JP2013104723A - METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER - Google Patents

METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER Download PDF

Info

Publication number
JP2013104723A
JP2013104723A JP2011247494A JP2011247494A JP2013104723A JP 2013104723 A JP2013104723 A JP 2013104723A JP 2011247494 A JP2011247494 A JP 2011247494A JP 2011247494 A JP2011247494 A JP 2011247494A JP 2013104723 A JP2013104723 A JP 2013104723A
Authority
JP
Japan
Prior art keywords
containing water
carbonate
treating
water
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011247494A
Other languages
Japanese (ja)
Inventor
Koichi Mori
浩一 森
Satoshi Yamada
聡 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011247494A priority Critical patent/JP2013104723A/en
Publication of JP2013104723A publication Critical patent/JP2013104723A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently decomposing and removing Sr in water at a low cost even in a case of a high-concentration Sr-containing water or a large amount of Sr-containing water.SOLUTION: Carbonate is added to Sr-containing water under alkaline conditions to cause coagulation and solid-liquid separation. The Sr in water reacts with the carbonate under the alkaline conditions to generate sedimentation of strontium carbonate so as to efficiently treat Sr by the coagulation and solid-liquid separation. The alkaline condition is preferable to be pH 10-13.5, and the carbonate is preferable to be carbonate of alkaline metal. This method is effective for treating sea water containing Sr.

Description

本発明は、Sr含有水の処理方法及び処理装置に関する。詳しくは、SrとCa2+,Mg2+等の陽イオンを含有する水を凝集、固液分離により処理する方法及び装置に関する。 The present invention relates to a method and apparatus for treating Sr-containing water. Specifically, the present invention relates to a method and apparatus for treating water containing cations such as Sr and Ca 2+ , Mg 2+ by agglomeration and solid-liquid separation.

放射性ストロンチウム90Srは、放射性Csと同様に、半減期が長く、また、水への拡散性が高い核***生成物であり、放射性Csと同様、放射性Srにより汚染された水についても、その水処理システムの改良が望まれている。 Radioactive strontium 90 Sr is a fission product having a long half-life and high diffusibility to water, similar to radioactive Cs. Like radioactive Cs, water treated with radioactive Sr is also treated with water. Improvement of the system is desired.

従来、水中の放射性Srの処理には、オルトチタン酸で吸着除去する方法が適用されており(非特許文献1)、従来において、凝集処理は行われていない。   Conventionally, a method of adsorbing and removing with orthotitanic acid has been applied to the treatment of radioactive Sr in water (Non-Patent Document 1), and conventionally, no aggregation treatment has been performed.

久保田益光ほか“群分離法の開発:無機イオン交換体カラム法による90Sr及び134Csを含む廃液の処理法の開発”JAERI−M82−144(1982)Masumi Kubota et al. “Development of group separation method: Development of treatment method of waste liquid containing 90Sr and 134Cs by inorganic ion exchanger column method” JAERI-M82-144 (1982)

オルトチタン酸等の吸着材を用いてSrを吸着除去する従来法では、次のような問題があった。
(1) 放射性Srで汚染された海水など、放射性Sr含有水は、通常、放射性Sr以外の陽イオンを多く含有するため、これら陽イオンが放射性Srの吸着を妨害し、放射性Srのみを選択的に吸着材で吸着除去することができない。このため、放射性Sr含有水の吸着処理に当っては、予め他の陽イオンを除去するための前処理が必要となる。
(2) 高濃度Sr含有水の処理では、吸着材の交換頻度が高く、ランニングコストが嵩む。
(3) 大量のSr含有水の処理には、処理効率が悪く、不適当である。
The conventional method of adsorbing and removing Sr using an adsorbent such as orthotitanic acid has the following problems.
(1) Since radioactive Sr-containing water such as seawater contaminated with radioactive Sr usually contains many cations other than radioactive Sr, these cations interfere with the adsorption of radioactive Sr, and only radioactive Sr is selectively used. It cannot be removed by adsorption with an adsorbent. For this reason, in the adsorption treatment of radioactive Sr-containing water, pretreatment for removing other cations in advance is required.
(2) In the treatment of high-concentration Sr-containing water, the replacement frequency of the adsorbent is high and the running cost increases.
(3) The treatment efficiency is poor and inappropriate for the treatment of a large amount of Sr-containing water.

