JP2004093419A - Method for determining and measuring no concentration - Google Patents

Method for determining and measuring no concentration Download PDF

Info

Publication number
JP2004093419A
JP2004093419A JP2002256165A JP2002256165A JP2004093419A JP 2004093419 A JP2004093419 A JP 2004093419A JP 2002256165 A JP2002256165 A JP 2002256165A JP 2002256165 A JP2002256165 A JP 2002256165A JP 2004093419 A JP2004093419 A JP 2004093419A
Authority
JP
Japan
Prior art keywords
concentration
laser
light
exhaust gas
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256165A
Other languages
Japanese (ja)
Inventor
Isato Nakajima
中島 勇人
Satoshi Itabane
板羽 聡
Osamu Kumazaki
熊崎 脩
Masayoshi Hirano
平野 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
IHI Corp
Original Assignee
Chubu Electric Power Co Inc
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, IHI Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2002256165A priority Critical patent/JP2004093419A/en
Publication of JP2004093419A publication Critical patent/JP2004093419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining and measuring the concentration of NO, capable of highly accurately measuring the concentration of NO with high precision, even when foreign matters, such as coarse particles is mixed in exhaust gases containing SO<SB>2</SB>. <P>SOLUTION: A gas X, containing SO<SB>2</SB>and NO, is irradiated with inspecting light P<SB>1</SB>. The concentration of NO in the gases X is measured, on the basis of transmitted light Pt<SB>1</SB>transmitted through the gases X in the method for determining and measuring the concentration of NO. The inspecting light P<SB>1</SB>has a wavelength in a range between 214.89 nm and 214.95 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、NO濃度定量測定方法に関し、特にSOを含有する排ガス中におけるNOガス成分の濃度を高精度に測定することを可能とするNO濃度定量測定方法に関する。
【0002】
【従来の技術】
一般に、ボイラーなどから排出される排ガスは、環境への影響を考慮する必要があることから、そのガスに含まれる各種成分の濃度を測定することが行われている。中でも一酸化窒素(NO)は、排ガス中の他の有害ガス(SOなど)と共に、NOやSOと呼ばれるように環境汚染物質であるため、大気中に放出するに際しては環境基準を上回ることがないよう配慮する必要がある。また、その他にも、NO計測は、ボイラの燃焼調整、脱硝装置の制御に使用される等、様々な面から重要な役割を果たしている。
【0003】
従来、サンプリングにより排ガスを抽出し、化学発光式や赤外線吸収式などの方法により分析することが行われている。また、最近では、測定の連続性と同時計測が可能であることから、近赤外域のレーザを用いて長光路差分吸収法により検出することが考案されている。つまり、排ガスが通過する煙道の途中に、排ガスの排出方向に直行する一直線上に対向配置した一対の透過窓を設け、煙道外からこの透過窓を介してレーザを煙道内のNOに照射して透過した透過光を調べることにより、煙道内のNO濃度を測定する。この際、近赤外域のレーザを出射する光源としては、半導体レーザを用いることが多い。
【0004】
【発明が解決しようとする課題】
ところで、上記従来のNO濃度定量測定方法においては、近赤外域のレーザとして用いられている半導体レーザはレーザ出力が比較的小さいので、排ガスに粉塵等の異物が混入している場合はその異物にレーザ光のほとんどが散乱されてしまい、排ガスに含まれるNO濃度を高精度に測定することが困難であるという問題があった。そこで、比較的大きな出力が得られる紫外域のパルスレーザを用いて濃度を測定することが考案されたが、この場合には、SOも紫外域に吸収スペクトルをもつためにNOの吸収スペクトルとの分離が困難なので、同様に排ガスに含まれるNO濃度を高精度に測定することが困難であるという問題があった。また、サンプリング法では、NO濃度の測定に時間遅れが生じるので、燃焼機器のフィードバック制御が困難になるという問題があった。
【0005】
この発明は、このような事情を考慮してなされたもので、その目的は、SOを含む排ガス中に粉塵等の異物が混入している場合でもNO濃度を高精度に測定することを可能とするNO濃度定量測定方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、この発明は以下の手段を提案している。
請求項1に係る発明は、SOとNOとを含有するガス中に検査光を照射し、該ガスを透過した透過光に基づいて前記ガス中のNO濃度を定量測定するNO濃度定量測定方法であって、前記検査光が、214.89nmから214.95nmの範囲内の波長からなることを特徴とする。
【0007】
この発明に係るNO濃度定量測定方法によれば、SOは214.89nmから214.95nmの範囲内の波長域で急峻な形状をもつ吸収スペクトル形状を有しておらず、かつNOはこの波長域で対称的な急峻な吸収線をもつので、SOに起因する吸収スペクトルとNOに起因する吸収スペクトルとを容易に分離することができ、したがって、SOを含む排ガス中のNO濃度を高精度に測定することができる。また、この波長域のレーザは近赤外域のレーザと比べて大きな出力を得ることができるので、排ガス中に粉塵等の異物が混入してその異物にレーザ光が幾分か散乱されたとしても、NO濃度を高精度に測定することができる。
【0008】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明の一実施の形態を示す図である。
