JPWO2014132887A1 - Method and apparatus for treating borofluoride-containing water - Google Patents

Method and apparatus for treating borofluoride-containing water Download PDF

Info

Publication number
JPWO2014132887A1
JPWO2014132887A1 JP2015502895A JP2015502895A JPWO2014132887A1 JP WO2014132887 A1 JPWO2014132887 A1 JP WO2014132887A1 JP 2015502895 A JP2015502895 A JP 2015502895A JP 2015502895 A JP2015502895 A JP 2015502895A JP WO2014132887 A1 JPWO2014132887 A1 JP WO2014132887A1
Authority
JP
Japan
Prior art keywords
borofluoride
containing water
water
solid
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502895A
Other languages
Japanese (ja)
Other versions
JP6269651B2 (en
Inventor
周平 伊澤
周平 伊澤
石塚 諭
諭 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Publication of JPWO2014132887A1 publication Critical patent/JPWO2014132887A1/en
Application granted granted Critical
Publication of JP6269651B2 publication Critical patent/JP6269651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

ホウフッ化物含有水を、加温を行うことなく処理して、フッ素のみならずホウ素をも高度に除去する。ホウフッ化物含有水にアルミニウム化合物を添加してpH1〜4でホウフッ化物を分解する第一の工程と、第一の工程の処理水にカルシウム化合物を添加してpH7〜13で反応させることにより不溶化物を生成させる第二の工程と、この不溶化物を固液分離する第三の工程とを有するホウフッ化物含有水の処理方法。アルミニウム化合物は、Al/F=1.2〜2.5(モル比)となるように添加される。カルシウム化合物は、Ca/Al=2.5〜4.0(モル比)となるように添加される。第一及び第二の工程の処理温度が10〜35℃である。The borofluoride-containing water is treated without heating to highly remove boron as well as fluorine. A first step of adding an aluminum compound to borofluoride-containing water and decomposing the borofluoride at pH 1 to 4, and an insolubilized product by adding a calcium compound to the treated water of the first step and reacting at pH 7 to 13 A method for treating borofluoride-containing water, comprising: a second step of generating water and a third step of solid-liquid separation of the insolubilized product. The aluminum compound is added so that Al / F = 1.2 to 2.5 (molar ratio). A calcium compound is added so that it may become Ca / Al = 2.5-4.0 (molar ratio). The processing temperature of the first and second steps is 10 to 35 ° C.

Description

本発明はホウフッ化物含有水の処理方法及び処理装置に係り、特に、ホウフッ化物を含有する水を処理して、ホウフッ化物、フッ素及びホウ素が著しく低減された処理水を得る方法及び装置に関する。   The present invention relates to a method and apparatus for treating borofluoride-containing water, and more particularly, to a method and apparatus for treating borofluoride-containing water to obtain treated water in which borofluoride, fluorine, and boron are significantly reduced.

従来、フッ素含有水の処理方法としては、カルシウム化合物を添加してフッ素をフッ化カルシウムとして析出させて固液分離する方法が広く知られている。フッ素含有水にホウ素が含まれていると、ホウ素の一部がホウフッ化物の形態として存在する。ホウフッ化物はカルシウム化合物とは反応しない。そのため、このようなフッ素含有水の処理方法では処理することができない(非特許文献1)。   Conventionally, as a method for treating fluorine-containing water, a method of solid-liquid separation by adding a calcium compound to precipitate fluorine as calcium fluoride is widely known. When boron is contained in the fluorine-containing water, a part of boron is present in the form of borofluoride. Boron fluoride does not react with calcium compounds. Therefore, it cannot treat with such a processing method of fluorine content water (nonpatent literature 1).

ホウフッ化物含有水に、アルミニウム化合物を添加し、酸性かつ加温条件下で反応させてホウフッ化物を分解し、さらにカルシウム化合物を添加することで、フッ素とホウ素を処理する方法が提案されている(特許文献1,2)。   A method of treating fluorine and boron by adding an aluminum compound to borofluoride-containing water, reacting under acidic and warm conditions to decompose the borofluoride, and further adding a calcium compound has been proposed ( Patent Documents 1 and 2).

特許文献1には、ホウフッ化物含有水にアルミニウム化合物をAl/Fモル比が0.3〜1.05となるように添加し、pH2〜3でホウフッ化物を分解した後、カルシウム化合物を添加してpH9〜10で不溶化物を生成させた後固液分離し、更に分離水にアルミニウム化合物をAl/Fモル比が5以上となるように添加し、pH6〜7で不溶化物を生成させて固液分離する方法が記載されている。この特許文献1の方法では、反応性と沈殿性を向上させるために、これらの一連の工程は50〜80℃で行われる。   In Patent Document 1, an aluminum compound is added to borofluoride-containing water so that the Al / F molar ratio is 0.3 to 1.05, and after decomposition of the borofluoride at pH 2 to 3, a calcium compound is added. After insolubilization was generated at pH 9-10, solid-liquid separation was performed, and an aluminum compound was added to the separated water so that the Al / F molar ratio was 5 or more, and the insolubilization product was generated at pH 6-7 to be solidified. A method for liquid separation is described. In the method of Patent Document 1, these series of steps are performed at 50 to 80 ° C. in order to improve reactivity and precipitation.

特許文献2には、ホウフッ化物含有水にpH3以下でアルミニウム化合物等の多価金属化合物を添加して、35℃以上、好ましくは40℃以上に加熱してホウフッ化物を分解した後、消石灰を添加してpH10以上で不溶化物を生成させ、35℃以下に冷却後、凝集、固液分離を行うことが記載されている。   In Patent Document 2, a polyvalent metal compound such as an aluminum compound is added to borofluoride-containing water at a pH of 3 or less, heated to 35 ° C. or more, preferably 40 ° C. or more to decompose borofluoride, and then added with slaked lime Insoluble materials are produced at a pH of 10 or higher, and after cooling to 35 ° C. or lower, aggregation and solid-liquid separation are described.

特許第4954131号公報Japanese Patent No. 4954131 特許第4338705号公報Japanese Patent No. 4338705

「環境技術」Vol.29、No.4(2000)“Environmental Technology” Vol. 29, no. 4 (2000)

従来のホウフッ化物含有水の処理方法では、ホウ素の除去を十分に行うことができず、また、高温で反応させるため、運転コストも高くなるという問題がある。   In the conventional method for treating borofluoride-containing water, there is a problem that boron cannot be sufficiently removed and the operation cost is increased because the reaction is performed at a high temperature.

