurement is an absorption method based on the following Lambert-Beer law.

[数1]
=P・exp(−ε・c・L)
[Equation 1]
P 1 = P 0 · exp (−ε · c · L)

ここで、Pは検出空間25内を流通する測定対象ガスを透過した透過光の出力強度、Pは測定対象ガスを透過する前の基準光の出力強度、εはモル吸光係数、cはガス濃度、Lは光路長を表す。モル吸光係数εはガスの種類と光源の波長とを決めると一意に決まり、また、光路長Lは一定であるため、出力強度PとPの比はガス濃度cの指数関数となる。Here, P 1 is the output intensity of the transmitted light that has passed through the measurement target gas flowing in the detection space 25, P 0 is the output intensity of the reference light before passing through the measurement target gas, ε is the molar extinction coefficient, and c is The gas concentration, L, represents the optical path length. The molar extinction coefficient ε is uniquely determined by determining the type of gas and the wavelength of the light source, and since the optical path length L is constant, the ratio between the output intensities P 1 and P 0 is an exponential function of the gas concentration c.

ガス分析計100において、NOガス吸光用照射光(またはSOガス吸光用照射光)が照射される。このときのNOガス吸光用照射光(またはSOガス吸光用照射光)の一部は、光路決定部13によって既知の一定の反射率で反射し、基準光受光部32に基準光として入射する。この基準光受光部32の信号から基準光による出力強度Pを求めることができる。また、NOガス吸光用照射光(またはSOガス吸光用照射光)の一部は、光路決定部13を既知の一定の透過率で透過し、光透過窓23を経て検出空間25を伝播し、吸光を受けた後に光透過窓24を経て透過光受光部31に透過光として入射する。この透過光受光部31の信号から透過光による出力強度Pを求めることができる。したがって、同時に得られる出力強度PとPの比からガス濃度cを求めることができる。この原理は、NOガス吸光用照射光による検出とSOガス吸光用照射光による検出との両方に適用できる。検出原理はこのようなものとなる。In the gas analyzer 100, irradiation light for absorbing NO 2 gas (or irradiation light for absorbing SO 2 gas) is irradiated. A part of the irradiation light for absorbing NO 2 gas (or irradiation light for absorbing SO 2 gas) at this time is reflected by the optical path determination unit 13 with a known constant reflectance and is incident on the reference light receiving unit 32 as reference light. To do. The output intensity P 0 by the reference light can be obtained from the signal of the reference light receiving unit 32. Part of the irradiation light for absorbing NO 2 gas (or irradiation light for absorbing SO 2 gas) is transmitted through the optical path determination unit 13 with a known constant transmittance, and propagates through the detection space 25 through the light transmission window 23. After being absorbed, the light passes through the light transmission window 24 and enters the transmitted light receiving unit 31 as transmitted light. The output intensity P 1 by the transmitted light can be obtained from the signal of the transmitted light receiving unit 31. Therefore, the gas concentration c can be obtained from the ratio between the output intensities P 1 and P 0 obtained simultaneously. This principle can be applied to both detection by irradiation light for absorbing NO 2 gas and detection by irradiation light for absorbing SO 2 gas. The detection principle is like this.

なお、透過光受光部31および基準光受光部32は、NOガス濃度測定時に共通に利用され、また、SOガス濃度測定時に共通に利用される。したがって、NOガス吸光用発光部11およびSOガス吸光用発光部12が同時に発光すると、受光信号が両者の和になってしまい分離できなくなる。The transmitted light receiving unit 31 and the reference light receiving unit 32 are commonly used when measuring the NO 2 gas concentration, and are commonly used when measuring the SO 2 gas concentration. Therefore, if the NO 2 gas absorption light-emitting unit 11 and the SO 2 gas absorption light-emitting unit 12 emit light at the same time, the light reception signal becomes the sum of the two and cannot be separated.

そこで、信号処理・駆動制御部61は、NOガス吸光用発光部11およびSOガス吸光用発光部12を同時には発光させないで、交互に発光させるように制御する。また、受光信号の測定および処理も上記の発光期間に同期するように行うことで、信号を分離している。Therefore, the signal processing / drive control unit 61 controls the NO 2 gas absorption light-emitting unit 11 and the SO 2 gas absorption light-emitting unit 12 to emit light alternately without simultaneously emitting light. Further, the measurement and processing of the received light signal are also performed in synchronization with the light emission period, thereby separating the signals.

このような測定は、オゾン発生部42を動作状態としてガス調整部41を酸化出力としたときと、オゾン発生部42を不動作状態としてガス調整部41を通常出力としたときと、でそれぞれ行われる。したがって、このようなガス分析計100は、
(a)酸化出力時のNOガス吸光用照射光による分析、
(b)酸化出力時のSOガス吸光用照射光による分析、
(c)通常出力時のNOガス吸光用照射光による分析、
(d)通常出力時のSOガス吸光用照射光による分析、
という4種類の分析が可能である。このうち(a),(b),(c)の分析によりガス濃度を算出する。
Such measurement is performed when the ozone generation unit 42 is in an operating state and the gas adjustment unit 41 is in an oxidized output, and when the ozone generation unit 42 is in a non-operational state and the gas adjustment unit 41 is in a normal output. Is called. Therefore, such a gas analyzer 100 is
(A) Analysis with irradiation light for absorbing NO 2 gas at the time of oxidation output,
(B) Analysis with irradiation light for SO 2 gas absorption at the time of oxidation output,
(C) Analysis with irradiation light for absorbing NO 2 gas at normal output,
(D) Analysis with irradiation light for absorbing SO 2 gas at normal output,
Four types of analysis are possible. Among these, the gas concentration is calculated by analysis of (a), (b), and (c).

次に、このガス分析計100によってサンプルガスG中に含まれるNO,NO,SOガスの3成分のガス濃度を測定する方法について説明する。
測定としては、上記(a),(b),(c)の分析を行い、それぞれ得られたガス濃度を用いて、NO,NO,SOの3成分のガス濃度を算出する。以下、各出力に分けて説明する。
Then, NO contained by the gas analyzer 100 in the sample gas G S, the method for measuring the gas concentration of the three components of NO 2, SO 2 gas will be described.
As the measurement, the above-described analyzes (a), (b), and (c) are performed, and the gas concentrations of the three components NO, NO 2 , and SO 2 are calculated using the obtained gas concentrations. Hereinafter, description will be made separately for each output.

まず、(a)酸化出力時のNOガス吸光用照射光による分析を行うものとして説明する。オゾン発生部42を動作状態としてガス調整部41を酸化出力させた上での測定である。この際に、NOガス濃度cを求める。First, description will be made on the assumption that (a) analysis is performed using irradiation light for absorbing NO 2 gas at the time of oxidation output. This is a measurement after the ozone generating section 42 is in an operating state and the gas adjusting section 41 is oxidized and output. At this time, the NO 2 gas concentration c 4 is obtained.

オゾン発生部42は動作状態である。このとき、オゾン発生部42は、大気、計装エア、または酸素ガスなどの原料ガスGに含まれているOガス(酸素ガス)からOガス(オゾンガス)を生成する。Oガスの発生量は、適宜定めることができるが、少なくともNOガスの測定濃度レンジにおける最大量よりも過剰に供給する。オゾン発生部42からガス混合部43へ、Oガスを充分に含む原料ガスGを供給する。The ozone generator 42 is in an operating state. At this time, ozone generator 42 generates air, the instrument air or O 2 gas contained in the raw material gas G 0, such as oxygen gas, O 3 gas (oxygen gas) (ozone). Although the generation amount of O 3 gas can be determined as appropriate, it is supplied in excess of at least the maximum amount in the measured concentration range of NO gas. From the ozone generator 42 to the gas mixing unit 43 supplies the raw material gas G O containing O 3 gas sufficiently.

ガス混合部43においてOガスを充分に含む原料ガスGとサンプルガスGとが混合される。ここで、サンプルガスG中の全てのNOガスと、一部のOガスと、が以下のような化学反応を起こす。And the raw material gas G O and the sample gas G S containing O 3 gas sufficiently is mixed in the gas mixing portion 43. Here, causing all of the NO gas in the sample gas G S, and a part of the O 3 gas, but the chemical reactions described below.

[化1]
NO+O → NO+O ・・・化学反応式(1)
[Chemical 1]
NO + O 3 → NO 2 + O 2 ... Chemical reaction formula (1)

オゾン発生部42から供給するOガス量が、サンプルガスG中のNOガス量に対して過剰であることから、サンプルガスG中のNOガスは、化学反応式(1)にしたがって、全てNOガスに変換される。O 3 gas amount supplied from the ozone generator 42 is, because it is excessive relative to NO gas amount in the sample gas G S, NO gas in the sample gas G S is according to the chemical reaction formula (1), All are converted to NO 2 gas.

さらに、この化学反応式(1)で使用されなかった余剰のOガスは、サンプルガスG中に元より含まれていたNOガスの一部、および、化学反応式(1)にしたがって生成したNOガスの一部、と以下のような化学反応を起こす。Moreover, excess O 3 gas not used in the chemical reaction formula (1), the sample gas G S portion of the NO 2 gas contained than the original in, and, according to the chemical reaction formula (1) The following chemical reaction occurs with a part of the generated NO 2 gas.

[化2]
2NO+O → N+O ・・・化学反応式(2)
[Chemical formula 2]
2NO 2 + O 3 → N 2 O 5 + O 2 ... Chemical reaction formula (2)

なお、SOガスとOガスとは化学反応を起こさない。The SO 2 gas and the O 3 gas do not cause a chemical reaction.

したがって、ガス混合部43において、サンプルガスG中のNOガスは全てNOガスに変換される。さらに、サンプルガスG中のNOガスの一部、および、化学反応式(1)によって生成したNOガスの一部はNガスに変換され、さらに余剰のOガスが一部残留し、SOガスは無反応でそのままである。ガス混合部43からは、これらのようなNOガス、Nガス、余剰のOガス、余剰の原料ガスGおよび余剰のサンプルガスGがガス加熱部44へ流出する。Accordingly, the gas mixing unit 43, and converted all NO gas in the sample gas G S is the NO 2 gas. In addition, some of the NO 2 gas in the sample gas G S, and, in some NO 2 gas produced by a chemical reaction formula (1) is converted to N 2 O 5 gas, further excess O 3 gas one The SO 2 gas remains unreacted. From the gas mixing unit 43, such NO 2 gas, N 2 O 5 gas, surplus O 3 gas, surplus raw material gas GO, and surplus sample gas G S flow out to the gas heating unit 44.

ガス加熱部44では上記のガスが加熱されるが、特にNガスおよび余剰のOガスは、加熱により以下の化学反応式(3),(4)に示される熱分解反応を起こす。The gas heating unit 44 heats the above gas, but particularly N 2 O 5 gas and surplus O 3 gas cause a thermal decomposition reaction represented by the following chemical reaction formulas (3) and (4) by heating. .

[化3]
2N → 4NO+O ・・・化学反応式(3)
[Chemical formula 3]
2N 2 O 5 → 4NO 2 + O 2 ... Chemical reaction formula (3)

[化4]
2O → 3O ・・・化学反応式(4)
[Chemical formula 4]
2O 3 → 3O 2 ... Chemical reaction formula (4)

すなわち、ガス混合部43で生成した副生成物であるNガスはNOガスに熱分解し、残留したOガスは酸素に熱分解する。SOガスは無反応でそのままである。That is, N 2 O 5 gas which is a by-product generated in the gas mixing unit 43 is thermally decomposed into NO 2 gas, and the remaining O 3 gas is thermally decomposed into oxygen. The SO 2 gas remains unreacted.