本発明は、高濃度Sr含有水や大量のSr含有水であっても、低コストで効率的に水中のSrを分解除去することができるSr含有水の処理方法及び処理装置を提供することを課題とする。   The present invention provides a treatment method and a treatment apparatus for Sr-containing water that can efficiently decompose and remove Sr in water at low cost even with high-concentration Sr-containing water or a large amount of Sr-containing water. Let it be an issue.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、水中のSrは、アルカリ条件下で炭酸塩と反応して炭酸ストロンチウムの沈殿を生成すること、従って、Sr含有水の処理に、凝集、固液分離を適用することができることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that Sr in water reacts with a carbonate under alkaline conditions to form a precipitate of strontium carbonate, and thus treatment of Sr-containing water. In addition, it has been found that aggregation and solid-liquid separation can be applied.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] Sr含有水にアルカリ条件下で炭酸塩を添加して凝集、固液分離することを特徴とするSr含有水の処理方法。 [1] A method for treating Sr-containing water, characterized in that carbonate is added to Sr-containing water under alkaline conditions for aggregation and solid-liquid separation.

[2] [1]において、前記アルカリ条件がpH9〜13.5であることを特徴とするSr含有水の処理方法。 [2] The method for treating Sr-containing water according to [1], wherein the alkaline condition is pH 9 to 13.5.

[3] [1]又は[2]において、前記炭酸塩がアルカリ金属の炭酸塩であることを特徴とするSr含有水の処理方法。 [3] The method for treating Sr-containing water according to [1] or [2], wherein the carbonate is an alkali metal carbonate.

[4] [1]ないし[3]のいずれかにおいて、前記Sr含有水がSrとSr以外の陽イオンを含むことを特徴とするSr含有水の処理方法。 [4] The method for treating Sr-containing water according to any one of [1] to [3], wherein the Sr-containing water contains a cation other than Sr and Sr.

[5] [4]において、前記Sr含有水がSrを含む海水であることを特徴とするSr含有水の処理方法。 [5] The method for treating Sr-containing water according to [4], wherein the Sr-containing water is seawater containing Sr.

[6] Sr含有水に炭酸塩を添加する炭酸塩添加手段と、Sr含有水をpHアルカリ性に調整するpH調整手段と、該炭酸塩添加手段とpH調整手段を経たSr含有水を凝集、固液分離する手段とを有することを特徴とするSr含有水の処理装置。 [6] Carbonate addition means for adding carbonate to Sr-containing water, pH adjustment means for adjusting Sr-containing water to pH alkalinity, and Sr-containing water passed through the carbonate addition means and pH adjustment means are aggregated and solidified. An apparatus for treating Sr-containing water.

[7] [6]において、前記pH調整手段によりSr含有水をpH9〜13.5に調整することを特徴とするSr含有水の処理装置。 [7] The apparatus for treating Sr-containing water according to [6], wherein the pH adjusting means adjusts the Sr-containing water to a pH of 9 to 13.5.

[8] [6]又は[7]において、前記炭酸塩がアルカリ金属の炭酸塩であることを特徴とすることを特徴とするSr含有水の処理装置。 [8] The apparatus for treating Sr-containing water according to [6] or [7], wherein the carbonate is an alkali metal carbonate.

[9] [6]ないし[8]のいずれかにおいて、前記Sr含有水がSrとSr以外の陽イオンを含むことを特徴とするSr含有水の処理装置。 [9] The apparatus for treating Sr-containing water according to any one of [6] to [8], wherein the Sr-containing water contains cations other than Sr and Sr.

[10] [9]において、前記Sr含有水がSrを含む海水であることを特徴とするSr含有水の処理装置。 [10] The apparatus for treating Sr-containing water according to [9], wherein the Sr-containing water is seawater containing Sr.