図1において、1は煙道、2は透過窓、3はレーザ発信器、4は受光器、Xは排ガス(ガス)である。
【0009】
煙道1は、石炭焚き、重油焚きのボイラーの排ガスXを導くものであり、例えば直径10mの円筒形状に形成されている。排ガスXは、例えば400℃から600℃程度となった高温のガスであり、一酸化窒素(NO)、二酸化硫黄(SO)の成分を含むと共に、他には例えば酸素(O)、アンモニア(NH)等の成分を含んでいる。
【0010】
透過窓2は、煙道1の途中の側壁に設けられており、煙道1の軸線方向に直行する一直線上に対向して一対となるよう配置されている。図1では、レーザ光(検査光)P、P、Pが煙道1内に入射する入射側透過窓と、レーザ光P、P、Pが煙道1内を透過して煙道1外へ出射する出射側透過窓2とからなる一対の透過窓2の内、出射側透過窓2のみが描かれている。この透過窓2は、高温(400℃から600℃程度)における光の透過が可能なように、例えば紫外光を透過する耐熱ガラスによって形成されている。
【0011】
レーザ発信器3は、例えばパルスレーザ等の高出力の可能な紫外域の波長可変レーザから構成されており、検査対象となるガスの成分に応じた所定波長の検査用レーザ光P、P、Pを出射するものである。本実施形態では、PからPまで符号を付されたレーザ光P、P、Pの内、NO濃度定量検査用のものをレーザ光Pとして説明する。
【0012】
レーザ発信器3から出射されるNO濃度定量検査用レーザ光Pの波長は、例えば200nmから250nmの範囲で可変となるよう所定波長に設定されており、レーザ発信器3から出射されるレーザ光Pは、煙道1に設けられた入射側透過窓を介して煙道1内の排ガスXに含まれる一酸化窒素(NO)を透過する際、透過光Ptとなる。他に符号を付したPt、Ptは、それぞれレーザ光P、Pの透過光Pt、Ptを表す。
【0013】
受光器4は、煙道1内の排ガスXに含まれる一酸化窒素(NO)を透過した透過光Ptを受光するものであり、透過光Ptの強度に応じて電気信号を出力するものである。受光器4には、不図示の演算装置が設けられており、演算装置(不図示)は、受光器4にて出力された電気信号を演算処理し、一酸化窒素(NO)濃度を取得するものである。
【0014】
次に、上記の構成からなるNO濃度定量測定装置を用いてNO濃度を測定する方法について説明する。
まず、一酸化窒素(NO)、二酸化硫黄(SO)を含むと共に、例えばアンモニア(NH)、酸素(O)等の成分を含んだ排ガスXが煙道1に導かれて排出される際に、レーザ発信器3によりレーザ光Pを煙道1に設けられた入射側透過窓を介して煙道1内の排ガスX(一酸化窒素と二酸化硫黄を含む)に照射する。
【0015】
レーザ光Pが照射された一酸化窒素(NO)と二酸化硫黄(SO)は、照射されたレーザ光Pの波長に応じて光の吸収が起こり、透過光Ptとして出射側透過窓2を介して煙道1より出射される。出射された透過光Ptは、受光器4によって受光され、透過光Ptの強度に応じた電気信号に変換され、不図示の演算装置に出力される。出力された電気信号は、不図示の演算装置によって演算処理され、処理結果に基づいて一酸化窒素(NO)濃度が取得される。
【0016】
次に、上記の構成からなるNO濃度定量測定装置を用いてレーザ光Pの透過率を調べた実験結果について説明する。
図2は、入射側透過窓を介してレーザ光Pを煙道1内の排ガスX(一酸化窒素と二酸化硫黄を含む)に照射した際の透過率を示した実験結果である。図2において、横軸は排ガスXに照射したレーザ光Pの波長(nm)、縦軸はレーザ光Pの透過率(a.u.)を表す。すなわち、波長可変レーザを用いて煙道1内の排ガスXにレーザ光Pを照射した際の、レーザ光Pの透過率の波長依存性が示されている。図2では、排ガスXに含まれる一酸化窒素(NO)と二酸化硫黄(SO)との濃度を変化させた場合の、それぞれの濃度における実験結果が示されている。
【0017】
図からわかるように、波長が214.7nmから215nmの範囲において、SO200ppm以外の実験結果については、いずれもほぼ等しい波長において吸収線が現れており、そのスペクトルの形状も、ほぼ相似形となっている。SO200ppm以外の実験結果としては、NO10ppmの条件下でSO濃度を0ppmから200ppmまで変化させた結果がいくつか示されているが、これらNOを10ppm含むいずれの実験結果においても、SO濃度の増加に伴い、長波長側で透過率が上昇する傾向がみられる。
【0018】
本発明の対象である214.92nm近傍(約214.89nmから214.95nmの範囲)の波長域に注目すると、NOが含まれないSO200ppmの実験結果については、単調に増加する傾向のみが現れている(微細構造が存在しない)のに対し、NO10ppmを含む他の実験結果については、NOに起因する吸収線が現れている。これは、SOが含まれないNO10ppmの実験結果から明らかである。すなわち、NO10ppmとSOとを含む排ガスXにレーザ光Pを照射した際の透過率を示す実験結果は、NO10ppmの実験結果にSO濃度の寄与(単調に増加する傾向)が足し合わされた結果となっており、この波長域では、SOによってはレーザ光Pの微細構造をもつ吸収が起こらず、NOのみによってレーザ光Pが急峻に吸収される結果となっている。
【0019】
上記の構成からなるNO濃度定量測定方法によれば、NO濃度定量検査用のレーザ光Pとして紫外域の波長可変レーザが用いられており、SOは214.89nmから214.95nmの範囲内の波長域で微細構造のない単調な傾向を示し、かつNOはこの波長域で明確な吸収線をもつので、SOに起因する吸収スペクトルとNOに起因する吸収スペクトルとを容易に分離することができ、したがって、SOを含む排ガス中のNO濃度を高精度に測定することができる。
【0020】
また、この波長域のレーザは近赤外域のレーザと比べて大きな出力を得ることができるので、排ガス中に粉塵等の異物が混入してその異物にレーザ光が幾分か散乱されたとしても、NO濃度を高精度に測定することができる。
【0021】
なお、図1では、NO濃度定量検査用レーザ光Pと平行して他の成分を検査するためのレーザ光P、Pが描かれているが、これらレーザ光P、Pは、測定の対象となる排ガスXに含まれる成分に合わせて所定の波長(域)を有するものであり、これらレーザ光P、Pの本数は、測定対象の数に応じて適宜調整してよいものである。(図1では、出射するレーザ光として描かれた3本のレーザ光P、P、Pすべてに符号が付されている。)
【0022】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、SOは214.89nmから214.95nmの範囲内の波長域で微細構造をもたず、かつNOはこの波長域で明確な吸収線をもつので、SOに起因する吸収スペクトルとNOに起因する吸収スペクトルとを容易に分離することができ、したがって、SOを含む排ガス中のNO濃度を高精度に測定することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係るNO濃度定量測定方法における装置を示す概略図である。
【図2】この発明の一実施形態に係るNO濃度定量測定装置を用いてNOとSOとからなるガスに検査光を照射した透過率を示すグラフである。
【符号の説明】
   レーザ光(検査光)
Pt   透過光
X   排ガス(ガス)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for quantitatively measuring NO concentration, and more particularly to a method for quantitatively measuring NO concentration that enables highly accurate measurement of the concentration of a NO gas component in exhaust gas containing SO 2 .