これらの化学反応および熱分解反応の結果、ガス流通セル21に流通する加熱ガスに含まれるガスの状態として、サンプルガスGに含まれていたNOガスは全てNOガスに変換され、サンプルガスGに含まれていたNOガス、SOガスはそのままで、Oガスは含まれない状態となっている。The results of these chemical reactions and thermal decomposition reaction, as the state of the gas contained in the heating gas flowing through the gas flow cell 21, NO gas contained in the sample gas G S is all converted to NO 2 gas, sample gas nO 2 gas contained in the G S, SO 2 gas is intact, O 3 gas is in a state not included.

言い換えれば、化学反応および熱分解反応後のNOガスのガス濃度は、サンプルガスGに含まれていた元のNOガスのガス濃度および元のNOガスのガス濃度の和である。また、Oガスを生成するための原料ガスGがガス混合部43において混合されているため、NOガス、SOガスの各濃度は原料ガスGとサンプルガスGの流量混合比に応じて希釈されている。このようにガス調整部41は、サンプルガスに含まれる一酸化窒素ガス(NOガス)をオゾンによる酸化の後加熱して全て二酸化窒素ガス(NO)に反応させた測定対象ガスとして出力する酸化出力を行う。このような測定対象ガスがガス流通セル21へ導入される。In other words, the gas concentration of NO 2 gas after the chemical reaction and thermal decomposition reaction is the sum of the gas concentration and the gas concentration of the original NO 2 gas of the original NO gas contained in the sample gas G S. Further, since the raw material gas G O for producing O 3 gas is mixed in the gas mixing portion 43, the flow mixing ratio of NO 2 gas, the concentration of SO 2 gas is the raw material gas G O and the sample gas G S Depending on the dilution. As described above, the gas adjustment unit 41 outputs the measurement target gas that is the nitrogen monoxide gas (NO gas) contained in the sample gas after being oxidized by ozone and reacted with the nitrogen dioxide gas (NO 2 ). Output. Such a measurement target gas is introduced into the gas distribution cell 21.

続いて、酸化出力時におけるガス分析計100のNOガス濃度cの算出について説明する。NOガス濃度測定時ではNOガス吸光用発光部11のみ発光する。NOガス吸光用発光部11からのNOガス吸光用照射光は、光路決定部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の光量強度信号から出力強度Pを求めることができる。Next, calculation of the NO 2 gas concentration c 4 of the gas analyzer 100 at the time of oxidation output will be described. At the time of measuring the NO 2 gas concentration, only the NO 2 gas absorption light emitting unit 11 emits light. NO 2 irradiation light gas absorption from NO 2 gas absorption for the light emitting unit 11 is reflected by the known constant reflectance by the optical path determining section 13 and enters the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the light intensity signal of the reference light receiving unit 32.

また、光路決定部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したNOガス吸光用照射光は、検出空間25を伝播しながら、NOガスによって吸光される。このような吸光されたNOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の光量強度信号から出力強度Pを求めることができる。Further, NO 2 irradiation light gas absorption incident on the detection space 25 of the passes through the optical path determination unit 13 light transmission window 23 a gas flow cell 21 through, while propagating the detection space 25, absorption by NO 2 gas Is done. Such absorbed light for absorbing NO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the light intensity signal of the transmitted light receiving unit 31.

なお、このように受光素子として透過光受光部31および基準光受光部32を用いることにより、単に濃度を測定できるだけでなく、NOガス吸光用発光部11の出力がさまざまな要因で変動しても、2個の受光信号の比を算出することにより濃度測定の誤差を低減できるという効果がある。By using the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but also the output of the NO 2 gas absorbing light emitting unit 11 varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.

透過光受光部31、基準光受光部32からの光量強度信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61は、上記の数式1に基づいて、ガス流通セル21内における流量混合比補正前NOガス濃度c’を算出し、さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cを算出する。Light intensity signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the NO 2 gas concentration c 4 ′ before the flow mixture ratio correction in the gas flow cell 21 based on the above mathematical formula 1, and further calculates the flow mixture ratio in the gas mixer 43. by multiplying, calculating the NO 2 gas concentration c 4 contained in the sample gas G S.

次に、ガス分析計100によるSOガス濃度cの算出について説明する。これは(b)酸化出力時のSOガス吸光用照射光による分析である。酸化出力時では、上記のようなNOガス、余剰の原料ガスGおよびSOガスを含む余剰のサンプルガスGを含む測定対象ガスがガス流通セル21へ導入される。Next, calculation of the SO 2 gas concentration c 3 by the gas analyzer 100 will be described. This is (b) analysis with irradiation light for absorbing SO 2 gas at the time of oxidation output. In the oxidation output measurement object gas containing excess sample gas G S containing NO 2 gas, excess raw material gas G O and SO 2 gas as described above it is introduced into the gas flow cell 21.

SOガス濃度測定時ではSOガス吸光用発光部12のみ発光する。SOガス吸光用発光部12からのSOガス吸光用照射光は、光路決定部13によって既知の一定の反射率によって反射され、基準光受光部32に入射する。したがって基準光受光部32の光量強度信号から出力強度Pを求めることができる。At the time of measuring the SO 2 gas concentration, only the light emitting unit 12 for absorbing SO 2 gas emits light. The irradiation light for absorbing SO 2 gas from the light emitting unit 12 for absorbing SO 2 gas is reflected by the optical path determining unit 13 with a known constant reflectance and is incident on the reference light receiving unit 32. Therefore, the output intensity P 0 can be obtained from the light intensity signal of the reference light receiving unit 32.

また、光路決定部13を透過して光透過窓23を経てガス流通セル21内の検出空間25に入射したSOガス吸光用照射光は、検出空間25を伝播しながら、SOガスおよびNOガスによって吸光される。このような吸光されたSOガス吸光用照射光が、光透過窓24を透過し、透過光受光部31に入射する。したがって、透過光受光部31の信号から出力強度Pを求めることができる。ただし、ここで出力強度PはNOガスによる吸光を含んでいるため、PとPとから算出される濃度補正前SOガス濃度をc”とすると、c”は、信号処理・駆動制御部61において以下のような濃度補正処理が必要である。すなわち、ゼロガスGZEROとNOスパンガスGSPANとのそれぞれの流通による校正時において、SOガス吸光用発光部12を点灯させ、出力強度P、Pから光強度の減少量に基づきNOスパンガスによる受光強度の濃度補正係数αを算出する。ただし、校正時においても常に原料ガスGが流通され混合されているものとする。前記のαと、リアルタイムに算出される流量混合比補正前NOガス濃度c’と、濃度補正前SOガス濃度c”とから、流量混合比補正前のSOガス濃度c’は以下の式による濃度補正処理によって算出される。In addition, the SO 2 gas absorption irradiation light that has passed through the optical path determination unit 13 and has entered the detection space 25 in the gas flow cell 21 through the light transmission window 23 propagates through the detection space 25, while the SO 2 gas and NO NO. Absorbed by two gases. Such absorbed light for absorbing SO 2 gas passes through the light transmission window 24 and enters the transmitted light receiving unit 31. Therefore, the output intensity P 1 can be obtained from the signal of the transmitted light receiving unit 31. However, since the output intensity P 1 includes absorption due to NO 2 gas, if the SO 2 gas concentration before concentration correction calculated from P 0 and P 1 is c 3 ″, c 3 ″ The processing / drive control unit 61 needs the following density correction processing. That is, at the time of calibration by the flow of each of the zero gas G ZERO and the NO 2 span gas G SPAN , the SO 2 gas absorption light emitting unit 12 is turned on, and NO 2 based on the decrease in light intensity from the output intensities P 0 and P 1. The concentration correction coefficient α of the light reception intensity by the span gas is calculated. However, it is assumed that always the raw material gas G 0 is distributed mixture even during calibration. And α of the flow rate mixing ratio is calculated in real time uncorrected NO 2 gas concentration c 4 'and, since the density before correction SO 2 gas concentration c 3 ", the flow mixing ratio correction before SO 2 gas concentration c 3' Is calculated by density correction processing according to the following equation.

[数2]
’=c”―α×c
[Equation 2]
c 3 ′ = c 3 ″ −α × c 4

なお、このように受光素子として透過光受光部31および基準光受光部32を用いることにより、単に濃度を測定できるだけでなく、SOガス吸光用発光部12の出力がさまざまな要因で変動しても、2個の受光信号の比を算出することにより濃度測定の誤差を低減できるという効果がある。By using the transmitted light receiving unit 31 and the reference light receiving unit 32 as the light receiving elements in this way, not only can the concentration be measured, but also the output of the SO 2 gas absorbing light emitting unit 12 varies due to various factors. Also, there is an effect that an error in density measurement can be reduced by calculating the ratio of the two received light signals.

透過光受光部31、基準光受光部32からの出力信号は、信号処理・駆動制御部61に伝送される。信号処理・駆動制御部61では、出力強度P,Pを算出し、数式1と数式2に基づいて、流量混合比補正前NOガス濃度c’および流量混合比補正前SOガス濃度c’を算出し、さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cおよびSOガス濃度cを算出する。Output signals from the transmitted light receiving unit 31 and the reference light receiving unit 32 are transmitted to the signal processing / drive control unit 61. The signal processing / drive control unit 61 calculates the output intensities P 0 and P 1 , and based on the formulas 1 and 2, the NO 2 gas concentration c 4 ′ before the flow mixture ratio correction and the SO 2 gas before the flow mixture ratio correction. to calculate the concentration c 3 ', further by multiplying the flow mixing ratio of a gas mixing section 43, calculates the NO 2 gas concentration c 4 and SO 2 gas concentration c 3 contained in the sample gas G S.

続いて、オゾン発生部42を不動作状態としてガス調整部41を通常出力させた上での測定である。この際に、NOガス濃度cを求める。これは、(c)通常出力時のNOガス吸光用照射光による分析である。Subsequently, the measurement is performed after the ozone generating unit 42 is in an inoperative state and the gas adjusting unit 41 is normally output. At this time, the NO 2 gas concentration c 2 is obtained. This is (c) analysis with irradiation light for absorbing NO 2 gas at normal output.

オゾン発生部42は不動作状態である。このとき、前述のように原料ガスGがオゾン発生部42をそのまま通過し、ガス混合部43においてサンプルガスGと混合される。Oガスが存在しないため化学反応が起きることなく、無反応の原料ガスGとサンプルガスGとがそのままガス混合部43から流出する。また、ガス加熱部44においても化学反応は起きず無反応の原料ガスGとサンプルガスGとがそのままガス加熱部44から流出する。ガス調整部41は無反応のサンプルガスGと原料ガスGとを測定対象ガスとして出力するという通常出力を行う。The ozone generator 42 is in an inoperative state. At this time, the raw material gas G O is passes through the ozone generator 42 as described above, is mixed with the sample gas G S in the gas mixing portion 43. O 3 because the gas does not exist without a chemical reaction occurs, and the raw material gas G O and the sample gas G S-free reaction as it flows out from the gas mixing unit 43. Also, flowing out of the chemical reaction does not occur in the non-reactive material gas G O and the sample gas G S and is directly gas heating unit 44 even in the gas heating unit 44. Gas conditioning unit 41 performs a normal output that outputs the sample gas G S and the raw material gas G O unresponsive as a measurement target gas.