本発明は上記従来の問題点を解決し、ホウフッ化物含有水を、低温(常温)で処理して、フッ素のみならずホウ素をも高度に除去することができるホウフッ化物含有水の処理方法及び処理装置を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, and treats borofluoride-containing water at a low temperature (room temperature), so that not only fluorine but also boron can be removed to a high degree and a treatment method and treatment of borofluoride-containing water. It is an object to provide an apparatus.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、アルミニウム化合物の添加量とカルシウム化合物の添加量を最適化すると共に、常温で処理を行うことにより、上記課題を解決することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have optimized the addition amount of the aluminum compound and the addition amount of the calcium compound and solved the above-mentioned problem by performing the treatment at room temperature. I found out that I can.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] ホウフッ化物含有水にアルミニウム化合物を添加してpH1〜4でホウフッ化物を分解する第一の工程と、該第一の工程の処理水にカルシウム化合物を添加してpH7〜13で反応させることにより不溶化物を生成させる第二の工程と、該不溶化物を固液分離する第三の工程とを有するホウフッ化物含有水の処理方法において、前記第一の工程のアルミニウム化合物の添加量が、該ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、前記第二の工程のカルシウム化合物の添加量が、該アルミニウム化合物のAl換算値に対するCa換算値でCa/Al=2.5〜4.0(モル比)であり、前記第一及び第二の工程の処理温度が10〜35℃であることを特徴とするホウフッ化物含有水の処理方法。 [1] A first step of adding an aluminum compound to borofluoride-containing water and decomposing the borofluoride at pH 1 to 4, and adding a calcium compound to the treated water of the first step to cause a reaction at pH 7 to 13 In the method for treating borofluoride-containing water having a second step of generating an insolubilized product and a third step of solid-liquid separation of the insolubilized product, the amount of aluminum compound added in the first step is: Al / F = 1.2 to 2.5 (molar ratio) in terms of Al relative to the fluorine concentration of the borofluoride-containing water, and the amount of calcium compound added in the second step is Al equivalent of the aluminum compound. Ca / Al = 2.5 to 4.0 (molar ratio) in terms of Ca relative to the value, and the treatment temperature of the first and second steps is 10 to 35 ° C. Method of processing.

[2] 前記第三の工程で得られた分離水をpH6〜7で処理して不溶化物を生成させる第四の工程と、該不溶化物を固液分離する第五の工程とを有することを特徴とする[1]に記載のホウフッ化物含有水の処理方法。 [2] having a fourth step of generating the insolubilized product by treating the separated water obtained in the third step at pH 6 to 7, and a fifth step of solid-liquid separating the insolubilized product. The method for treating borofluoride-containing water as described in [1], which is characterized by the following.

[3] 前記第一の工程のアルミニウム化合物の添加量が、前記ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、かつ、
前記ホウフッ化物含有水のホウ素濃度に対するAl換算値でAl/B=2.0〜4.5(モル比)であることを特徴とする[1]又は[2]に記載のホウフッ化物含有水の処理方法。
[3] The addition amount of the aluminum compound in the first step is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water, and
The borofluoride-containing water according to [1] or [2], wherein Al / B = 2.0 to 4.5 (molar ratio) in terms of Al with respect to the boron concentration of the borofluoride-containing water. Processing method.

[4] 前記第三の工程で得られる分離水のアルミニウム濃度が30〜70mg/Lであることを特徴とする[1]ないし[3]のいずれかに記載のホウフッ化物含有水の処理方法。 [4] The method for treating borofluoride-containing water according to any one of [1] to [3], wherein the aluminum concentration of the separated water obtained in the third step is 30 to 70 mg / L.

[5] ホウフッ化物含有水にアルミニウム化合物を添加してpH1〜4でホウフッ化物を分解する第一の反応槽と、該第一の反応槽の処理水にカルシウム化合物を添加してpH7〜13で反応させることにより不溶化物を生成させる第二の反応槽と、該不溶化物を固液分離する第一の固液分離手段とを有するホウフッ化物含有水の処理装置において、前記第一の反応槽のアルミニウム化合物の添加量が、該ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、前記第二の反応槽のカルシウム化合物の添加量が、該アルミニウム化合物のAl換算値に対するCa換算値でCa/Al=2.5〜4.0(モル比)であり、前記第一及び第二の反応槽の処理温度が10〜35℃であることを特徴とするホウフッ化物含有水の処理装置。 [5] A first reaction vessel that decomposes borofluoride at pH 1 to 4 by adding an aluminum compound to borofluoride-containing water, and a calcium compound is added to treated water in the first reaction vessel at pH 7 to 13 In a treatment apparatus for borofluoride-containing water having a second reaction tank for producing an insolubilized product by reaction and a first solid-liquid separation means for solid-liquid separation of the insolubilized substance, The addition amount of the aluminum compound is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water, and the addition amount of the calcium compound in the second reaction tank Is Ca / Al = 2.5 to 4.0 (molar ratio) in terms of Ca relative to the Al equivalent of the aluminum compound, and the treatment temperature of the first and second reaction vessels is 10 to 35 ° C. It is characterized by being That borofluoride compound containing water of the processing apparatus.

[6] 前記固液分離手段で得られた分離水をpH6〜7で処理して不溶化物を生成させる第三の反応槽と、該不溶化物を固液分離する第二の固液分離手段とを有することを特徴とする[5]に記載のホウフッ化物含有水の処理装置。 [6] A third reaction tank for treating the separated water obtained by the solid-liquid separation means at pH 6 to 7 to produce an insolubilized product, and a second solid-liquid separating means for solid-liquid separating the insolubilized product. The apparatus for treating borofluoride-containing water according to [5], comprising:

[7] 前記第一の反応槽のアルミニウム化合物の添加量が、前記ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、かつ、前記ホウフッ化物含有水のホウ素濃度に対するAl換算値でAl/B=2.0〜4.5(モル比)であることを特徴とする[5]又は[6]に記載のホウフッ化物含有水の処理方法。 [7] The addition amount of the aluminum compound in the first reaction tank is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water, and The borofluoride-containing water according to [5] or [6], wherein Al / B = 2.0 to 4.5 (molar ratio) in terms of Al with respect to the boron concentration of the borofluoride-containing water. Processing method.

[8] 前記第一の固液分離手段で得られる分離水のアルミニウム濃度が30〜70mg/Lであることを特徴とする[5]ないし[7]のいずれかに記載のホウフッ化物含有水の処理装置。 [8] The borofluoride-containing water according to any one of [5] to [7], wherein the aluminum concentration of the separated water obtained by the first solid-liquid separation means is 30 to 70 mg / L. Processing equipment.

本発明によれば、アルミニウム化合物の添加量とカルシウム化合物の添加量を制御すると共に、10〜35℃の常温で処理することにより、フッ素のみならずホウ素をも高度に除去することができる。   According to this invention, while controlling the addition amount of an aluminum compound and the addition amount of a calcium compound, by processing at normal temperature of 10-35 degreeC, not only fluorine but boron can be removed highly.

本発明の処理は、基本的に加温を必要としないため、運転コストを削減することができる。本発明は常温で反応させるため、冬期においては場合により加温する場合があるが、この場合においても常温に保てば良いため運転コストは従来技術より削減できる。   Since the process of the present invention basically does not require heating, the operating cost can be reduced. Since the present invention reacts at room temperature, it may be heated in some cases in the winter, but even in this case, the operation cost can be reduced as compared with the prior art because it may be kept at room temperature.

処理水中にアルミニウムを残留させて、更なる高度処理でフッ素を極低濃度にまで除去することもできる。   Aluminum can remain in the treated water, and fluorine can be removed to a very low concentration by further advanced treatment.

本発明のホウフッ化物含有水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the borofluoride containing water of this invention. 実験例1〜4における処理水のBF濃度とCa/Al(モル比)との関係を示すグラフである。It is a graph showing the relationship between the treated water BF 4 concentration and Ca / Al (molar ratio) in Experimental Example 1-4. 実験例1〜4における処理水のF濃度とCa/Al(モル比)との関係を示すグラフである。It is a graph which shows the relationship between F density | concentration of the treated water in Experiment Examples 1-4, and Ca / Al (molar ratio). 実験例1〜4における処理水のB濃度とCa/Al(モル比)との関係を示すグラフである。It is a graph which shows the relationship between B density | concentration of the treated water in Experiment Examples 1-4, and Ca / Al (molar ratio). 実験例1〜4における処理水のAl濃度とCa/Al(モル比)との関係を示すグラフである。It is a graph which shows the relationship between Al concentration of the treated water in Experiment Examples 1-4, and Ca / Al (molar ratio). 実験例1〜4における処理水のSO濃度とCa/Al(モル比)との関係を示すグラフである。Is a graph showing the relationship between the treated water SO 4 concentration and Ca / Al (molar ratio) in Experimental Example 1-4. 実験例1〜4における処理水のCa濃度とCa/Al(モル比)との関係を示すグラフである。It is a graph which shows the relationship between Ca density | concentration of the treated water in Experiment Examples 1-4, and Ca / Al (molar ratio). 実験例5,6における処理水のB濃度とAl/B(モル比)との関係を示すグラフである。It is a graph which shows the relationship between B density | concentration of the treated water in Experimental Examples 5 and 6, and Al / B (molar ratio).