本発明によれば、Sr含有水にアルカリ条件下で炭酸塩を添加することにより、水中のSrを以下の反応で炭酸ストロンチウムとして効率的に析出、沈殿させ、これを凝集、固液分離することにより、効率的に除去することができる。
Sr2++CO 2−→SrCO↓ ・・・(1)
According to the present invention, by adding carbonate to Sr-containing water under alkaline conditions, Sr in water is efficiently precipitated and precipitated as strontium carbonate by the following reaction, and this is agglomerated and solid-liquid separated. Thus, it can be efficiently removed.
Sr 2+ + CO 3 2− → SrCO 3 ↓ (1)

また、Sr含有水がCa2+,Mg2+などのSr以外の他の陽イオンを含む場合、以下のように、例えば、Ca2+は、炭酸カルシウムとして析出、沈殿させて除去することができ、また、Mg2+もpH12以上で水酸化マグネシウムとして析出させて除去することができる。
Ca2++CO 2−→CaCO↓ ・・・(2)
Mg2+2OH→Mg(OH)↓ ・・・(3)
特に、Sr含有水にCa2+が含まれる場合、CaCOとSrCOとが共沈することで、沈殿物が高密度となり、汚泥の沈降性、固液分離性が良好となる。
Moreover, when Sr containing water contains other cations other than Sr, such as Ca < 2+ > , Mg <2+> , for example, Ca <2+> can be precipitated and precipitated as calcium carbonate, and can be removed. Mg 2+ can also be deposited and removed as magnesium hydroxide at pH 12 or higher.
Ca 2+ + CO 3 2− → CaCO 3 ↓ (2)
Mg 2+ 2OH → Mg (OH) 2 ↓ (3)
In particular, when Ca 2+ is contained in the Sr-containing water, CaCO 3 and SrCO 3 co-precipitate, the precipitate becomes dense, and sludge sedimentation and solid-liquid separation properties are improved.

本発明によれば、Sr含有水に凝集処理を適用することが可能となり、大量のSr含有水であっても容易かつ効率的に安価に処理することができる。しかも、海水のように高塩類濃度のSr含有水であっても、凝集処理であれば、容易かつ効率的に安価に処理することができる。   According to the present invention, it is possible to apply a coagulation treatment to Sr-containing water, and even a large amount of Sr-containing water can be easily and efficiently treated at low cost. Moreover, even Sr-containing water with a high salt concentration such as seawater can be easily and efficiently treated at low cost if it is agglomeration treatment.

本発明において、炭酸塩添加時のアルカリ条件は、pH9〜13.5の範囲、特にpH10〜13の範囲が好ましく(請求項2,7)、炭酸塩としては、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩が好ましい(請求項3,8)。   In the present invention, the alkali condition at the time of adding carbonate is preferably in the range of pH 9 to 13.5, particularly preferably in the range of pH 10 to 13 (Claims 2 and 7), and the carbonate is an alkali such as sodium carbonate or potassium carbonate. Metal carbonates are preferred (claims 3 and 8).

このような本発明によるSr含有水の処理は、特にSr以外のCa2+,Mg2+等の陽イオンを含むSr含有水に有効であり、例えば、Srを含む海水、とりわけ放射性Srを含む海水の処理に好適である(請求項4,5,9,10)。 Such treatment of Sr-containing water according to the present invention is particularly effective for Sr-containing water containing cations other than Sr, such as Ca 2+ and Mg 2+ , for example, seawater containing Sr, especially seawater containing radioactive Sr. Suitable for processing (claims 4, 5, 9, 10).

本発明のSr含有水の処理方法及び処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and processing apparatus of Sr containing water of this invention.

以下、図面を参照して本発明の実施の形態を詳細に説明するが、以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではなく、本発明はその要旨を超えない範囲において、以下の実施形態に開示される各要素を種々変更して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the embodiments described below are for facilitating the understanding of the present invention and do not limit the present invention. Instead, the present invention can be implemented by variously changing each element disclosed in the following embodiments without departing from the scope of the invention.

図1は、本発明のSr含有水の処理方法及び処理装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a method and apparatus for treating Sr-containing water according to the present invention.

図1に示す実施形態では、Sr含有水(原水)を反応槽1に導入して攪拌下に炭酸塩を添加すると共にpH調整剤を添加してアルカリ条件下に反応させる。   In the embodiment shown in FIG. 1, Sr-containing water (raw water) is introduced into the reaction tank 1 and a carbonate is added with stirring and a pH adjuster is added to react under alkaline conditions.