このようにOガスが存在しないために、ガス混合部43で化学反応式(1)および化学反応式(2)で示される化学反応式は起きない。またガス加熱部44では、NガスやOガスを含まないために、化学反応式(3)および化学反応式(4)で示される化学反応は起こさない。Since there is no O 3 gas in this way, the chemical reaction formulas represented by the chemical reaction formula (1) and the chemical reaction formula (2) do not occur in the gas mixing unit 43. In addition, since the gas heating unit 44 does not contain N 2 O 5 gas or O 3 gas, the chemical reaction represented by the chemical reaction formula (3) and the chemical reaction formula (4) does not occur.

この結果、ガス流通セル21に流通するサンプルガスに含まれるガスの状態は、サンプルガスに含まれていたNOガス、NOガス、SOガスが全てそのままの状態となっている。また、原料ガスがガス混合部43において混合されているため、NOガス、NOガス、SOガスの各濃度は原料ガスとサンプルガスの流量混合比に応じて希釈されている。このような原料ガスGとサンプルガスGとがガス流通セル21へ導入される。As a result, the state of the gas contained in the sample gas flowing through the gas circulation cell 21 is the state in which all of the NO gas, NO 2 gas, and SO 2 gas contained in the sample gas are intact. Further, since the source gas is mixed in the gas mixing unit 43, the concentrations of NO gas, NO 2 gas, and SO 2 gas are diluted according to the flow rate mixing ratio of the source gas and the sample gas. And such feed gas G O and the sample gas G S is introduced into the gas flow cell 21.

そしてガス濃度の検出自体はオゾン発生部42の動作時(酸化出力時)と同様にして求められる。信号処理・駆動制御部61は、上記の数式1に基づいて、ガス流通セル21内におけるNOガス濃度を算出し、さらにガス混合部43での流量混合比を乗じることにより、サンプルガスGに含まれているNOガス濃度cを算出する。The detection of the gas concentration itself is obtained in the same manner as when the ozone generator 42 is in operation (at the time of oxidation output). The signal processing / drive control unit 61 calculates the NO 2 gas concentration in the gas flow cell 21 based on the above mathematical formula 1, and further multiplies the flow rate mixing ratio in the gas mixing unit 43 to thereby obtain the sample gas G S. The NO 2 gas concentration c 2 contained in is calculated.

次に、信号処理・駆動制御部61は、オゾン発生部42の動作時のガス濃度と、不動作時のガス濃度と、の組み合わせにより、サンプルガス中のNOガス濃度cを算出する。
先に説明したように、
(a)酸化出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
(b)酸化出力時のOガス吸光用照射光による分析で算出されたNOガス濃度cおよびSOガス濃度c
(c)通常出力時のNOガス吸光用照射光による分析で算出されたNOガス濃度c
が測定されている。ここで、NOガス濃度cが判別しているため、SOガス濃度cも判別している。
Next, the signal processing / drive control unit 61 calculates the NO gas concentration c 1 in the sample gas from the combination of the gas concentration during operation of the ozone generation unit 42 and the gas concentration during non-operation.
As explained earlier,
(A) NO 2 gas concentration c 4 calculated by analysis with irradiation light for absorbing NO 2 gas during oxidation output,
(B) NO 2 gas concentration c 4 and SO 2 gas concentration c 3 calculated by analysis with irradiation light for absorbing O 3 gas during oxidation output
(C) NO 2 gas concentration c 2 calculated by analysis with irradiation light for absorbing NO 2 gas at normal output,
Has been measured. Here, since the NO 2 gas concentration c 4 is determined, the SO 2 gas concentration c 3 is also determined.

また、酸化出力状態のNOガス濃度cは、NOガス濃度cおよび通常出力時のNOガス濃度cの和となっているために、以下の式からcを算出することができる。Further, since the NO 2 gas concentration c 4 in the oxidation output state is the sum of the NO gas concentration c 1 and the NO 2 gas concentration c 2 at the normal output, it is possible to calculate c 1 from the following equation. it can.

[数3]
= c − c
[Equation 3]
c 1 = c 4 -c 2

信号処理・駆動制御部61は、酸化出力時のNOガス濃度cおよび通常出力時のNOガス濃度cに基づいてNOガス濃度cを算出する。The signal processing / drive control unit 61 calculates the NO gas concentration c 1 based on the NO 2 gas concentration c 4 at the time of oxidation output and the NO 2 gas concentration c 2 at the time of normal output.

このようにして、NOのガス濃度c,NOのガス濃度c,SOのガス濃度cを測定することができる。すなわち、信号処理・駆動制御部61がオゾン発生部42の動作・不動作を時間的に切り換えながら、オゾン発生部42の動作時の酸化出力時ではNO(NO分を含む),SOのガス濃度を測定し、オゾン発生部42の不動作時の通常出力時ではNO(NO分を含まない)のガス濃度を測定し、NOガス濃度については、酸化出力時のNOガス濃度から通常出力時のNOガス濃度を差し引くことによりNOガス濃度を求めることができる。In this manner, the NO gas concentration c 1 , the NO 2 gas concentration c 4 , and the SO 2 gas concentration c 3 can be measured. That is, while the signal processing / drive control unit 61 switches the operation / non-operation of the ozone generation unit 42 in time, NO 2 (including NO content), SO 2 at the time of oxidation output during operation of the ozone generation unit 42 The gas concentration is measured, and the NO 2 (not including NO content) gas concentration is measured at the normal output when the ozone generator 42 is not operating. The NO gas concentration is determined from the NO 2 gas concentration at the oxidation output. The NO gas concentration can be obtained by subtracting the NO 2 gas concentration during normal output.

また、ガス濃度の校正のために、ゼロガスGZEROまたはスパンガスGSPANを用いることができる。ゼロガスGZEROは、NOガス吸光用発光部11およびSOガス吸光用発光部12が吸光を示さないガス、例えば窒素ガスである。スパンガスGSPANは、所望の測定レンジの最大濃度値で校正されたガスで、ガス種はNO,NO,SOが用いられる。Also, zero gas G ZERO or span gas G SPAN can be used for gas concentration calibration. Zero gas G ZERO is a gas, for example, nitrogen gas, in which the NO 2 gas absorption light-emitting unit 11 and the SO 2 gas absorption light-emitting unit 12 do not absorb light. The span gas G SPAN is a gas calibrated with the maximum concentration value in a desired measurement range, and NO, NO 2 , and SO 2 are used as gas types.

サンプルガスGの供給を止め、その後にゼロガスGZEROの供給を行ってゼロガスGZERO流通時の受光信号を測定して校正し、または、スパンガスGSPANの供給を行ってスパンガスGSPAN流通時の吸光された受光信号を測定して校正を行うことができる。この校正は随時実施できるが、構成部品の経年変化によってガス濃度指示値が変動することが想定される場合に行われ、正確な値を指示させる。Stopping the supply of the sample gas G S, followed by performing the supply of the zero gas G ZERO calibrated by measuring the light signal at the zero gas G ZERO distribution, or at the time span G SPAN flow by performing the supply of the span gas G SPAN Calibration can be performed by measuring the absorbed light-receiving signal. Although this calibration can be performed at any time, it is performed when it is assumed that the gas concentration indicating value fluctuates due to aging of the component parts, and an accurate value is indicated.

なお、上記では(d)通常出力時のSOガス吸光用照射光による分析、を利用していないが、(b)酸化出力時のSOガス吸光用照射光による分析に代えて、この(d)の
分析を利用し、(a),(c),(d)による分析を行うこともできる。その際、測定手順は酸化出力時の測定手順と同様でよい。なぜならば、SOはオゾンによって酸化されないし、加熱部によって分解もされないため、酸化出力時においても通常出力時においても濃度に変化がないからである。すなわち(a)により酸化出力時のNOガス濃度cを算出し、(c)通常出力時のNOガス吸光用照射光による分析で算出したNOガス濃度cを算出し、(d)によりNOガス濃度cおよびSOガス濃度cを算出する。SOガス濃度cはオゾンに酸化されないため、酸化出力時のSOガス濃度cと同じである。このようにしてSOガス濃度cを算出するようにしても良い。これら(a),(c),(d)による分析でも本発明の実施が可能である。
In the above, (d) the analysis by the irradiation light for SO 2 gas absorption at the normal output is not used, but (b) instead of the analysis by the irradiation light for SO 2 gas absorption at the oxidation output, this ( The analysis of (a), (c), (d) can also be performed using the analysis of d). In that case, the measurement procedure may be the same as the measurement procedure at the time of oxidation output. This is because SO 2 is not oxidized by ozone and is not decomposed by the heating unit, so that there is no change in concentration both during oxidation output and during normal output. That is, the NO 2 gas concentration c 4 at the oxidation output is calculated by (a), (c) the NO 2 gas concentration c 2 calculated by the analysis by the irradiation light for absorbing NO 2 gas at the normal output is calculated, and (d ) To calculate the NO 2 gas concentration c 2 and the SO 2 gas concentration c 3 . Since the SO 2 gas concentration c 3 is not oxidized by ozone, it is the same as the SO 2 gas concentration c 3 at the time of oxidation output. In this way, the SO 2 gas concentration c 3 may be calculated. The present invention can also be implemented by analysis based on these (a), (c), and (d).

また、上記の(a)酸化出力時のNOガス吸光用照射光による分析、および、(c)通常出力時のNOガス吸光用照射光による分析のみを行うことで、SOガス濃度を求めずに、NOガス濃度c、NOガス濃度cのみを算出するようにしても良い。
ガス分析計100はこのようにして分析を行う。
The analysis according to the above (a) NO 2 gas absorption for the irradiation light at the time of oxidation output, and, by performing only analysis by NO 2 gas absorption for the irradiation light at the time of (c) normal output, the SO 2 gas concentration Without obtaining, only the NO gas concentration c 1 and the NO 2 gas concentration c 2 may be calculated.
The gas analyzer 100 performs the analysis in this way.

続いて第2の形態について図2を参照しつつ説明する。ガス分析計200は、図2で示すように、NOガス吸光用発光部11、SOガス吸光用発光部12、光路決定部13、ガス流通セル21、透過光受光部31、基準光受光部32、ガス調整部41、ガス吸引部51、信号処理・駆動制御部61、補正部71を備える。Next, the second embodiment will be described with reference to FIG. As shown in FIG. 2, the gas analyzer 200 includes an NO 2 gas absorption light emitting unit 11, an SO 2 gas absorption light emitting unit 12, an optical path determination unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit. Unit 32, gas adjustment unit 41, gas suction unit 51, signal processing / drive control unit 61, and correction unit 71.

図1を用いて説明した上記の第1の形態のガス分析計100と比較すると、特に補正部71が追加された点が相違する。ここでは補正部71およびその動作について重点的に説明するとともに他の構成については同じ番号を付すとともに重複する説明を省略する。   Compared with the gas analyzer 100 of the first embodiment described with reference to FIG. 1, the difference is that a correction unit 71 is particularly added. Here, the correction unit 71 and its operation will be described with emphasis, and the other components will be assigned the same numbers and redundant description will be omitted.

補正部71は、基準光受光部32、信号処理・駆動制御部61、NOガス吸光用発光部11およびSOガス吸光用発光部12と接続され、特に基準光受光部32からの信号に基づいてNOガス吸光用発光部11およびSOガス吸光用発光部12を駆動させる電流を補正する機能を有する。The correction unit 71 is connected to the reference light receiving unit 32, the signal processing / drive control unit 61, the NO 2 gas absorption light emitting unit 11, and the SO 2 gas absorption light emitting unit 12. Based on this, it has a function of correcting the current for driving the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12.