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明のホウフッ化物含有水の処理装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a treatment apparatus for water containing borofluoride according to the present invention.

図1において、1は第1反応槽(第一の反応槽)、2は第2反応槽(第二の反応槽)、3は凝集槽、4は固液分離槽(第一の固液分離手段)、5は第3反応槽(第三の反応槽)、6は凝集槽、7は固液分離槽(第二の固液分離手段)をそれぞれ示す。原水は、第1反応槽1において、アルミニウム化合物(Al化合物)と酸が添加されてpH1〜4で原水中のホウフッ化物が分解処理される(第一の工程)。   In FIG. 1, 1 is a first reaction tank (first reaction tank), 2 is a second reaction tank (second reaction tank), 3 is a coagulation tank, and 4 is a solid-liquid separation tank (first solid-liquid separation). Means), 5 is a third reaction tank (third reaction tank), 6 is a coagulation tank, and 7 is a solid-liquid separation tank (second solid-liquid separation means). In the first reaction tank 1, the raw water is added with an aluminum compound (Al compound) and an acid, and the borofluoride in the raw water is decomposed at pH 1 to 4 (first step).

第1反応槽1の処理水は次いで第2反応槽2に送給され、カルシウム化合物(Ca化合物)と必要に応じてアルカリが添加され、pH7〜13で処理されることにより、フッ化カルシウム等の不溶化物が生成する(第二の工程)。   The treated water in the first reaction tank 1 is then fed to the second reaction tank 2 where calcium compound (Ca compound) and alkali are added as necessary, and treated at pH 7 to 13 to obtain calcium fluoride or the like. The insolubilized product is produced (second step).

第2反応槽2の処理水は、次いで凝集槽3で高分子凝集剤が添加されて凝集処理された後、固液分離槽4で固液分離される(第三の工程)。   The treated water in the second reaction tank 2 is then subjected to a coagulation treatment by adding a polymer flocculant in the coagulation tank 3 and then solid-liquid separation in the solid-liquid separation tank 4 (third step).

固液分離槽4の分離汚泥は系外へ排出され、分離水は第3反応槽(第三の反応槽)5に送給され、必要に応じてアルミニウム化合物と酸が添加されてpH6〜7で不溶化処理される(第四の工程)。   The separated sludge in the solid-liquid separation tank 4 is discharged out of the system, and the separated water is fed to a third reaction tank (third reaction tank) 5 where an aluminum compound and an acid are added as necessary to adjust the pH to 6-7. Insolubilization treatment (fourth step).

この第3反応槽5の処理水は、次いで凝集槽6で高分子凝集剤が添加されて凝集処理された後、固液分離槽7で固液分離される(第五の工程)。   The treated water in the third reaction tank 5 is then agglomerated by adding a polymer flocculant in the agglomeration tank 6 and then solid-liquid separated in the solid-liquid separation tank 7 (fifth step).

固液分離槽7の分離汚泥は系外へ排出され、分離水は処理水として取り出される。   The separated sludge in the solid-liquid separation tank 7 is discharged out of the system, and the separated water is taken out as treated water.

以下、原水及び各工程の処理について説明する。   Hereinafter, processing of raw water and each process is explained.

<原水>
本発明で処理するホウフッ化物を含む水(原水)としては、ガラス製品、医薬品、化粧品、樹脂製品、めっき製品の製造排水、石炭火力発電所の排煙脱硫排水、ごみ焼却場洗煙排水、ニッケルめっき工場排水などが挙げられる。通常、これらのホウフッ化物含有排水中には、BF とならずにF、BO 3−の形態となったフッ素及びホウ素も存在する。
<Raw water>
Examples of water (raw water) containing borofluoride to be treated in the present invention include glass products, pharmaceuticals, cosmetics, resin products, manufacturing wastewater of plating products, flue gas desulfurization wastewater from coal-fired power plants, waste incineration smoke cleaning wastewater, nickel Examples include plating factory wastewater. Usually, in these borofluoride-containing wastewater, fluorine and boron in the form of F and BO 3 3− are also present, not BF 4 .

本発明で処理するこれらの原水の水質は、通常BF濃度(水中に溶解しているBF イオン濃度。本発明では「BF濃度」と記載する。)5〜2000mg/L、F濃度(水中に溶解しているフッ素濃度。本発明では「F濃度」と記載する。)5〜10000mg/L、B濃度(水中に溶解しているホウ素の濃度。本発明では「B濃度」と記載する。)1〜500mg/Lで、pH0.5〜11.5である。These raw water quality to be processed by the present invention is generally BF 4 concentration (BF dissolved in water 4 -.. The ionic concentration present invention referred to as "BF 4 concentration") 5~2000mg / L, F concentration (Fluorine concentration dissolved in water. In the present invention, described as “F concentration.”) 5 to 10,000 mg / L, B concentration (concentration of boron dissolved in water. In the present invention, described as “B concentration”. 1) to 500 mg / L, pH 0.5 to 11.5.

F濃度はJIS K0102の34.1(ランタン−アザリンコンプレキソン吸光光度法)に定める方法によって測定でき、B濃度はJIS K0102の47.3(ICP発光分光分析法)に定める方法で分析できる。   The F concentration can be measured by a method defined in JIS K0102 34.1 (lanthanum-azarin complexone absorptiometry), and the B concentration can be analyzed by a method defined in JIS K0102 47.3 (ICP emission spectroscopy).

<第一の工程>
第一の工程では、原水にアルミニウム化合物を添加して下式の反応によりホウフッ化物を分解する。
3BF +2Al3++9HO→2AlF 3−+3HBO+9H
<First step>
In the first step, an aluminum compound is added to raw water and borofluoride is decomposed by the reaction of the following formula.
3BF 4 + 2Al 3+ + 9H 2 O → 2AlF 6 3 − + 3H 3 BO 3 + 9H +

原水に添加するアルミニウム化合物としては、反応時のpH条件においてアルミニウムイオンが溶解するものであればよく、例えば、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム(PAC)、硫酸バンドなどの1種又は2種以上を用いることができる。   The aluminum compound to be added to the raw water may be any aluminum compound that dissolves aluminum ions under the pH conditions during the reaction. For example, one or two of aluminum sulfate, aluminum chloride, polyaluminum chloride (PAC), sulfate band, etc. The above can be used.