原水に添加する炭酸塩としては、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)等のアルカリ金属の炭酸塩が好適に用いられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。また、これらの炭酸塩を含む排水を用いることもできる。 As the carbonate added to the raw water, alkali metal carbonates such as sodium carbonate (Na 2 CO 3 ) and potassium carbonate (K 2 CO 3 ) are preferably used. These may be used alone or in combination of two or more. Moreover, the waste water containing these carbonates can also be used.

炭酸塩の添加量は、少な過ぎると原水中のSrやその他の共存陽イオンを十分に除去することができず、多過ぎても添加量に見合う除去効果は得られなくなることから、原水中のSrやその他の陽イオンの濃度に応じて反応当量に見合うように適宜決定される。前記の(1)及び(2)式から、原水中のSrとCaの濃度がわかれば必要な炭酸塩の添加量を算出できる。但し、反応に寄与しない炭酸塩もあるので、理論必要量の1〜4倍当量の炭酸塩を添加することが好ましい。   If the amount of carbonate added is too small, Sr and other coexisting cations in the raw water cannot be removed sufficiently, and if too much, the removal effect commensurate with the amount added cannot be obtained. Depending on the concentration of Sr and other cations, it is appropriately determined so as to meet the reaction equivalent. From the above formulas (1) and (2), if the concentrations of Sr and Ca in the raw water are known, the necessary amount of carbonate added can be calculated. However, since there are carbonates that do not contribute to the reaction, it is preferable to add 1 to 4 equivalents of the theoretically required amount of carbonate.

Srは、pH9〜13.5のアルカリ条件下でSrCOとして析出するため、pH調整剤として、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等のアルカリを添加して、原水をpH9〜13.5に調整する。特に、原水がMg2+を含む場合には、前述の如く、Mg2+はpH12以上でMg(OH)として析出するため、この場合にはpH10〜13.5に調整することが好ましい。なお、pH調整に用いるアルカリとしては、アルカリ排水を用いてもよい。 Since Sr precipitates as SrCO 3 under alkaline conditions of pH 9 to 13.5, alkali such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) is added as a pH adjuster, and the raw water is pH 9 to Adjust to 13.5. In particular, when the raw water contains Mg 2+ is, as described above, since Mg 2+ is precipitated as Mg (OH) 2 at pH12 or more, in this case preferably adjusted to PH10~13.5. In addition, as the alkali used for pH adjustment, alkaline drainage may be used.

反応槽1では、原水中のSr、その他の陽イオンと炭酸塩とを十分に反応させて析出物を得るべく、1〜30分程度の滞留時間(反応時間)が得られるように設計することが好ましい。   The reaction tank 1 should be designed so that a residence time (reaction time) of about 1 to 30 minutes can be obtained in order to sufficiently react Sr, other cations in the raw water with carbonates to obtain precipitates. Is preferred.

反応槽1の流出液は、次いで凝集槽2で高分子凝集剤(図1ではアニオン性高分子凝集剤(アニオンポリマー))が添加されて撹拌下に凝集処理される。   Next, a polymer flocculant (an anionic polymer flocculant (anionic polymer) in FIG. 1) is added to the effluent from the reaction tank 1 in the flocculant tank 2 and is agglomerated with stirring.

炭酸ストロンチウム及び炭酸カルシウムは、沈降性に優れた良好な凝集フロックを形成するが、水酸化マグネシウムは沈降性が悪くかさ高いフロックである。水酸化マグネシウムは表面電荷がやや正に帯電しているのでアニオンポリマーを添加することで粗大フロックとなり、沈降性を改善することができる。   Strontium carbonate and calcium carbonate form a good floc floc with excellent sedimentation, while magnesium hydroxide is a bulky floc with poor sedimentation. Magnesium hydroxide has a slightly positive surface charge, so adding an anionic polymer results in coarse flocs and can improve sedimentation.