[0002]
[Prior art]
In general, since the exhaust gas discharged from a boiler or the like needs to consider the effect on the environment, the concentration of various components contained in the gas is measured. Above all, nitric oxide (NO), together with other harmful gases (such as SO 2 ) in exhaust gas, is an environmental pollutant called NO x or SO x, and therefore exceeds environmental standards when released into the atmosphere. Care must be taken to ensure that nothing happens. In addition, NO measurement plays an important role from various aspects, such as being used for boiler combustion adjustment and control of a denitration device.
[0003]
Conventionally, exhaust gas has been extracted by sampling and analyzed by a method such as a chemiluminescence or infrared absorption method. In addition, recently, since continuity of measurement and simultaneous measurement are possible, detection using a laser in a near-infrared region by a long optical path difference absorption method has been devised. In other words, a pair of transmissive windows are provided in the middle of the flue through which the exhaust gas passes so as to face each other in a straight line perpendicular to the exhaust gas discharge direction. The NO concentration in the flue is measured by examining the transmitted light. At this time, a semiconductor laser is often used as a light source for emitting a laser in the near infrared region.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional NO concentration quantitative measurement method, a semiconductor laser used as a laser in the near-infrared region has a relatively small laser output. Most of the laser light is scattered, and there is a problem that it is difficult to measure the NO concentration contained in the exhaust gas with high accuracy. Therefore, it has been devised to measure the concentration using a pulse laser in the ultraviolet region where a relatively large output is obtained. In this case, however, since SO 2 also has an absorption spectrum in the ultraviolet region, the absorption spectrum of NO and Since it is difficult to separate NO from the exhaust gas, it is also difficult to measure the NO concentration contained in the exhaust gas with high accuracy. Further, in the sampling method, there is a problem that the feedback control of the combustion equipment becomes difficult because a time delay occurs in the measurement of the NO concentration.
[0005]
The present invention has been made in view of such circumstances, and has as its object to enable highly accurate measurement of NO concentration even when foreign substances such as dust are mixed in exhaust gas containing SO 2. To provide a method for quantitatively measuring NO concentration.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following means.
The invention according to claim 1 is a method for quantitatively measuring NO concentration by irradiating an inspection light into a gas containing SO 2 and NO and quantitatively measuring the NO concentration in the gas based on transmitted light transmitted through the gas. Wherein the inspection light has a wavelength in the range of 214.89 nm to 214.95 nm.
[0007]