原水へのアルミニウム化合物添加量は、原水のF濃度に対してAl換算の添加量がAl/F(モル比)で1.2〜2.5、好ましくは1.5〜2.5で、原水のB濃度に対してAl換算の添加量がAl/B(モル比)で好ましくは2.0〜4.5の範囲となるような添加量とする。アルミニウム化合物の添加量が上記下限よりも少ないと、ホウフッ化物を十分に分解させることができず、上記上限より多くても、添加量に見合う効果は得られず、アルミニウム化合物使用量が徒に増大する結果となり好ましくない。   The amount of the aluminum compound added to the raw water is 1.2 to 2.5, preferably 1.5 to 2.5 in terms of Al / F (molar ratio) in terms of Al with respect to the F concentration of the raw water. The addition amount in terms of Al with respect to the B concentration of Al / B (molar ratio) is preferably in the range of 2.0 to 4.5. If the addition amount of the aluminum compound is less than the above lower limit, the borofluoride cannot be sufficiently decomposed, and if it is more than the above upper limit, an effect commensurate with the addition amount cannot be obtained, and the use amount of the aluminum compound increases easily. As a result.

アルミニウム化合物によるホウフッ化物の分解反応は、酸性条件で迅速に反応が進むことから、第一の工程のpHは1〜4、好ましくは1.5〜2.5とする。従って、必要に応じて原水にアルミニウム化合物と共に酸(例えば硫酸、塩酸、より好ましくは硫酸)を添加してpH1〜4、好ましくは1.5〜2.5にpH調整する。   Since the decomposition reaction of borofluoride with an aluminum compound proceeds rapidly under acidic conditions, the pH of the first step is 1 to 4, preferably 1.5 to 2.5. Therefore, if necessary, an acid (for example, sulfuric acid, hydrochloric acid, more preferably sulfuric acid) is added to the raw water together with the aluminum compound to adjust the pH to pH 1-4, preferably 1.5-2.5.

本発明においては、上記アルミニウム化合物添加量及びpH条件を採用することにより、液温10〜35℃、好ましくは15〜30℃の常温で処理が可能であるため、第一の工程における加温の必要はない。   In the present invention, by adopting the above-mentioned aluminum compound addition amount and pH conditions, the liquid temperature can be treated at room temperature of 10 to 35 ° C, preferably 15 to 30 ° C. There is no need.

第一の工程の反応時間は、原水中のホウフッ化物の分解時間を確保する点から0.5〜10時間程度とすることが好ましい。   The reaction time in the first step is preferably about 0.5 to 10 hours from the viewpoint of securing the decomposition time of the borofluoride in the raw water.

<第二の工程>
第二の工程では、第一の工程の処理水にカルシウム化合物を添加して、下式の反応によりフッ化カルシウムを析出させると共に、更に後述の通り、ホウ素の吸着除去を行う。
AlF 3−+3Ca2++3OH→3CaF+Al(OH)
<Second step>
In the second step, a calcium compound is added to the treated water of the first step to precipitate calcium fluoride by the reaction of the following formula, and further, adsorption and removal of boron is performed as described later.
AlF 6 3− + 3Ca 2+ + 3OH → 3CaF 2 + Al (OH) 3

カルシウム化合物としては、例えば消石灰、塩化カルシウム、炭酸カルシウムなどの1種又は2種以上を用いることができる。   As a calcium compound, 1 type, or 2 or more types, such as slaked lime, calcium chloride, calcium carbonate, can be used, for example.

カルシウム化合物の添加量は、第一の工程で添加したアルミニウム化合物のAl換算量に対して、Ca換算の添加量がCa/Al(モル比)で2.5〜4.0、好ましくは2.7〜3.8の範囲となるようにする。   The addition amount of the calcium compound is 2.5 to 4.0, preferably 2. in terms of Ca / Al (molar ratio) in terms of the addition amount in terms of Ca with respect to the amount in terms of Al of the aluminum compound added in the first step. The range is 7 to 3.8.

カルシウム化合物の添加量を上記範囲内とすることにより、ホウ素の吸着除去効率を高めることができる。また、カルシウム化合物の添加量を上記範囲内とすることにより、第二の工程の処理水中に残留するAl濃度(水中に溶解しているアルミニウム濃度。本発明では「Al濃度」と記載する。)を高め、後述の第四の工程でのフッ素除去に有効利用することが可能となる。   By making the addition amount of the calcium compound within the above range, the adsorption and removal efficiency of boron can be enhanced. Further, by making the addition amount of the calcium compound within the above range, the Al concentration remaining in the treated water in the second step (the aluminum concentration dissolved in the water. In the present invention, it is described as “Al concentration”). And can be effectively used for fluorine removal in the fourth step described later.

Al濃度はJIS K0102の58.4(ICP発光分光分析法)に定める方法で分析することができる。   The Al concentration can be analyzed by the method defined in JIS K0102 58.4 (ICP emission spectroscopy).

本発明において、この第二の工程はpH7〜13の条件で行うため、必要に応じて、第一の工程の処理水にカルシウム化合物と共に、水酸化ナトリウム等のアルカリまたは硫酸などの酸を添加してpH調整する。なお、カルシウム化合物として消石灰を用い、消石灰の添加により、所望のpHとなる場合は、このpH調整は不要である。   In the present invention, since the second step is performed under conditions of pH 7 to 13, an alkali such as sodium hydroxide or an acid such as sulfuric acid is added to the treated water of the first step together with a calcium compound as necessary. To adjust the pH. When slaked lime is used as the calcium compound and the desired pH is obtained by adding slaked lime, this pH adjustment is not necessary.

一般的に、フッ化カルシウムの析出はpH4〜10の条件とすることが好ましいが、特に、フッ素の除去を優先する場合はpH9〜11がより好ましい。これは、アルミニウムとフッ素の結合がアルカリ条件下で切れやすいため、フッ化カルシウムの析出が促進されるためである。   In general, it is preferable to deposit calcium fluoride under conditions of pH 4 to 10, but pH 9 to 11 is more preferable particularly when priority is given to removal of fluorine. This is because the precipitation of calcium fluoride is promoted because the bond between aluminum and fluorine is easily broken under alkaline conditions.

ホウ素の除去を優先する場合はpH10〜12.5がより好ましい。これは、pH10以上の高アルカリ条件において、下式の反応によりアルミン酸カルシウム(CaO・Al)が析出し、この析出反応の際に、同時にホウ素が吸着・除去されるためである。従って、フッ素とホウ素の同時除去の点において、より好ましいpH条件は10〜12である。
6Ca(OH)+Al(SO→3CaO・Al・3CaSO・6H
When priority is given to the removal of boron, pH of 10 to 12.5 is more preferable. This is because calcium aluminate (CaO.Al 2 O 3 ) is precipitated by a reaction of the following formula under a highly alkaline condition of pH 10 or higher, and boron is simultaneously adsorbed and removed during this precipitation reaction. Therefore, more preferable pH conditions are 10 to 12 in terms of simultaneous removal of fluorine and boron.
6Ca (OH) 2 + Al 2 (SO 4 ) 3 → 3CaO · Al 2 O 3 · 3CaSO 4 · 6H 2 O

この第二の工程におけるホウ素の除去は吸着反応であり、液温が低い方が吸着量が高くなるため、本発明では、第二の工程は、液温10〜35℃、好ましくは15〜30℃の常温で処理する。このため、この工程においても加温の必要はない。   The removal of boron in the second step is an adsorption reaction, and the lower the liquid temperature, the higher the amount of adsorption. Therefore, in the present invention, the second step is a liquid temperature of 10 to 35 ° C., preferably 15 to 30. Process at room temperature of ℃. For this reason, heating is not necessary in this step.

第二の工程の反応時間は、原水中のフッ素とカルシウム化合物との反応時間等を確保する点から0.5〜4時間程度とすることが好ましい。   The reaction time in the second step is preferably about 0.5 to 4 hours from the viewpoint of securing the reaction time of fluorine and calcium compound in raw water.