アニオンポリマーとしては、特に限定されないが、例えばポリアクリルアミドの部分加水分解物、ポリアクリルアミドとアクリル酸ナトリウムとの共重合物、アクリルアミドとビニルスルホン酸ナトリウムとの共重合物、及びアクリルアミドとアクリル酸ナトリウムと2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウムとの三元共重合物などが挙げられ、これらの1種又は2種以上を用いることができる。   Although it does not specifically limit as an anionic polymer, For example, the partial hydrolyzate of polyacrylamide, the copolymer of polyacrylamide and sodium acrylate, the copolymer of acrylamide and sodium vinylsulfonate, and acrylamide and sodium acrylate, Examples thereof include terpolymers with sodium 2-acrylamido-2-methylpropanesulfonate, and one or more of these can be used.

アニオンポリマーの添加量は、少な過ぎると十分な凝集効果を得ることができず、多過ぎると凝集不良を引き起こす恐れがあることから、0.5〜5mg/L程度とすることが好ましい。   When the amount of the anionic polymer added is too small, a sufficient aggregation effect cannot be obtained, and when it is too large, there is a possibility of causing poor aggregation, so it is preferable to be about 0.5 to 5 mg / L.

なお、凝集槽2において、凝集フロックを十分に粗大化させるために、凝集槽2は、滞留時間(反応時間)が1〜30分となるように設計することが好ましい。   In the flocculation tank 2, the flocculation tank 2 is preferably designed so that the residence time (reaction time) is 1 to 30 minutes in order to sufficiently coarsen the flocculation floc.

凝集槽2の凝集処理液は、次いで沈殿槽3に導入されて固液分離される。沈殿槽3の分離液は更に濾過器4で濾過されることにより、Srが除去された処理水を得ることができる。   The flocculation treatment liquid in the flocculation tank 2 is then introduced into the precipitation tank 3 and subjected to solid-liquid separation. The separated liquid in the settling tank 3 is further filtered by the filter 4 to obtain treated water from which Sr has been removed.

なお、図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図1の形態に限定されるものではない。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the form of FIG. 1 as long as the gist thereof is not exceeded.

例えば、炭酸塩やpH調整剤は、反応槽1に添加する他、反応槽1への原水の導入配管に添加してもよく、アニオンポリマーについても反応槽1の流出液を凝集槽2に導入する配管に添加してもよい。
また、炭酸塩を添加する第1反応槽と、第1反応槽からの流出液にpH調整剤を添加する第2反応槽とに分けて各々の薬剤を添加してもよい。凝集槽2と沈殿槽3は省いてもよい。濾過器4は膜濾過装置でもよい。
For example, in addition to adding carbonate and a pH adjuster to the reaction tank 1, it may be added to a pipe for introducing raw water into the reaction tank 1, and an effluent of the reaction tank 1 is introduced into the coagulation tank 2 for the anionic polymer. It may be added to the piping.
Moreover, you may add each chemical | medical agent separately in the 1st reaction tank which adds carbonate, and the 2nd reaction tank which adds a pH adjuster to the effluent from a 1st reaction tank. The aggregation tank 2 and the precipitation tank 3 may be omitted. The filter 4 may be a membrane filtration device.

このような本発明のSr含有水の処理方法は、Srの他にCa2+,Mg2+等の陽イオンを高濃度で含む水の処理に好適であり、適用される原水の水質としては、例えば、導電率100〜5000mS/m、Ca1〜500mg/L、Mg1〜1500mg/L、Sr1〜10mg/L、pH5〜9の水が挙げられる。 Such a method for treating Sr-containing water of the present invention is suitable for treating water containing a high concentration of cations such as Ca 2+ and Mg 2+ in addition to Sr. , Conductivity 100 to 5000 mS / m, Ca 1 to 500 mg / L, Mg 1 to 1500 mg / L, Sr 1 to 10 mg / L, pH 5 to 9 water.

以下、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

[実施例1]
本発明に従って、以下の水質の模擬海水を処理した。
<模擬海水水質>
導電率:4420mS/m
Ca:417mg/L
Mg:1260mg/L
Sr:4.28mg/L
pH:8.2
[Example 1]
In accordance with the present invention, simulated seawater of the following water quality was treated:
<Simulated seawater quality>
Conductivity: 4420 mS / m
Ca: 417 mg / L
Mg: 1260mg / L
Sr: 4.28 mg / L
pH: 8.2