基準光受光部32がNOガス吸光用発光部11からのNOガス吸光用照射光による基準光を受光してその光量強度信号を出力する。補正部71は、強度信号に基づき、出力強度が一定になるように発光ダイオード駆動電流である駆動信号を補正した上でNOガス吸光用発光部11へ出力する。例えば、最初にNOガス吸光用照射光の光量強度信号をメモリ部に記憶させておき、その最初の光量強度信号と同じとなるように制御するものである。
同様に、基準光受光部32がSOガス吸光用発光部12からのSOガス吸光用照射光による基準光を受光してその強度信号を出力する。補正部71は、強度信号に基づき、出力強度が一定になるように発光ダイオード駆動電流である駆動信号を補正した上でSOガス吸光用発光部12へ出力する。例えば、最初にSOガス吸光用照射光の光量強度信号をメモリ部に記憶させておき、その最初の光量強度信号と同じとなるように制御するものである。
Reference-light receiving part 32 by receiving the reference light by NO 2 gas absorption for the irradiation light from the NO 2 gas absorption for the light emitting unit 11 and outputs the light amount intensity signal. Based on the intensity signal, the correction unit 71 corrects the drive signal, which is a light emitting diode drive current, so that the output intensity is constant, and then outputs the correction signal to the NO 2 gas absorption light emission unit 11. For example, the light intensity signal of the irradiation light for NO 2 gas absorption is first stored in the memory unit and controlled to be the same as the initial light intensity signal.
Similarly, the reference light receiving unit 32 by receiving the reference light by SO 2 gas absorption for the irradiation light from the SO 2 gas absorption for the light emitting unit 12 and outputs the intensity signal. Based on the intensity signal, the correction unit 71 corrects the drive signal, which is a light-emitting diode drive current, so that the output intensity is constant, and then outputs the correction signal to the SO 2 gas absorption light-emitting unit 12. For example, the light intensity signal of the irradiation light for SO 2 gas absorption is first stored in the memory unit and controlled so as to be the same as the initial light intensity signal.

このような補正部71を追加した構成とすることで、NOガス吸光用発光部11およびSOガス吸光用発光部12から出力される照射光の変動が少なくなっており、検出精度を向上させることができる。By adopting a configuration in which such a correction unit 71 is added, fluctuations in irradiation light output from the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12 are reduced, and detection accuracy is improved. Can be made.

続いて、上記の第1,第2形態をそれぞれ改良する第3形態について図を参照しつつ説明する。図3では、先に説明した第1,第2形態のガス分析計100,200の構成に加え、さらに、NOガス吸光用発光部11の光軸上にレンズ14を備え、また、SOガス吸光用発光部12の光軸上にレンズ15を備えたものである。Next, a third embodiment for improving the first and second embodiments will be described with reference to the drawings. In FIG. 3, in addition to the configurations of the gas analyzers 100 and 200 of the first and second embodiments described above, a lens 14 is further provided on the optical axis of the NO 2 gas absorption light emitting unit 11, and the SO 2 A lens 15 is provided on the optical axis of the gas absorption light emitting unit 12.

一般に、発光ダイオードからの発光は指向性が弱く拡散する。そのため、光透過窓23を通じてガス流通セル21の検出空間25内に入射する光の割合が低下するという問題がある。そこで、NOガス吸光用発光部11およびSOガス吸光用発光部12から拡散しつつ照射される照射光の指向性を、レンズ14、レンズ15により高めている。これにより、光透過窓23を通じてガス流通セル21の検出空間25内に入射する光の割合を増やしている。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。In general, light emitted from a light emitting diode is diffused with low directivity. Therefore, there is a problem that the ratio of the light that enters the detection space 25 of the gas flow cell 21 through the light transmission window 23 decreases. Therefore, the directivity of the irradiation light irradiated while diffusing from the NO 2 gas absorbing light emitting portion 11 and the SO 2 gas absorbing light emitting portion 12 is enhanced by the lens 14 and the lens 15. Thereby, the ratio of the light which enters into the detection space 25 of the gas distribution cell 21 through the light transmission window 23 is increased. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.

なお、NOガス吸光用発光部11とレンズ14とがモジュール化により一体に構成され、また、SOガス吸光用発光部12とレンズ15とがモジュール化により一体に構成されていてもよい。Note that the NO 2 gas absorption light-emitting unit 11 and the lens 14 may be integrally configured by modularization, and the SO 2 gas absorption light-emitting unit 12 and the lens 15 may be integrated by modularization.

続いて、上記の第1,第2形態のガス分析計100,200を改良する第4形態について図を参照しつつ説明する。図4に示すように、NOガス吸光用発光部11およびSOガス吸光用発光部12に代えて発光部16が配置されている。この発光部16は、NOガス吸光用発光部11およびSOガス吸光用発光部12を近接させて一体化した発光ダイオードアレイである。さらに、この発光部16のNOガス吸光用発光部11およびSOガス吸光用発光部12の光軸上にレンズ17を配置している。Next, a fourth embodiment for improving the first and second gas analyzers 100 and 200 will be described with reference to the drawings. As shown in FIG. 4, a light emitting unit 16 is arranged in place of the NO 2 gas absorbing light emitting unit 11 and the SO 2 gas absorbing light emitting unit 12. The light emitting section 16 is a light emitting diode array in which the NO 2 gas absorbing light emitting section 11 and the SO 2 gas absorbing light emitting section 12 are integrated in close proximity. Further, a lens 17 is disposed on the optical axis of the light emitting unit 11 for absorbing NO 2 gas and the light emitting unit 12 for absorbing SO 2 gas.

これにより、NOガス吸光用発光部11およびSOガス吸光用発光部12の光軸が近接するため、指向性を高めるためのレンズ17が1個で十分となる。また、光軸が近接しているため基準光受光部32への入射効率も向上する。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。As a result, the optical axes of the NO 2 gas absorbing light emitting portion 11 and the SO 2 gas absorbing light emitting portion 12 are close to each other, so that one lens 17 for increasing directivity is sufficient. Further, since the optical axes are close to each other, the incident efficiency to the reference light receiving unit 32 is also improved. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.

続いて、上記の第1,第2,第3,第4形態をそれぞれ改良する第5形態について図を参照しつつ説明する。図5では、先に説明した第1,第2,第3,第4形態のガス分析計の構成に加え、さらに、光透過窓24と透過光受光部31の間にレンズ18を配置したものである。レンズ18により、光透過窓24を透過してきたNOガス吸光用レーザおよびSOガス吸光用レーザを集光し、効率よく透過光受光部31に入射させる。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。Next, a fifth embodiment that improves the first, second, third, and fourth embodiments will be described with reference to the drawings. In FIG. 5, in addition to the configuration of the gas analyzer of the first, second, third, and fourth embodiments described above, a lens 18 is further disposed between the light transmission window 24 and the transmitted light receiving unit 31. It is. The lens 18 condenses the NO 2 gas absorption laser and the SO 2 gas absorption laser that have passed through the light transmission window 24, and efficiently enters the transmitted light receiving portion 31. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.

なお、光透過窓24とレンズ18とがモジュール化により一体に構成されていてもよい。さらには、光透過窓24自体を、光透過性があり、集光効果がある凸面形状のレンズ18とし、このレンズ18を管22に固着してガス流通セル21を構成してもよい。   In addition, the light transmission window 24 and the lens 18 may be integrally configured by modularization. Furthermore, the light transmission window 24 itself may be a convex lens 18 that is light transmissive and has a light collecting effect, and the gas flow cell 21 may be configured by fixing the lens 18 to the tube 22.

続いて、上記の第1,第2形態を改良する第5形態について図6を参照しつつ説明する。これは、NOガス吸光用発光部11、SOガス吸光用発光部12および透過光受光部31を近接させつつモジュール化により一体化した発受光部19を備えたものである。さらに、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を光路決定部13で復路光が透過する位置に配置したものである。Then, the 5th form which improves said 1st, 2nd form is demonstrated, referring FIG. This is provided with a light emitting / receiving unit 19 in which the NO 2 gas absorbing light emitting unit 11, the SO 2 gas absorbing light emitting unit 12, and the transmitted light receiving unit 31 are integrated in a modular manner. Further, the light transmission window 24 of the gas flow cell 21 is replaced with a reflection unit 28, and the transmitted light receiving unit 31 is arranged at a position where the return path light is transmitted by the optical path determination unit 13.

これによれば、レンズ17はNOガス吸光用発光部11およびSOガス吸光用発光部12からの照射光の指向性を高める機能と、透過光受光部31に入射する照射光を集光する機能を兼ね備えることとなる。また、ガスによる吸光のある光路長が2倍に伸びるため、吸光信号の向上、ガス濃度測定の精度や安定性を改善する効果が期待できる。According to this, the lens 17 condenses the irradiation light incident on the transmitted light receiving unit 31 and the function of increasing the directivity of the irradiation light from the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12. It will have the function to do. Further, since the optical path length with light absorption by gas is doubled, it is possible to expect the effect of improving the light absorption signal and improving the accuracy and stability of gas concentration measurement.

続いて、上記の第1,第2,第3,第4,第5形態を改良する第6形態について説明する。これは、図1〜図6を用いて説明したガス分析計において上記の光路決定部13を変更するものである。先に説明した形態ではハーフミラーを想定して説明した。しかしながら、この光路決定部13が、光が全反射する鏡面を有するミラーをメカニカルに移動させる機械式ミラー、または、電気的な切換により鏡面と透明とが交互に現れるミラーを採用したものであっても良い。   Next, a sixth embodiment that improves the first, second, third, fourth, and fifth embodiments will be described. This is to change the optical path determination unit 13 in the gas analyzer described with reference to FIGS. In the embodiment described above, a half mirror is assumed. However, the optical path determination unit 13 employs a mechanical mirror that mechanically moves a mirror having a mirror surface where light is totally reflected, or a mirror in which mirror surface and transparency appear alternately by electrical switching. Also good.

この場合、基準光と透過光とは同時に受光できない。そこで、ガス分析計の装置構成を変更する。すなわち、透過光受光部31および基準光受光部32(または信号処理・駆動制御部61)は、光量強度信号を記憶する記憶部を内蔵するようにする。また、信号処理・駆動制御部61が光路決定部13のミラーを制御し、光が透過光受光部31へ入射するか基準光受光部32へ入射するか選択できるようにする。そして、NOガス吸光用照射光の基準光を検出するときは、基準光が基準光受光部32へ入射するように光路決定部13を制御した上で基準光の光量強度信号Pを基準光受光部32(または信号処理・駆動制御部61)の記憶部が記憶する。続いて、NOガス吸光用照射光の透過光を検出するときは、透過光が透過光受光部31へ入射するように光路決定部13を制御した上で透過光の光量強度信号Pを透過光受光部31(または信号処理・駆動制御部61)の記憶部が記憶する。そしてSOガス吸光用照射光による検出についても基準光の光量強度信号Pと透過光の光量強度信号Pとを時間を分けて別々に取得する。後にNOガス吸光用照射光とのSOガス吸光用照射光との二つの光量強度信号P,Pを用いて上記の数式1,2に基づいて算出することとなる。このようなガス分析計では、ハーフミラーと比較すると基準光と透過光との光強度が2倍となるため、検出能力を高めることができる。In this case, the reference light and the transmitted light cannot be received simultaneously. Therefore, the device configuration of the gas analyzer is changed. That is, the transmitted light receiving unit 31 and the reference light receiving unit 32 (or the signal processing / drive control unit 61) include a storage unit that stores a light intensity signal. In addition, the signal processing / drive control unit 61 controls the mirror of the optical path determination unit 13 so that light can be selected to enter the transmitted light receiving unit 31 or the reference light receiving unit 32. When detecting the reference light of the NO 2 gas absorption irradiation light, the optical path determination unit 13 is controlled so that the reference light is incident on the reference light receiving unit 32, and then the light intensity signal P 0 of the reference light is used as a reference. Stored in the storage unit of the light receiving unit 32 (or the signal processing / drive control unit 61). Subsequently, when detecting the transmitted light of the irradiation light for NO 2 gas absorption, the light intensity determination signal P 1 of the transmitted light is obtained after controlling the optical path determination unit 13 so that the transmitted light is incident on the transmitted light receiving unit 31. The storage unit of the transmitted light receiving unit 31 (or the signal processing / drive control unit 61) stores it. And separately acquired separately the amount of light intensity signal P 0 and the light amount intensity signal P 1 and the time of the transmitted light of the reference light also detected by SO 2 gas absorption for the irradiation light. Later, the light intensity intensity signals P 0 and P 1 of the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas are used to calculate based on the above formulas 1 and 2. In such a gas analyzer, the light intensity of the reference light and the transmitted light is doubled compared to the half mirror, so that the detection capability can be enhanced.