<第三の工程>
第三の工程では、第二の工程で析出した不溶化物(フッ化カルシウム及びアルミン酸カルシウムを含む汚泥)を固液分離して分離水を得る。固液分離性能を高めるために、第二の工程と第三の工程との間に、高分子凝集剤を添加して凝集する工程を行ってもよい。
<Third step>
In the third step, the insolubilized matter (sludge containing calcium fluoride and calcium aluminate) precipitated in the second step is subjected to solid-liquid separation to obtain separated water. In order to improve the solid-liquid separation performance, a step of aggregating by adding a polymer flocculant may be performed between the second step and the third step.

高分子凝集剤としては、排水処理で使用されているものが適用可能であり、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、アクリルアミドとアクリル酸(塩)との共重合物等のアニオン系高分子凝集剤あるいはポリアクリルアミド等のノニオン性の高分子凝集剤の1種又は2種以上を用いることができる。高分子凝集剤の添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜20mg/L程度である。   As the polymer flocculant, those used in wastewater treatment can be applied, such as polyacrylamide partial hydrolysates, sodium polyacrylate, and copolymers of acrylamide and acrylic acid (salt). One kind or two or more kinds of nonionic polymer flocculants such as a molecular flocculant or polyacrylamide can be used. The addition amount of the polymer flocculant is usually about 0.1 to 20 mg / L, although it varies depending on the quality of the raw water to be treated and the polymer flocculant used.

第三の工程における固液分離には、沈殿槽等の固液分離槽の他、膜分離装置、濾過装置、脱水機等を用いることができる。   For the solid-liquid separation in the third step, a membrane separation device, a filtration device, a dehydrator and the like can be used in addition to a solid-liquid separation tank such as a precipitation tank.

この第三の工程においては、処理対象原水の水質、アルミニウム化合物及びカルシウム化合物の添加量等によっても異なるが、通常、F濃度3〜15mg/L程度、B濃度1〜10mg/L程度、BF濃度0.1mg/L以下の処理水を得ることができる。後述の如く、この処理水のAl濃度は通常30〜70mg/L程度である。In this third step, the F concentration is about 3 to 15 mg / L, the B concentration is about 1 to 10 mg / L, and BF 4 , although it varies depending on the quality of the raw water to be treated, the addition amount of the aluminum compound and the calcium compound, and the like. Treated water having a concentration of 0.1 mg / L or less can be obtained. As will be described later, the Al concentration of the treated water is usually about 30 to 70 mg / L.

<第四の工程>
本発明においては、上記の第三の工程の固液分離水を処理水としてもよいが、更にこの固液分離水を処理してフッ素を除去する第四の工程を行ってもよい。即ち、第二の工程でフッ素はフッ化カルシウムとして不溶化されるが、フッ化カルシウムの溶解度の関係から、第三の工程の固液分離水中にはわずかながらフッ素が残留する。従って、第四の工程を行って、残留するフッ素を更に除去してもよい。
<Fourth process>
In the present invention, the solid-liquid separated water in the third step may be treated water, but a fourth step of further removing fluorine by treating the solid-liquid separated water may be performed. That is, although fluorine is insolubilized as calcium fluoride in the second step, a slight amount of fluorine remains in the solid-liquid separated water in the third step due to the solubility of calcium fluoride. Therefore, the remaining fluorine may be further removed by performing the fourth step.

第四の工程では、必要に応じてアルミニウム化合物と酸、アルミニウム化合物の添加量によってはアルカリを添加してpH6〜7に調整することにより、水酸化アルミニウムを析出させる。この水酸化アルミニウムが析出する際の共沈作用により水中のフッ素を不溶化させて除去する。   In the fourth step, aluminum hydroxide is precipitated by adjusting the pH to 6 to 7 by adding an alkali depending on the amount of the aluminum compound, acid, and aluminum compound added as necessary. Fluorine in water is insolubilized and removed by coprecipitation when aluminum hydroxide is precipitated.

本発明においては、第一の工程でアルミニウム化合物を添加した後、第二の工程でカルシウム化合物を前述のCa/Al(モル比)で添加することにより、第三の工程で得られる固液分離水中にアルミニウムを30〜70mg/L程度残留させることができる。このため、この第四の工程に必要なアルミニウム量を、この残留アルミニウム量で賄うことができ、第四の工程では、酸を添加して5〜30分程度、常温(10〜35℃)の攪拌下に反応させるのみで、フッ素を除去することも可能である。ただし、必要に応じてこの第四の工程でアルミニウム化合物を添加してもよい。このアルミニウム化合物としては、第一の工程で用いるアルミニウム化合物として例示したものを用いることができる。   In the present invention, after the aluminum compound is added in the first step, the calcium compound is added in the above-mentioned Ca / Al (molar ratio) in the second step, thereby obtaining the solid-liquid separation obtained in the third step. About 30 to 70 mg / L of aluminum can be left in water. For this reason, the amount of aluminum necessary for the fourth step can be covered by the amount of residual aluminum. In the fourth step, the acid is added for about 5 to 30 minutes at room temperature (10 to 35 ° C.). It is also possible to remove fluorine only by reacting with stirring. However, an aluminum compound may be added in this fourth step as necessary. As this aluminum compound, those exemplified as the aluminum compound used in the first step can be used.

<第五の工程>
第五の工程では、第四工程で析出した不溶化物(水酸化アルミニウムを含むフッ素の共沈汚泥)を固液分離して処理水を得る。ここで、固液分離性能を高めるために、第四の工程と第五の工程との間に、高分子凝集剤を添加して凝集する工程を行ってもよい。
<Fifth process>
In the fifth step, the insolubilized matter (fluorine coprecipitation sludge containing aluminum hydroxide) precipitated in the fourth step is subjected to solid-liquid separation to obtain treated water. Here, in order to improve the solid-liquid separation performance, a step of aggregating by adding a polymer flocculant may be performed between the fourth step and the fifth step.

この場合、高分子凝集剤としては、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、ポリビニルアミジン等のアニオン系高分子凝集剤の1種又は2種以上を用いることができる。高分子凝集剤の添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜5mg/L程度である。   In this case, as the polymer flocculant, one kind or two or more kinds of anionic polymer flocculants such as polyacrylamide partial hydrolyzate, sodium polyacrylate, and polyvinylamidine can be used. The addition amount of the polymer flocculant is usually about 0.1 to 5 mg / L, although it varies depending on the quality of the raw water to be treated and the polymer flocculant used.

第五の工程における固液分離には、沈殿槽等の固液分離槽の他、膜分離装置、濾過装置等を用いることができる。   For the solid-liquid separation in the fifth step, a membrane separation apparatus, a filtration apparatus, etc. can be used in addition to a solid-liquid separation tank such as a precipitation tank.

この第五の工程においては、処理対象原水の水質、アルミニウム化合物及びカルシウム化合物の添加量等によっても異なるが、通常、F濃度1.1mg/L以下、B濃度3.5mg/L以下、BF濃度0.1mg/L以下、Al濃度1mg/L以下の高水質の処理水を得ることができる。In this fifth step, the F concentration is 1.1 mg / L or less, the B concentration is 3.5 mg / L or less, BF 4 , although it varies depending on the quality of the raw water to be treated, the amount of aluminum compound and calcium compound added, and the like. High-quality treated water having a concentration of 0.1 mg / L or less and an Al concentration of 1 mg / L or less can be obtained.