模擬海水に炭酸塩としてNaCOを1200mg/L添加すると共にNaOHを添加してpH12に調整して10分間反応させた後、凝集槽2にてアニオンポリマー(栗田工業(株)製「クリフロックPA823」(アクリル酸系ポリマー))を3mg/L添加して5分間凝集処理し、その後30分間静置して沈降分離した。上澄水を孔径0.45μmのフィルターで濾過し、濾液を分析し、結果を表1に示した。 After adding 1200 mg / L of Na 2 CO 3 as carbonate to simulated seawater and adding NaOH to adjust the pH to 12 and reacting for 10 minutes, anionic polymer (“Cliff” manufactured by Kurita Kogyo Co., Ltd.) 3 mg / L of Rock PA823 ”(acrylic acid polymer)) was added, and the mixture was agglomerated for 5 minutes, and then allowed to stand for 30 minutes for sedimentation. The supernatant water was filtered through a filter having a pore size of 0.45 μm, the filtrate was analyzed, and the results are shown in Table 1.

[比較例1]
実施例1において、模擬海水にNaCOを添加しなかったこと以外は同様にして処理を行い、結果を表1に示した。
[Comparative Example 1]
In Example 1, treatment was performed in the same manner except that NaCO 3 was not added to the simulated seawater, and the results are shown in Table 1.

Figure 2013104723
Figure 2013104723

表1より、本発明によれば、模擬海水中のSrをCa,Mgと共に効率的に除去することができることが分かる。一方、炭酸塩を添加していない比較例1では、pH12としたことにより、Mgが除去され、またCaについても一部除去されたが、Srは殆ど除去されなかった。   From Table 1, it can be seen that according to the present invention, Sr in the simulated seawater can be efficiently removed together with Ca and Mg. On the other hand, in Comparative Example 1 to which no carbonate was added, Mg was removed and Ca was partially removed by adjusting the pH to 12, but Sr was hardly removed.

実施例1で得られた処理水は、これをイオン交換樹脂やオルトチタン酸などの吸着材で処理することにより、更にSrを高度に除去することができ、この場合において、被吸着処理水のSr濃度が十分に低減されており、また、他の陽イオン濃度も低いため、吸着材を頻繁に交換することなく、効率的な高度処理が可能となる。   The treated water obtained in Example 1 can be further removed with a high degree of Sr by treating it with an adsorbent such as an ion exchange resin or orthotitanic acid. Since the Sr concentration is sufficiently reduced and the concentration of other cations is also low, efficient advanced processing can be performed without frequently changing the adsorbent.

1 反応槽
2 凝集槽
3 沈殿槽
4 濾過器
1 Reaction tank 2 Coagulation tank 3 Precipitation tank 4 Filter

Claims (10)

Sr含有水にアルカリ条件下で炭酸塩を添加して凝集、固液分離することを特徴とするSr含有水の処理方法。   A method for treating Sr-containing water, characterized in that carbonate is added to Sr-containing water under alkaline conditions for aggregation and solid-liquid separation. 請求項1において、前記アルカリ条件がpH9〜13.5であることを特徴とするSr含有水の処理方法。   The method for treating Sr-containing water according to claim 1, wherein the alkaline condition is pH 9 to 13.5. 請求項1又は2において、前記炭酸塩がアルカリ金属の炭酸塩であることを特徴とするSr含有水の処理方法。   3. The method for treating Sr-containing water according to claim 1, wherein the carbonate is an alkali metal carbonate. 請求項1ないし3のいずれか1項において、前記Sr含有水がSrとSr以外の陽イオンを含むことを特徴とするSr含有水の処理方法。   The method for treating Sr-containing water according to any one of claims 1 to 3, wherein the Sr-containing water contains cations other than Sr and Sr. 請求項4において、前記Sr含有水がSrを含む海水であることを特徴とするSr含有水の処理方法。   5. The method for treating Sr-containing water according to claim 4, wherein the Sr-containing water is seawater containing Sr. Sr含有水に炭酸塩を添加する炭酸塩添加手段と、Sr含有水をpHアルカリ性に調整するpH調整手段と、該炭酸塩添加手段とpH調整手段を経たSr含有水を凝集、固液分離する手段とを有することを特徴とするSr含有水の処理装置。   Carbonate addition means for adding carbonate to Sr-containing water, pH adjustment means for adjusting Sr-containing water to pH alkalinity, and Sr-containing water passed through the carbonate addition means and pH adjustment means are aggregated and solid-liquid separated. Means for treating Sr-containing water. 請求項6において、前記pH調整手段によりSr含有水をpH9〜13.5に調整することを特徴とするSr含有水の処理装置。   7. The apparatus for treating Sr-containing water according to claim 6, wherein the Sr-containing water is adjusted to pH 9 to 13.5 by the pH adjusting means. 請求項6又は7において、前記炭酸塩がアルカリ金属の炭酸塩であることを特徴とすることを特徴とするSr含有水の処理装置。   8. The apparatus for treating Sr-containing water according to claim 6, wherein the carbonate is an alkali metal carbonate. 請求項6ないし8のいずれか1項において、前記Sr含有水がSrとSr以外の陽イオンを含むことを特徴とするSr含有水の処理装置。   The apparatus for treating Sr-containing water according to any one of claims 6 to 8, wherein the Sr-containing water contains cations other than Sr and Sr. 請求項9において、前記Sr含有水がSrを含む海水であることを特徴とするSr含有水の処理装置。   The apparatus for treating Sr-containing water according to claim 9, wherein the Sr-containing water is seawater containing Sr.
JP2011247494A 2011-11-11 2011-11-11 METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER Pending JP2013104723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247494A JP2013104723A (en) 2011-11-11 2011-11-11 METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247494A JP2013104723A (en) 2011-11-11 2011-11-11 METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER

Publications (1)

Publication Number Publication Date
JP2013104723A true JP2013104723A (en) 2013-05-30

Family

ID=48624376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247494A Pending JP2013104723A (en) 2011-11-11 2011-11-11 METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER

Country Status (1)

Country Link
JP (1) JP2013104723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276638A (en) * 2014-10-15 2015-01-14 无锡天康环保设备有限公司 Tunnel construction drainage treatment method and treatment device thereof
WO2015029495A1 (en) * 2013-08-29 2015-03-05 協和化学工業株式会社 Method for reducing strontium ion concentration
JP2015094611A (en) * 2013-11-11 2015-05-18 株式会社東芝 Treatment method of radioactive contaminated water and treatment device thereof
JP2015114315A (en) * 2013-12-06 2015-06-22 株式会社 環境浄化研究所 Method for removing strontium using crystallization
JP2015184199A (en) * 2014-03-25 2015-10-22 三菱重工環境・化学エンジニアリング株式会社 Water treatment method
KR101656475B1 (en) * 2015-05-11 2016-09-12 재단법인 포항산업과학연구원 Method of recovering strontium in sea water
WO2019022317A1 (en) * 2017-07-24 2019-01-31 재단법인 포항산업과학연구원 High-purity recovery method of strontium in seawater