続いて、上記の第1,第2形態を改良する第7形態について図7を参照しつつ説明する。これは、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を光路決定部13で復路光が反射する位置に配置したものである。   Next, a seventh embodiment for improving the first and second embodiments will be described with reference to FIG. In this configuration, the light transmission window 24 of the gas flow cell 21 is replaced with a reflection unit 28, and the transmitted light receiving unit 31 is disposed at a position where the return light is reflected by the optical path determination unit 13.

この構成においては、NOガス吸光用発光部11およびSOガス吸光用発光部12から照射される照射光である往路光が光透過窓23を透過し、管22の検出空間25内を伝播し、反射部28において反射され、復路光となる。反射された復路光は管22の検出空間25内を反対向きに伝播し、光透過窓23から出射し、光路決定部13で反射して、透過光受光部31に入射する。In this configuration, forward light, which is irradiation light emitted from the NO 2 gas absorption light-emitting unit 11 and the SO 2 gas absorption light-emitting unit 12, passes through the light transmission window 23 and propagates in the detection space 25 of the tube 22. Then, the light is reflected by the reflecting portion 28 and becomes return path light. The reflected return light propagates in the detection space 25 of the tube 22 in the opposite direction, exits from the light transmission window 23, is reflected by the optical path determination unit 13, and enters the transmitted light receiving unit 31.

この構成によれば、図1,図2の第1,第2形態と比較して、ガスによる吸光のある光路長が2倍に伸びるため、吸光信号の向上、ガス濃度測定の精度や安定性を改善する効果が期待できる。   According to this configuration, the optical path length with light absorption is doubled compared to the first and second embodiments of FIGS. 1 and 2, so that the light absorption signal is improved and the accuracy and stability of gas concentration measurement are improved. The effect that improves can be expected.

続いて、上記の第1,第2,第3,第4,第5,第6,第7形態を改良する第8形態について図を参照しつつ説明する。図8は発光ダイオードやレーザダイオードのデューティー比−許容電流特性図である。本形態は先に説明した第1,第2,第3,第4,第5,第6,第7形態のガス分析計の測定精度をさらに向上させるものである。   Next, an eighth embodiment that improves the first, second, third, fourth, fifth, sixth, and seventh embodiments will be described with reference to the drawings. FIG. 8 is a duty ratio-allowable current characteristic diagram of a light emitting diode or a laser diode. This embodiment further improves the measurement accuracy of the gas analyzers of the first, second, third, fourth, fifth, sixth, and seventh embodiments described above.

まず原理について説明する。図8に示すように、発光ダイオードやレーザダイオードの許容電流は、一般にデューティー比を小さくして出力期間が短いほど、電流値を大きく確保できるという特徴がある。そこで、NOガス吸光用発光部11およびSOガス吸光用発光部12の駆動電流を、図9に示すように大きいデューティー比から、図10に示すように小さいデューティー比(出力期間が停止期間よりも短い)とする。この際、図10に示すように出力時間は短くなるが駆動電流値を大きくすることができる。したがって、照射光の出力強度を高めて信号レベルを高く確保でき、相対的にノイズに対する信号レベルが高くなり、安定的なガス濃度値を算出することができる。First, the principle will be described. As shown in FIG. 8, the allowable current of a light emitting diode or a laser diode is characterized in that, generally, the smaller the duty ratio and the shorter the output period, the larger the current value can be secured. Therefore, the drive currents of the NO 2 gas absorption light emitting unit 11 and the SO 2 gas absorption light emitting unit 12 are changed from a large duty ratio as shown in FIG. 9 to a small duty ratio as shown in FIG. Shorter). At this time, the output time is shortened as shown in FIG. 10, but the drive current value can be increased. Therefore, the output intensity of the irradiation light can be increased to ensure a high signal level, the signal level against noise is relatively high, and a stable gas concentration value can be calculated.

さらに、発光ダイオードやレーザダイオードであるNOガス吸光用発光部11、および、発光ダイオードであるSOガス吸光用発光部12の発光時間を短くすることができるため、熱等による劣化を抑制し、連続発光と比較して寿命を長く保つことが可能となる。Furthermore, since the light emission time of the light emitting diode 11 for absorbing NO 2 gas, which is a light emitting diode or laser diode, and the light emitting portion 12 for absorbing SO 2 gas, which is a light emitting diode, can be shortened, deterioration due to heat or the like is suppressed. Thus, it is possible to maintain a long life compared to continuous light emission.

このような本発明のガス分析計は、一酸化窒素ガス(NOガス)および二酸化窒素ガス(NOガス)の2成分、また、一酸化窒素ガス(NOガス)、二酸化窒素ガス(NOガス)および二酸化硫黄ガス(SO)の3成分を測定する分析に良好であり、例えば、ボイラ、ゴミ焼却等の燃焼排ガス測定用として最適である。その他、鉄鋼用ガス分析[高炉、転炉、熱処理炉、焼結(ペレット設備)、コークス炉]、青果貯蔵及び熟成、生化学(微生物)[発酵]、大気汚染[焼却炉、排煙脱硫・脱硝]、自動車・船等の内燃機関の排ガス(除テスタ)、防災[爆発性ガス検知、有毒ガス検知、新建築材燃焼ガス分析]、植物育成用、化学用分析[石油精製プラント、石油化学プラント、ガス発生プラント]、環境用[着地濃度、トンネル内濃度、駐車場、ビル管理]、理化学各種実験用などの分析計としても有用である。Such a gas analyzer of the present invention comprises two components, nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas), as well as nitrogen monoxide gas (NO gas) and nitrogen dioxide gas (NO 2 gas). ) And sulfur dioxide gas (SO 2 ), and is optimal for analysis of combustion exhaust gas such as boilers and garbage incineration. In addition, gas analysis for steel [blast furnace, converter, heat treatment furnace, sintering (pellet equipment), coke oven], fruit and vegetable storage and ripening, biochemistry (microorganism) [fermentation], air pollution [incinerator, flue gas desulfurization / Denitration], exhaust gas (removal tester) of internal combustion engines such as automobiles and ships, disaster prevention [explosive gas detection, toxic gas detection, new building material combustion gas analysis], plant growth, chemical analysis [oil refinery plant, petrochemical Plants, gas generation plants], environmental [landing concentration, concentration in tunnels, parking lots, building management], and as an analytical instrument for various physical and chemical experiments

100,200:ガス分析計
11:NOガス吸光用発光部
12:SOガス吸光用発光部
13:光路決定部
14:レンズ
15:レンズ
16:発光部
17:レンズ
18:レンズ
19:受発光部
21:ガス流通セル
22:管
23,24:光透過窓
25:検出空間
26:ガス流入口
27:ガス流出口
31:透過光受光部
32:基準光受光部
41:ガス調整部
42:オゾン発生部
43:ガス混合部
44:ガス加熱部
51:ガス吸引部
61:信号処理・駆動制御部
71:補正部
100,200: Gas analyzer 11: NO 2 gas absorption for the light emitting portion 12: SO 2 gas absorption for the light emitting unit 13: optical path determining section 14: Lens 15: Lens 16: light-emitting unit 17: Lens 18: Lens 19: light receiving and emitting Unit 21: Gas distribution cell 22: Tube 23, 24: Light transmission window 25: Detection space 26: Gas inlet 27: Gas outlet 31: Transmitted light receiving unit 32: Reference light receiving unit 41: Gas adjusting unit 42: Ozone Generation unit 43: Gas mixing unit 44: Gas heating unit 51: Gas suction unit 61: Signal processing / drive control unit 71: Correction unit

上記課題を解決するため、請求項1に係る発明は、サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、を切換えるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光を前記検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓から前記検出空間を透過した前記NOガス吸光用照射光を受光する透過光受光部と、
前記第1,第2測定対象ガスを前記ガス流通セルにそれぞれ流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部および前記NOガス吸光用発光部を制御する駆動制御部と、
基準光として前記NO ガス吸光用照射光を受光する基準光受光部と、
前記NO ガス吸光用照射光を、前記光透過窓から前記検出空間を透過させて前記透過光受光部へ到達させる光路と前記検出空間を透過させずに前記基準光受光部へ到達させる光路とに分離して通過させる光路決定部と、
前記基準光受光部による基準光の受光量に基づいて、前記NO ガス吸光用発光部の駆動電流を制御する補正部と、
前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記サンプルガス中の二酸化窒素ガスのガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値を減じて前記サンプルガス中の一酸化窒素ガス(NOガス)のガス濃度を算出する信号処理部と、を備えることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to an oxidation output state in which a sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as a first measurement target gas. a normal output state for outputting a second measurement target gas as a reaction, and switching Ru gas conditioning unit,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
The first, a detection space in which the second measurement target gas flows, the light transmission window for entering the NO 2 gas absorption for the irradiation light to the detection space, the gas flow cell having,
A transmitted light receiving unit that receives the irradiation light for absorbing the NO 2 gas transmitted through the detection space from the light transmission window;
The gas adjusting unit and the NO 2 gas absorption light emitting unit are controlled to irradiate the NO 2 gas absorption irradiation light in a state where the first and second measurement target gases are respectively circulated through the gas flow cell. A drive control unit;
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas as reference light ;
An optical path for allowing the irradiation light for NO 2 gas absorption to pass through the detection space through the light transmission window and reach the transmitted light receiving part; and an optical path for reaching the reference light receiving part without passing through the detection space; And an optical path determination unit that allows the light to pass separately.
A correction unit that controls the drive current of the light emitting unit for absorbing NO 2 gas based on the amount of reference light received by the reference light receiving unit ;
Calculating a gas concentration of nitrogen dioxide gas in the sample gas from a calculated value according to the amount of light received by the transmitted light receiving unit when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, The second measurement target gas is irradiated with the NO 2 gas absorption irradiation light from a calculated value corresponding to the amount of light received by the transmitted light receiving unit when the first measurement target gas is irradiated with the NO 2 gas absorption irradiation light. characterized in that it comprises the a signal processing unit for calculating the gas concentration of nitric oxide gas by subtracting the calculated value corresponding to the received light amount of the transmitted light receiving unit and the sample gas (NO gas) when .