<その他の工程>
本発明においては、更に、以下の工程を付加してもよい。
<Other processes>
In the present invention, the following steps may be further added.

原水を第一の工程で処理するに先立ち、カルシウム化合物を添加してpH4〜10で反応させて析出した不溶化物を固液分離することにより、原水中のフッ素の一部を予め除去してもよい。このような前処理工程を付加して原水中のフッ素を予め粗取りすることにより、第一の工程に流入する水のF濃度を低減して第一の工程におけるアルミニウム化合物の添加量を削減することができる。   Prior to treating raw water in the first step, a part of fluorine in raw water can be removed in advance by solid-liquid separation of precipitated insolubles by adding calcium compounds and reacting at pH 4-10. Good. By adding such a pretreatment step and pre-roughening the fluorine in the raw water in advance, the F concentration of water flowing into the first step is reduced and the amount of aluminum compound added in the first step is reduced. be able to.

第三の工程で固液分離して得られた分離汚泥の一部を第二の工程に返送して添加してもよい。この場合において、第二の工程で添加するカルシウム化合物をこの返送汚泥に添加混合して汚泥を改質し、改質汚泥を第二の工程で添加するようにしてもよい。このような汚泥返送を行うことにより、この汚泥の表面で新たにフッ化カルシウムが析出する。これにより、第三の工程で得られる固液分離汚泥の脱水性が高められ、この汚泥を脱水処理して得られる脱水ケーキの含水率を低減することができる。   A part of the separated sludge obtained by solid-liquid separation in the third step may be returned to the second step and added. In this case, the calcium compound added in the second step may be added to and mixed with the returned sludge to modify the sludge, and the modified sludge may be added in the second step. By performing such sludge return, calcium fluoride is newly deposited on the surface of the sludge. Thereby, the dehydrating property of the solid-liquid separation sludge obtained in the third step is enhanced, and the moisture content of the dehydrated cake obtained by dehydrating the sludge can be reduced.

以下に本発明例及び比較例を示す実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to experimental examples showing the present invention and comparative examples.

なお、以下において、原水としては、下記水質のものを用いた。
<原水水質>
F濃度:600mg/L(31.6ミリモル/L)
B濃度:200mg−B/L(18.5ミリモル/L)
BF濃度:250mg/L
In the following, raw water having the following water quality was used.
<Raw water quality>
F concentration: 600 mg / L (31.6 mmol / L)
B concentration: 200 mg-B / L (18.5 mmol / L)
BF 4 concentration: 250 mg / L

アルミニウム化合物としては硫酸バンド(8重量%、Al)を用い、カルシウム化合物としては消石灰(Ca(OH))を用いた。高分子凝集剤としては、栗田工業(株)製アニオン系高分子凝集剤「クリファーム(登録商標)PA823」を用い、その添加量は10mg/Lとした。A sulfate band (8 wt%, Al 2 O 3 ) was used as the aluminum compound, and slaked lime (Ca (OH) 2 ) was used as the calcium compound. As the polymer flocculant, an anionic polymer flocculant “Clifarm (registered trademark) PA823” manufactured by Kurita Kogyo Co., Ltd. was used, and the amount added was 10 mg / L.

[実験例1〜4]
原水に硫酸バンドをそれぞれ下記表1に示す量添加し、硫酸でpH2に調整した後、4時間反応させた。その後、消石灰を添加してpH10で1時間反応させた。消石灰は、硫酸バンド添加量と消石灰添加量とで算出されるCa/Al(モル比)を1〜6の範囲で種々変更して添加した。
[Experimental Examples 1-4]
A sulfuric acid band was added to the raw water in the amounts shown in Table 1 below, adjusted to pH 2 with sulfuric acid, and reacted for 4 hours. Then, slaked lime was added and reacted at pH 10 for 1 hour. The slaked lime was added by variously changing Ca / Al (molar ratio) calculated from the addition amount of sulfuric acid band and the addition amount of slaked lime within the range of 1-6.

消石灰の添加でpHが10にならない場合には、適宜酸(硫酸)又はアルカリ(水酸化ナトリウム)を添加してpH10に調整した。   When the pH did not reach 10 due to the addition of slaked lime, acid (sulfuric acid) or alkali (sodium hydroxide) was appropriately added to adjust the pH to 10.

Figure 2014132887
Figure 2014132887

次いで、高分子凝集剤を添加して5分間凝集処理し、凝集処理水を固液分離した。   Next, a polymer flocculant was added and agglomeration treatment was performed for 5 minutes, and the agglomerated water was separated into solid and liquid.

上記一連の処理はいずれも液温20℃で行った。   All of the above series of treatments were performed at a liquid temperature of 20 ° C.

得られた処理水(固液分離水)の水質を分析し、Ca/Alモル比との関係を調べ、結果を図2〜7に示した。   The water quality of the obtained treated water (solid-liquid separated water) was analyzed, the relationship with the Ca / Al molar ratio was examined, and the results are shown in FIGS.

図2より、Al/F(モル比)が1.5以上であると、原水中のホウフッ化物(BF)を完全に分解することができることが分かる。From FIG. 2, it can be seen that the borofluoride (BF 4 ) in the raw water can be completely decomposed when the Al / F (molar ratio) is 1.5 or more.

図3,4より、Al/F(モル比)が1.5以上で、Ca/Al(モル比)が2.5〜4.0の範囲であるとフッ素及びホウ素の除去率が高く、特にホウ素の除去効率が向上することが分かる。   3 and 4, when Al / F (molar ratio) is 1.5 or more and Ca / Al (molar ratio) is in the range of 2.5 to 4.0, the removal rate of fluorine and boron is high. It can be seen that the boron removal efficiency is improved.

図5より、Ca/Al(モル比)が2.5〜4.0の範囲であると、処理水中に残留するAl量が多くなり、更なるフッ素の処理に有効利用することができることが分かる。   FIG. 5 shows that when the Ca / Al (molar ratio) is in the range of 2.5 to 4.0, the amount of Al remaining in the treated water increases and can be effectively used for further fluorine treatment. .

図6の通り、Ca/Al(モル比)が2.5〜4.0の範囲であると、処理水中のSO濃度(SO 2−イオン濃度)が低く、装置後段(処理水配管など)でのCaSOスケールトラブルが軽減できる。As shown in FIG. 6, when the Ca / Al (molar ratio) is in the range of 2.5 to 4.0, the SO 4 concentration (SO 4 2− ion concentration) in the treated water is low, and the latter part of the apparatus (treated water piping, etc.) ) CaSO 4 scale trouble can be reduced.

図7の通り、Ca/Al(モル比)が2.5〜4.0の範囲であると、処理水中のCa濃度(Ca2+イオン濃度)が低く、装置後段(処理水配管など)でのCaSOスケールトラブルが軽減できる。As shown in FIG. 7, when the Ca / Al (molar ratio) is in the range of 2.5 to 4.0, the Ca concentration (Ca 2+ ion concentration) in the treated water is low, and in the latter stage of the apparatus (treated water piping, etc.) CaSO 4 scale trouble can be reduced.

[実験例5,6]
原水に所定量の硫酸バンドを添加し、硫酸でpH2に調整した後4時間反応させた。その後、消石灰を添加してpH10で1時間反応させた。消石灰は、硫酸バンド添加量と消石灰添加量とで算出されるCa/Al(モル比)が2.5となるように添加した。
[Experimental Examples 5 and 6]
A predetermined amount of sulfuric acid band was added to the raw water, adjusted to pH 2 with sulfuric acid, and then reacted for 4 hours. Then, slaked lime was added and reacted at pH 10 for 1 hour. Slaked lime was added so that the Ca / Al (molar ratio) calculated by the addition amount of sulfuric acid band and the addition amount of slaked lime was 2.5.