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940794B1 (en) * 1969-09-30 1974-11-05
JPS52120546A (en) * 1976-04-05 1977-10-11 Kinkai Kaisui Kogyo Kk Method of removing calcium in brine therefrom
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
JP2002267795A (en) * 2001-03-13 2002-09-18 Chiyoda Technol Corp Method and device for disposing radioactive material- containing waste liquid
JP2002267796A (en) * 2001-03-13 2002-09-18 Chiyoda Technol Corp Solid material and radioactive material-containing waste liquid disposal method using it
WO2009119300A1 (en) * 2008-03-24 2009-10-01 メタウォーター株式会社 Method of pretreatment for separation with reverse osmosis membrane of water to be treated
JP2010531732A (en) * 2007-06-28 2010-09-30 カレラ コーポレイション Desalination method including precipitation of carbonate compounds
JP2011056345A (en) * 2009-09-07 2011-03-24 Toshiba Corp Desalination system
JP2013094694A (en) * 2011-10-28 2013-05-20 Vision Development Co Ltd Processing method for waste liquid containing metal atom, and adsorbent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940794B1 (en) * 1969-09-30 1974-11-05
JPS52120546A (en) * 1976-04-05 1977-10-11 Kinkai Kaisui Kogyo Kk Method of removing calcium in brine therefrom
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
JP2002267795A (en) * 2001-03-13 2002-09-18 Chiyoda Technol Corp Method and device for disposing radioactive material- containing waste liquid
JP2002267796A (en) * 2001-03-13 2002-09-18 Chiyoda Technol Corp Solid material and radioactive material-containing waste liquid disposal method using it
JP2010531732A (en) * 2007-06-28 2010-09-30 カレラ コーポレイション Desalination method including precipitation of carbonate compounds
WO2009119300A1 (en) * 2008-03-24 2009-10-01 メタウォーター株式会社 Method of pretreatment for separation with reverse osmosis membrane of water to be treated
JP2011056345A (en) * 2009-09-07 2011-03-24 Toshiba Corp Desalination system
JP2013094694A (en) * 2011-10-28 2013-05-20 Vision Development Co Ltd Processing method for waste liquid containing metal atom, and adsorbent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
久保田益充 ほか5名: "群分離法の開発:無機イオン交換体カラム法による90SR及び137Csを含む廃液の処理法", JAERI−M, vol. 82-144, JPN7015002725, October 1982 (1982-10-01), pages 28, ISSN: 0003167789 *
山本忠利,郡司勝文,五十嵐延行: "青森県六ヶ所村沖における海洋放射能調査", JAERI-RESEARCH, vol. 98-072, JPN7016000218, December 1998 (1998-12-01), pages 30, ISSN: 0003248677 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029495A1 (en) * 2013-08-29 2015-03-05 協和化学工業株式会社 Method for reducing strontium ion concentration
CN105408261A (en) * 2013-08-29 2016-03-16 协和化学工业株式会社 Method for reducing strontium ion concentration
JPWO2015029495A1 (en) * 2013-08-29 2017-03-02 協和化学工業株式会社 Method for reducing strontium ion concentration
JP2015094611A (en) * 2013-11-11 2015-05-18 株式会社東芝 Treatment method of radioactive contaminated water and treatment device thereof
JP2015114315A (en) * 2013-12-06 2015-06-22 株式会社 環境浄化研究所 Method for removing strontium using crystallization
JP2015184199A (en) * 2014-03-25 2015-10-22 三菱重工環境・化学エンジニアリング株式会社 Water treatment method
CN104276638A (en) * 2014-10-15 2015-01-14 无锡天康环保设备有限公司 Tunnel construction drainage treatment method and treatment device thereof
KR101656475B1 (en) * 2015-05-11 2016-09-12 재단법인 포항산업과학연구원 Method of recovering strontium in sea water
WO2019022317A1 (en) * 2017-07-24 2019-01-31 재단법인 포항산업과학연구원 High-purity recovery method of strontium in seawater
KR20190011347A (en) * 2017-07-24 2019-02-07 재단법인 포항산업과학연구원 Method for recovering strontium in sea water
KR101957130B1 (en) * 2017-07-24 2019-03-14 재단법인 포항산업과학연구원 Method for recovering strontium in sea water

Similar Documents

Publication Publication Date Title
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
JP2014014738A (en) Method and apparatus for treating organic wastewater
EP2993160A1 (en) Water treatment device and water treatment method
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
JP2010082546A (en) Water treatment apparatus and method
JP5906892B2 (en) Calcium / magnesium-containing water treatment method and treatment apparatus
EP2993159B1 (en) Water treatment device and water treatment method
Wang et al. A novel method based on membrane distillation for treating acid mine drainage: Recovery of water and utilization of iron
JP4954131B2 (en) Treatment method of water containing borofluoride
JP6047957B2 (en) Treatment method of wastewater containing radioactive strontium
JP5794422B2 (en) Treatment method and treatment apparatus for removing fluorine and harmful substances
JP6269651B2 (en) Method and apparatus for treating borofluoride-containing water
CN111233208A (en) Desulfurization waste water resource recovery system
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP2002205077A (en) Method and apparatus for treating organic sewage
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
CN211896410U (en) Desulfurization waste water resource recovery system
CN209872651U (en) Treatment device for desulfurization wastewater quality-divided crystallization
JP2001232372A (en) Treatment process for water containing boron
CN112093830A (en) Ecological water purifying medicament and preparation method thereof
JP2014200745A (en) Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid
JPH11165179A (en) Method for treating fluorine-containing water
JP2017039062A (en) Boron removal method and boron removal device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004