According to the method for quantitatively measuring NO concentration according to the present invention, SO 2 does not have an absorption spectrum shape having a steep shape in a wavelength range of 214.89 nm to 214.95 nm, and NO has this wavelength. Since the absorption spectrum has a steep absorption line that is symmetrical in the region, the absorption spectrum caused by SO 2 and the absorption spectrum caused by NO can be easily separated, and therefore, the NO concentration in the exhaust gas containing SO 2 can be increased. It can be measured with high accuracy. In addition, since a laser in this wavelength range can obtain a larger output than a laser in the near infrared range, even if foreign matter such as dust is mixed in exhaust gas and the laser light is scattered to some extent by the foreign matter. , NO concentration can be measured with high accuracy.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention.
In FIG. 1, 1 is a flue, 2 is a transmission window, 3 is a laser transmitter, 4 is a light receiver, and X is exhaust gas (gas).
[0009]
The flue 1 guides exhaust gas X from a coal-fired or heavy oil-fired boiler, and is formed, for example, in a cylindrical shape with a diameter of 10 m. The exhaust gas X is a high-temperature gas, for example, from about 400 ° C. to about 600 ° C., and contains components of nitrogen monoxide (NO) and sulfur dioxide (SO 2 ), and also includes, for example, oxygen (O 2 ) and ammonia It contains components such as (NH 3 ).
[0010]
The transmission windows 2 are provided on a side wall in the middle of the flue 1, and are arranged so as to face each other on a straight line perpendicular to the axial direction of the flue 1 so as to form a pair. In FIG. 1, an incident side transmission window through which laser light (inspection light) P 1 , P 2 , and P 3 enters the flue 1, and laser light P 1 , P 2 , and P 3 transmit through the flue 1. Of the pair of transmission windows 2 each including an emission-side transmission window 2 that emits light to the outside of the flue 1, only the emission-side transmission window 2 is illustrated. The transmission window 2 is made of, for example, heat-resistant glass that transmits ultraviolet light so that light can be transmitted at a high temperature (about 400 to 600 ° C.).
[0011]
The laser transmitter 3 is composed of a wavelength-variable laser in the ultraviolet region, such as a pulse laser, capable of high output and capable of outputting high power, and the inspection laser beams P 1 and P 2 having predetermined wavelengths according to the components of the gas to be inspected. it is intended to emit P 3. In the present embodiment, among the laser beams P 1 , P 2 , and P 3 denoted by reference numerals P 1 to P 3 , the one for the NO concentration quantitative inspection will be described as the laser beam P 1 .
[0012]
Wavelength of the laser oscillator 3 NO concentration quantitative inspection laser beam P 1 emitted from is set to a predetermined wavelength so as to be variable in the range, for example, from 200nm to 250 nm, the laser beam emitted from the laser oscillator 3 P 1 becomes transmitted light Pt 1 when nitrogen monoxide (NO) contained in the exhaust gas X in the flue 1 passes through the incident side transmission window provided in the flue 1. Pt 2 and Pt 3 given other symbols represent transmitted light Pt 2 and Pt 3 of the laser light P 2 and P 3 , respectively.