消石灰の添加でpHが10にならない場合には、適宜酸(硫酸)又はアルカリ(水酸化ナトリウム)を添加してpH10に調整した。   When the pH did not reach 10 due to the addition of slaked lime, acid (sulfuric acid) or alkali (sodium hydroxide) was appropriately added to adjust the pH to 10.

次いで、高分子凝集剤を添加して5分間凝集処理し、凝集処理水を固液分離した。   Next, a polymer flocculant was added and agglomeration treatment was performed for 5 minutes, and the agglomerated water was separated into solid and liquid.

硫酸バンドは、原水中のホウ素に対して、Al換算の添加量をAl/B(モル比)で種々変更して添加した。原水のフッ素濃度は、ホウ素濃度の約1.7倍であるので、Al/B(モル比)が約2.0〜4.0の範囲であれば、Al/F(モル比)は1.2〜2.5となる。   The sulfuric acid band was added to the boron in the raw water by variously changing the addition amount in terms of Al with Al / B (molar ratio). Since the fluorine concentration of the raw water is about 1.7 times the boron concentration, if the Al / B (molar ratio) is in the range of about 2.0 to 4.0, the Al / F (molar ratio) is 1. 2 to 2.5.

上記の一連の処理は、実験例5では液温20℃で行い、実験例6では液温60℃で行った。   The series of treatments described above were performed at a liquid temperature of 20 ° C. in Experimental Example 5 and at a liquid temperature of 60 ° C. in Experimental Example 6.

得られた処理水(固液分離水)のB濃度を分析し、Al/Bモル比との関係を図8に示した。   The B concentration of the obtained treated water (solid-liquid separated water) was analyzed, and the relationship with the Al / B molar ratio is shown in FIG.

図8より、処理温度が60℃の場合よりも、20℃の場合の方が、ホウ素除去率が格段に高いことが分かる。Al/B(モル比)が2.0〜4.5の範囲であると、ホウ素除去効果に優れることが分かる。   FIG. 8 shows that the boron removal rate is significantly higher when the treatment temperature is 20 ° C. than when the treatment temperature is 60 ° C. It turns out that it is excellent in the boron removal effect in Al / B (molar ratio) being the range of 2.0-4.5.

[実験例7]
実験例3において、硫酸バンドをAl/F(モル比)=1.5、Al/B(モル比)=2.5、Ca/Al(モル比)=3.3となるように添加した場合において得られた固液分離水(F濃度=9mg/L、B濃度=3.5mg/L、BF濃度<0.1mg/L、Al濃度=61mg/L)に、硫酸を添加してpH6.5とし、15分攪拌して不溶化物を析出させた。
[Experimental Example 7]
In Experimental Example 3, when a sulfuric acid band was added so that Al / F (molar ratio) = 1.5, Al / B (molar ratio) = 2.5, and Ca / Al (molar ratio) = 3.3 Was added to the solid-liquid separated water (F concentration = 9 mg / L, B concentration = 3.5 mg / L, BF 4 concentration <0.1 mg / L, Al concentration = 61 mg / L) obtained by adding sulfuric acid to pH 6 And the mixture was stirred for 15 minutes to precipitate an insolubilized product.

次いで、高分子凝集剤を添加して5分間凝集処理し、凝集処理水を固液分離した。   Next, a polymer flocculant was added and agglomeration treatment was performed for 5 minutes, and the agglomerated water was separated into solid and liquid.

得られた処理水(固液分離水)は、F濃度=1.1mg/L、B濃度=3.5mg/L、BF濃度<0.1mg/L、Al濃度<1mg/Lの高水質の処理水であった。The obtained treated water (solid-liquid separation water) has high water quality with F concentration = 1.1 mg / L, B concentration = 3.5 mg / L, BF 4 concentration <0.1 mg / L, Al concentration <1 mg / L. Was treated water.

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2013年2月28日付で出願された日本特許出願2013−039193に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on the JP Patent application 2013-039193 for which it applied on February 28, 2013, The whole is used by reference.

Claims (8)

ホウフッ化物含有水にアルミニウム化合物を添加してpH1〜4でホウフッ化物を分解する第一の工程と、該第一の工程の処理水にカルシウム化合物を添加してpH7〜13で反応させることにより不溶化物を生成させる第二の工程と、該不溶化物を固液分離する第三の工程とを有するホウフッ化物含有水の処理方法において、
前記第一の工程のアルミニウム化合物の添加量が、該ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、
前記第二の工程のカルシウム化合物の添加量が、該アルミニウム化合物のAl換算値に対するCa換算値でCa/Al=2.5〜4.0(モル比)であり、
前記第一及び第二の工程の処理温度が10〜35℃であることを特徴とするホウフッ化物含有水の処理方法。
Insolubilization by adding an aluminum compound to borofluoride-containing water and decomposing the borofluoride at pH 1 to 4, and adding calcium compound to the treated water of the first step and reacting at pH 7 to 13 In a method for treating borofluoride-containing water having a second step of producing a product and a third step of solid-liquid separation of the insolubilized product,
The addition amount of the aluminum compound in the first step is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water,
The addition amount of the calcium compound in the second step is Ca / Al = 2.5 to 4.0 (molar ratio) as a Ca conversion value with respect to an Al conversion value of the aluminum compound,
The processing temperature of said 1st and 2nd process is 10-35 degreeC, The processing method of the borofluoride containing water characterized by the above-mentioned.
前記第三の工程で得られた分離水をpH6〜7で処理して不溶化物を生成させる第四の工程と、該不溶化物を固液分離する第五の工程とを有することを特徴とする請求項1に記載のホウフッ化物含有水の処理方法。   It has the 4th process of processing the separation water obtained by said 3rd process by pH 6-7, and producing | generating an insolubilized material, and the 5th process of solid-liquid-separating this insolubilized material. The method for treating borofluoride-containing water according to claim 1. 前記第一の工程のアルミニウム化合物の添加量が、前記ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、かつ、前記ホウフッ化物含有水のホウ素濃度に対するAl換算値でAl/B=2.0〜4.5(モル比)であることを特徴とする請求項1又は2に記載のホウフッ化物含有水の処理方法。   The addition amount of the aluminum compound in the first step is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water, and the borofluoride content The method for treating borofluoride-containing water according to claim 1 or 2, wherein Al / B = 2.0 to 4.5 (molar ratio) in terms of Al with respect to the boron concentration of water. 前記第三の工程で得られる分離水のアルミニウム濃度が30〜70mg/Lであることを特徴とする請求項1ないし3のいずれか1項に記載のホウフッ化物含有水の処理方法。   The method for treating borofluoride-containing water according to any one of claims 1 to 3, wherein the aluminum concentration of the separated water obtained in the third step is 30 to 70 mg / L. ホウフッ化物含有水にアルミニウム化合物を添加してpH1〜4でホウフッ化物を分解する第一の反応槽と、該第一の反応槽の処理水にカルシウム化合物を添加してpH7〜13で反応させることにより不溶化物を生成させる第二の反応槽と、該不溶化物を固液分離する第一の固液分離手段とを有するホウフッ化物含有水の処理装置において、
前記第一の反応槽のアルミニウム化合物の添加量が、該ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、
前記第二の反応槽のカルシウム化合物の添加量が、該アルミニウム化合物のAl換算値に対するCa換算値でCa/Al=2.5〜4.0(モル比)であり、
前記第一及び第二の反応槽の処理温度が10〜35℃であることを特徴とするホウフッ化物含有水の処理装置。
A first reaction vessel that decomposes borofluoride at pH 1-4 by adding an aluminum compound to borofluoride-containing water, and a calcium compound added to the treated water in the first reaction vessel to react at pH 7-13 In a treatment apparatus for borofluoride-containing water having a second reaction tank for producing an insolubilized product by means of a first solid-liquid separation means for solid-liquid separation of the insolubilized product,
The addition amount of the aluminum compound in the first reaction tank is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water,
The addition amount of the calcium compound in the second reaction tank is Ca / Al = 2.5 to 4.0 (molar ratio) as a Ca conversion value with respect to an Al conversion value of the aluminum compound,
The processing temperature of said 1st and 2nd reaction tank is 10-35 degreeC, The processing apparatus of borofluoride containing water characterized by the above-mentioned.
前記固液分離手段で得られた分離水をpH6〜7で処理して不溶化物を生成させる第三の反応槽と、該不溶化物を固液分離する第二の固液分離手段とを有することを特徴とする請求項5に記載のホウフッ化物含有水の処理装置。   A third reaction tank for producing an insolubilized product by treating the separated water obtained by the solid-liquid separating unit with a pH of 6 to 7, and a second solid-liquid separating unit for solid-liquid separating the insolubilized product. The apparatus for treating borofluoride-containing water according to claim 5. 前記第一の反応槽のアルミニウム化合物の添加量が、前記ホウフッ化物含有水のフッ素濃度に対するAl換算値でAl/F=1.2〜2.5(モル比)であり、かつ、前記ホウフッ化物含有水のホウ素濃度に対するAl換算値でAl/B=2.0〜4.5(モル比)であることを特徴とする請求項5又は6に記載のホウフッ化物含有水の処理方法。   The addition amount of the aluminum compound in the first reaction tank is Al / F = 1.2 to 2.5 (molar ratio) in terms of Al with respect to the fluorine concentration of the borofluoride-containing water, and the borofluoride The method for treating borofluoride-containing water according to claim 5 or 6, wherein Al / B = 2.0 to 4.5 (molar ratio) in terms of Al with respect to the boron concentration of the contained water. 前記第一の固液分離手段で得られる分離水のアルミニウム濃度が30〜70mg/Lであることを特徴とする請求項5ないし7のいずれか1項に記載のホウフッ化物含有水の処理装置。   The apparatus for treating borofluoride-containing water according to any one of claims 5 to 7, wherein the aluminum concentration of the separated water obtained by the first solid-liquid separation means is 30 to 70 mg / L.
JP2015502895A 2013-02-28 2014-02-21 Method and apparatus for treating borofluoride-containing water Active JP6269651B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013039193 2013-02-28
JP2013039193 2013-02-28
PCT/JP2014/054155 WO2014132887A1 (en) 2013-02-28 2014-02-21 Method and apparatus for treating borofluoride-containing water