請求項2に係る発明は、サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、を切換えるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガスが吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を前記検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓から前記検出空間を透過した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光および前記SOガス吸光用照射光を順次照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
基準光として前記NO ガス吸光用照射光および前記SO ガス吸光用照射光を受光する基準光受光部と、
前記NO ガス吸光用照射光および前記SO ガス吸光用照射光を、前記光透過窓から前記検出空間を透過させて前記透過光受光部へ到達させる光路と前記検出空間を透過させずに前記基準光受光部へ到達させる光路とに分離して通過させる光路決定部と、
前記基準光受光部による基準光の受光量に基づいて、前記NO ガス吸光用発光部および前記SO ガス吸光用発光部の駆動電流を制御する補正部と、
前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記サンプルガス中の二酸化窒素ガスのガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じ算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じた算出値を減じて前記サンプルガス中の一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記SOガス吸光用照射光を照射した時の受光量に応じ算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じ算出値を減じて前記サンプルガス中の二酸化硫黄ガスのガス濃度を算出する信号処理部と、を備えることを特徴とする。
The invention according to claim 2 is an oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement object gas, and the second measurement object is left unreacted with the sample gas. a normal output state for outputting as a gas, a switching Ru gas conditioning unit,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
A SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas absorb;
The first, a detection space in which the second measurement target gas flows, gas flow cell having a light transmission window for the NO 2 gas absorption irradiation light and the SO 2 gas absorption for the irradiation light is incident on the detection space When,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas transmitted through the detection space from the light transmission window;
The NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are sequentially irradiated in a state where the first measurement target gas is circulated through the gas distribution cell, and the second measurement target gas is supplied to the gas distribution cell. A drive control unit that controls the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to irradiate the irradiation light for NO 2 gas absorbing in a state of being distributed to
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
The NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are transmitted through the detection space through the light transmission window and reach the transmitted light receiving unit and the detection space without passing through the detection space. An optical path determination unit that allows the optical path to reach the reference light receiving unit and separates the optical path;
A correction unit that controls driving currents of the NO 2 gas absorption light-emitting unit and the SO 2 gas absorption light-emitting unit based on the amount of reference light received by the reference light receiving unit ;
Calculating a gas concentration of nitrogen dioxide gas in the sample gas from a calculated value according to the amount of light received by the transmitted light receiving unit when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, the transmitted light when irradiated with the NO 2 gas absorption for the irradiation light in the second measurement target gas calculated value corresponding to the received light amount when irradiated with the NO 2 gas absorption for the irradiation light to the first measurement target gas calculating a gas concentration of nitric oxide gas in front Symbol sample gas by subtracting the calculated value according to the amount of light received by the light receiving portion (NO gas), the SO 2 gas absorption for the irradiation light in the first measurement target gas sulfur dioxide gas in the sample gas by subtracting the calculated value corresponding to the received light amount when the from the calculated value corresponding to the received light amount is irradiated with the NO 2 gas absorption for the irradiation light in the first measurement target gas when irradiated A signal processing unit for calculating the gas concentration of Characterized in that it comprises.

請求項3に係る発明は、サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、を切換えるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガスが吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を前記検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓から前記検出空間を透過した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光および前記SOガス吸光用照射光を順次照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
基準光として前記NO ガス吸光用照射光および前記SO ガス吸光用照射光を受光する基準光受光部と、
前記NO ガス吸光用照射光および前記SO ガス吸光用照射光を、前記光透過窓から前記検出空間を透過させて前記透過光受光部へ到達させる光路と前記検出空間を透過させずに前記基準光受光部へ到達させる光路とに分離して通過させる光路決定部と、
前記基準光受光部による基準光の受光量に基づいて、前記NO ガス吸光用発光部および前記SO ガス吸光用発光部の駆動電流を制御する補正部と、
前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記サンプルガス中の二酸化窒素ガスのガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じ前記サンプルガス中の一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第2測定対象ガスに前記SOガス吸光用照射光を照射した時の前記透過光受光部の受光量に応じ算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じ算出値を減じ前記サンプルガス中の二酸化硫黄ガスのガス濃度を算出する信号処理部と、を備えることを特徴とする。
The invention according to claim 3 is an oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement object gas, and the second measurement object is left unreacted with the sample gas. a normal output state for outputting as a gas, a switching Ru gas conditioning unit,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
A SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas absorb;
The first, a detection space in which the second measurement target gas flows, gas flow cell having a light transmission window for the NO 2 gas absorption irradiation light and the SO 2 gas absorption for the irradiation light is incident on the detection space When,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas transmitted through the detection space from the light transmission window;
The NO 2 gas in a state where the first measurement target gas is irradiated with the NO 2 gas absorption for the irradiation light in the state of being distributed in the gas flow cell, was passed through the second measurement target gas into the gas flow cell A drive control unit for controlling the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to sequentially emit the absorbing light for absorbing light and the irradiated light for absorbing SO 2 gas;
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
The NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are transmitted through the detection space through the light transmission window and reach the transmitted light receiving unit and the detection space without passing through the detection space. An optical path determination unit that allows the optical path to reach the reference light receiving unit and separates the optical path;
A correction unit that controls driving currents of the NO 2 gas absorption light-emitting unit and the SO 2 gas absorption light-emitting unit based on the amount of reference light received by the reference light receiving unit ;
Calculating a gas concentration of nitrogen dioxide gas in the sample gas from a calculated value according to the amount of light received by the transmitted light receiving unit when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, The second measurement target gas is irradiated with the NO 2 gas absorption irradiation light from a calculated value corresponding to the amount of light received by the transmitted light receiving unit when the first measurement target gas is irradiated with the NO 2 gas absorption irradiation light. The gas concentration of the nitric oxide gas (NO gas) in the sample gas is calculated by subtracting the calculated value obtained according to the amount of received light at the time, and the SO 2 gas absorption irradiation light is applied to the second measurement object gas. the subtracting the calculated value corresponding to the received light amount when the irradiated from the calculated value corresponding to the received light amount of the transmitted light receiving unit of the NO 2 gas absorption for the irradiation light in the first measurement target gas when irradiated the gas concentration of sulfur dioxide gas in the sample gas Characterized in that it comprises a signal processing unit for calculating a.

請求項4に係る発明は、請求項1〜請求項3の何れか一項に記載のガス分析計において、
前記ガス調整部は、
前記駆動制御部からの指令がない時は原料ガスを出力し、前記指令がある時は前記原料ガスからオゾンガスを生成してオゾンガスを含む原料ガスを出力するオゾン発生部と、
前記サンプルガスと前記原料ガスとを混合して出力するガス混合部と、
前記ガス混合部からの混合ガスを加熱して前記第1,第2測定対象ガスとして出力するガス加熱部と、から構成されることを特徴とする。
The invention according to claim 4 is the gas analyzer according to any one of claims 1 to 3,
The gas adjusting unit is
When there is no command from the drive control unit, a raw material gas is output, and when there is the command, an ozone generation unit that generates ozone gas from the raw material gas and outputs a raw material gas containing ozone gas,
A gas mixing section for mixing and outputting the sample gas and the source gas;
A gas heating unit configured to heat the mixed gas from the gas mixing unit and output the mixed gas as the first and second measurement target gases .

請求項5に係る発明は、請求項1〜3の何れか一項に記載のガス分析計において、
記信号処理部は、前記基準光受光部による基準光の受光量と前記透過光受光部による透過光の受光量との比に基づいてガス濃度を算出することを特徴とする。
The invention according to claim 5 is the gas analyzer according to any one of claims 1 to 3,
Before SL signal processing unit, and calculates the gas concentration on the basis of the ratio between the received light amount of the transmitted light by the transmitted light receiving unit and the light receiving amount of the reference light due to the reference light receiving unit.

請求項6に係る発明は、請求項1に記載のガス分析計において、The invention according to claim 6 is the gas analyzer according to claim 1,
前記駆動制御部は、発光ダイオードまたはレーザダイオードである前記NOThe drive control unit is the NO that is a light emitting diode or a laser diode. 2 ガス吸光用発光部の出力と停止とを交互に行うパルスであって停止期間より出力期間が短いデューティー比の駆動電流により前記NOIt is a pulse that alternately performs output and stop of the gas light-absorbing light emitting unit, and the NO is generated by a drive current having a duty ratio that is shorter than the stop period. 2 ガス吸光用発光部を駆動することを特徴とする。The light-absorbing light emitting unit is driven.

請求項7に係る発明は、請求項2または請求項3に記載のガス分析計において、The invention according to claim 7 is the gas analyzer according to claim 2 or claim 3, wherein
前記駆動制御部は、発光ダイオードまたはレーザダイオードである前記NOThe drive control unit is the NO that is a light emitting diode or a laser diode. 2 ガス吸光用発光部の出力と停止とを交互に行うパルスであって停止期間より出力期間が短いデューティー比の駆動電流により前記NOIt is a pulse that alternately performs output and stop of the gas light-absorbing light emitting unit, and the NO is generated by a drive current having a duty ratio that is shorter than the stop period. 2 ガス吸光用発光部を駆動し、発光ダイオードである前記SOThe SO that is a light-emitting diode is driven by the light-absorbing light-emitting unit. 2 ガス吸光用発光部の出力と停止とを交互に行うパルスであって停止期間より出力期間が短いデューティー比の駆動電流により前記SOThe SO is generated by a drive current having a duty ratio that alternately outputs and stops the gas absorption light-emitting unit and has an output period shorter than the stop period. 2 ガス吸光用発光部を駆動することを特徴とする。The light-absorbing light emitting unit is driven.

次に、本発明の基本形態に係るガス分析計について、図を参照しつつ以下に説明する。図1は、本形態のガス分析計の全体構成図である。図1において、太い実線の矢印はガスの流通経路を、点線の矢印は光の経路を、細い実線は電気信号の経路を、それぞれ示す。 Next, the gas analyzer which concerns on the basic form of this invention is demonstrated below, referring a figure. FIG. 1 is an overall configuration diagram of a gas analyzer according to this embodiment. In FIG. 1, thick solid arrows indicate gas flow paths, dotted arrows indicate light paths, and thin solid lines indicate electrical signal paths.

続いて、第1の形態について図2を参照しつつ説明する。ガス分析計200は、図2で示すように、NOガス吸光用発光部11、SOガス吸光用発光部12、光路決定部13、ガス流通セル21、透過光受光部31、基準光受光部32、ガス調整部41、ガス吸引部51、信号処理・駆動制御部61、補正部71を備える。 Next , the first embodiment will be described with reference to FIG. As shown in FIG. 2, the gas analyzer 200 includes an NO 2 gas absorption light emitting unit 11, an SO 2 gas absorption light emitting unit 12, an optical path determination unit 13, a gas flow cell 21, a transmitted light receiving unit 31, and a reference light receiving unit. Unit 32, gas adjustment unit 41, gas suction unit 51, signal processing / drive control unit 61, and correction unit 71.

図1に示した基本形態のガス分析計100と比較すると、図2の形態では、特に補正部71が追加された点が相違する。ここでは補正部71およびその動作について重点的に説明するとともに他の構成については同じ番号を付して重複する説明を省略する。 Compared to the basic form of the gas analyzer 100 shown in FIG. 1, in the form of FIG. 2, to differences that particular correcting unit 71 is added. It is omitted here as well as focuses on correction unit 71 and its operation, the description overlapping with with the same number of other configurations.

次に、本発明の第2の形態について図を参照しつつ説明する。図3では、前述したガス分析計100,200の構成に加え、さらに、NOガス吸光用発光部11の光軸上にレンズ14を備え、また、SOガス吸光用発光部12の光軸上にレンズ15を備えている。 Next, a description will be given of a second embodiment of the present invention while referring to Figure 3. In addition to the configuration of the gas analyzers 100 and 200 described above , FIG. 3 further includes a lens 14 on the optical axis of the NO 2 gas absorption light emitting unit 11, and the optical axis of the SO 2 gas absorption light emitting unit 12. Ru Tei includes a lens 15 thereon.