[0013]
The light receiver 4 receives the transmitted light Pt 1 that has passed through nitric oxide (NO) contained in the exhaust gas X in the flue X, and outputs an electric signal according to the intensity of the transmitted light Pt 1. It is. The light receiver 4 is provided with a calculation device (not shown), and the calculation device (not shown) performs a calculation process on the electric signal output from the light receiver 4 to obtain a concentration of nitric oxide (NO). Things.
[0014]
Next, a method of measuring the NO concentration using the NO concentration quantitative measurement device having the above configuration will be described.
First, an exhaust gas X containing nitrogen monoxide (NO) and sulfur dioxide (SO 2 ) and also containing components such as ammonia (NH 3 ) and oxygen (O 2 ) is led to the flue 1 and discharged. when the irradiates the exhaust gas X in the flue 1 via the entrance-side transmission window provided a laser light P 1 to the flue 1 by a laser oscillator 3 (including nitrogen monoxide and sulfur dioxide).
[0015]
Laser light P 1 nitrogen monoxide which is irradiated (NO) and sulfur dioxide (SO 2) takes place light absorption according to the irradiation wavelength of the laser light P 1, exit side transmission window as transmitted light Pt 1 The light is emitted from the flue 1 through the air passage 2. The emitted transmitted light Pt 1 is received by the light receiver 4, converted into an electric signal corresponding to the intensity of the transmitted light Pt 1 , and output to an arithmetic unit (not shown). The output electric signal is subjected to arithmetic processing by an arithmetic unit (not shown), and the concentration of nitric oxide (NO) is obtained based on the processing result.
[0016]
Next, experimental results will be described of examining the transmittance of the laser light P 1 using the NO concentration quantitative measuring apparatus having the above structure.
Figure 2 shows the experimental results showing the transmittance when irradiated with laser light P 1 through the incident side transparent window in the exhaust gas X in the flue 1 (including nitrogen monoxide and sulfur dioxide). 2, the horizontal axis represents the wavelength of the laser light P 1 is irradiated to the exhaust gas X (nm), the vertical axis represents the transmittance of the laser light P 1 a (a.u.). Namely, when irradiated with laser light P 1 to the exhaust gas X in the flue 1 using a wavelength tunable laser, the wavelength dependency of the transmittance of the laser light P 1 is shown. FIG. 2 shows experimental results at various concentrations when the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ) contained in the exhaust gas X are changed.
[0017]
As can be seen from the figure, in the wavelength range of 214.7 nm to 215 nm, for the experimental results other than 200 ppm of SO 2 , an absorption line appears at almost the same wavelength, and the shape of the spectrum is almost similar. Has become. As experimental results than SO 2 200ppm is the result of changing the SO 2 concentration from 0ppm to 200ppm under the conditions of NO10ppm are shown several, in any of the experimental results including 10ppm these NO, SO 2 As the concentration increases, the transmittance tends to increase on the long wavelength side.
[0018]