Publications (2)

Publication Number Publication Date
JPWO2014132887A1 true JPWO2014132887A1 (en) 2017-02-02
JP6269651B2 JP6269651B2 (en) 2018-01-31

Family

ID=51428157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502895A Active JP6269651B2 (en) 2013-02-28 2014-02-21 Method and apparatus for treating borofluoride-containing water

Country Status (6)

Country Link
JP (1) JP6269651B2 (en)
KR (1) KR101990179B1 (en)
CN (1) CN105026320A (en)
SG (2) SG10201706798UA (en)
TW (1) TWI588096B (en)
WO (1) WO2014132887A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396827B2 (en) * 2015-03-06 2018-09-26 株式会社Nsc Method and system for treating wastewater containing borofluoride
JP6485290B2 (en) * 2015-08-31 2019-03-20 住友金属鉱山株式会社 Fluorine separation method from fluorine-containing wastewater
JP7089345B2 (en) * 2017-05-25 2022-06-22 株式会社 イージーエス Water treatment method and water treatment equipment
CN110590013A (en) * 2019-09-15 2019-12-20 北京航天国环技术有限公司 Method and system for treating fluorine-containing waste sulfuric acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192561A (en) * 1975-02-10 1976-08-13 HOFUTSUSOKAGOBUTSUGANJUHAISUI NO SHORIHOHO
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS52138359A (en) * 1976-05-14 1977-11-18 Asahi Glass Co Ltd Treating method of waste liquor containing fluorine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954131A (en) 1972-10-11 1974-05-25
JPH0910774A (en) * 1995-07-03 1997-01-14 Kansai Electric Power Co Inc:The Treatment of borofluoride-containing water
JP2002143841A (en) * 2000-11-10 2002-05-21 Nec Ameniplantex Ltd Method for treating waste water containing fluorine and boron
JP4338705B2 (en) * 2006-01-31 2009-10-07 日本エコロジー株式会社 Method for treating waste liquid containing borofluoride ions
JP4954131B2 (en) * 2008-03-27 2012-06-13 エコシステム秋田株式会社 Treatment method of water containing borofluoride
JP5046250B2 (en) * 2009-11-12 2012-10-10 住友金属鉱山エンジニアリング株式会社 Wastewater treatment method
CN102336460B (en) * 2010-07-21 2013-06-12 中国石油化工股份有限公司 Hydrolytic agent for treating wastewater containing tetrafluoroborate and application thereof
CN102070267A (en) * 2010-11-30 2011-05-25 湖北大峪口化工有限责任公司 Method for treating high-concentration acidic wastewater containing phosphorus and fluorine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192561A (en) * 1975-02-10 1976-08-13 HOFUTSUSOKAGOBUTSUGANJUHAISUI NO SHORIHOHO
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS52138359A (en) * 1976-05-14 1977-11-18 Asahi Glass Co Ltd Treating method of waste liquor containing fluorine

Also Published As

Publication number Publication date
TWI588096B (en) 2017-06-21
CN105026320A (en) 2015-11-04
WO2014132887A1 (en) 2014-09-04
TW201500297A (en) 2015-01-01
KR101990179B1 (en) 2019-09-30
JP6269651B2 (en) 2018-01-31
KR20150120971A (en) 2015-10-28
SG11201506360QA (en) 2015-09-29
SG10201706798UA (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
JP6269651B2 (en) Method and apparatus for treating borofluoride-containing water
JP4954131B2 (en) Treatment method of water containing borofluoride
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP4572812B2 (en) Fluorine-containing water treatment method
JP4860201B2 (en) Method and apparatus for treating wastewater containing boron
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP4863302B2 (en) Method and apparatus for treating wastewater containing boron
JP6045964B2 (en) Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
TWI263623B (en) Effluent water treatment method
JP5046250B2 (en) Wastewater treatment method
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP4525601B2 (en) Treatment method for fluorine-containing wastewater
JP5330329B2 (en) Method and apparatus for treating wastewater containing boron
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2014200745A (en) Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid
WO2017017833A1 (en) Fluorine-containing wastewater treatment method and device therefor
JP2002143607A (en) Water treating flocculant, method for producing the same and method for treating water
JP5049987B2 (en) Fluorine ion immobilization and fluorine recycling method
JP2022015034A (en) Method for removing boron in wastewater
JP2007283154A (en) Boron-containing waste water treatment method
JP2014200744A (en) Method of treating waste liquid containing boron fluoride ion and apparatus of treating waste liquid containing boron fluoride ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170711

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250