次に、本発明の第3の形態について図を参照しつつ説明する。図4に示すように、NOガス吸光用発光部11およびSOガス吸光用発光部12に代えて発光部16が配置されている。この発光部16は、NOガス吸光用発光部11およびSOガス吸光用発光部12を近接させて一体化した発光ダイオードアレイであり、NOガス吸光用発光部およびSOガス吸光用発光部の光軸上にレンズ17配置されている。 Next, a description will be given of a third embodiment of the present invention while referring to Figure 4. As shown in FIG. 4, a light emitting unit 16 is arranged in place of the NO 2 gas absorbing light emitting unit 11 and the SO 2 gas absorbing light emitting unit 12. The light emitting unit 16, NO 2 light-emitting diode array der that is integrated in proximity of the gas absorption for the light emitting unit 11 and the SO 2 gas absorption for the light emitting portion 12 Ri, NO 2 gas absorption emitting portion contact and SO 2 gas absorption lens 17 on the optical axis of the use-emitting portion is disposed.

次に、本発明の第4の形態について図を参照しつつ説明する。図5では、前述した各形態のガス分析計の構成に加え、さらに、光透過窓24と透過光受光部21の間にレンズ18を配置したものである。レンズ18により、光透過窓24を透過してきたNOガス吸光用レーザおよびSOガス吸光用レーザを集光し、効率よく透過光受光部31に入射させる。その結果、信号強度を増加させ、ひいてはガス濃度測定の精度や安定性を改善する効果がある。 Next, it will be described with reference to FIG. 5, a fourth embodiment of the present invention. In FIG. 5, in addition to the configuration of the gas analyzer of each form described above, a lens 18 is further disposed between the light transmission window 24 and the transmitted light receiving unit 21. The lens 18 condenses the NO 2 gas absorption laser light and the SO 2 gas absorption laser light that have been transmitted through the light transmission window 24 and efficiently enters the transmitted light receiving portion 31. As a result, there is an effect that the signal intensity is increased, and consequently the accuracy and stability of the gas concentration measurement are improved.

次に、本発明の第5の形態について図6を参照しつつ説明する。この形態は、NOガス吸光用発光部11、SOガス吸光用発光部12および透過光受光部31を近接させつつ一体化した発受光部19を備えたものである。さらに、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を光路決定部13で復路光が透過する位置に配置したものである。 Next, a fifth embodiment of the present invention will be described with reference to FIG. This embodiment is such that with a light emitting and receiving unit 19 that is integrated while close to NO 2 gas absorption for the light emitting unit 11, SO 2 gas absorption for the light emitting unit 12 and the transmitted light receiving unit 31. Further, the light transmission window 24 of the gas flow cell 21 is replaced with a reflection unit 28, and the transmitted light receiving unit 31 is arranged at a position where the return path light is transmitted by the optical path determination unit 13.

次に、本発明の第6の形態について説明する。この形態は、図1〜図6を用いて説明したガス分析計において上記の光路決定部13を変更するものである。先に説明した形態ではハーフミラーを想定して説明した。しかしながら、この光路決定部13、光が全反射する鏡面を有するミラーをメカニカルに移動させる機械式ミラー、または、電気的な切換により鏡面と透明とが交互に現れるミラーを採用したものであっても良い。 Next, a sixth embodiment of the present invention will be described. This embodiment is intended to modify the above optical path determining section 13 in the gas analyzer described with reference to FIGS. In the embodiment described above, a half mirror is assumed. However, the optical path determining unit 13, a mechanical mirror moves the mirror having a mirror surface on which light is totally reflected in the mechanical or, by electrical switching and a mirror and a transparent be those employing mirrors alternating Also good.

次に、本発明の第7の形態について図7を参照しつつ説明する。この形態は、ガス流通セル21の光透過窓24を反射部28に置き換え、また、透過光受光部31を光路決定部13で復路光が透過する位置に配置したものである。 Next, a seventh embodiment of the present invention will be described with reference to FIG. In this embodiment , the light transmission window 24 of the gas flow cell 21 is replaced with a reflection section 28, and the transmitted light receiving section 31 is disposed at a position where the return path light is transmitted by the optical path determination section 13.

この構成によれば、図1,図2と比較してガスによる吸光のある光路長が2倍に伸びるため、ガス濃度測定の精度や安定性を改善する効果が期待できる。 According to this structure, FIG. 1, since in comparison with FIG optical path length with a light absorption by the gas expands to double, it can be expected to improve the accuracy and stability of the gas concentration measurement.

次に、本発明の第8の形態について図を参照しつつ説明する。図8は発光ダイオードやレーザダイオードのデューティ比−許容電流特性図である。本形態は、前述した各形態のガス分析計の測定精度をさらに向上させるものである。 Will now be described an eighth embodiment of the present invention while referring to Figure 8. FIG. 8 is a duty ratio-allowable current characteristic diagram of a light emitting diode or a laser diode. In this embodiment , the measurement accuracy of the gas analyzer of each embodiment described above is further improved.

Claims (10)

サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光を受光する透過光受光部と、
前記第1,第2測定対象ガスを前記ガス流通セルにそれぞれ流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部および前記NOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出する信号処理部と、
を備えることを特徴とするガス分析計。
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
A gas flow cell having a detection space through which the first and second measurement target gases flow, and a light transmission window through which the irradiation light for absorbing NO 2 gas is incident on the detection space;
A transmitted light receiver that receives the irradiation light for absorbing NO 2 gas that has passed through the light transmission window and propagated through the gas flow cell;
The gas adjusting unit and the NO 2 gas absorption light emitting unit are controlled to irradiate the NO 2 gas absorption irradiation light in a state where the first and second measurement target gases are respectively circulated through the gas flow cell. A drive control unit;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas A signal processing unit for calculating the gas concentration of the nitrogen monoxide gas (NO gas)
A gas analyzer comprising:
サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光をおよび前記SOガス吸光用照射光を順次照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記SOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる二酸化硫黄ガス(SOガス)のガス濃度を算出する信号処理部と、
を備えることを特徴とするガス分析計。
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
An SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
A gas flow cell having a detection space in which the first and second measurement target gases flow, and a light transmission window for allowing the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light to enter the detection space; ,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas that has passed through the light transmission window and propagated in the gas distribution cell;
The NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light are sequentially irradiated with the first measurement target gas flowing through the gas flow cell, and the second measurement target gas is supplied to the gas flow. A drive control unit for controlling the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to irradiate the irradiation light for NO 2 gas absorbing in a state of being distributed in a cell;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas The first concentration is calculated from a calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing SO 2 gas. irradiation for the NO 2 gas absorption in the target gas Calculating a gas concentration of sulfur dioxide gas (SO 2 gas) contained in the sample gas by using the calculated value representing the difference between the received light amount obtained by subtracting the calculated value obtained in accordance with the amount of received light when irradiated with light A signal processing unit to
A gas analyzer comprising:
サンプルガスをオゾンガスと混合して酸化反応させた後、加熱して第1測定対象ガスとして出力する酸化出力状態と、前記サンプルガスを無反応のまま第2測定対象ガスとして出力する通常出力状態と、が切換えられるガス調整部と、
二酸化窒素ガス(NOガス)が吸光する320nm〜600nmの波長のNOガス吸光用照射光を照射するNOガス吸光用発光部と、
二酸化硫黄ガス(SOガス)および二酸化窒素ガス(NOガス)が吸光する250nm〜320nmの波長のSOガス吸光用照射光を照射するSOガス吸光用発光部と、
前記第1,第2測定対象ガスが流通する検出空間と、前記NOガス吸光用照射光および前記SOガス吸光用照射光を検出空間へ入射させる光透過窓と、を有するガス流通セルと、
前記光透過窓を透過しガス流通セル内を伝播した前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する透過光受光部と、
前記第1測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光を照射し、前記第2測定対象ガスを前記ガス流通セルに流通させた状態で前記NOガス吸光用照射光および前記SOガス吸光用照射光を順次照射するように前記ガス調整部、前記NOガス吸光用発光部および前記SOガス吸光用発光部を制御する駆動制御部と、
前記透過光受光部の受光量に応じて得られる算出値に基づいて、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記サンプルガスに含まれる二酸化窒素ガス(NOガス)のガス濃度を算出し、前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第2測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる一酸化窒素ガス(NOガス)のガス濃度を算出し、前記第2測定対象ガスに前記SOガス吸光用照射光を照射した時の受光量に応じて得られる算出値から前記第1測定対象ガスに前記NOガス吸光用照射光を照射した時の受光量に応じて得られる算出値を減じて得た受光量の差を表す算出値を用いて前記サンプルガスに含まれる二酸化硫黄ガス(SOガス)のガス濃度を算出する信号処理部と、
を備えることを特徴とするガス分析計。
An oxidation output state in which the sample gas is mixed with ozone gas to cause an oxidation reaction and then heated and output as the first measurement target gas; and a normal output state in which the sample gas is output as the second measurement target gas without any reaction. , And a gas regulator that can be switched,
A light emitting part for absorbing NO 2 gas that irradiates irradiation light for absorbing NO 2 gas having a wavelength of 320 nm to 600 nm in which nitrogen dioxide gas (NO 2 gas) absorbs;
An SO 2 gas absorption light emitting unit for irradiating SO 2 gas absorption irradiation light having a wavelength of 250 nm to 320 nm in which sulfur dioxide gas (SO 2 gas) and nitrogen dioxide gas (NO 2 gas) absorb;
A gas flow cell having a detection space in which the first and second measurement target gases flow, and a light transmission window for allowing the NO 2 gas absorption irradiation light and the SO 2 gas absorption irradiation light to enter the detection space; ,
A transmitted light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas that has passed through the light transmission window and propagated in the gas distribution cell;
The NO 2 gas in a state where the first measurement target gas is irradiated with the NO 2 gas absorption for the irradiation light in the state of being distributed in the gas flow cell, was passed through the second measurement target gas into the gas flow cell A drive control unit for controlling the gas adjusting unit, the NO 2 gas absorbing light emitting unit, and the SO 2 gas absorbing light emitting unit so as to sequentially emit the absorbing light for absorbing light and the irradiated light for absorbing SO 2 gas;
Based on the calculated value obtained according to the received light amount when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas, based on the calculated value obtained according to the received light amount of the transmitted light receiving unit, The concentration of nitrogen dioxide gas (NO 2 gas) contained in the sample gas is calculated, and from the calculated value obtained according to the amount of light received when the first measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas. Included in the sample gas using a calculated value representing a difference in received light amount obtained by subtracting a calculated value obtained according to the received light amount when the second measurement object gas is irradiated with the irradiation light for absorbing NO 2 gas The first measurement from a calculated value obtained according to the amount of light received when the second measurement object gas is irradiated with the irradiation light for absorbing SO 2 gas. irradiation for the NO 2 gas absorption in the target gas Calculating a gas concentration of sulfur dioxide gas (SO 2 gas) contained in the sample gas by using the calculated value representing the difference between the received light amount obtained by subtracting the calculated value obtained in accordance with the amount of received light when irradiated with light A signal processing unit to
A gas analyzer comprising:
請求項1〜請求項3の何れか一項に記載のガス分析計において、
前記ガス調整部は、
前記駆動制御部からの指令がない時は原料ガスを出力し、前記指令がある時は前記原料ガスからオゾンガスを生成してオゾンガスを含む原料ガスを出力するオゾン発生部と、
前記サンプルガスと前記原料ガスとを混合して出力するガス混合部と、
前記ガス混合部からの混合ガスを加熱して前記第1,第2測定対象ガスとして出力するガス加熱部と、
から構成されることを特徴とするガス分析計。
In the gas analyzer according to any one of claims 1 to 3,
The gas adjusting unit is
When there is no command from the drive control unit, a raw material gas is output, and when there is the command, an ozone generation unit that generates ozone gas from the raw material gas and outputs a raw material gas containing ozone gas,
A gas mixing section for mixing and outputting the sample gas and the source gas;
A gas heating unit that heats the mixed gas from the gas mixing unit and outputs the mixed gas as the first and second measurement target gases;
A gas analyzer comprising:
請求項1に記載のガス分析計において、
基準光として前記NOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルの検出空間を通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
を更に設け、
前記信号処理部は、前記基準光受光部の基準光の受光量と前記透過光受光部の透過光の受光量との比に基づいてガス濃度を算出することを特徴とするガス分析計。
The gas analyzer according to claim 1, wherein
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas as reference light;
An optical path for allowing the NO 2 gas absorption irradiation light to pass through the light transmission window and pass through the detection space of the gas flow cell and then reach the transmitted light receiving part; and an optical path to reach the reference light receiving part; An optical path determination unit to be passed by,
Further provided,
The gas analyzer according to claim 1, wherein the signal processing unit calculates a gas concentration based on a ratio between a received light amount of the reference light of the reference light receiving unit and a received light amount of the transmitted light of the transmitted light receiving unit.
請求項1に記載のガス分析計において、
基準光として前記NOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記ガス流通セルの検出空間を不通過で前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
前記基準光受光部の基準光の受光量に基づいて、前記NOガス吸光用発光部の駆動電流を制御する補正部と、
を更に設けたことを特徴とするガス分析計。
The gas analyzer according to claim 1, wherein
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas as reference light;
An optical path through which the irradiation light for absorbing NO 2 gas passes through the light transmission window and passes through the gas flow cell and then reaches the transmitted light receiving unit; and the reference light without passing through a detection space of the gas flow cell An optical path to reach the light receiving unit, an optical path determination unit to pass through,
A correction unit that controls the drive current of the light emitting unit for absorbing NO 2 gas based on the amount of received reference light of the reference light receiving unit;
A gas analyzer, further comprising:
請求項2または請求項3に記載のガス分析計において、
基準光として前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光および前記SOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
を更に設け、
前記信号処理部は、前記基準光受光部の基準光の受光量と前記透過光受光部の透過光の受光量との比に基づいてガス濃度を算出することを特徴とするガス分析計。
The gas analyzer according to claim 2 or claim 3,
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
An optical path through which the irradiation light for NO 2 gas absorption and the irradiation light for SO 2 gas absorption pass through the light transmission window and pass through the gas circulation cell to reach the transmitted light receiving unit; and the reference light receiving unit An optical path to reach, an optical path determination unit to pass through,
Further provided,
The gas analyzer according to claim 1, wherein the signal processing unit calculates a gas concentration based on a ratio between a received light amount of the reference light of the reference light receiving unit and a received light amount of the transmitted light of the transmitted light receiving unit.
請求項2または請求項3に記載のガス分析計において、
基準光として前記NOガス吸光用照射光および前記SOガス吸光用照射光を受光する基準光受光部と、
前記NOガス吸光用照射光および前記SOガス吸光用照射光を、前記光透過窓を透過して前記ガス流通セルを通過後に前記透過光受光部へ到達させる光路と、前記基準光受光部へ到達させる光路と、により通過させる光路決定部と、
前記基準光受光部の基準光の受光量に基づいて、前記NOガス吸光用発光部および前記SOガス吸光用発光部の駆動電流を制御する補正部と、
を更に設けたことを特徴とするガス分析計。
The gas analyzer according to claim 2 or claim 3,
A reference light receiving unit that receives the irradiation light for absorbing NO 2 gas and the irradiation light for absorbing SO 2 gas as reference light;
An optical path through which the irradiation light for NO 2 gas absorption and the irradiation light for SO 2 gas absorption pass through the light transmission window and pass through the gas circulation cell to reach the transmitted light receiving unit; and the reference light receiving unit An optical path to reach, an optical path determination unit to pass through,
A correction unit that controls drive currents of the light emitting unit for absorbing NO 2 gas and the light emitting unit for absorbing SO 2 gas based on the amount of received reference light of the reference light receiving unit;
A gas analyzer, further comprising:
請求項1に記載のガス分析計において、
前記駆動制御部は、発光ダイオード(LED)またはレーザダイオード(LD)である前記NOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記NOガス吸光用発光部に出力することを特徴とするガス分析計。
The gas analyzer according to claim 1, wherein
The drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit that is a light-emitting diode (LED) or a laser diode (LD), and a duty ratio that makes the output shorter than the stop The gas analyzer outputs a driving current of 2 to the NO 2 gas absorption light emitting section.
請求項2または請求項3に記載のガス分析計において、
前記駆動制御部は、発光ダイオード(LED)またはレーザダイオード(LD)である前記NOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記NOガス吸光用発光部に出力し、また、発光ダイオード(LED)である前記SOガス吸光用発光部の出力と停止とを交互に行うパルスであって停止より出力が短くなるようなデューティー比の駆動電流を前記SOガス吸光用発光部に出力することを特徴とするガス分析計。
The gas analyzer according to claim 2 or claim 3,
The drive control unit is a pulse that alternately performs output and stop of the NO 2 gas absorption light-emitting unit that is a light-emitting diode (LED) or a laser diode (LD), and a duty ratio that makes the output shorter than the stop Is output to the NO 2 gas absorption light-emitting unit, and the output of the SO 2 gas absorption light-emitting unit, which is a light emitting diode (LED), is alternately output and stopped. A gas analyzer that outputs a driving current having a duty ratio that is shortened to the light emitting unit for absorbing SO 2 gas.
JP2015509788A 2013-04-03 2013-04-03 Gas analyzer Active JP6083466B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060207 WO2014162537A1 (en) 2013-04-03 2013-04-03 Gas analyzer