Focusing on the wavelength range around 214.92 nm (the range from about 214.89 nm to 214.95 nm), which is the object of the present invention, only the tendency of monotonic increase in the experimental result of 200 ppm of SO 2 containing no NO is shown. While there is an appearance (there is no microstructure), for other experimental results containing 10 ppm of NO, an absorption line due to NO appears. This is evident from the experimental results of NO10ppm not contain SO 2. That is, in the experimental results showing the transmittance when the exhaust gas X containing NO 10 ppm and SO 2 is irradiated with the laser light P 1 , the contribution of the SO 2 concentration (the tendency to monotonously increase) is added to the experimental results of NO 10 ppm. As a result, in this wavelength region, the absorption of the laser beam P 1 having a fine structure does not occur depending on SO 2 , and the laser beam P 1 is steeply absorbed only by NO.
[0019]
According to the NO concentration quantitative measurement method having the above structure, the NO concentration tunable laser in the ultraviolet range have been used as the laser beam P 1 for quantitative test, SO 2 in the range of 214.95nm from 214.89nm Shows a monotonous tendency without a fine structure in the wavelength range of NO, and NO has a clear absorption line in this wavelength range, so that the absorption spectrum caused by SO 2 and the absorption spectrum caused by NO can be easily separated. Therefore, the NO concentration in the exhaust gas containing SO 2 can be measured with high accuracy.
[0020]
In addition, since a laser in this wavelength range can obtain a larger output than a laser in the near infrared range, even if foreign matter such as dust is mixed in exhaust gas and the laser light is scattered to some extent by the foreign matter. , NO concentration can be measured with high accuracy.
[0021]
FIG. 1 shows laser beams P 2 and P 3 for inspecting other components in parallel with the laser beam P 1 for NO concentration quantitative inspection, but these laser beams P 2 and P 3 are not shown. Has a predetermined wavelength (range) in accordance with the components contained in the exhaust gas X to be measured, and the number of these laser beams P 2 and P 3 is appropriately adjusted according to the number of the measurement targets. Good thing. (In FIG. 1, all three laser beams P 1 , P 2 , and P 3 drawn as emitted laser beams are denoted by reference numerals.)
[0022]
【The invention's effect】
As described above, according to the first aspect of the present invention, SO 2 has no fine structure in the wavelength range of 214.89 nm to 214.95 nm, and NO has a clear absorption in this wavelength range. With the line, the absorption spectrum due to SO 2 and the absorption spectrum due to NO can be easily separated, so that the NO concentration in the exhaust gas containing SO 2 can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus in an NO concentration quantitative measurement method according to an embodiment of the present invention.
FIG. 2 is a graph showing the transmittance of a gas consisting of NO and SO 2 irradiated with test light using the NO concentration quantitative measurement apparatus according to one embodiment of the present invention.
[Explanation of symbols]
P 1 laser light (inspection light)
Pt 1 transmitted light X exhaust gas (gas)

Claims (1)

SOとNOとを含有するガス中に検査光を照射し、該ガスを透過した透過光に基づいて前記ガス中のNO濃度を定量測定するNO濃度定量測定方法であって、
前記検査光が、214.89nmから214.95nmの範囲内の波長からなることを特徴とするNO濃度定量測定方法。
A NO concentration quantitative measurement method for irradiating inspection light into a gas containing SO 2 and NO and quantitatively measuring the NO concentration in the gas based on transmitted light transmitted through the gas,
The method for quantitatively measuring NO concentration, wherein the inspection light has a wavelength in the range of 214.89 nm to 214.95 nm.
JP2002256165A 2002-08-30 2002-08-30 Method for determining and measuring no concentration Pending JP2004093419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256165A JP2004093419A (en) 2002-08-30 2002-08-30 Method for determining and measuring no concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256165A JP2004093419A (en) 2002-08-30 2002-08-30 Method for determining and measuring no concentration

Publications (1)

Publication Number Publication Date
JP2004093419A true JP2004093419A (en) 2004-03-25

Family

ID=32061460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256165A Pending JP2004093419A (en) 2002-08-30 2002-08-30 Method for determining and measuring no concentration

Country Status (1)

Country Link
JP (1) JP2004093419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528151A (en) * 2017-07-27 2020-09-17 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Methods and systems for optically measuring the concentration of gas species in exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528151A (en) * 2017-07-27 2020-09-17 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Methods and systems for optically measuring the concentration of gas species in exhaust gas
JP7169339B2 (en) 2017-07-27 2022-11-10 イエフペ エネルジ ヌヴェル Method and system for optically measuring concentrations of gaseous species in exhaust gas

Similar Documents

Publication Publication Date Title
Bogue Detecting gases with light: A review of optical gas sensor technologies
JP5907442B2 (en) Laser gas analyzer
US9606093B2 (en) Cavity ring-down spectroscopic system and method
CN101694460B (en) Self-adaptive differential absorption spectrum measuring method of concentration of flue gas pollutants and device
US8654334B1 (en) Incoherent cavity ringdown spectroscopy gas analyzer coupled with periodic chemical scrubbing
EP3662261B1 (en) Gas analyzer for measuring nitrogen oxides and sulfur dioxide in exhaust gases
WO2015181879A1 (en) Gas analyzer
Wang et al. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide
Wojtas et al. Application of quantum cascade lasers in nitric oxide and nitrous oxide detection
Nakashima et al. Validation of in situ measurements of atmospheric nitrous acid using incoherent broadband cavity-enhanced absorption spectroscopy
JP2005502870A (en) Exhaust opacity measuring device
KR20150115036A (en) NO/NO2 multi-gases analyzer using non-dispersive ultraviolet method and NO/NO2 multi-gases analyzing method
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
CN113884417B (en) Comprehensive detection device for composite gas
CN106353263A (en) Gas ingredient detection device
JP2004093419A (en) Method for determining and measuring no concentration
Liu et al. A Detection Method for Low Concentrations of SO₂ and NO
Mikolajczyk et al. Cavity Enhanced Absorption Spectroscopy in Air Pollution Monitoring
Sun et al. Method of sensitivity improving in the non-dispersive infrared gas analysis system
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JP4685915B2 (en) NDIR photometer for measuring multiple components
WO2023218983A1 (en) Infrared gas analyzer, and infrared gas analysis method
JP2004093418A (en) Method and apparatus for measuring concentration of oxygen
Pakkattil et al. A dual-channel incoherent broadband cavity-enhanced absorption spectrometer for sensitive atmospheric NO x measurements
Wang et al. Applications of optical measurement technology in pollution gas monitoring at thermal power plants