Publications (2)

Publication Number Publication Date
JPWO2014162537A1 true JPWO2014162537A1 (en) 2017-02-16
JP6083466B2 JP6083466B2 (en) 2017-02-22

Family

ID=51657869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015509788A Active JP6083466B2 (en) 2013-04-03 2013-04-03 Gas analyzer

Country Status (3)

Country Link
JP (1) JP6083466B2 (en)
CN (1) CN105026915B (en)
WO (1) WO2014162537A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487008B2 (en) * 2008-12-03 2010-06-23 シャープ株式会社 Power supply
JP6646204B2 (en) * 2015-09-03 2020-02-14 東亜ディーケーケー株式会社 Measuring device using ultraviolet light source
JP6651126B2 (en) * 2015-09-08 2020-02-19 富士電機株式会社 Gas analyzer
CN105424631B (en) * 2015-12-25 2018-12-07 中国科学院合肥物质科学研究院 A kind of hypersensitivity nitrogen oxides measuring system based on UV, visible light wave band absorption spectrum
EP3193195B1 (en) * 2016-01-18 2018-07-25 SICK Engineering GmbH Optical sensor
DE202017001743U1 (en) 2017-03-31 2017-05-08 Siemens Aktiengesellschaft Gas analyzer
DE102017213980A1 (en) * 2017-08-10 2019-02-14 Siemens Aktiengesellschaft Gas analyzer for measuring nitrogen oxides and at least one further component of an exhaust gas
CN109060691A (en) * 2018-09-04 2018-12-21 深圳市卡普瑞环境科技有限公司 A kind of calculation method and equipment of atmospheric molecule concentration
CN108956502A (en) * 2018-09-04 2018-12-07 深圳市卡普瑞环境科技有限公司 A kind of atmospheric molecule detection system
CN111398203B (en) * 2020-03-24 2023-05-26 中煤科工集团重庆研究院有限公司 Low-power-consumption methane detection device and method
US20220057142A1 (en) * 2020-08-19 2022-02-24 Thermo Environmental Instruments Llc Compact and selective reaction chamber
CN113959964B (en) * 2021-10-11 2022-05-31 天津同阳科技发展有限公司 Calculation method for detecting carbon dioxide absorption increment based on remote sensing of motor vehicle exhaust
CN114136905A (en) * 2021-11-30 2022-03-04 浙江大学 Ppb level nitric oxide and nitrogen dioxide concentration online detection system and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083092A (en) * 1973-11-22 1975-07-04
JPS52130689A (en) * 1976-04-27 1977-11-02 Mitsubishi Electric Corp Gas density meter
JPS60119443A (en) * 1983-11-30 1985-06-26 Shimadzu Corp Light absorption type gas analyzer
JP2008539416A (en) * 2005-04-26 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low-cost instrument for detecting nitrogen-containing gas compounds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273364A (en) * 1993-03-23 1994-09-30 Ngk Insulators Ltd Corrective operation method for gas measuring equipment
JP4472156B2 (en) * 2000-11-02 2010-06-02 中部電力株式会社 Gas component measuring apparatus and method
CN101162200A (en) * 2007-05-10 2008-04-16 沈阳东宇集团股份有限公司 System using chemiluminescence method to execute nitrous oxides analysis
CN101256140A (en) * 2008-03-17 2008-09-03 哈尔滨工业大学 Portable apparatus and measuring method for monitoring gas concentration of sulphur dioxide and nitrous oxide meanwhile
JP5083092B2 (en) * 2008-07-25 2012-11-28 富士通株式会社 Variable dispersion compensator and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083092A (en) * 1973-11-22 1975-07-04
JPS52130689A (en) * 1976-04-27 1977-11-02 Mitsubishi Electric Corp Gas density meter
JPS60119443A (en) * 1983-11-30 1985-06-26 Shimadzu Corp Light absorption type gas analyzer
JP2008539416A (en) * 2005-04-26 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Low-cost instrument for detecting nitrogen-containing gas compounds

Also Published As

Publication number Publication date
JP6083466B2 (en) 2017-02-22
CN105026915A (en) 2015-11-04
CN105026915B (en) 2018-01-02
WO2014162537A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6083466B2 (en) Gas analyzer
JP6024856B2 (en) Gas analyzer
JP5907442B2 (en) Laser gas analyzer
US5813767A (en) System and a method for monitoring combustion and pollutants in a thermal plant by means of laser diodes
JP6128361B2 (en) Multi-component laser gas analyzer
US10871443B2 (en) Gas analyzer for measuring nitrogen oxides and least one further component of an exhaust gas
US11237141B2 (en) Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
JP2009216385A (en) Gas analyzer and wavelength sweeping control method of laser in gas analyzer
CN210347454U (en) Gas concentration analyzer
WO2011161839A1 (en) Ammonia compound concentration measuring device and ammonia compound concentration measuring method
US11226322B2 (en) Optical gas analyzer and method for measuring nitrogen oxides in an exhaust gas
JP6651126B2 (en) Gas analyzer
JP4211670B2 (en) Gas analyzer and gas analysis method
JP4472156B2 (en) Gas component measuring apparatus and method
JP5422493B2 (en) Gas calorific value measuring device and gas calorific value measuring method
JP2019027867A (en) Gas analyzer
JP2006337068A (en) Method and apparatus for analyzing exhaust gas
UA122920C2 (en) OPTOELECTRONIC SENSOR
CN115398205A (en) Gas analysis device and gas analysis method
JP2006112900A (en) Infrared gas analyzing method and infrared gas analyzer
JP2008241269A (en) Absorbance measuring instrument and absorbance measuring method
JP2004093419A (en) Method for determining and measuring no concentration
JP2001348211A (en) So3 generator and quantitative analysis method of so3 using fourier transform infrared spectrometer
UA80639C2 (en) Infrared gas analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170109

R150 Certificate of patent or registration of utility model

Ref document number: 6083466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250